1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/BranchProbabilityInfo.h"
15 #include "llvm/ADT/PostOrderIterator.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/IR/CFG.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/Function.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/IR/LLVMContext.h"
22 #include "llvm/IR/Metadata.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "branch-prob"
29
30 INITIALIZE_PASS_BEGIN(BranchProbabilityInfo, "branch-prob",
31 "Branch Probability Analysis", false, true)
32 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
33 INITIALIZE_PASS_END(BranchProbabilityInfo, "branch-prob",
34 "Branch Probability Analysis", false, true)
35
36 char BranchProbabilityInfo::ID = 0;
37
38 // Weights are for internal use only. They are used by heuristics to help to
39 // estimate edges' probability. Example:
40 //
41 // Using "Loop Branch Heuristics" we predict weights of edges for the
42 // block BB2.
43 // ...
44 // |
45 // V
46 // BB1<-+
47 // | |
48 // | | (Weight = 124)
49 // V |
50 // BB2--+
51 // |
52 // | (Weight = 4)
53 // V
54 // BB3
55 //
56 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
57 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
58 static const uint32_t LBH_TAKEN_WEIGHT = 124;
59 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
60
61 /// \brief Unreachable-terminating branch taken weight.
62 ///
63 /// This is the weight for a branch being taken to a block that terminates
64 /// (eventually) in unreachable. These are predicted as unlikely as possible.
65 static const uint32_t UR_TAKEN_WEIGHT = 1;
66
67 /// \brief Unreachable-terminating branch not-taken weight.
68 ///
69 /// This is the weight for a branch not being taken toward a block that
70 /// terminates (eventually) in unreachable. Such a branch is essentially never
71 /// taken. Set the weight to an absurdly high value so that nested loops don't
72 /// easily subsume it.
73 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1;
74
75 /// \brief Weight for a branch taken going into a cold block.
76 ///
77 /// This is the weight for a branch taken toward a block marked
78 /// cold. A block is marked cold if it's postdominated by a
79 /// block containing a call to a cold function. Cold functions
80 /// are those marked with attribute 'cold'.
81 static const uint32_t CC_TAKEN_WEIGHT = 4;
82
83 /// \brief Weight for a branch not-taken into a cold block.
84 ///
85 /// This is the weight for a branch not taken toward a block marked
86 /// cold.
87 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
88
89 static const uint32_t PH_TAKEN_WEIGHT = 20;
90 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
91
92 static const uint32_t ZH_TAKEN_WEIGHT = 20;
93 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
94
95 static const uint32_t FPH_TAKEN_WEIGHT = 20;
96 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
97
98 /// \brief Invoke-terminating normal branch taken weight
99 ///
100 /// This is the weight for branching to the normal destination of an invoke
101 /// instruction. We expect this to happen most of the time. Set the weight to an
102 /// absurdly high value so that nested loops subsume it.
103 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
104
105 /// \brief Invoke-terminating normal branch not-taken weight.
106 ///
107 /// This is the weight for branching to the unwind destination of an invoke
108 /// instruction. This is essentially never taken.
109 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
110
111 // Standard weight value. Used when none of the heuristics set weight for
112 // the edge.
113 static const uint32_t NORMAL_WEIGHT = 16;
114
115 // Minimum weight of an edge. Please note, that weight is NEVER 0.
116 static const uint32_t MIN_WEIGHT = 1;
117
getMaxWeightFor(BasicBlock * BB)118 static uint32_t getMaxWeightFor(BasicBlock *BB) {
119 return UINT32_MAX / BB->getTerminator()->getNumSuccessors();
120 }
121
122
123 /// \brief Calculate edge weights for successors lead to unreachable.
124 ///
125 /// Predict that a successor which leads necessarily to an
126 /// unreachable-terminated block as extremely unlikely.
calcUnreachableHeuristics(BasicBlock * BB)127 bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) {
128 TerminatorInst *TI = BB->getTerminator();
129 if (TI->getNumSuccessors() == 0) {
130 if (isa<UnreachableInst>(TI))
131 PostDominatedByUnreachable.insert(BB);
132 return false;
133 }
134
135 SmallVector<unsigned, 4> UnreachableEdges;
136 SmallVector<unsigned, 4> ReachableEdges;
137
138 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
139 if (PostDominatedByUnreachable.count(*I))
140 UnreachableEdges.push_back(I.getSuccessorIndex());
141 else
142 ReachableEdges.push_back(I.getSuccessorIndex());
143 }
144
145 // If all successors are in the set of blocks post-dominated by unreachable,
146 // this block is too.
147 if (UnreachableEdges.size() == TI->getNumSuccessors())
148 PostDominatedByUnreachable.insert(BB);
149
150 // Skip probabilities if this block has a single successor or if all were
151 // reachable.
152 if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty())
153 return false;
154
155 uint32_t UnreachableWeight =
156 std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT);
157 for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(),
158 E = UnreachableEdges.end();
159 I != E; ++I)
160 setEdgeWeight(BB, *I, UnreachableWeight);
161
162 if (ReachableEdges.empty())
163 return true;
164 uint32_t ReachableWeight =
165 std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(),
166 NORMAL_WEIGHT);
167 for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(),
168 E = ReachableEdges.end();
169 I != E; ++I)
170 setEdgeWeight(BB, *I, ReachableWeight);
171
172 return true;
173 }
174
175 // Propagate existing explicit probabilities from either profile data or
176 // 'expect' intrinsic processing.
calcMetadataWeights(BasicBlock * BB)177 bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) {
178 TerminatorInst *TI = BB->getTerminator();
179 if (TI->getNumSuccessors() == 1)
180 return false;
181 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
182 return false;
183
184 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
185 if (!WeightsNode)
186 return false;
187
188 // Ensure there are weights for all of the successors. Note that the first
189 // operand to the metadata node is a name, not a weight.
190 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
191 return false;
192
193 // Build up the final weights that will be used in a temporary buffer, but
194 // don't add them until all weihts are present. Each weight value is clamped
195 // to [1, getMaxWeightFor(BB)].
196 uint32_t WeightLimit = getMaxWeightFor(BB);
197 SmallVector<uint32_t, 2> Weights;
198 Weights.reserve(TI->getNumSuccessors());
199 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
200 ConstantInt *Weight =
201 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
202 if (!Weight)
203 return false;
204 Weights.push_back(
205 std::max<uint32_t>(1, Weight->getLimitedValue(WeightLimit)));
206 }
207 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
208 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
209 setEdgeWeight(BB, i, Weights[i]);
210
211 return true;
212 }
213
214 /// \brief Calculate edge weights for edges leading to cold blocks.
215 ///
216 /// A cold block is one post-dominated by a block with a call to a
217 /// cold function. Those edges are unlikely to be taken, so we give
218 /// them relatively low weight.
219 ///
220 /// Return true if we could compute the weights for cold edges.
221 /// Return false, otherwise.
calcColdCallHeuristics(BasicBlock * BB)222 bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) {
223 TerminatorInst *TI = BB->getTerminator();
224 if (TI->getNumSuccessors() == 0)
225 return false;
226
227 // Determine which successors are post-dominated by a cold block.
228 SmallVector<unsigned, 4> ColdEdges;
229 SmallVector<unsigned, 4> NormalEdges;
230 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
231 if (PostDominatedByColdCall.count(*I))
232 ColdEdges.push_back(I.getSuccessorIndex());
233 else
234 NormalEdges.push_back(I.getSuccessorIndex());
235
236 // If all successors are in the set of blocks post-dominated by cold calls,
237 // this block is in the set post-dominated by cold calls.
238 if (ColdEdges.size() == TI->getNumSuccessors())
239 PostDominatedByColdCall.insert(BB);
240 else {
241 // Otherwise, if the block itself contains a cold function, add it to the
242 // set of blocks postdominated by a cold call.
243 assert(!PostDominatedByColdCall.count(BB));
244 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
245 if (CallInst *CI = dyn_cast<CallInst>(I))
246 if (CI->hasFnAttr(Attribute::Cold)) {
247 PostDominatedByColdCall.insert(BB);
248 break;
249 }
250 }
251
252 // Skip probabilities if this block has a single successor.
253 if (TI->getNumSuccessors() == 1 || ColdEdges.empty())
254 return false;
255
256 uint32_t ColdWeight =
257 std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT);
258 for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(),
259 E = ColdEdges.end();
260 I != E; ++I)
261 setEdgeWeight(BB, *I, ColdWeight);
262
263 if (NormalEdges.empty())
264 return true;
265 uint32_t NormalWeight = std::max(
266 CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT);
267 for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(),
268 E = NormalEdges.end();
269 I != E; ++I)
270 setEdgeWeight(BB, *I, NormalWeight);
271
272 return true;
273 }
274
275 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
276 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(BasicBlock * BB)277 bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) {
278 BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
279 if (!BI || !BI->isConditional())
280 return false;
281
282 Value *Cond = BI->getCondition();
283 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
284 if (!CI || !CI->isEquality())
285 return false;
286
287 Value *LHS = CI->getOperand(0);
288
289 if (!LHS->getType()->isPointerTy())
290 return false;
291
292 assert(CI->getOperand(1)->getType()->isPointerTy());
293
294 // p != 0 -> isProb = true
295 // p == 0 -> isProb = false
296 // p != q -> isProb = true
297 // p == q -> isProb = false;
298 unsigned TakenIdx = 0, NonTakenIdx = 1;
299 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
300 if (!isProb)
301 std::swap(TakenIdx, NonTakenIdx);
302
303 setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT);
304 setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT);
305 return true;
306 }
307
308 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
309 // as taken, exiting edges as not-taken.
calcLoopBranchHeuristics(BasicBlock * BB)310 bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB) {
311 Loop *L = LI->getLoopFor(BB);
312 if (!L)
313 return false;
314
315 SmallVector<unsigned, 8> BackEdges;
316 SmallVector<unsigned, 8> ExitingEdges;
317 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
318
319 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
320 if (!L->contains(*I))
321 ExitingEdges.push_back(I.getSuccessorIndex());
322 else if (L->getHeader() == *I)
323 BackEdges.push_back(I.getSuccessorIndex());
324 else
325 InEdges.push_back(I.getSuccessorIndex());
326 }
327
328 if (BackEdges.empty() && ExitingEdges.empty())
329 return false;
330
331 if (uint32_t numBackEdges = BackEdges.size()) {
332 uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges;
333 if (backWeight < NORMAL_WEIGHT)
334 backWeight = NORMAL_WEIGHT;
335
336 for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(),
337 EE = BackEdges.end(); EI != EE; ++EI) {
338 setEdgeWeight(BB, *EI, backWeight);
339 }
340 }
341
342 if (uint32_t numInEdges = InEdges.size()) {
343 uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges;
344 if (inWeight < NORMAL_WEIGHT)
345 inWeight = NORMAL_WEIGHT;
346
347 for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(),
348 EE = InEdges.end(); EI != EE; ++EI) {
349 setEdgeWeight(BB, *EI, inWeight);
350 }
351 }
352
353 if (uint32_t numExitingEdges = ExitingEdges.size()) {
354 uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges;
355 if (exitWeight < MIN_WEIGHT)
356 exitWeight = MIN_WEIGHT;
357
358 for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(),
359 EE = ExitingEdges.end(); EI != EE; ++EI) {
360 setEdgeWeight(BB, *EI, exitWeight);
361 }
362 }
363
364 return true;
365 }
366
calcZeroHeuristics(BasicBlock * BB)367 bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) {
368 BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator());
369 if (!BI || !BI->isConditional())
370 return false;
371
372 Value *Cond = BI->getCondition();
373 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
374 if (!CI)
375 return false;
376
377 Value *RHS = CI->getOperand(1);
378 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
379 if (!CV)
380 return false;
381
382 // If the LHS is the result of AND'ing a value with a single bit bitmask,
383 // we don't have information about probabilities.
384 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
385 if (LHS->getOpcode() == Instruction::And)
386 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
387 if (AndRHS->getUniqueInteger().isPowerOf2())
388 return false;
389
390 bool isProb;
391 if (CV->isZero()) {
392 switch (CI->getPredicate()) {
393 case CmpInst::ICMP_EQ:
394 // X == 0 -> Unlikely
395 isProb = false;
396 break;
397 case CmpInst::ICMP_NE:
398 // X != 0 -> Likely
399 isProb = true;
400 break;
401 case CmpInst::ICMP_SLT:
402 // X < 0 -> Unlikely
403 isProb = false;
404 break;
405 case CmpInst::ICMP_SGT:
406 // X > 0 -> Likely
407 isProb = true;
408 break;
409 default:
410 return false;
411 }
412 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
413 // InstCombine canonicalizes X <= 0 into X < 1.
414 // X <= 0 -> Unlikely
415 isProb = false;
416 } else if (CV->isAllOnesValue()) {
417 switch (CI->getPredicate()) {
418 case CmpInst::ICMP_EQ:
419 // X == -1 -> Unlikely
420 isProb = false;
421 break;
422 case CmpInst::ICMP_NE:
423 // X != -1 -> Likely
424 isProb = true;
425 break;
426 case CmpInst::ICMP_SGT:
427 // InstCombine canonicalizes X >= 0 into X > -1.
428 // X >= 0 -> Likely
429 isProb = true;
430 break;
431 default:
432 return false;
433 }
434 } else {
435 return false;
436 }
437
438 unsigned TakenIdx = 0, NonTakenIdx = 1;
439
440 if (!isProb)
441 std::swap(TakenIdx, NonTakenIdx);
442
443 setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT);
444 setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT);
445
446 return true;
447 }
448
calcFloatingPointHeuristics(BasicBlock * BB)449 bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) {
450 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
451 if (!BI || !BI->isConditional())
452 return false;
453
454 Value *Cond = BI->getCondition();
455 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
456 if (!FCmp)
457 return false;
458
459 bool isProb;
460 if (FCmp->isEquality()) {
461 // f1 == f2 -> Unlikely
462 // f1 != f2 -> Likely
463 isProb = !FCmp->isTrueWhenEqual();
464 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
465 // !isnan -> Likely
466 isProb = true;
467 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
468 // isnan -> Unlikely
469 isProb = false;
470 } else {
471 return false;
472 }
473
474 unsigned TakenIdx = 0, NonTakenIdx = 1;
475
476 if (!isProb)
477 std::swap(TakenIdx, NonTakenIdx);
478
479 setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT);
480 setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT);
481
482 return true;
483 }
484
calcInvokeHeuristics(BasicBlock * BB)485 bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) {
486 InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
487 if (!II)
488 return false;
489
490 setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT);
491 setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT);
492 return true;
493 }
494
getAnalysisUsage(AnalysisUsage & AU) const495 void BranchProbabilityInfo::getAnalysisUsage(AnalysisUsage &AU) const {
496 AU.addRequired<LoopInfoWrapperPass>();
497 AU.setPreservesAll();
498 }
499
runOnFunction(Function & F)500 bool BranchProbabilityInfo::runOnFunction(Function &F) {
501 DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
502 << " ----\n\n");
503 LastF = &F; // Store the last function we ran on for printing.
504 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
505 assert(PostDominatedByUnreachable.empty());
506 assert(PostDominatedByColdCall.empty());
507
508 // Walk the basic blocks in post-order so that we can build up state about
509 // the successors of a block iteratively.
510 for (auto BB : post_order(&F.getEntryBlock())) {
511 DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
512 if (calcUnreachableHeuristics(BB))
513 continue;
514 if (calcMetadataWeights(BB))
515 continue;
516 if (calcColdCallHeuristics(BB))
517 continue;
518 if (calcLoopBranchHeuristics(BB))
519 continue;
520 if (calcPointerHeuristics(BB))
521 continue;
522 if (calcZeroHeuristics(BB))
523 continue;
524 if (calcFloatingPointHeuristics(BB))
525 continue;
526 calcInvokeHeuristics(BB);
527 }
528
529 PostDominatedByUnreachable.clear();
530 PostDominatedByColdCall.clear();
531 return false;
532 }
533
print(raw_ostream & OS,const Module *) const534 void BranchProbabilityInfo::print(raw_ostream &OS, const Module *) const {
535 OS << "---- Branch Probabilities ----\n";
536 // We print the probabilities from the last function the analysis ran over,
537 // or the function it is currently running over.
538 assert(LastF && "Cannot print prior to running over a function");
539 for (Function::const_iterator BI = LastF->begin(), BE = LastF->end();
540 BI != BE; ++BI) {
541 for (succ_const_iterator SI = succ_begin(BI), SE = succ_end(BI);
542 SI != SE; ++SI) {
543 printEdgeProbability(OS << " ", BI, *SI);
544 }
545 }
546 }
547
getSumForBlock(const BasicBlock * BB) const548 uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const {
549 uint32_t Sum = 0;
550
551 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
552 uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex());
553 uint32_t PrevSum = Sum;
554
555 Sum += Weight;
556 assert(Sum > PrevSum); (void) PrevSum;
557 }
558
559 return Sum;
560 }
561
562 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const563 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
564 // Hot probability is at least 4/5 = 80%
565 // FIXME: Compare against a static "hot" BranchProbability.
566 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
567 }
568
getHotSucc(BasicBlock * BB) const569 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const {
570 uint32_t Sum = 0;
571 uint32_t MaxWeight = 0;
572 BasicBlock *MaxSucc = nullptr;
573
574 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
575 BasicBlock *Succ = *I;
576 uint32_t Weight = getEdgeWeight(BB, Succ);
577 uint32_t PrevSum = Sum;
578
579 Sum += Weight;
580 assert(Sum > PrevSum); (void) PrevSum;
581
582 if (Weight > MaxWeight) {
583 MaxWeight = Weight;
584 MaxSucc = Succ;
585 }
586 }
587
588 // Hot probability is at least 4/5 = 80%
589 if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5))
590 return MaxSucc;
591
592 return nullptr;
593 }
594
595 /// Get the raw edge weight for the edge. If can't find it, return
596 /// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index
597 /// to the successors.
598 uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock * Src,unsigned IndexInSuccessors) const599 getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const {
600 DenseMap<Edge, uint32_t>::const_iterator I =
601 Weights.find(std::make_pair(Src, IndexInSuccessors));
602
603 if (I != Weights.end())
604 return I->second;
605
606 return DEFAULT_WEIGHT;
607 }
608
getEdgeWeight(const BasicBlock * Src,succ_const_iterator Dst) const609 uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src,
610 succ_const_iterator Dst) const {
611 return getEdgeWeight(Src, Dst.getSuccessorIndex());
612 }
613
614 /// Get the raw edge weight calculated for the block pair. This returns the sum
615 /// of all raw edge weights from Src to Dst.
616 uint32_t BranchProbabilityInfo::
getEdgeWeight(const BasicBlock * Src,const BasicBlock * Dst) const617 getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const {
618 uint32_t Weight = 0;
619 DenseMap<Edge, uint32_t>::const_iterator MapI;
620 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
621 if (*I == Dst) {
622 MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex()));
623 if (MapI != Weights.end())
624 Weight += MapI->second;
625 }
626 return (Weight == 0) ? DEFAULT_WEIGHT : Weight;
627 }
628
629 /// Set the edge weight for a given edge specified by PredBlock and an index
630 /// to the successors.
631 void BranchProbabilityInfo::
setEdgeWeight(const BasicBlock * Src,unsigned IndexInSuccessors,uint32_t Weight)632 setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors,
633 uint32_t Weight) {
634 Weights[std::make_pair(Src, IndexInSuccessors)] = Weight;
635 DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
636 << IndexInSuccessors << " successor weight to "
637 << Weight << "\n");
638 }
639
640 /// Get an edge's probability, relative to other out-edges from Src.
641 BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const642 getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const {
643 uint32_t N = getEdgeWeight(Src, IndexInSuccessors);
644 uint32_t D = getSumForBlock(Src);
645
646 return BranchProbability(N, D);
647 }
648
649 /// Get the probability of going from Src to Dst. It returns the sum of all
650 /// probabilities for edges from Src to Dst.
651 BranchProbability BranchProbabilityInfo::
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const652 getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const {
653
654 uint32_t N = getEdgeWeight(Src, Dst);
655 uint32_t D = getSumForBlock(Src);
656
657 return BranchProbability(N, D);
658 }
659
660 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const661 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
662 const BasicBlock *Src,
663 const BasicBlock *Dst) const {
664
665 const BranchProbability Prob = getEdgeProbability(Src, Dst);
666 OS << "edge " << Src->getName() << " -> " << Dst->getName()
667 << " probability is " << Prob
668 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
669
670 return OS;
671 }
672