1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkRRect.h"
9 #include "SkMatrix.h"
10
11 ///////////////////////////////////////////////////////////////////////////////
12
setRectXY(const SkRect & rect,SkScalar xRad,SkScalar yRad)13 void SkRRect::setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad) {
14 if (rect.isEmpty() || !rect.isFinite()) {
15 this->setEmpty();
16 return;
17 }
18
19 if (!SkScalarsAreFinite(xRad, yRad)) {
20 xRad = yRad = 0; // devolve into a simple rect
21 }
22 if (xRad <= 0 || yRad <= 0) {
23 // all corners are square in this case
24 this->setRect(rect);
25 return;
26 }
27
28 if (rect.width() < xRad+xRad || rect.height() < yRad+yRad) {
29 SkScalar scale = SkMinScalar(rect.width() / (xRad + xRad), rect.height() / (yRad + yRad));
30 SkASSERT(scale < SK_Scalar1);
31 xRad = SkScalarMul(xRad, scale);
32 yRad = SkScalarMul(yRad, scale);
33 }
34
35 fRect = rect;
36 for (int i = 0; i < 4; ++i) {
37 fRadii[i].set(xRad, yRad);
38 }
39 fType = kSimple_Type;
40 if (xRad >= SkScalarHalf(fRect.width()) && yRad >= SkScalarHalf(fRect.height())) {
41 fType = kOval_Type;
42 // TODO: assert that all the x&y radii are already W/2 & H/2
43 }
44
45 SkDEBUGCODE(this->validate();)
46 }
47
setNinePatch(const SkRect & rect,SkScalar leftRad,SkScalar topRad,SkScalar rightRad,SkScalar bottomRad)48 void SkRRect::setNinePatch(const SkRect& rect, SkScalar leftRad, SkScalar topRad,
49 SkScalar rightRad, SkScalar bottomRad) {
50 if (rect.isEmpty() || !rect.isFinite()) {
51 this->setEmpty();
52 return;
53 }
54
55 const SkScalar array[4] = { leftRad, topRad, rightRad, bottomRad };
56 if (!SkScalarsAreFinite(array, 4)) {
57 this->setRect(rect); // devolve into a simple rect
58 return;
59 }
60
61 leftRad = SkMaxScalar(leftRad, 0);
62 topRad = SkMaxScalar(topRad, 0);
63 rightRad = SkMaxScalar(rightRad, 0);
64 bottomRad = SkMaxScalar(bottomRad, 0);
65
66 SkScalar scale = SK_Scalar1;
67 if (leftRad + rightRad > rect.width()) {
68 scale = rect.width() / (leftRad + rightRad);
69 }
70 if (topRad + bottomRad > rect.height()) {
71 scale = SkMinScalar(scale, rect.height() / (topRad + bottomRad));
72 }
73
74 if (scale < SK_Scalar1) {
75 leftRad = SkScalarMul(leftRad, scale);
76 topRad = SkScalarMul(topRad, scale);
77 rightRad = SkScalarMul(rightRad, scale);
78 bottomRad = SkScalarMul(bottomRad, scale);
79 }
80
81 if (leftRad == rightRad && topRad == bottomRad) {
82 if (leftRad >= SkScalarHalf(rect.width()) && topRad >= SkScalarHalf(rect.height())) {
83 fType = kOval_Type;
84 } else if (0 == leftRad || 0 == topRad) {
85 // If the left and (by equality check above) right radii are zero then it is a rect.
86 // Same goes for top/bottom.
87 fType = kRect_Type;
88 leftRad = 0;
89 topRad = 0;
90 rightRad = 0;
91 bottomRad = 0;
92 } else {
93 fType = kSimple_Type;
94 }
95 } else {
96 fType = kNinePatch_Type;
97 }
98
99 fRect = rect;
100 fRadii[kUpperLeft_Corner].set(leftRad, topRad);
101 fRadii[kUpperRight_Corner].set(rightRad, topRad);
102 fRadii[kLowerRight_Corner].set(rightRad, bottomRad);
103 fRadii[kLowerLeft_Corner].set(leftRad, bottomRad);
104
105 SkDEBUGCODE(this->validate();)
106 }
107
108 /*
109 * TODO: clean this guy up and possibly add to SkScalar.h
110 */
SkScalarDecULP(SkScalar value)111 static inline SkScalar SkScalarDecULP(SkScalar value) {
112 #if SK_SCALAR_IS_FLOAT
113 return SkBits2Float(SkFloat2Bits(value) - 1);
114 #else
115 #error "need impl for doubles"
116 #endif
117 }
118
119 /**
120 * We need all combinations of predicates to be true to have a "safe" radius value.
121 */
clamp_radius_check_predicates(SkScalar rad,SkScalar min,SkScalar max)122 static SkScalar clamp_radius_check_predicates(SkScalar rad, SkScalar min, SkScalar max) {
123 SkASSERT(min < max);
124 if (rad > max - min || min + rad > max || max - rad < min) {
125 rad = SkScalarDecULP(rad);
126 }
127 return rad;
128 }
129
130 // These parameters intentionally double. Apropos crbug.com/463920, if one of the
131 // radii is huge while the other is small, single precision math can completely
132 // miss the fact that a scale is required.
compute_min_scale(double rad1,double rad2,double limit,double curMin)133 static double compute_min_scale(double rad1, double rad2, double limit, double curMin) {
134 if ((rad1 + rad2) > limit) {
135 return SkTMin(curMin, limit / (rad1 + rad2));
136 }
137 return curMin;
138 }
139
setRectRadii(const SkRect & rect,const SkVector radii[4])140 void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
141 if (rect.isEmpty() || !rect.isFinite()) {
142 this->setEmpty();
143 return;
144 }
145
146 if (!SkScalarsAreFinite(&radii[0].fX, 8)) {
147 this->setRect(rect); // devolve into a simple rect
148 return;
149 }
150
151 fRect = rect;
152 memcpy(fRadii, radii, sizeof(fRadii));
153
154 bool allCornersSquare = true;
155
156 // Clamp negative radii to zero
157 for (int i = 0; i < 4; ++i) {
158 if (fRadii[i].fX <= 0 || fRadii[i].fY <= 0) {
159 // In this case we are being a little fast & loose. Since one of
160 // the radii is 0 the corner is square. However, the other radii
161 // could still be non-zero and play in the global scale factor
162 // computation.
163 fRadii[i].fX = 0;
164 fRadii[i].fY = 0;
165 } else {
166 allCornersSquare = false;
167 }
168 }
169
170 if (allCornersSquare) {
171 this->setRect(rect);
172 return;
173 }
174
175 // Proportionally scale down all radii to fit. Find the minimum ratio
176 // of a side and the radii on that side (for all four sides) and use
177 // that to scale down _all_ the radii. This algorithm is from the
178 // W3 spec (http://www.w3.org/TR/css3-background/) section 5.5 - Overlapping
179 // Curves:
180 // "Let f = min(Li/Si), where i is one of { top, right, bottom, left },
181 // Si is the sum of the two corresponding radii of the corners on side i,
182 // and Ltop = Lbottom = the width of the box,
183 // and Lleft = Lright = the height of the box.
184 // If f < 1, then all corner radii are reduced by multiplying them by f."
185 double scale = 1.0;
186
187 scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, rect.width(), scale);
188 scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, rect.height(), scale);
189 scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, rect.width(), scale);
190 scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, rect.height(), scale);
191
192 if (scale < 1.0) {
193 for (int i = 0; i < 4; ++i) {
194 fRadii[i].fX *= scale;
195 fRadii[i].fY *= scale;
196 }
197 }
198
199 // skbug.com/3239 -- its possible that we can hit the following inconsistency:
200 // rad == bounds.bottom - bounds.top
201 // bounds.bottom - radius < bounds.top
202 // YIKES
203 // We need to detect and "fix" this now, otherwise we can have the following wackiness:
204 // path.addRRect(rrect);
205 // rrect.rect() != path.getBounds()
206 for (int i = 0; i < 4; ++i) {
207 fRadii[i].fX = clamp_radius_check_predicates(fRadii[i].fX, rect.fLeft, rect.fRight);
208 fRadii[i].fY = clamp_radius_check_predicates(fRadii[i].fY, rect.fTop, rect.fBottom);
209 }
210 // At this point we're either oval, simple, or complex (not empty or rect).
211 this->computeType();
212
213 SkDEBUGCODE(this->validate();)
214 }
215
216 // This method determines if a point known to be inside the RRect's bounds is
217 // inside all the corners.
checkCornerContainment(SkScalar x,SkScalar y) const218 bool SkRRect::checkCornerContainment(SkScalar x, SkScalar y) const {
219 SkPoint canonicalPt; // (x,y) translated to one of the quadrants
220 int index;
221
222 if (kOval_Type == this->type()) {
223 canonicalPt.set(x - fRect.centerX(), y - fRect.centerY());
224 index = kUpperLeft_Corner; // any corner will do in this case
225 } else {
226 if (x < fRect.fLeft + fRadii[kUpperLeft_Corner].fX &&
227 y < fRect.fTop + fRadii[kUpperLeft_Corner].fY) {
228 // UL corner
229 index = kUpperLeft_Corner;
230 canonicalPt.set(x - (fRect.fLeft + fRadii[kUpperLeft_Corner].fX),
231 y - (fRect.fTop + fRadii[kUpperLeft_Corner].fY));
232 SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY < 0);
233 } else if (x < fRect.fLeft + fRadii[kLowerLeft_Corner].fX &&
234 y > fRect.fBottom - fRadii[kLowerLeft_Corner].fY) {
235 // LL corner
236 index = kLowerLeft_Corner;
237 canonicalPt.set(x - (fRect.fLeft + fRadii[kLowerLeft_Corner].fX),
238 y - (fRect.fBottom - fRadii[kLowerLeft_Corner].fY));
239 SkASSERT(canonicalPt.fX < 0 && canonicalPt.fY > 0);
240 } else if (x > fRect.fRight - fRadii[kUpperRight_Corner].fX &&
241 y < fRect.fTop + fRadii[kUpperRight_Corner].fY) {
242 // UR corner
243 index = kUpperRight_Corner;
244 canonicalPt.set(x - (fRect.fRight - fRadii[kUpperRight_Corner].fX),
245 y - (fRect.fTop + fRadii[kUpperRight_Corner].fY));
246 SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY < 0);
247 } else if (x > fRect.fRight - fRadii[kLowerRight_Corner].fX &&
248 y > fRect.fBottom - fRadii[kLowerRight_Corner].fY) {
249 // LR corner
250 index = kLowerRight_Corner;
251 canonicalPt.set(x - (fRect.fRight - fRadii[kLowerRight_Corner].fX),
252 y - (fRect.fBottom - fRadii[kLowerRight_Corner].fY));
253 SkASSERT(canonicalPt.fX > 0 && canonicalPt.fY > 0);
254 } else {
255 // not in any of the corners
256 return true;
257 }
258 }
259
260 // A point is in an ellipse (in standard position) if:
261 // x^2 y^2
262 // ----- + ----- <= 1
263 // a^2 b^2
264 // or :
265 // b^2*x^2 + a^2*y^2 <= (ab)^2
266 SkScalar dist = SkScalarMul(SkScalarSquare(canonicalPt.fX), SkScalarSquare(fRadii[index].fY)) +
267 SkScalarMul(SkScalarSquare(canonicalPt.fY), SkScalarSquare(fRadii[index].fX));
268 return dist <= SkScalarSquare(SkScalarMul(fRadii[index].fX, fRadii[index].fY));
269 }
270
allCornersCircular() const271 bool SkRRect::allCornersCircular() const {
272 return fRadii[0].fX == fRadii[0].fY &&
273 fRadii[1].fX == fRadii[1].fY &&
274 fRadii[2].fX == fRadii[2].fY &&
275 fRadii[3].fX == fRadii[3].fY;
276 }
277
contains(const SkRect & rect) const278 bool SkRRect::contains(const SkRect& rect) const {
279 if (!this->getBounds().contains(rect)) {
280 // If 'rect' isn't contained by the RR's bounds then the
281 // RR definitely doesn't contain it
282 return false;
283 }
284
285 if (this->isRect()) {
286 // the prior test was sufficient
287 return true;
288 }
289
290 // At this point we know all four corners of 'rect' are inside the
291 // bounds of of this RR. Check to make sure all the corners are inside
292 // all the curves
293 return this->checkCornerContainment(rect.fLeft, rect.fTop) &&
294 this->checkCornerContainment(rect.fRight, rect.fTop) &&
295 this->checkCornerContainment(rect.fRight, rect.fBottom) &&
296 this->checkCornerContainment(rect.fLeft, rect.fBottom);
297 }
298
radii_are_nine_patch(const SkVector radii[4])299 static bool radii_are_nine_patch(const SkVector radii[4]) {
300 return radii[SkRRect::kUpperLeft_Corner].fX == radii[SkRRect::kLowerLeft_Corner].fX &&
301 radii[SkRRect::kUpperLeft_Corner].fY == radii[SkRRect::kUpperRight_Corner].fY &&
302 radii[SkRRect::kUpperRight_Corner].fX == radii[SkRRect::kLowerRight_Corner].fX &&
303 radii[SkRRect::kLowerLeft_Corner].fY == radii[SkRRect::kLowerRight_Corner].fY;
304 }
305
306 // There is a simplified version of this method in setRectXY
computeType()307 void SkRRect::computeType() {
308 struct Validator {
309 Validator(const SkRRect* r) : fR(r) {}
310 ~Validator() { SkDEBUGCODE(fR->validate();) }
311 const SkRRect* fR;
312 } autoValidate(this);
313
314 if (fRect.isEmpty()) {
315 fType = kEmpty_Type;
316 return;
317 }
318
319 bool allRadiiEqual = true; // are all x radii equal and all y radii?
320 bool allCornersSquare = 0 == fRadii[0].fX || 0 == fRadii[0].fY;
321
322 for (int i = 1; i < 4; ++i) {
323 if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
324 // if either radius is zero the corner is square so both have to
325 // be non-zero to have a rounded corner
326 allCornersSquare = false;
327 }
328 if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
329 allRadiiEqual = false;
330 }
331 }
332
333 if (allCornersSquare) {
334 fType = kRect_Type;
335 return;
336 }
337
338 if (allRadiiEqual) {
339 if (fRadii[0].fX >= SkScalarHalf(fRect.width()) &&
340 fRadii[0].fY >= SkScalarHalf(fRect.height())) {
341 fType = kOval_Type;
342 } else {
343 fType = kSimple_Type;
344 }
345 return;
346 }
347
348 if (radii_are_nine_patch(fRadii)) {
349 fType = kNinePatch_Type;
350 } else {
351 fType = kComplex_Type;
352 }
353 }
354
matrix_only_scale_and_translate(const SkMatrix & matrix)355 static bool matrix_only_scale_and_translate(const SkMatrix& matrix) {
356 const SkMatrix::TypeMask m = (SkMatrix::TypeMask) (SkMatrix::kAffine_Mask
357 | SkMatrix::kPerspective_Mask);
358 return (matrix.getType() & m) == 0;
359 }
360
transform(const SkMatrix & matrix,SkRRect * dst) const361 bool SkRRect::transform(const SkMatrix& matrix, SkRRect* dst) const {
362 if (NULL == dst) {
363 return false;
364 }
365
366 // Assert that the caller is not trying to do this in place, which
367 // would violate const-ness. Do not return false though, so that
368 // if they know what they're doing and want to violate it they can.
369 SkASSERT(dst != this);
370
371 if (matrix.isIdentity()) {
372 *dst = *this;
373 return true;
374 }
375
376 // If transform supported 90 degree rotations (which it could), we could
377 // use SkMatrix::rectStaysRect() to check for a valid transformation.
378 if (!matrix_only_scale_and_translate(matrix)) {
379 return false;
380 }
381
382 SkRect newRect;
383 if (!matrix.mapRect(&newRect, fRect)) {
384 return false;
385 }
386
387 // The matrix may have scaled us to zero (or due to float madness, we now have collapsed
388 // some dimension of the rect, so we need to check for that.
389 if (newRect.isEmpty()) {
390 dst->setEmpty();
391 return true;
392 }
393
394 // At this point, this is guaranteed to succeed, so we can modify dst.
395 dst->fRect = newRect;
396
397 // Since the only transforms that were allowed are scale and translate, the type
398 // remains unchanged.
399 dst->fType = fType;
400
401 if (kOval_Type == fType) {
402 for (int i = 0; i < 4; ++i) {
403 dst->fRadii[i].fX = SkScalarHalf(newRect.width());
404 dst->fRadii[i].fY = SkScalarHalf(newRect.height());
405 }
406 SkDEBUGCODE(dst->validate();)
407 return true;
408 }
409
410 // Now scale each corner
411 SkScalar xScale = matrix.getScaleX();
412 const bool flipX = xScale < 0;
413 if (flipX) {
414 xScale = -xScale;
415 }
416 SkScalar yScale = matrix.getScaleY();
417 const bool flipY = yScale < 0;
418 if (flipY) {
419 yScale = -yScale;
420 }
421
422 // Scale the radii without respecting the flip.
423 for (int i = 0; i < 4; ++i) {
424 dst->fRadii[i].fX = SkScalarMul(fRadii[i].fX, xScale);
425 dst->fRadii[i].fY = SkScalarMul(fRadii[i].fY, yScale);
426 }
427
428 // Now swap as necessary.
429 if (flipX) {
430 if (flipY) {
431 // Swap with opposite corners
432 SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerRight_Corner]);
433 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerLeft_Corner]);
434 } else {
435 // Only swap in x
436 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kUpperLeft_Corner]);
437 SkTSwap(dst->fRadii[kLowerRight_Corner], dst->fRadii[kLowerLeft_Corner]);
438 }
439 } else if (flipY) {
440 // Only swap in y
441 SkTSwap(dst->fRadii[kUpperLeft_Corner], dst->fRadii[kLowerLeft_Corner]);
442 SkTSwap(dst->fRadii[kUpperRight_Corner], dst->fRadii[kLowerRight_Corner]);
443 }
444
445 SkDEBUGCODE(dst->validate();)
446
447 return true;
448 }
449
450 ///////////////////////////////////////////////////////////////////////////////
451
inset(SkScalar dx,SkScalar dy,SkRRect * dst) const452 void SkRRect::inset(SkScalar dx, SkScalar dy, SkRRect* dst) const {
453 const SkRect r = fRect.makeInset(dx, dy);
454
455 if (r.isEmpty()) {
456 dst->setEmpty();
457 return;
458 }
459
460 SkVector radii[4];
461 memcpy(radii, fRadii, sizeof(radii));
462 for (int i = 0; i < 4; ++i) {
463 if (radii[i].fX) {
464 radii[i].fX -= dx;
465 }
466 if (radii[i].fY) {
467 radii[i].fY -= dy;
468 }
469 }
470 dst->setRectRadii(r, radii);
471 }
472
473 ///////////////////////////////////////////////////////////////////////////////
474
writeToMemory(void * buffer) const475 size_t SkRRect::writeToMemory(void* buffer) const {
476 SkASSERT(kSizeInMemory == sizeof(SkRect) + sizeof(fRadii));
477
478 memcpy(buffer, &fRect, sizeof(SkRect));
479 memcpy((char*)buffer + sizeof(SkRect), fRadii, sizeof(fRadii));
480 return kSizeInMemory;
481 }
482
readFromMemory(const void * buffer,size_t length)483 size_t SkRRect::readFromMemory(const void* buffer, size_t length) {
484 if (length < kSizeInMemory) {
485 return 0;
486 }
487
488 SkScalar storage[12];
489 SkASSERT(sizeof(storage) == kSizeInMemory);
490
491 // we make a local copy, to ensure alignment before we cast
492 memcpy(storage, buffer, kSizeInMemory);
493
494 this->setRectRadii(*(const SkRect*)&storage[0],
495 (const SkVector*)&storage[4]);
496 return kSizeInMemory;
497 }
498
499 #include "SkString.h"
500 #include "SkStringUtils.h"
501
dump(bool asHex) const502 void SkRRect::dump(bool asHex) const {
503 SkScalarAsStringType asType = asHex ? kHex_SkScalarAsStringType : kDec_SkScalarAsStringType;
504
505 fRect.dump(asHex);
506 SkString line("const SkPoint corners[] = {\n");
507 for (int i = 0; i < 4; ++i) {
508 SkString strX, strY;
509 SkAppendScalar(&strX, fRadii[i].x(), asType);
510 SkAppendScalar(&strY, fRadii[i].y(), asType);
511 line.appendf(" { %s, %s },", strX.c_str(), strY.c_str());
512 if (asHex) {
513 line.appendf(" /* %f %f */", fRadii[i].x(), fRadii[i].y());
514 }
515 line.append("\n");
516 }
517 line.append("};");
518 SkDebugf("%s\n", line.c_str());
519 }
520
521 ///////////////////////////////////////////////////////////////////////////////
522
523 #ifdef SK_DEBUG
524 /**
525 * We need all combinations of predicates to be true to have a "safe" radius value.
526 */
validate_radius_check_predicates(SkScalar rad,SkScalar min,SkScalar max)527 static void validate_radius_check_predicates(SkScalar rad, SkScalar min, SkScalar max) {
528 SkASSERT(min <= max);
529 SkASSERT(rad <= max - min);
530 SkASSERT(min + rad <= max);
531 SkASSERT(max - rad >= min);
532 }
533
validate() const534 void SkRRect::validate() const {
535 bool allRadiiZero = (0 == fRadii[0].fX && 0 == fRadii[0].fY);
536 bool allCornersSquare = (0 == fRadii[0].fX || 0 == fRadii[0].fY);
537 bool allRadiiSame = true;
538
539 for (int i = 1; i < 4; ++i) {
540 if (0 != fRadii[i].fX || 0 != fRadii[i].fY) {
541 allRadiiZero = false;
542 }
543
544 if (fRadii[i].fX != fRadii[i-1].fX || fRadii[i].fY != fRadii[i-1].fY) {
545 allRadiiSame = false;
546 }
547
548 if (0 != fRadii[i].fX && 0 != fRadii[i].fY) {
549 allCornersSquare = false;
550 }
551 }
552 bool patchesOfNine = radii_are_nine_patch(fRadii);
553
554 switch (fType) {
555 case kEmpty_Type:
556 SkASSERT(fRect.isEmpty());
557 SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare);
558 break;
559 case kRect_Type:
560 SkASSERT(!fRect.isEmpty());
561 SkASSERT(allRadiiZero && allRadiiSame && allCornersSquare);
562 break;
563 case kOval_Type:
564 SkASSERT(!fRect.isEmpty());
565 SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare);
566
567 for (int i = 0; i < 4; ++i) {
568 SkASSERT(SkScalarNearlyEqual(fRadii[i].fX, SkScalarHalf(fRect.width())));
569 SkASSERT(SkScalarNearlyEqual(fRadii[i].fY, SkScalarHalf(fRect.height())));
570 }
571 break;
572 case kSimple_Type:
573 SkASSERT(!fRect.isEmpty());
574 SkASSERT(!allRadiiZero && allRadiiSame && !allCornersSquare);
575 break;
576 case kNinePatch_Type:
577 SkASSERT(!fRect.isEmpty());
578 SkASSERT(!allRadiiZero && !allRadiiSame && !allCornersSquare);
579 SkASSERT(patchesOfNine);
580 break;
581 case kComplex_Type:
582 SkASSERT(!fRect.isEmpty());
583 SkASSERT(!allRadiiZero && !allRadiiSame && !allCornersSquare);
584 SkASSERT(!patchesOfNine);
585 break;
586 }
587
588 for (int i = 0; i < 4; ++i) {
589 validate_radius_check_predicates(fRadii[i].fX, fRect.fLeft, fRect.fRight);
590 validate_radius_check_predicates(fRadii[i].fY, fRect.fTop, fRect.fBottom);
591 }
592 }
593 #endif // SK_DEBUG
594
595 ///////////////////////////////////////////////////////////////////////////////
596