1 // Copyright 2006 The RE2 Authors.  All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4 
5 // DESCRIPTION
6 //
7 // SparseArray<T>(m) is a map from integers in [0, m) to T values.
8 // It requires (sizeof(T)+sizeof(int))*m memory, but it provides
9 // fast iteration through the elements in the array and fast clearing
10 // of the array.  The array has a concept of certain elements being
11 // uninitialized (having no value).
12 //
13 // Insertion and deletion are constant time operations.
14 //
15 // Allocating the array is a constant time operation
16 // when memory allocation is a constant time operation.
17 //
18 // Clearing the array is a constant time operation (unusual!).
19 //
20 // Iterating through the array is an O(n) operation, where n
21 // is the number of items in the array (not O(m)).
22 //
23 // The array iterator visits entries in the order they were first
24 // inserted into the array.  It is safe to add items to the array while
25 // using an iterator: the iterator will visit indices added to the array
26 // during the iteration, but will not re-visit indices whose values
27 // change after visiting.  Thus SparseArray can be a convenient
28 // implementation of a work queue.
29 //
30 // The SparseArray implementation is NOT thread-safe.  It is up to the
31 // caller to make sure only one thread is accessing the array.  (Typically
32 // these arrays are temporary values and used in situations where speed is
33 // important.)
34 //
35 // The SparseArray interface does not present all the usual STL bells and
36 // whistles.
37 //
38 // Implemented with reference to Briggs & Torczon, An Efficient
39 // Representation for Sparse Sets, ACM Letters on Programming Languages
40 // and Systems, Volume 2, Issue 1-4 (March-Dec.  1993), pp.  59-69.
41 //
42 // Briggs & Torczon popularized this technique, but it had been known
43 // long before their paper.  They point out that Aho, Hopcroft, and
44 // Ullman's 1974 Design and Analysis of Computer Algorithms and Bentley's
45 // 1986 Programming Pearls both hint at the technique in exercises to the
46 // reader (in Aho & Hopcroft, exercise 2.12; in Bentley, column 1
47 // exercise 8).
48 //
49 // Briggs & Torczon describe a sparse set implementation.  I have
50 // trivially generalized it to create a sparse array (actually the original
51 // target of the AHU and Bentley exercises).
52 
53 // IMPLEMENTATION
54 //
55 // SparseArray uses a vector dense_ and an array sparse_to_dense_, both of
56 // size max_size_. At any point, the number of elements in the sparse array is
57 // size_.
58 //
59 // The vector dense_ contains the size_ elements in the sparse array (with
60 // their indices),
61 // in the order that the elements were first inserted.  This array is dense:
62 // the size_ pairs are dense_[0] through dense_[size_-1].
63 //
64 // The array sparse_to_dense_ maps from indices in [0,m) to indices in
65 // [0,size_).
66 // For indices present in the array, dense_[sparse_to_dense_[i]].index_ == i.
67 // For indices not present in the array, sparse_to_dense_ can contain
68 // any value at all, perhaps outside the range [0, size_) but perhaps not.
69 //
70 // The lax requirement on sparse_to_dense_ values makes clearing
71 // the array very easy: set size_ to 0.  Lookups are slightly more
72 // complicated.  An index i has a value in the array if and only if:
73 //   sparse_to_dense_[i] is in [0, size_) AND
74 //   dense_[sparse_to_dense_[i]].index_ == i.
75 // If both these properties hold, only then it is safe to refer to
76 //   dense_[sparse_to_dense_[i]].value_
77 // as the value associated with index i.
78 //
79 // To insert a new entry, set sparse_to_dense_[i] to size_,
80 // initialize dense_[size_], and then increment size_.
81 //
82 // Deletion of specific values from the array is implemented by
83 // swapping dense_[size_-1] and the dense_ being deleted and then
84 // updating the appropriate sparse_to_dense_ entries.
85 //
86 // To make the sparse array as efficient as possible for non-primitive types,
87 // elements may or may not be destroyed when they are deleted from the sparse
88 // array through a call to erase(), erase_existing() or resize(). They
89 // immediately become inaccessible, but they are only guaranteed to be
90 // destroyed when the SparseArray destructor is called.
91 
92 #ifndef RE2_UTIL_SPARSE_ARRAY_H__
93 #define RE2_UTIL_SPARSE_ARRAY_H__
94 
95 #include "util/util.h"
96 
97 namespace re2 {
98 
99 template<typename Value>
100 class SparseArray {
101  public:
102   SparseArray();
103   SparseArray(int max_size);
104   ~SparseArray();
105 
106   // IndexValue pairs: exposed in SparseArray::iterator.
107   class IndexValue;
108 
109   typedef IndexValue value_type;
110   typedef typename vector<IndexValue>::iterator iterator;
111   typedef typename vector<IndexValue>::const_iterator const_iterator;
112 
113   inline const IndexValue& iv(int i) const;
114 
115   // Return the number of entries in the array.
size()116   int size() const {
117     return size_;
118   }
119 
120   // Iterate over the array.
begin()121   iterator begin() {
122     return dense_.begin();
123   }
end()124   iterator end() {
125     return dense_.begin() + size_;
126   }
127 
begin()128   const_iterator begin() const {
129     return dense_.begin();
130   }
end()131   const_iterator end() const {
132     return dense_.begin() + size_;
133   }
134 
135   // Change the maximum size of the array.
136   // Invalidates all iterators.
137   void resize(int max_size);
138 
139   // Return the maximum size of the array.
140   // Indices can be in the range [0, max_size).
max_size()141   int max_size() const {
142     return max_size_;
143   }
144 
145   // Clear the array.
clear()146   void clear() {
147     size_ = 0;
148   }
149 
150   // Check whether index i is in the array.
151   inline bool has_index(int i) const;
152 
153   // Comparison function for sorting.
154   // Can sort the sparse array so that future iterations
155   // will visit indices in increasing order using
156   // sort(arr.begin(), arr.end(), arr.less);
157   static bool less(const IndexValue& a, const IndexValue& b);
158 
159  public:
160   // Set the value at index i to v.
161   inline iterator set(int i, Value v);
162 
163   pair<iterator, bool> insert(const value_type& new_value);
164 
165   // Returns the value at index i
166   // or defaultv if index i is not initialized in the array.
167   inline Value get(int i, Value defaultv) const;
168 
169   iterator find(int i);
170 
171   const_iterator find(int i) const;
172 
173   // Change the value at index i to v.
174   // Fast but unsafe: only use if has_index(i) is true.
175   inline iterator set_existing(int i, Value v);
176 
177   // Set the value at the new index i to v.
178   // Fast but unsafe: only use if has_index(i) is false.
179   inline iterator set_new(int i, Value v);
180 
181   // Get the value at index i from the array..
182   // Fast but unsafe: only use if has_index(i) is true.
183   inline Value get_existing(int i) const;
184 
185   // Erasing items from the array during iteration is in general
186   // NOT safe.  There is one special case, which is that the current
187   // index-value pair can be erased as long as the iterator is then
188   // checked for being at the end before being incremented.
189   // For example:
190   //
191   //   for (i = m.begin(); i != m.end(); ++i) {
192   //     if (ShouldErase(i->index(), i->value())) {
193   //       m.erase(i->index());
194   //       --i;
195   //     }
196   //   }
197   //
198   // Except in the specific case just described, elements must
199   // not be erased from the array (including clearing the array)
200   // while iterators are walking over the array.  Otherwise,
201   // the iterators could walk past the end of the array.
202 
203   // Erases the element at index i from the array.
204   inline void erase(int i);
205 
206   // Erases the element at index i from the array.
207   // Fast but unsafe: only use if has_index(i) is true.
208   inline void erase_existing(int i);
209 
210  private:
211   // Add the index i to the array.
212   // Only use if has_index(i) is known to be false.
213   // Since it doesn't set the value associated with i,
214   // this function is private, only intended as a helper
215   // for other methods.
216   inline void create_index(int i);
217 
218   // In debug mode, verify that some invariant properties of the class
219   // are being maintained. This is called at the end of the constructor
220   // and at the beginning and end of all public non-const member functions.
221   inline void DebugCheckInvariants() const;
222 
223   int size_;
224   int max_size_;
225   int* sparse_to_dense_;
226   vector<IndexValue> dense_;
227   bool valgrind_;
228 
229   DISALLOW_EVIL_CONSTRUCTORS(SparseArray);
230 };
231 
232 template<typename Value>
SparseArray()233 SparseArray<Value>::SparseArray()
234     : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(), valgrind_(RunningOnValgrind()) {}
235 
236 // IndexValue pairs: exposed in SparseArray::iterator.
237 template<typename Value>
238 class SparseArray<Value>::IndexValue {
239   friend class SparseArray;
240  public:
241   typedef int first_type;
242   typedef Value second_type;
243 
IndexValue()244   IndexValue() {}
IndexValue(int index,const Value & value)245   IndexValue(int index, const Value& value) : second(value), index_(index) {}
246 
index()247   int index() const { return index_; }
value()248   Value value() const { return second; }
249 
250   // Provide the data in the 'second' member so that the utilities
251   // in map-util work.
252   Value second;
253 
254  private:
255   int index_;
256 };
257 
258 template<typename Value>
259 const typename SparseArray<Value>::IndexValue&
iv(int i)260 SparseArray<Value>::iv(int i) const {
261   DCHECK_GE(i, 0);
262   DCHECK_LT(i, size_);
263   return dense_[i];
264 }
265 
266 // Change the maximum size of the array.
267 // Invalidates all iterators.
268 template<typename Value>
resize(int new_max_size)269 void SparseArray<Value>::resize(int new_max_size) {
270   DebugCheckInvariants();
271   if (new_max_size > max_size_) {
272     int* a = new int[new_max_size];
273     if (sparse_to_dense_) {
274       memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
275       // Don't need to zero the memory but appease Valgrind.
276       if (valgrind_) {
277         for (int i = max_size_; i < new_max_size; i++)
278           a[i] = 0xababababU;
279       }
280       delete[] sparse_to_dense_;
281     }
282     sparse_to_dense_ = a;
283 
284     dense_.resize(new_max_size);
285   }
286   max_size_ = new_max_size;
287   if (size_ > max_size_)
288     size_ = max_size_;
289   DebugCheckInvariants();
290 }
291 
292 // Check whether index i is in the array.
293 template<typename Value>
has_index(int i)294 bool SparseArray<Value>::has_index(int i) const {
295   DCHECK_GE(i, 0);
296   DCHECK_LT(i, max_size_);
297   if (static_cast<uint>(i) >= max_size_) {
298     return false;
299   }
300   // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
301   return (uint)sparse_to_dense_[i] < (uint)size_ &&
302     dense_[sparse_to_dense_[i]].index_ == i;
303 }
304 
305 // Set the value at index i to v.
306 template<typename Value>
set(int i,Value v)307 typename SparseArray<Value>::iterator SparseArray<Value>::set(int i, Value v) {
308   DebugCheckInvariants();
309   if (static_cast<uint>(i) >= max_size_) {
310     // Semantically, end() would be better here, but we already know
311     // the user did something stupid, so begin() insulates them from
312     // dereferencing an invalid pointer.
313     return begin();
314   }
315   if (!has_index(i))
316     create_index(i);
317   return set_existing(i, v);
318 }
319 
320 template<typename Value>
insert(const value_type & new_value)321 pair<typename SparseArray<Value>::iterator, bool> SparseArray<Value>::insert(
322     const value_type& new_value) {
323   DebugCheckInvariants();
324   pair<typename SparseArray<Value>::iterator, bool> p;
325   if (has_index(new_value.index_)) {
326     p = make_pair(dense_.begin() + sparse_to_dense_[new_value.index_], false);
327   } else {
328     p = make_pair(set_new(new_value.index_, new_value.second), true);
329   }
330   DebugCheckInvariants();
331   return p;
332 }
333 
334 template<typename Value>
get(int i,Value defaultv)335 Value SparseArray<Value>::get(int i, Value defaultv) const {
336   if (!has_index(i))
337     return defaultv;
338   return get_existing(i);
339 }
340 
341 template<typename Value>
find(int i)342 typename SparseArray<Value>::iterator SparseArray<Value>::find(int i) {
343   if (has_index(i))
344     return dense_.begin() + sparse_to_dense_[i];
345   return end();
346 }
347 
348 template<typename Value>
349 typename SparseArray<Value>::const_iterator
find(int i)350 SparseArray<Value>::find(int i) const {
351   if (has_index(i)) {
352     return dense_.begin() + sparse_to_dense_[i];
353   }
354   return end();
355 }
356 
357 template<typename Value>
358 typename SparseArray<Value>::iterator
set_existing(int i,Value v)359 SparseArray<Value>::set_existing(int i, Value v) {
360   DebugCheckInvariants();
361   DCHECK(has_index(i));
362   dense_[sparse_to_dense_[i]].second = v;
363   DebugCheckInvariants();
364   return dense_.begin() + sparse_to_dense_[i];
365 }
366 
367 template<typename Value>
368 typename SparseArray<Value>::iterator
set_new(int i,Value v)369 SparseArray<Value>::set_new(int i, Value v) {
370   DebugCheckInvariants();
371   if (static_cast<uint>(i) >= max_size_) {
372     // Semantically, end() would be better here, but we already know
373     // the user did something stupid, so begin() insulates them from
374     // dereferencing an invalid pointer.
375     return begin();
376   }
377   DCHECK(!has_index(i));
378   create_index(i);
379   return set_existing(i, v);
380 }
381 
382 template<typename Value>
get_existing(int i)383 Value SparseArray<Value>::get_existing(int i) const {
384   DCHECK(has_index(i));
385   return dense_[sparse_to_dense_[i]].second;
386 }
387 
388 template<typename Value>
erase(int i)389 void SparseArray<Value>::erase(int i) {
390   DebugCheckInvariants();
391   if (has_index(i))
392     erase_existing(i);
393   DebugCheckInvariants();
394 }
395 
396 template<typename Value>
erase_existing(int i)397 void SparseArray<Value>::erase_existing(int i) {
398   DebugCheckInvariants();
399   DCHECK(has_index(i));
400   int di = sparse_to_dense_[i];
401   if (di < size_ - 1) {
402     dense_[di] = dense_[size_ - 1];
403     sparse_to_dense_[dense_[di].index_] = di;
404   }
405   size_--;
406   DebugCheckInvariants();
407 }
408 
409 template<typename Value>
create_index(int i)410 void SparseArray<Value>::create_index(int i) {
411   DCHECK(!has_index(i));
412   DCHECK_LT(size_, max_size_);
413   sparse_to_dense_[i] = size_;
414   dense_[size_].index_ = i;
415   size_++;
416 }
417 
SparseArray(int max_size)418 template<typename Value> SparseArray<Value>::SparseArray(int max_size) {
419   max_size_ = max_size;
420   sparse_to_dense_ = new int[max_size];
421   valgrind_ = RunningOnValgrind();
422   dense_.resize(max_size);
423   // Don't need to zero the new memory, but appease Valgrind.
424   if (valgrind_) {
425     for (int i = 0; i < max_size; i++) {
426       sparse_to_dense_[i] = 0xababababU;
427       dense_[i].index_ = 0xababababU;
428     }
429   }
430   size_ = 0;
431   DebugCheckInvariants();
432 }
433 
~SparseArray()434 template<typename Value> SparseArray<Value>::~SparseArray() {
435   DebugCheckInvariants();
436   delete[] sparse_to_dense_;
437 }
438 
DebugCheckInvariants()439 template<typename Value> void SparseArray<Value>::DebugCheckInvariants() const {
440   DCHECK_LE(0, size_);
441   DCHECK_LE(size_, max_size_);
442   DCHECK(size_ == 0 || sparse_to_dense_ != NULL);
443 }
444 
445 // Comparison function for sorting.
less(const IndexValue & a,const IndexValue & b)446 template<typename Value> bool SparseArray<Value>::less(const IndexValue& a,
447                                                        const IndexValue& b) {
448   return a.index_ < b.index_;
449 }
450 
451 }  // namespace re2
452 
453 #endif  // RE2_UTIL_SPARSE_ARRAY_H__
454