1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_fs_cfg.h"
29 #include "brw_fs_live_variables.h"
30 
31 using namespace brw;
32 
33 /** @file brw_fs_live_variables.cpp
34  *
35  * Support for computing at the basic block level which variables
36  * (virtual GRFs in our case) are live at entry and exit.
37  *
38  * See Muchnik's Advanced Compiler Design and Implementation, section
39  * 14.1 (p444).
40  */
41 
42 /**
43  * Sets up the use[] and def[] arrays.
44  *
45  * The basic-block-level live variable analysis needs to know which
46  * variables get used before they're completely defined, and which
47  * variables are completely defined before they're used.
48  */
49 void
setup_def_use()50 fs_live_variables::setup_def_use()
51 {
52    int ip = 0;
53 
54    for (int b = 0; b < cfg->num_blocks; b++) {
55       fs_bblock *block = cfg->blocks[b];
56 
57       assert(ip == block->start_ip);
58       if (b > 0)
59 	 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
60 
61       for (fs_inst *inst = block->start;
62 	   inst != block->end->next;
63 	   inst = (fs_inst *)inst->next) {
64 
65 	 /* Set use[] for this instruction */
66 	 for (unsigned int i = 0; i < 3; i++) {
67 	    if (inst->src[i].file == GRF) {
68 	       int reg = inst->src[i].reg;
69 
70 	       if (!bd[b].def[reg])
71 		  bd[b].use[reg] = true;
72 	    }
73 	 }
74 
75 	 /* Check for unconditional writes to whole registers. These
76 	  * are the things that screen off preceding definitions of a
77 	  * variable, and thus qualify for being in def[].
78 	  */
79 	 if (inst->dst.file == GRF &&
80 	     inst->regs_written() == v->virtual_grf_sizes[inst->dst.reg] &&
81 	     !inst->predicated &&
82 	     !inst->force_uncompressed &&
83 	     !inst->force_sechalf) {
84 	    int reg = inst->dst.reg;
85 	    if (!bd[b].use[reg])
86 	       bd[b].def[reg] = true;
87 	 }
88 
89 	 ip++;
90       }
91    }
92 }
93 
94 /**
95  * The algorithm incrementally sets bits in liveout and livein,
96  * propagating it through control flow.  It will eventually terminate
97  * because it only ever adds bits, and stops when no bits are added in
98  * a pass.
99  */
100 void
compute_live_variables()101 fs_live_variables::compute_live_variables()
102 {
103    bool cont = true;
104 
105    while (cont) {
106       cont = false;
107 
108       for (int b = 0; b < cfg->num_blocks; b++) {
109 	 /* Update livein */
110 	 for (int i = 0; i < num_vars; i++) {
111 	    if (bd[b].use[i] || (bd[b].liveout[i] && !bd[b].def[i])) {
112 	       if (!bd[b].livein[i]) {
113 		  bd[b].livein[i] = true;
114 		  cont = true;
115 	       }
116 	    }
117 	 }
118 
119 	 /* Update liveout */
120 	 foreach_list(block_node, &cfg->blocks[b]->children) {
121 	    fs_bblock_link *link = (fs_bblock_link *)block_node;
122 	    fs_bblock *block = link->block;
123 
124 	    for (int i = 0; i < num_vars; i++) {
125 	       if (bd[block->block_num].livein[i] && !bd[b].liveout[i]) {
126 		  bd[b].liveout[i] = true;
127 		  cont = true;
128 	       }
129 	    }
130 	 }
131       }
132    }
133 }
134 
fs_live_variables(fs_visitor * v,fs_cfg * cfg)135 fs_live_variables::fs_live_variables(fs_visitor *v, fs_cfg *cfg)
136    : v(v), cfg(cfg)
137 {
138    mem_ctx = ralloc_context(cfg->mem_ctx);
139 
140    num_vars = v->virtual_grf_count;
141    bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
142 
143    for (int i = 0; i < cfg->num_blocks; i++) {
144       bd[i].def = rzalloc_array(mem_ctx, bool, num_vars);
145       bd[i].use = rzalloc_array(mem_ctx, bool, num_vars);
146       bd[i].livein = rzalloc_array(mem_ctx, bool, num_vars);
147       bd[i].liveout = rzalloc_array(mem_ctx, bool, num_vars);
148    }
149 
150    setup_def_use();
151    compute_live_variables();
152 }
153 
~fs_live_variables()154 fs_live_variables::~fs_live_variables()
155 {
156    ralloc_free(mem_ctx);
157 }
158 
159 #define MAX_INSTRUCTION (1 << 30)
160 
161 void
calculate_live_intervals()162 fs_visitor::calculate_live_intervals()
163 {
164    int num_vars = this->virtual_grf_count;
165 
166    if (this->live_intervals_valid)
167       return;
168 
169    int *def = ralloc_array(mem_ctx, int, num_vars);
170    int *use = ralloc_array(mem_ctx, int, num_vars);
171    ralloc_free(this->virtual_grf_def);
172    ralloc_free(this->virtual_grf_use);
173    this->virtual_grf_def = def;
174    this->virtual_grf_use = use;
175 
176    for (int i = 0; i < num_vars; i++) {
177       def[i] = MAX_INSTRUCTION;
178       use[i] = -1;
179    }
180 
181    /* Start by setting up the intervals with no knowledge of control
182     * flow.
183     */
184    int ip = 0;
185    foreach_list(node, &this->instructions) {
186       fs_inst *inst = (fs_inst *)node;
187 
188       for (unsigned int i = 0; i < 3; i++) {
189 	 if (inst->src[i].file == GRF) {
190 	    int reg = inst->src[i].reg;
191 
192 	    use[reg] = ip;
193 	 }
194       }
195 
196       if (inst->dst.file == GRF) {
197          int reg = inst->dst.reg;
198 
199          def[reg] = MIN2(def[reg], ip);
200       }
201 
202       ip++;
203    }
204 
205    /* Now, extend those intervals using our analysis of control flow. */
206    fs_cfg cfg(this);
207    fs_live_variables livevars(this, &cfg);
208 
209    for (int b = 0; b < cfg.num_blocks; b++) {
210       for (int i = 0; i < num_vars; i++) {
211 	 if (livevars.bd[b].livein[i]) {
212 	    def[i] = MIN2(def[i], cfg.blocks[b]->start_ip);
213 	    use[i] = MAX2(use[i], cfg.blocks[b]->start_ip);
214 	 }
215 
216 	 if (livevars.bd[b].liveout[i]) {
217 	    def[i] = MIN2(def[i], cfg.blocks[b]->end_ip);
218 	    use[i] = MAX2(use[i], cfg.blocks[b]->end_ip);
219 	 }
220       }
221    }
222 
223    this->live_intervals_valid = true;
224 
225    /* Note in the non-control-flow code above, that we only take def[] as the
226     * first store, and use[] as the last use.  We use this in dead code
227     * elimination, to determine when a store never gets used.  However, we
228     * also use these arrays to answer the virtual_grf_interferes() question
229     * (live interval analysis), which is used for register coalescing and
230     * register allocation.
231     *
232     * So, there's a conflict over what the array should mean: if use[]
233     * considers a def after the last use, then the dead code elimination pass
234     * never does anything (and it's an important pass!).  But if we don't
235     * include dead code, then virtual_grf_interferes() lies and we'll do
236     * horrible things like coalesce the register that is dead-code-written
237     * into another register that was live across the dead write (causing the
238     * use of the second register to take the dead write's source value instead
239     * of the coalesced MOV's source value).
240     *
241     * To resolve the conflict, immediately after calculating live intervals,
242     * detect dead code, nuke it, and if we changed anything, calculate again
243     * before returning to the caller.  Now we happen to produce def[] and
244     * use[] arrays that will work for virtual_grf_interferes().
245     */
246    if (dead_code_eliminate())
247       calculate_live_intervals();
248 }
249 
250 bool
virtual_grf_interferes(int a,int b)251 fs_visitor::virtual_grf_interferes(int a, int b)
252 {
253    int a_def = this->virtual_grf_def[a], a_use = this->virtual_grf_use[a];
254    int b_def = this->virtual_grf_def[b], b_use = this->virtual_grf_use[b];
255 
256    /* If there's dead code (def but not use), it would break our test
257     * unless we consider it used.
258     */
259    if ((a_use == -1 && a_def != MAX_INSTRUCTION) ||
260        (b_use == -1 && b_def != MAX_INSTRUCTION)) {
261       return true;
262    }
263 
264    int start = MAX2(a_def, b_def);
265    int end = MIN2(a_use, b_use);
266 
267    /* If the register is used to store 16 values of less than float
268     * size (only the case for pixel_[xy]), then we can't allocate
269     * another dword-sized thing to that register that would be used in
270     * the same instruction.  This is because when the GPU decodes (for
271     * example):
272     *
273     * (declare (in ) vec4 gl_FragCoord@0x97766a0)
274     * add(16)         g6<1>F          g6<8,8,1>UW     0.5F { align1 compr };
275     *
276     * it's actually processed as:
277     * add(8)         g6<1>F          g6<8,8,1>UW     0.5F { align1 };
278     * add(8)         g7<1>F          g6.8<8,8,1>UW   0.5F { align1 sechalf };
279     *
280     * so our second half values in g6 got overwritten in the first
281     * half.
282     */
283    if (c->dispatch_width == 16 && (this->pixel_x.reg == a ||
284 				   this->pixel_x.reg == b ||
285 				   this->pixel_y.reg == a ||
286 				   this->pixel_y.reg == b)) {
287       return start <= end;
288    }
289 
290    return start < end;
291 }
292