1 /******************************************************************************
2  *
3  *  Copyright (C) 1999-2012 Broadcom Corporation
4  *
5  *  Licensed under the Apache License, Version 2.0 (the "License");
6  *  you may not use this file except in compliance with the License.
7  *  You may obtain a copy of the License at:
8  *
9  *  http://www.apache.org/licenses/LICENSE-2.0
10  *
11  *  Unless required by applicable law or agreed to in writing, software
12  *  distributed under the License is distributed on an "AS IS" BASIS,
13  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  *  See the License for the specific language governing permissions and
15  *  limitations under the License.
16  *
17  ******************************************************************************/
18 
19 /******************************************************************************
20  *
21  *  This file contains security manager protocol utility functions
22  *
23  ******************************************************************************/
24 #include "bt_target.h"
25 
26 #if SMP_INCLUDED == TRUE
27 #if SMP_DEBUG == TRUE
28     #include <stdio.h>
29 #endif
30 #include <string.h>
31 #include "bt_utils.h"
32 #include "btm_ble_api.h"
33 #include "smp_int.h"
34 #include "btm_int.h"
35 #include "btm_ble_int.h"
36 #include "hcimsgs.h"
37 #include "aes.h"
38 #include "p_256_ecc_pp.h"
39 #include "device/include/controller.h"
40 
41 #ifndef SMP_MAX_ENC_REPEAT
42   #define SMP_MAX_ENC_REPEAT  3
43 #endif
44 
45 static void smp_rand_back(tBTM_RAND_ENC *p);
46 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
47 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data);
48 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p);
49 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p);
50 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p);
51 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p);
52 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p);
53 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p);
54 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p);
55 static BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output);
56 static void smp_continue_private_key_creation(tSMP_CB *p_cb, tBTM_RAND_ENC *p);
57 static void smp_process_private_key(tSMP_CB *p_cb);
58 static void smp_finish_nonce_generation(tSMP_CB *p_cb);
59 static void smp_process_new_nonce(tSMP_CB *p_cb);
60 
61 static const tSMP_ACT smp_encrypt_action[] =
62 {
63     smp_generate_compare,           /* SMP_GEN_COMPARE */
64     smp_generate_confirm,          /* SMP_GEN_CONFIRM*/
65     smp_generate_stk,               /* SMP_GEN_STK*/
66     smp_generate_ltk_cont,          /* SMP_GEN_LTK */
67     smp_generate_ltk,               /* SMP_GEN_DIV_LTK */
68     smp_generate_rand_vector,        /* SMP_GEN_RAND_V */
69     smp_generate_y,                  /* SMP_GEN_EDIV */
70     smp_generate_passkey,           /* SMP_GEN_TK */
71     smp_generate_srand_mrand_confirm, /* SMP_GEN_SRAND_MRAND */
72     smp_generate_rand_cont         /* SMP_GEN_SRAND_MRAND_CONT */
73 };
74 
75 #define SMP_PASSKEY_MASK    0xfff00000
76 
smp_debug_print_nbyte_little_endian(UINT8 * p,const UINT8 * key_name,UINT8 len)77 void smp_debug_print_nbyte_little_endian(UINT8 *p, const UINT8 *key_name, UINT8 len)
78 {
79 #if SMP_DEBUG == TRUE
80     int     ind, x;
81     int     col_count = 32;
82     int     row_count;
83     UINT8   p_buf[512];
84 
85     SMP_TRACE_WARNING("%s(LSB ~ MSB):", key_name);
86     memset(p_buf, 0, sizeof(p_buf));
87     row_count = len % col_count ? len / col_count + 1: len / col_count;
88 
89     ind = 0;
90     for (int row = 0; row <  row_count; row++)
91     {
92         for (int column = 0, x = 0; (ind < len) && (column < col_count); column++, ind++)
93         {
94             x += sprintf((char *)&p_buf[x], "%02x ", p[ind]);
95         }
96         SMP_TRACE_WARNING("  [%03d]: %s", row * col_count, p_buf);
97     }
98 #endif
99 }
100 
smp_debug_print_nbyte_big_endian(UINT8 * p,const UINT8 * key_name,UINT8 len)101 void smp_debug_print_nbyte_big_endian (UINT8 *p, const UINT8 *key_name, UINT8 len)
102 {
103 #if SMP_DEBUG == TRUE
104     UINT8  p_buf[512];
105 
106     SMP_TRACE_WARNING("%s(MSB ~ LSB):", key_name);
107     memset(p_buf, 0, sizeof(p_buf));
108     nrows = len % ncols ? len / ncols + 1: len / ncols;
109 
110     int ind = 0;
111     int  ncols = 32; /* num entries in one line */
112     int  nrows;      /* num lines */
113     int  x;
114 
115     for (int row = 0; row <  nrows; row++)
116     {
117         for (int col = 0, x = 0; (ind < len) && (col < ncols); col++, ind++)
118         {
119             x += sprintf ((char *)&p_buf[len-x-1], "%02x ", p[ind]);
120         }
121         SMP_TRACE_WARNING("[%03d]: %s", row * ncols, p_buf);
122     }
123 #endif
124 }
125 
126 /*******************************************************************************
127 **
128 ** Function         smp_encrypt_data
129 **
130 ** Description      This function is called to encrypt data.
131 **                  It uses AES-128 encryption algorithm.
132 **                  Plain_text is encrypted using key, the result is at p_out.
133 **
134 ** Returns          void
135 **
136 *******************************************************************************/
smp_encrypt_data(UINT8 * key,UINT8 key_len,UINT8 * plain_text,UINT8 pt_len,tSMP_ENC * p_out)137 BOOLEAN smp_encrypt_data (UINT8 *key, UINT8 key_len,
138                           UINT8 *plain_text, UINT8 pt_len,
139                           tSMP_ENC *p_out)
140 {
141     aes_context ctx;
142     UINT8 *p_start = NULL;
143     UINT8 *p = NULL;
144     UINT8 *p_rev_data = NULL;    /* input data in big endilan format */
145     UINT8 *p_rev_key = NULL;     /* input key in big endilan format */
146     UINT8 *p_rev_output = NULL;  /* encrypted output in big endilan format */
147 
148     SMP_TRACE_DEBUG ("%s", __func__);
149     if ( (p_out == NULL ) || (key_len != SMP_ENCRYT_KEY_SIZE) )
150     {
151         SMP_TRACE_ERROR ("%s failed", __func__);
152         return FALSE;
153     }
154 
155     if ((p_start = (UINT8 *)GKI_getbuf((SMP_ENCRYT_DATA_SIZE*4))) == NULL)
156     {
157         SMP_TRACE_ERROR ("%s failed unable to allocate buffer", __func__);
158         return FALSE;
159     }
160 
161     if (pt_len > SMP_ENCRYT_DATA_SIZE)
162         pt_len = SMP_ENCRYT_DATA_SIZE;
163 
164     memset(p_start, 0, SMP_ENCRYT_DATA_SIZE * 4);
165     p = p_start;
166     ARRAY_TO_STREAM (p, plain_text, pt_len); /* byte 0 to byte 15 */
167     p_rev_data = p = p_start + SMP_ENCRYT_DATA_SIZE; /* start at byte 16 */
168     REVERSE_ARRAY_TO_STREAM (p, p_start, SMP_ENCRYT_DATA_SIZE);  /* byte 16 to byte 31 */
169     p_rev_key = p; /* start at byte 32 */
170     REVERSE_ARRAY_TO_STREAM (p, key, SMP_ENCRYT_KEY_SIZE); /* byte 32 to byte 47 */
171 
172 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
173     smp_debug_print_nbyte_little_endian(key, (const UINT8 *)"Key", SMP_ENCRYT_KEY_SIZE);
174     smp_debug_print_nbyte_little_endian(p_start, (const UINT8 *)"Plain text", SMP_ENCRYT_DATA_SIZE);
175 #endif
176     p_rev_output = p;
177     aes_set_key(p_rev_key, SMP_ENCRYT_KEY_SIZE, &ctx);
178     aes_encrypt(p_rev_data, p, &ctx);  /* outputs in byte 48 to byte 63 */
179 
180     p = p_out->param_buf;
181     REVERSE_ARRAY_TO_STREAM (p, p_rev_output, SMP_ENCRYT_DATA_SIZE);
182 #if SMP_DEBUG == TRUE && SMP_DEBUG_VERBOSE == TRUE
183     smp_debug_print_nbyte_little_endian(p_out->param_buf, (const UINT8 *)"Encrypted text", SMP_ENCRYT_KEY_SIZE);
184 #endif
185 
186     p_out->param_len = SMP_ENCRYT_KEY_SIZE;
187     p_out->status = HCI_SUCCESS;
188     p_out->opcode =  HCI_BLE_ENCRYPT;
189 
190     GKI_freebuf(p_start);
191 
192     return TRUE;
193 }
194 
195 /*******************************************************************************
196 **
197 ** Function         smp_generate_passkey
198 **
199 ** Description      This function is called to generate passkey.
200 **
201 ** Returns          void
202 **
203 *******************************************************************************/
smp_generate_passkey(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)204 void smp_generate_passkey(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
205 {
206     UNUSED(p_data);
207 
208     SMP_TRACE_DEBUG ("%s", __func__);
209     p_cb->rand_enc_proc_state = SMP_GEN_TK;
210 
211     /* generate MRand or SRand */
212     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
213         smp_rand_back(NULL);
214 }
215 
216 /*******************************************************************************
217 **
218 ** Function         smp_proc_passkey
219 **
220 ** Description      This function is called to process a passkey.
221 **
222 ** Returns          void
223 **
224 *******************************************************************************/
smp_proc_passkey(tSMP_CB * p_cb,tBTM_RAND_ENC * p)225 void smp_proc_passkey(tSMP_CB *p_cb , tBTM_RAND_ENC *p)
226 {
227     UINT8   *tt = p_cb->tk;
228     tSMP_KEY    key;
229     UINT32  passkey; /* 19655 test number; */
230     UINT8 *pp = p->param_buf;
231 
232     SMP_TRACE_DEBUG ("%s", __func__);
233     STREAM_TO_UINT32(passkey, pp);
234     passkey &= ~SMP_PASSKEY_MASK;
235 
236     /* truncate by maximum value */
237     while (passkey > BTM_MAX_PASSKEY_VAL)
238         passkey >>= 1;
239 
240     /* save the TK */
241     memset(p_cb->tk, 0, BT_OCTET16_LEN);
242     UINT32_TO_STREAM(tt, passkey);
243 
244     key.key_type = SMP_KEY_TYPE_TK;
245     key.p_data  = p_cb->tk;
246 
247     if (p_cb->p_callback)
248     {
249         (*p_cb->p_callback)(SMP_PASSKEY_NOTIF_EVT, p_cb->pairing_bda, (tSMP_EVT_DATA *)&passkey);
250     }
251 
252     if (p_cb->selected_association_model == SMP_MODEL_SEC_CONN_PASSKEY_DISP)
253     {
254         smp_sm_event(&smp_cb, SMP_KEY_READY_EVT, &passkey);
255     }
256     else
257     {
258         smp_sm_event(p_cb, SMP_KEY_READY_EVT, (tSMP_INT_DATA *)&key);
259     }
260 }
261 
262 /*******************************************************************************
263 **
264 ** Function         smp_generate_stk
265 **
266 ** Description      This function is called to generate STK calculated by running
267 **                  AES with the TK value as key and a concatenation of the random
268 **                  values.
269 **
270 ** Returns          void
271 **
272 *******************************************************************************/
smp_generate_stk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)273 void smp_generate_stk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
274 {
275     UNUSED(p_data);
276 
277     tSMP_ENC output;
278     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
279 
280     SMP_TRACE_DEBUG ("%s", __func__);
281 
282     if (p_cb->le_secure_connections_mode_is_used)
283     {
284         SMP_TRACE_WARNING ("FOR LE SC LTK IS USED INSTEAD OF STK");
285         output.param_len = SMP_ENCRYT_KEY_SIZE;
286         output.status = HCI_SUCCESS;
287         output.opcode =  HCI_BLE_ENCRYPT;
288         memcpy(output.param_buf, p_cb->ltk, SMP_ENCRYT_DATA_SIZE);
289     }
290     else if (!smp_calculate_legacy_short_term_key(p_cb, &output))
291     {
292         SMP_TRACE_ERROR("%s failed", __func__);
293         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
294         return;
295     }
296 
297     smp_process_stk(p_cb, &output);
298 }
299 
300 /*******************************************************************************
301 **
302 ** Function         smp_generate_srand_mrand_confirm
303 **
304 ** Description      This function is called to start the second pairing phase by
305 **                  start generating random number.
306 **
307 **
308 ** Returns          void
309 **
310 *******************************************************************************/
smp_generate_srand_mrand_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)311 void smp_generate_srand_mrand_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
312 {
313     UNUSED(p_data);
314 
315     SMP_TRACE_DEBUG ("%s", __func__);
316     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND;
317     /* generate MRand or SRand */
318     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
319         smp_rand_back(NULL);
320 }
321 
322 /*******************************************************************************
323 **
324 ** Function         smp_generate_rand_cont
325 **
326 ** Description      This function is called to generate another 64 bits random for
327 **                  MRand or Srand.
328 **
329 ** Returns          void
330 **
331 *******************************************************************************/
smp_generate_rand_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)332 void smp_generate_rand_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
333 {
334     UNUSED(p_data);
335 
336     SMP_TRACE_DEBUG ("%s", __func__);
337     p_cb->rand_enc_proc_state = SMP_GEN_SRAND_MRAND_CONT;
338     /* generate 64 MSB of MRand or SRand */
339     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
340         smp_rand_back(NULL);
341 }
342 
343 /*******************************************************************************
344 **
345 ** Function         smp_generate_ltk
346 **
347 ** Description      This function is called:
348 **                  - in legacy pairing - to calculate LTK, starting with DIV
349 **                    generation;
350 **                  - in LE Secure Connections pairing over LE transport - to process LTK
351 **                    already generated to encrypt LE link;
352 **                  - in LE Secure Connections pairing over BR/EDR transport - to start
353 **                    BR/EDR Link Key processing.
354 **
355 ** Returns          void
356 **
357 *******************************************************************************/
smp_generate_ltk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)358 void smp_generate_ltk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
359 {
360     UNUSED(p_data);
361 
362     BOOLEAN div_status;
363     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
364     if (smp_get_br_state() == SMP_BR_STATE_BOND_PENDING)
365     {
366         smp_br_process_link_key(p_cb, NULL);
367         return;
368     }
369     else if (p_cb->le_secure_connections_mode_is_used)
370     {
371         smp_process_secure_connection_long_term_key();
372         return;
373     }
374 
375     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
376 
377     if (div_status)
378     {
379         smp_generate_ltk_cont(p_cb, NULL);
380     }
381     else
382     {
383         SMP_TRACE_DEBUG ("Generate DIV for LTK");
384         p_cb->rand_enc_proc_state = SMP_GEN_DIV_LTK;
385         /* generate MRand or SRand */
386         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
387             smp_rand_back(NULL);
388     }
389 }
390 
391 /*******************************************************************************
392 **
393 ** Function         smp_compute_csrk
394 **
395 ** Description      This function is called to calculate CSRK
396 **
397 **
398 ** Returns          void
399 **
400 *******************************************************************************/
smp_compute_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)401 void smp_compute_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
402 {
403     UNUSED(p_data);
404 
405     BT_OCTET16  er;
406     UINT8       buffer[4]; /* for (r || DIV)  r=1*/
407     UINT16      r=1;
408     UINT8       *p=buffer;
409     tSMP_ENC    output;
410     tSMP_STATUS   status = SMP_PAIR_FAIL_UNKNOWN;
411 
412     SMP_TRACE_DEBUG ("smp_compute_csrk div=%x", p_cb->div);
413     BTM_GetDeviceEncRoot(er);
414     /* CSRK = d1(ER, DIV, 1) */
415     UINT16_TO_STREAM(p, p_cb->div);
416     UINT16_TO_STREAM(p, r);
417 
418     if (!SMP_Encrypt(er, BT_OCTET16_LEN, buffer, 4, &output))
419     {
420         SMP_TRACE_ERROR("smp_generate_csrk failed");
421         if (p_cb->smp_over_br)
422         {
423             smp_br_state_machine_event(p_cb, SMP_BR_AUTH_CMPL_EVT, &status);
424         }
425         else
426         {
427             smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
428         }
429     }
430     else
431     {
432         memcpy((void *)p_cb->csrk, output.param_buf, BT_OCTET16_LEN);
433         smp_send_csrk_info(p_cb, NULL);
434     }
435 }
436 
437 /*******************************************************************************
438 **
439 ** Function         smp_generate_csrk
440 **
441 ** Description      This function is called to calculate CSRK, starting with DIV
442 **                  generation.
443 **
444 **
445 ** Returns          void
446 **
447 *******************************************************************************/
smp_generate_csrk(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)448 void smp_generate_csrk(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
449 {
450     UNUSED(p_data);
451 
452     BOOLEAN     div_status;
453 
454     SMP_TRACE_DEBUG ("smp_generate_csrk");
455 
456     div_status = btm_get_local_div(p_cb->pairing_bda, &p_cb->div);
457     if (div_status)
458     {
459         smp_compute_csrk(p_cb, NULL);
460     }
461     else
462     {
463         SMP_TRACE_DEBUG ("Generate DIV for CSRK");
464         p_cb->rand_enc_proc_state = SMP_GEN_DIV_CSRK;
465         if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
466             smp_rand_back(NULL);
467     }
468 }
469 
470 /*******************************************************************************
471 ** Function         smp_concatenate_peer
472 **                  add pairing command sent from local device into p1.
473 *******************************************************************************/
smp_concatenate_local(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)474 void smp_concatenate_local( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
475 {
476     UINT8   *p = *p_data;
477 
478     SMP_TRACE_DEBUG ("%s", __func__);
479     UINT8_TO_STREAM(p, op_code);
480     UINT8_TO_STREAM(p, p_cb->local_io_capability);
481     UINT8_TO_STREAM(p, p_cb->loc_oob_flag);
482     UINT8_TO_STREAM(p, p_cb->loc_auth_req);
483     UINT8_TO_STREAM(p, p_cb->loc_enc_size);
484     UINT8_TO_STREAM(p, p_cb->local_i_key);
485     UINT8_TO_STREAM(p, p_cb->local_r_key);
486 
487     *p_data = p;
488 }
489 
490 /*******************************************************************************
491 ** Function         smp_concatenate_peer
492 **                  add pairing command received from peer device into p1.
493 *******************************************************************************/
smp_concatenate_peer(tSMP_CB * p_cb,UINT8 ** p_data,UINT8 op_code)494 void smp_concatenate_peer( tSMP_CB *p_cb, UINT8 **p_data, UINT8 op_code)
495 {
496     UINT8   *p = *p_data;
497 
498     SMP_TRACE_DEBUG ("smp_concatenate_peer ");
499     UINT8_TO_STREAM(p, op_code);
500     UINT8_TO_STREAM(p, p_cb->peer_io_caps);
501     UINT8_TO_STREAM(p, p_cb->peer_oob_flag);
502     UINT8_TO_STREAM(p, p_cb->peer_auth_req);
503     UINT8_TO_STREAM(p, p_cb->peer_enc_size);
504     UINT8_TO_STREAM(p, p_cb->peer_i_key);
505     UINT8_TO_STREAM(p, p_cb->peer_r_key);
506 
507     *p_data = p;
508 }
509 
510 /*******************************************************************************
511 **
512 ** Function         smp_gen_p1_4_confirm
513 **
514 ** Description      Generate Confirm/Compare Step1:
515 **                  p1 = pres || preq || rat' || iat'
516 **
517 ** Returns          void
518 **
519 *******************************************************************************/
smp_gen_p1_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p1)520 void smp_gen_p1_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p1)
521 {
522     UINT8 *p = (UINT8 *)p1;
523     tBLE_ADDR_TYPE    addr_type = 0;
524     BD_ADDR           remote_bda;
525 
526     SMP_TRACE_DEBUG ("smp_gen_p1_4_confirm");
527 
528     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
529     {
530         SMP_TRACE_ERROR("can not generate confirm for unknown device");
531         return;
532     }
533 
534     BTM_ReadConnectionAddr( p_cb->pairing_bda, p_cb->local_bda, &p_cb->addr_type);
535 
536     if (p_cb->role == HCI_ROLE_MASTER)
537     {
538         /* LSB : rat': initiator's(local) address type */
539         UINT8_TO_STREAM(p, p_cb->addr_type);
540         /* LSB : iat': responder's address type */
541         UINT8_TO_STREAM(p, addr_type);
542         /* concatinate preq */
543         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
544         /* concatinate pres */
545         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
546     }
547     else
548     {
549         /* LSB : iat': initiator's address type */
550         UINT8_TO_STREAM(p, addr_type);
551         /* LSB : rat': responder's(local) address type */
552         UINT8_TO_STREAM(p, p_cb->addr_type);
553         /* concatinate preq */
554         smp_concatenate_peer(p_cb, &p, SMP_OPCODE_PAIRING_REQ);
555         /* concatinate pres */
556         smp_concatenate_local(p_cb, &p, SMP_OPCODE_PAIRING_RSP);
557     }
558 #if SMP_DEBUG == TRUE
559     SMP_TRACE_DEBUG("p1 = pres || preq || rat' || iat'");
560     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1", 16);
561 #endif
562 }
563 
564 /*******************************************************************************
565 **
566 ** Function         smp_gen_p2_4_confirm
567 **
568 ** Description      Generate Confirm/Compare Step2:
569 **                  p2 = padding || ia || ra
570 **
571 ** Returns          void
572 **
573 *******************************************************************************/
smp_gen_p2_4_confirm(tSMP_CB * p_cb,BT_OCTET16 p2)574 void smp_gen_p2_4_confirm( tSMP_CB *p_cb, BT_OCTET16 p2)
575 {
576     UINT8       *p = (UINT8 *)p2;
577     BD_ADDR     remote_bda;
578     tBLE_ADDR_TYPE  addr_type = 0;
579 
580     if (!BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, remote_bda, &addr_type))
581     {
582         SMP_TRACE_ERROR("can not generate confirm p2 for unknown device");
583         return;
584     }
585 
586     SMP_TRACE_DEBUG ("smp_gen_p2_4_confirm");
587 
588     memset(p, 0, sizeof(BT_OCTET16));
589 
590     if (p_cb->role == HCI_ROLE_MASTER)
591     {
592         /* LSB ra */
593         BDADDR_TO_STREAM(p, remote_bda);
594         /* ia */
595         BDADDR_TO_STREAM(p, p_cb->local_bda);
596     }
597     else
598     {
599         /* LSB ra */
600         BDADDR_TO_STREAM(p, p_cb->local_bda);
601         /* ia */
602         BDADDR_TO_STREAM(p, remote_bda);
603     }
604 #if SMP_DEBUG == TRUE
605     SMP_TRACE_DEBUG("p2 = padding || ia || ra");
606     smp_debug_print_nbyte_little_endian(p2, (const UINT8 *)"p2", 16);
607 #endif
608 }
609 
610 /*******************************************************************************
611 **
612 ** Function         smp_calculate_comfirm
613 **
614 ** Description      This function is called to calculate Confirm value.
615 **
616 ** Returns          void
617 **
618 *******************************************************************************/
smp_calculate_comfirm(tSMP_CB * p_cb,BT_OCTET16 rand,BD_ADDR bda)619 void smp_calculate_comfirm (tSMP_CB *p_cb, BT_OCTET16 rand, BD_ADDR bda)
620 {
621     UNUSED(bda);
622 
623     BT_OCTET16      p1;
624     tSMP_ENC       output;
625     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
626 
627     SMP_TRACE_DEBUG ("smp_calculate_comfirm ");
628     /* generate p1 = pres || preq || rat' || iat' */
629     smp_gen_p1_4_confirm(p_cb, p1);
630 
631     /* p1 = rand XOR p1 */
632     smp_xor_128(p1, rand);
633 
634     smp_debug_print_nbyte_little_endian ((UINT8 *)p1, (const UINT8 *)"P1' = r XOR p1", 16);
635 
636     /* calculate e(k, r XOR p1), where k = TK */
637     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p1, BT_OCTET16_LEN, &output))
638     {
639         SMP_TRACE_ERROR("smp_generate_csrk failed");
640         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
641     }
642     else
643     {
644         smp_calculate_comfirm_cont(p_cb, &output);
645     }
646 }
647 
648 /*******************************************************************************
649 **
650 ** Function         smp_calculate_comfirm_cont
651 **
652 ** Description      This function is called when SConfirm/MConfirm is generated
653 **                  proceed to send the Confirm request/response to peer device.
654 **
655 ** Returns          void
656 **
657 *******************************************************************************/
smp_calculate_comfirm_cont(tSMP_CB * p_cb,tSMP_ENC * p)658 static void smp_calculate_comfirm_cont(tSMP_CB *p_cb, tSMP_ENC *p)
659 {
660     BT_OCTET16    p2;
661     tSMP_ENC      output;
662     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
663 
664     SMP_TRACE_DEBUG ("smp_calculate_comfirm_cont ");
665 #if SMP_DEBUG == TRUE
666     SMP_TRACE_DEBUG("Confirm step 1 p1' = e(k, r XOR p1)  Generated");
667     smp_debug_print_nbyte_little_endian (p->param_buf, (const UINT8 *)"C1", 16);
668 #endif
669 
670     smp_gen_p2_4_confirm(p_cb, p2);
671 
672     /* calculate p2 = (p1' XOR p2) */
673     smp_xor_128(p2, p->param_buf);
674     smp_debug_print_nbyte_little_endian ((UINT8 *)p2, (const UINT8 *)"p2' = C1 xor p2", 16);
675 
676     /* calculate: Confirm = E(k, p1' XOR p2) */
677     if (!SMP_Encrypt(p_cb->tk, BT_OCTET16_LEN, p2, BT_OCTET16_LEN, &output))
678     {
679         SMP_TRACE_ERROR("smp_calculate_comfirm_cont failed");
680         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
681     }
682     else
683     {
684         switch (p_cb->rand_enc_proc_state)
685         {
686             case SMP_GEN_CONFIRM:
687                 smp_process_confirm(p_cb, &output);
688                 break;
689 
690             case SMP_GEN_COMPARE:
691                 smp_process_compare(p_cb, &output);
692                 break;
693         }
694     }
695 }
696 
697 /*******************************************************************************
698 **
699 ** Function         smp_generate_confirm
700 **
701 ** Description      This function is called when a 48 bits random number is generated
702 **                  as SRand or MRand, continue to calculate Sconfirm or MConfirm.
703 **
704 ** Returns          void
705 **
706 *******************************************************************************/
smp_generate_confirm(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)707 static void smp_generate_confirm(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
708 {
709     UNUSED(p_data);
710 
711     SMP_TRACE_DEBUG ("%s", __func__);
712     p_cb->rand_enc_proc_state = SMP_GEN_CONFIRM;
713     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rand,  (const UINT8 *)"local rand", 16);
714     smp_calculate_comfirm(p_cb, p_cb->rand, p_cb->pairing_bda);
715 }
716 
717 /*******************************************************************************
718 **
719 ** Function         smp_generate_compare
720 **
721 ** Description      This function is called to generate SConfirm for Slave device,
722 **                  or MSlave for Master device. This function can be also used for
723 **                  generating Compare number for confirm value check.
724 **
725 ** Returns          void
726 **
727 *******************************************************************************/
smp_generate_compare(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)728 void smp_generate_compare (tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
729 {
730     UNUSED(p_data);
731 
732     SMP_TRACE_DEBUG ("smp_generate_compare ");
733     p_cb->rand_enc_proc_state = SMP_GEN_COMPARE;
734     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->rrand,  (const UINT8 *)"peer rand", 16);
735     smp_calculate_comfirm(p_cb, p_cb->rrand, p_cb->local_bda);
736 }
737 
738 /*******************************************************************************
739 **
740 ** Function         smp_process_confirm
741 **
742 ** Description      This function is called when SConfirm/MConfirm is generated
743 **                  proceed to send the Confirm request/response to peer device.
744 **
745 ** Returns          void
746 **
747 *******************************************************************************/
smp_process_confirm(tSMP_CB * p_cb,tSMP_ENC * p)748 static void smp_process_confirm(tSMP_CB *p_cb, tSMP_ENC *p)
749 {
750     tSMP_KEY    key;
751 
752     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
753     memcpy(p_cb->confirm, p->param_buf, BT_OCTET16_LEN);
754 
755 #if (SMP_DEBUG == TRUE)
756     SMP_TRACE_DEBUG("Confirm  Generated");
757     smp_debug_print_nbyte_little_endian ((UINT8 *)p_cb->confirm,  (const UINT8 *)"Confirm", 16);
758 #endif
759 
760     key.key_type = SMP_KEY_TYPE_CFM;
761     key.p_data = p->param_buf;
762     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
763 }
764 
765 /*******************************************************************************
766 **
767 ** Function         smp_process_compare
768 **
769 ** Description      This function is called when Compare is generated using the
770 **                  RRand and local BDA, TK information.
771 **
772 ** Returns          void
773 **
774 *******************************************************************************/
smp_process_compare(tSMP_CB * p_cb,tSMP_ENC * p)775 static void smp_process_compare(tSMP_CB *p_cb, tSMP_ENC *p)
776 {
777     tSMP_KEY    key;
778 
779     SMP_TRACE_DEBUG ("smp_process_compare ");
780 #if (SMP_DEBUG == TRUE)
781     SMP_TRACE_DEBUG("Compare Generated");
782     smp_debug_print_nbyte_little_endian (p->param_buf,  (const UINT8 *)"Compare", 16);
783 #endif
784     key.key_type = SMP_KEY_TYPE_CMP;
785     key.p_data   = p->param_buf;
786 
787     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
788 }
789 
790 /*******************************************************************************
791 **
792 ** Function         smp_process_stk
793 **
794 ** Description      This function is called when STK is generated
795 **                  proceed to send the encrypt the link using STK.
796 **
797 ** Returns          void
798 **
799 *******************************************************************************/
smp_process_stk(tSMP_CB * p_cb,tSMP_ENC * p)800 static void smp_process_stk(tSMP_CB *p_cb, tSMP_ENC *p)
801 {
802     tSMP_KEY    key;
803 
804     SMP_TRACE_DEBUG ("smp_process_stk ");
805 #if (SMP_DEBUG == TRUE)
806     SMP_TRACE_ERROR("STK Generated");
807 #endif
808     smp_mask_enc_key(p_cb->loc_enc_size, p->param_buf);
809 
810     key.key_type = SMP_KEY_TYPE_STK;
811     key.p_data   = p->param_buf;
812 
813     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
814 }
815 
816 /*******************************************************************************
817 **
818 ** Function         smp_generate_ltk_cont
819 **
820 ** Description      This function is to calculate LTK = d1(ER, DIV, 0)= e(ER, DIV)
821 **
822 ** Returns          void
823 **
824 *******************************************************************************/
smp_generate_ltk_cont(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)825 static void smp_generate_ltk_cont(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
826 {
827     UNUSED(p_data);
828 
829     BT_OCTET16  er;
830     tSMP_ENC    output;
831     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
832 
833     SMP_TRACE_DEBUG ("%s", __func__);
834     BTM_GetDeviceEncRoot(er);
835 
836     /* LTK = d1(ER, DIV, 0)= e(ER, DIV)*/
837     if (!SMP_Encrypt(er, BT_OCTET16_LEN, (UINT8 *)&p_cb->div,
838                      sizeof(UINT16), &output))
839     {
840         SMP_TRACE_ERROR("%s failed", __func__);
841         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
842     }
843     else
844     {
845         /* mask the LTK */
846         smp_mask_enc_key(p_cb->loc_enc_size, output.param_buf);
847         memcpy((void *)p_cb->ltk, output.param_buf, BT_OCTET16_LEN);
848         smp_generate_rand_vector(p_cb, NULL);
849     }
850 }
851 
852 /*******************************************************************************
853 **
854 ** Function         smp_generate_y
855 **
856 ** Description      This function is to proceed generate Y = E(DHK, Rand)
857 **
858 ** Returns          void
859 **
860 *******************************************************************************/
smp_generate_y(tSMP_CB * p_cb,tSMP_INT_DATA * p)861 static void smp_generate_y(tSMP_CB *p_cb, tSMP_INT_DATA *p)
862 {
863     UNUSED(p);
864 
865     BT_OCTET16  dhk;
866     tSMP_ENC   output;
867     tSMP_STATUS     status = SMP_PAIR_FAIL_UNKNOWN;
868 
869 
870     SMP_TRACE_DEBUG ("smp_generate_y ");
871     BTM_GetDeviceDHK(dhk);
872 
873     if (!SMP_Encrypt(dhk, BT_OCTET16_LEN, p_cb->enc_rand,
874                      BT_OCTET8_LEN, &output))
875     {
876         SMP_TRACE_ERROR("smp_generate_y failed");
877         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
878     }
879     else
880     {
881         smp_process_ediv(p_cb, &output);
882     }
883 }
884 
885 /*******************************************************************************
886 **
887 ** Function         smp_generate_rand_vector
888 **
889 ** Description      This function is called when LTK is generated, send state machine
890 **                  event to SMP.
891 **
892 ** Returns          void
893 **
894 *******************************************************************************/
smp_generate_rand_vector(tSMP_CB * p_cb,tSMP_INT_DATA * p)895 static void smp_generate_rand_vector (tSMP_CB *p_cb, tSMP_INT_DATA *p)
896 {
897     UNUSED(p);
898 
899     /* generate EDIV and rand now */
900     /* generate random vector */
901     SMP_TRACE_DEBUG ("smp_generate_rand_vector ");
902     p_cb->rand_enc_proc_state = SMP_GEN_RAND_V;
903     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
904         smp_rand_back(NULL);
905 }
906 
907 /*******************************************************************************
908 **
909 ** Function         smp_process_ediv
910 **
911 ** Description      This function is to calculate EDIV = Y xor DIV
912 **
913 ** Returns          void
914 **
915 *******************************************************************************/
smp_process_ediv(tSMP_CB * p_cb,tSMP_ENC * p)916 static void smp_process_ediv(tSMP_CB *p_cb, tSMP_ENC *p)
917 {
918     tSMP_KEY    key;
919     UINT8 *pp= p->param_buf;
920     UINT16  y;
921 
922     SMP_TRACE_DEBUG ("smp_process_ediv ");
923     STREAM_TO_UINT16(y, pp);
924 
925     /* EDIV = Y xor DIV */
926     p_cb->ediv = p_cb->div ^ y;
927     /* send LTK ready */
928     SMP_TRACE_ERROR("LTK ready");
929     key.key_type = SMP_KEY_TYPE_LTK;
930     key.p_data   = p->param_buf;
931 
932     smp_sm_event(p_cb, SMP_KEY_READY_EVT, &key);
933 }
934 
935 /*******************************************************************************
936 **
937 ** Function         smp_calculate_legacy_short_term_key
938 **
939 ** Description      The function calculates legacy STK.
940 **
941 ** Returns          FALSE if out of resources, TRUE in other cases.
942 **
943 *******************************************************************************/
smp_calculate_legacy_short_term_key(tSMP_CB * p_cb,tSMP_ENC * output)944 BOOLEAN smp_calculate_legacy_short_term_key(tSMP_CB *p_cb, tSMP_ENC *output)
945 {
946     BT_OCTET16 ptext;
947     UINT8 *p = ptext;
948 
949     SMP_TRACE_DEBUG ("%s", __func__);
950     memset(p, 0, BT_OCTET16_LEN);
951     if (p_cb->role == HCI_ROLE_MASTER)
952     {
953         memcpy(p, p_cb->rand, BT_OCTET8_LEN);
954         memcpy(&p[BT_OCTET8_LEN], p_cb->rrand, BT_OCTET8_LEN);
955     }
956     else
957     {
958         memcpy(p, p_cb->rrand, BT_OCTET8_LEN);
959         memcpy(&p[BT_OCTET8_LEN], p_cb->rand, BT_OCTET8_LEN);
960     }
961 
962     BOOLEAN encrypted;
963     /* generate STK = Etk(rand|rrand)*/
964     encrypted = SMP_Encrypt( p_cb->tk, BT_OCTET16_LEN, ptext, BT_OCTET16_LEN, output);
965     if (!encrypted)
966     {
967         SMP_TRACE_ERROR("%s failed", __func__);
968     }
969     return encrypted;
970 }
971 
972 /*******************************************************************************
973 **
974 ** Function         smp_create_private_key
975 **
976 ** Description      This function is called to create private key used to
977 **                  calculate public key and DHKey.
978 **                  The function starts private key creation requesting controller
979 **                  to generate [0-7] octets of private key.
980 **
981 ** Returns          void
982 **
983 *******************************************************************************/
smp_create_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)984 void smp_create_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
985 {
986     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
987     p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_0_7;
988     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
989         smp_rand_back(NULL);
990 }
991 
992 /*******************************************************************************
993 **
994 ** Function         smp_use_oob_private_key
995 **
996 ** Description      This function is called
997 **                  - to save the secret key used to calculate the public key used
998 **                    in calculations of commitment sent OOB to a peer
999 **                  - to use this secret key to recalculate the public key and
1000 **                    start the process of sending this public key to the peer
1001 **                  if secret/public keys have to be reused.
1002 **                  If the keys aren't supposed to be reused, continue from the
1003 **                  point from which request for OOB data was issued.
1004 **
1005 ** Returns          void
1006 **
1007 *******************************************************************************/
smp_use_oob_private_key(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1008 void smp_use_oob_private_key(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1009 {
1010     SMP_TRACE_DEBUG ("%s req_oob_type: %d, role: %d",
1011                       __func__, p_cb->req_oob_type, p_cb->role);
1012 
1013     switch (p_cb->req_oob_type)
1014     {
1015         case SMP_OOB_BOTH:
1016         case SMP_OOB_LOCAL:
1017             SMP_TRACE_DEBUG("%s restore secret key", __func__)
1018             memcpy(p_cb->private_key, p_cb->sc_oob_data.loc_oob_data.private_key_used, BT_OCTET32_LEN);
1019             smp_process_private_key(p_cb);
1020             break;
1021         default:
1022             SMP_TRACE_DEBUG("%s create secret key anew", __func__);
1023             smp_set_state(SMP_STATE_PAIR_REQ_RSP);
1024             smp_decide_association_model(p_cb, NULL);
1025             break;
1026     }
1027 }
1028 
1029 /*******************************************************************************
1030 **
1031 ** Function         smp_continue_private_key_creation
1032 **
1033 ** Description      This function is used to continue private key creation.
1034 **
1035 ** Returns          void
1036 **
1037 *******************************************************************************/
smp_continue_private_key_creation(tSMP_CB * p_cb,tBTM_RAND_ENC * p)1038 void smp_continue_private_key_creation (tSMP_CB *p_cb, tBTM_RAND_ENC *p)
1039 {
1040     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
1041     SMP_TRACE_DEBUG ("%s state=0x%x", __func__, state);
1042 
1043     switch (state)
1044     {
1045         case SMP_GENERATE_PRIVATE_KEY_0_7:
1046             memcpy((void *)p_cb->private_key, p->param_buf, p->param_len);
1047             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_8_15;
1048             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1049                 smp_rand_back(NULL);
1050             break;
1051 
1052         case SMP_GENERATE_PRIVATE_KEY_8_15:
1053             memcpy((void *)&p_cb->private_key[8], p->param_buf, p->param_len);
1054             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_16_23;
1055             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1056                 smp_rand_back(NULL);
1057             break;
1058 
1059         case SMP_GENERATE_PRIVATE_KEY_16_23:
1060             memcpy((void *)&p_cb->private_key[16], p->param_buf, p->param_len);
1061             p_cb->rand_enc_proc_state = SMP_GENERATE_PRIVATE_KEY_24_31;
1062             if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
1063                 smp_rand_back(NULL);
1064             break;
1065 
1066         case SMP_GENERATE_PRIVATE_KEY_24_31:
1067             memcpy((void *)&p_cb->private_key[24], p->param_buf, p->param_len);
1068             smp_process_private_key (p_cb);
1069             break;
1070 
1071         default:
1072             break;
1073     }
1074 
1075     return;
1076 }
1077 
1078 /*******************************************************************************
1079 **
1080 ** Function         smp_process_private_key
1081 **
1082 ** Description      This function processes private key.
1083 **                  It calculates public key and notifies SM that private key /
1084 **                  public key pair is created.
1085 **
1086 ** Returns          void
1087 **
1088 *******************************************************************************/
smp_process_private_key(tSMP_CB * p_cb)1089 void smp_process_private_key(tSMP_CB *p_cb)
1090 {
1091     Point       public_key;
1092     BT_OCTET32  private_key;
1093 
1094     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1095 
1096     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1097     ECC_PointMult(&public_key, &(curve_p256.G), (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
1098     memcpy(p_cb->loc_publ_key.x, public_key.x, BT_OCTET32_LEN);
1099     memcpy(p_cb->loc_publ_key.y, public_key.y, BT_OCTET32_LEN);
1100 
1101     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1102                                          BT_OCTET32_LEN);
1103     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.x, (const UINT8 *)"local public(x)",
1104                                          BT_OCTET32_LEN);
1105     smp_debug_print_nbyte_little_endian (p_cb->loc_publ_key.y, (const UINT8 *)"local public(y)",
1106                                          BT_OCTET32_LEN);
1107     p_cb->flags |= SMP_PAIR_FLAG_HAVE_LOCAL_PUBL_KEY;
1108     smp_sm_event(p_cb, SMP_LOC_PUBL_KEY_CRTD_EVT, NULL);
1109 }
1110 
1111 /*******************************************************************************
1112 **
1113 ** Function         smp_compute_dhkey
1114 **
1115 ** Description      The function:
1116 **                  - calculates a new public key using as input local private
1117 **                    key and peer public key;
1118 **                  - saves the new public key x-coordinate as DHKey.
1119 **
1120 ** Returns          void
1121 **
1122 *******************************************************************************/
smp_compute_dhkey(tSMP_CB * p_cb)1123 void smp_compute_dhkey (tSMP_CB *p_cb)
1124 {
1125     Point       peer_publ_key, new_publ_key;
1126     BT_OCTET32  private_key;
1127 
1128     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1129 
1130     memcpy(private_key, p_cb->private_key, BT_OCTET32_LEN);
1131     memcpy(peer_publ_key.x, p_cb->peer_publ_key.x, BT_OCTET32_LEN);
1132     memcpy(peer_publ_key.y, p_cb->peer_publ_key.y, BT_OCTET32_LEN);
1133 
1134     ECC_PointMult(&new_publ_key, &peer_publ_key, (DWORD*) private_key, KEY_LENGTH_DWORDS_P256);
1135 
1136     memcpy(p_cb->dhkey, new_publ_key.x, BT_OCTET32_LEN);
1137 
1138     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Old DHKey",
1139                                          BT_OCTET32_LEN);
1140 
1141     smp_debug_print_nbyte_little_endian (p_cb->private_key, (const UINT8 *)"private",
1142                                          BT_OCTET32_LEN);
1143     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.x, (const UINT8 *)"rem public(x)",
1144                                          BT_OCTET32_LEN);
1145     smp_debug_print_nbyte_little_endian (p_cb->peer_publ_key.y, (const UINT8 *)"rem public(y)",
1146                                          BT_OCTET32_LEN);
1147     smp_debug_print_nbyte_little_endian (p_cb->dhkey, (const UINT8 *)"Reverted DHKey",
1148                                          BT_OCTET32_LEN);
1149 }
1150 
1151 /*******************************************************************************
1152 **
1153 ** Function         smp_calculate_local_commitment
1154 **
1155 ** Description      The function calculates and saves local commmitment in CB.
1156 **
1157 ** Returns          void
1158 **
1159 *******************************************************************************/
smp_calculate_local_commitment(tSMP_CB * p_cb)1160 void smp_calculate_local_commitment(tSMP_CB *p_cb)
1161 {
1162     UINT8 random_input;
1163 
1164     SMP_TRACE_DEBUG("%s", __FUNCTION__);
1165 
1166     switch (p_cb->selected_association_model)
1167     {
1168         case SMP_MODEL_SEC_CONN_JUSTWORKS:
1169         case SMP_MODEL_SEC_CONN_NUM_COMP:
1170             if (p_cb->role  == HCI_ROLE_MASTER)
1171                 SMP_TRACE_WARNING ("local commitment calc on master is not expected \
1172                                     for Just Works/Numeric Comparison models");
1173             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand, 0,
1174                              p_cb->commitment);
1175             break;
1176         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1177         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1178             random_input = smp_calculate_random_input(p_cb->local_random, p_cb->round);
1179             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1180                              random_input, p_cb->commitment);
1181             break;
1182         case SMP_MODEL_SEC_CONN_OOB:
1183             SMP_TRACE_WARNING ("local commitment calc is expected for OOB model BEFORE pairing");
1184             smp_calculate_f4(p_cb->loc_publ_key.x, p_cb->loc_publ_key.x, p_cb->local_random, 0,
1185                              p_cb->commitment);
1186             break;
1187         default:
1188             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
1189                              p_cb->selected_association_model);
1190             return;
1191     }
1192 
1193     SMP_TRACE_EVENT ("local commitment calculation is completed");
1194 }
1195 
1196 /*******************************************************************************
1197 **
1198 ** Function         smp_calculate_peer_commitment
1199 **
1200 ** Description      The function calculates and saves peer commmitment at the
1201 **                  provided output buffer.
1202 **
1203 ** Returns          void
1204 **
1205 *******************************************************************************/
smp_calculate_peer_commitment(tSMP_CB * p_cb,BT_OCTET16 output_buf)1206 void smp_calculate_peer_commitment(tSMP_CB *p_cb, BT_OCTET16 output_buf)
1207 {
1208     UINT8 ri;
1209 
1210     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1211 
1212     switch (p_cb->selected_association_model)
1213     {
1214         case SMP_MODEL_SEC_CONN_JUSTWORKS:
1215         case SMP_MODEL_SEC_CONN_NUM_COMP:
1216             if (p_cb->role  == HCI_ROLE_SLAVE)
1217                 SMP_TRACE_WARNING ("peer commitment calc on slave is not expected \
1218                 for Just Works/Numeric Comparison models");
1219             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, 0,
1220                              output_buf);
1221             break;
1222         case SMP_MODEL_SEC_CONN_PASSKEY_ENT:
1223         case SMP_MODEL_SEC_CONN_PASSKEY_DISP:
1224             ri = smp_calculate_random_input(p_cb->peer_random, p_cb->round);
1225             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand, ri,
1226                              output_buf);
1227             break;
1228         case SMP_MODEL_SEC_CONN_OOB:
1229             smp_calculate_f4(p_cb->peer_publ_key.x, p_cb->peer_publ_key.x, p_cb->peer_random, 0,
1230                              output_buf);
1231             break;
1232         default:
1233             SMP_TRACE_ERROR("Association Model = %d is not used in LE SC",
1234                              p_cb->selected_association_model);
1235             return;
1236     }
1237 
1238     SMP_TRACE_EVENT ("peer commitment calculation is completed");
1239 }
1240 
1241 /*******************************************************************************
1242 **
1243 ** Function         smp_calculate_f4
1244 **
1245 ** Description      The function calculates
1246 **                  C = f4(U, V, X, Z) = AES-CMAC (U||V||Z)
1247 **                                               X
1248 **                  where
1249 **                  input:  U is 256 bit,
1250 **                          V is 256 bit,
1251 **                          X is 128 bit,
1252 **                          Z is 8 bit,
1253 **                  output: C is 128 bit.
1254 **
1255 ** Returns          void
1256 **
1257 ** Note             The LSB is the first octet, the MSB is the last octet of
1258 **                  the AES-CMAC input/output stream.
1259 **
1260 *******************************************************************************/
smp_calculate_f4(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 z,UINT8 * c)1261 void smp_calculate_f4(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 z, UINT8 *c)
1262 {
1263     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */ + 1 /* Z size */;
1264     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + 1];
1265     UINT8   key[BT_OCTET16_LEN];
1266     UINT8   cmac[BT_OCTET16_LEN];
1267     UINT8   *p = NULL;
1268 #if SMP_DEBUG == TRUE
1269     UINT8   *p_prnt = NULL;
1270 #endif
1271 
1272     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1273 
1274 #if SMP_DEBUG == TRUE
1275     p_prnt = u;
1276     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1277     p_prnt = v;
1278     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1279     p_prnt = x;
1280     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1281     p_prnt = &z;
1282     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Z", 1);
1283 #endif
1284 
1285     p = msg;
1286     UINT8_TO_STREAM(p, z);
1287     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1288     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1289 #if SMP_DEBUG == TRUE
1290     p_prnt = msg;
1291     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1292 #endif
1293 
1294     p = key;
1295     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1296 #if SMP_DEBUG == TRUE
1297     p_prnt = key;
1298     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1299 #endif
1300 
1301     aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac);
1302 #if SMP_DEBUG == TRUE
1303     p_prnt = cmac;
1304     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES_CMAC", BT_OCTET16_LEN);
1305 #endif
1306 
1307     p = c;
1308     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1309 }
1310 
1311 /*******************************************************************************
1312 **
1313 ** Function         smp_calculate_numeric_comparison_display_number
1314 **
1315 ** Description      The function calculates and saves number to display in numeric
1316 **                  comparison association mode.
1317 **
1318 ** Returns          void
1319 **
1320 *******************************************************************************/
smp_calculate_numeric_comparison_display_number(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1321 void smp_calculate_numeric_comparison_display_number(tSMP_CB *p_cb,
1322                                                      tSMP_INT_DATA *p_data)
1323 {
1324     SMP_TRACE_DEBUG ("%s", __func__);
1325 
1326     if (p_cb->role == HCI_ROLE_MASTER)
1327     {
1328         p_cb->number_to_display =
1329             smp_calculate_g2(p_cb->loc_publ_key.x, p_cb->peer_publ_key.x, p_cb->rand,
1330                              p_cb->rrand);
1331     }
1332     else
1333     {
1334         p_cb->number_to_display =
1335             smp_calculate_g2(p_cb->peer_publ_key.x, p_cb->loc_publ_key.x, p_cb->rrand,
1336                              p_cb->rand);
1337     }
1338 
1339     if (p_cb->number_to_display >= (BTM_MAX_PASSKEY_VAL + 1))
1340     {
1341         UINT8 reason;
1342         reason = p_cb->failure = SMP_PAIR_FAIL_UNKNOWN;
1343         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &reason);
1344         return;
1345     }
1346 
1347     SMP_TRACE_EVENT("Number to display in numeric comparison = %d", p_cb->number_to_display);
1348     p_cb->cb_evt = SMP_NC_REQ_EVT;
1349     smp_sm_event(p_cb, SMP_SC_DSPL_NC_EVT, &p_cb->number_to_display);
1350     return;
1351 }
1352 
1353 /*******************************************************************************
1354 **
1355 ** Function         smp_calculate_g2
1356 **
1357 ** Description      The function calculates
1358 **                  g2(U, V, X, Y) = AES-CMAC (U||V||Y) mod 2**32 mod 10**6
1359 **                                           X
1360 **                  and
1361 **                  Vres = g2(U, V, X, Y) mod 10**6
1362 **                  where
1363 **                  input:  U     is 256 bit,
1364 **                          V     is 256 bit,
1365 **                          X     is 128 bit,
1366 **                          Y     is 128 bit,
1367 **
1368 ** Returns          Vres.
1369 **                  Expected value has to be in the range [0 - 999999] i.e. [0 - 0xF423F].
1370 **                  Vres = 1000000 means that the calculation fails.
1371 **
1372 ** Note             The LSB is the first octet, the MSB is the last octet of
1373 **                  the AES-CMAC input/output stream.
1374 **
1375 *******************************************************************************/
smp_calculate_g2(UINT8 * u,UINT8 * v,UINT8 * x,UINT8 * y)1376 UINT32 smp_calculate_g2(UINT8 *u, UINT8 *v, UINT8 *x, UINT8 *y)
1377 {
1378     UINT8   msg_len = BT_OCTET32_LEN /* U size */ + BT_OCTET32_LEN /* V size */
1379                       + BT_OCTET16_LEN /* Y size */;
1380     UINT8   msg[BT_OCTET32_LEN + BT_OCTET32_LEN + BT_OCTET16_LEN];
1381     UINT8   key[BT_OCTET16_LEN];
1382     UINT8   cmac[BT_OCTET16_LEN];
1383     UINT8   *p = NULL;
1384     UINT32  vres;
1385 #if SMP_DEBUG == TRUE
1386     UINT8   *p_prnt = NULL;
1387 #endif
1388 
1389     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1390 
1391     p = msg;
1392     ARRAY_TO_STREAM(p, y, BT_OCTET16_LEN);
1393     ARRAY_TO_STREAM(p, v, BT_OCTET32_LEN);
1394     ARRAY_TO_STREAM(p, u, BT_OCTET32_LEN);
1395 #if SMP_DEBUG == TRUE
1396     p_prnt = u;
1397     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"U", BT_OCTET32_LEN);
1398     p_prnt = v;
1399     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"V", BT_OCTET32_LEN);
1400     p_prnt = x;
1401     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"X", BT_OCTET16_LEN);
1402     p_prnt = y;
1403     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Y", BT_OCTET16_LEN);
1404 #endif
1405 
1406     p = key;
1407     ARRAY_TO_STREAM(p, x, BT_OCTET16_LEN);
1408 #if SMP_DEBUG == TRUE
1409     p_prnt = key;
1410     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1411 #endif
1412 
1413     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1414     {
1415         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
1416         return (BTM_MAX_PASSKEY_VAL + 1);
1417     }
1418 
1419 #if SMP_DEBUG == TRUE
1420     p_prnt = cmac;
1421     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1422 #endif
1423 
1424     /* vres = cmac mod 2**32 mod 10**6 */
1425     p = &cmac[0];
1426     STREAM_TO_UINT32(vres, p);
1427 #if SMP_DEBUG == TRUE
1428     p_prnt = (UINT8 *) &vres;
1429     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32", 4);
1430 #endif
1431 
1432     while (vres > BTM_MAX_PASSKEY_VAL)
1433         vres -= (BTM_MAX_PASSKEY_VAL + 1);
1434 #if SMP_DEBUG == TRUE
1435     p_prnt = (UINT8 *) &vres;
1436     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"cmac mod 2**32 mod 10**6", 4);
1437 #endif
1438 
1439     SMP_TRACE_ERROR("Value for numeric comparison = %d", vres);
1440     return vres;
1441 }
1442 
1443 /*******************************************************************************
1444 **
1445 ** Function         smp_calculate_f5
1446 **
1447 ** Description      The function provides two AES-CMAC that are supposed to be used as
1448 **                  - MacKey (MacKey is used in pairing DHKey check calculation);
1449 **                  - LTK (LTK is used to ecrypt the link after completion of Phase 2
1450 **                    and on reconnection, to derive BR/EDR LK).
1451 **                  The function inputs are W, N1, N2, A1, A2.
1452 **                  F5 rules:
1453 **                  - the value used as key in MacKey/LTK (T) is calculated
1454 **                    (function smp_calculate_f5_key(...));
1455 **                    The formula is:
1456 **                          T = AES-CMAC    (W)
1457 **                                      salt
1458 **                    where salt is internal parameter of smp_calculate_f5_key(...).
1459 **                  - MacKey and LTK are calculated as AES-MAC values received with the
1460 **                    key T calculated in the previous step and the plaintext message
1461 **                    built from the external parameters N1, N2, A1, A2 and the internal
1462 **                    parameters counter, keyID, length.
1463 **                    The function smp_calculate_f5_mackey_or_long_term_key(...) is used in the
1464 **                    calculations.
1465 **                    The same formula is used in calculation of MacKey and LTK and the
1466 **                    same parameter values except the value of the internal parameter
1467 **                    counter:
1468 **                    - in MacKey calculations the value is 0;
1469 **                    - in LTK calculations the value is 1.
1470 **                      MacKey  = AES-CMAC (Counter=0||keyID||N1||N2||A1||A2||Length=256)
1471 **                                        T
1472 **                      LTK     = AES-CMAC (Counter=1||keyID||N1||N2||A1||A2||Length=256)
1473 **                                        T
1474 **                  The parameters are
1475 **                  input:
1476 **                          W       is 256 bits,
1477 **                          N1      is 128 bits,
1478 **                          N2      is 128 bits,
1479 **                          A1 is 56 bit,
1480 **                          A2 is 56 bit.
1481 **                  internal:
1482 **                          Counter is 8 bits,  its value is 0 for MacKey,
1483 **                                                          1 for LTK;
1484 **                          KeyId   is 32 bits, its value is
1485 **                                              0x62746c65 (MSB~LSB);
1486 **                          Length  is 16 bits, its value is 0x0100
1487 **                                              (MSB~LSB).
1488 **                  output:
1489 **                          MacKey  is 128 bits;
1490 **                          LTK     is 128 bits
1491 **
1492 ** Returns          FALSE if out of resources, TRUE in other cases.
1493 **
1494 ** Note             The LSB is the first octet, the MSB is the last octet of
1495 **                  the AES-CMAC input/output stream.
1496 **
1497 *******************************************************************************/
smp_calculate_f5(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * mac_key,UINT8 * ltk)1498 BOOLEAN smp_calculate_f5(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1499                          UINT8 *mac_key, UINT8 *ltk)
1500 {
1501     BT_OCTET16  t;    /* AES-CMAC output in smp_calculate_f5_key(...), key in */
1502                       /* smp_calculate_f5_mackey_or_long_term_key(...) */
1503 #if SMP_DEBUG == TRUE
1504     UINT8   *p_prnt = NULL;
1505 #endif
1506     /* internal parameters: */
1507 
1508     /*
1509         counter is 0 for MacKey,
1510                 is 1 for LTK
1511     */
1512     UINT8   counter_mac_key[1]  = {0};
1513     UINT8   counter_ltk[1]      = {1};
1514     /*
1515         keyID   62746c65
1516     */
1517     UINT8   key_id[4] = {0x65, 0x6c, 0x74, 0x62};
1518     /*
1519         length  0100
1520     */
1521     UINT8   length[2] = {0x00, 0x01};
1522 
1523     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1524 #if SMP_DEBUG == TRUE
1525     p_prnt = w;
1526     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1527     p_prnt = n1;
1528     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1529     p_prnt = n2;
1530     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1531     p_prnt = a1;
1532     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1533     p_prnt = a2;
1534     smp_debug_print_nbyte_little_endian (p_prnt,(const UINT8 *) "A2", 7);
1535 #endif
1536 
1537     if (!smp_calculate_f5_key(w, t))
1538     {
1539         SMP_TRACE_ERROR("%s failed to calc T",__FUNCTION__);
1540         return FALSE;
1541     }
1542 #if SMP_DEBUG == TRUE
1543     p_prnt = t;
1544     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1545 #endif
1546 
1547     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_mac_key, key_id, n1, n2, a1, a2,
1548                                                   length, mac_key))
1549     {
1550         SMP_TRACE_ERROR("%s failed to calc MacKey", __FUNCTION__);
1551         return FALSE;
1552     }
1553 #if SMP_DEBUG == TRUE
1554     p_prnt = mac_key;
1555     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"MacKey", BT_OCTET16_LEN);
1556 #endif
1557 
1558     if (!smp_calculate_f5_mackey_or_long_term_key(t, counter_ltk, key_id, n1, n2, a1, a2,
1559                                                   length, ltk))
1560     {
1561         SMP_TRACE_ERROR("%s failed to calc LTK",__FUNCTION__);
1562         return FALSE;
1563     }
1564 #if SMP_DEBUG == TRUE
1565     p_prnt = ltk;
1566     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"LTK", BT_OCTET16_LEN);
1567 #endif
1568 
1569     return TRUE;
1570 }
1571 
1572 /*******************************************************************************
1573 **
1574 ** Function         smp_calculate_f5_mackey_or_long_term_key
1575 **
1576 ** Description      The function calculates the value of MacKey or LTK by the rules
1577 **                  defined for f5 function.
1578 **                  At the moment exactly the same formula is used to calculate
1579 **                  LTK and MacKey.
1580 **                  The difference is the value of input parameter Counter:
1581 **                  - in MacKey calculations the value is 0;
1582 **                  - in LTK calculations the value is 1.
1583 **                  The formula:
1584 **                  mac = AES-CMAC (Counter||keyID||N1||N2||A1||A2||Length)
1585 **                                T
1586 **                  where
1587 **                  input:      T       is 256 bits;
1588 **                              Counter is 8 bits, its value is 0 for MacKey,
1589 **                                                              1 for LTK;
1590 **                              keyID   is 32 bits, its value is 0x62746c65;
1591 **                              N1      is 128 bits;
1592 **                              N2      is 128 bits;
1593 **                              A1      is 56 bits;
1594 **                              A2      is 56 bits;
1595 **                              Length  is 16 bits, its value is 0x0100
1596 **                  output:     LTK     is 128 bit.
1597 **
1598 ** Returns          FALSE if out of resources, TRUE in other cases.
1599 **
1600 ** Note             The LSB is the first octet, the MSB is the last octet of
1601 **                  the AES-CMAC input/output stream.
1602 **
1603 *******************************************************************************/
smp_calculate_f5_mackey_or_long_term_key(UINT8 * t,UINT8 * counter,UINT8 * key_id,UINT8 * n1,UINT8 * n2,UINT8 * a1,UINT8 * a2,UINT8 * length,UINT8 * mac)1604 BOOLEAN smp_calculate_f5_mackey_or_long_term_key(UINT8 *t, UINT8 *counter,
1605                                   UINT8 *key_id, UINT8 *n1, UINT8 *n2, UINT8 *a1, UINT8 *a2,
1606                                   UINT8 *length, UINT8 *mac)
1607 {
1608     UINT8   *p = NULL;
1609     UINT8   cmac[BT_OCTET16_LEN];
1610     UINT8   key[BT_OCTET16_LEN];
1611     UINT8   msg_len = 1 /* Counter size */ + 4 /* keyID size */ +
1612             BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1613             7 /* A1 size*/ + 7 /* A2 size*/ + 2 /* Length size */;
1614     UINT8   msg[1 + 4 + BT_OCTET16_LEN + BT_OCTET16_LEN + 7 + 7 + 2];
1615     BOOLEAN ret = TRUE;
1616 #if SMP_DEBUG == TRUE
1617     UINT8   *p_prnt = NULL;
1618 #endif
1619 
1620     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1621 #if SMP_DEBUG == TRUE
1622     p_prnt = t;
1623     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"T", BT_OCTET16_LEN);
1624     p_prnt = counter;
1625     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Counter", 1);
1626     p_prnt = key_id;
1627     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"KeyID", 4);
1628     p_prnt = n1;
1629     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N1", BT_OCTET16_LEN);
1630     p_prnt = n2;
1631     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"N2", BT_OCTET16_LEN);
1632     p_prnt = a1;
1633     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A1", 7);
1634     p_prnt = a2;
1635     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"A2", 7);
1636     p_prnt = length;
1637     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"Length", 2);
1638 #endif
1639 
1640     p = key;
1641     ARRAY_TO_STREAM(p, t, BT_OCTET16_LEN);
1642 #if SMP_DEBUG == TRUE
1643     p_prnt = key;
1644     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1645 #endif
1646     p = msg;
1647     ARRAY_TO_STREAM(p, length, 2);
1648     ARRAY_TO_STREAM(p, a2, 7);
1649     ARRAY_TO_STREAM(p, a1, 7);
1650     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1651     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1652     ARRAY_TO_STREAM(p, key_id, 4);
1653     ARRAY_TO_STREAM(p, counter, 1);
1654 #if SMP_DEBUG == TRUE
1655     p_prnt = msg;
1656     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", msg_len);
1657 #endif
1658 
1659     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1660     {
1661         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1662         ret = FALSE;
1663     }
1664 
1665 #if SMP_DEBUG == TRUE
1666     p_prnt = cmac;
1667     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1668 #endif
1669 
1670     p = mac;
1671     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1672     return ret;
1673 }
1674 
1675 /*******************************************************************************
1676 **
1677 ** Function         smp_calculate_f5_key
1678 **
1679 ** Description      The function calculates key T used in calculation of
1680 **                  MacKey and LTK (f5 output is defined as MacKey || LTK).
1681 **                  T = AES-CMAC    (W)
1682 **                              salt
1683 **                  where
1684 **                  Internal:   salt    is 128 bit.
1685 **                  input:      W       is 256 bit.
1686 **                  Output:     T       is 128 bit.
1687 **
1688 ** Returns          FALSE if out of resources, TRUE in other cases.
1689 **
1690 ** Note             The LSB is the first octet, the MSB is the last octet of
1691 **                  the AES-CMAC input/output stream.
1692 **
1693 *******************************************************************************/
smp_calculate_f5_key(UINT8 * w,UINT8 * t)1694 BOOLEAN smp_calculate_f5_key(UINT8 *w, UINT8 *t)
1695 {
1696     UINT8 *p = NULL;
1697     /* Please see 2.2.7 LE Secure Connections Key Generation Function f5 */
1698     /*
1699         salt:   6C88 8391 AAF5 A538 6037 0BDB 5A60 83BE
1700     */
1701     BT_OCTET16  salt = {
1702         0xBE, 0x83, 0x60, 0x5A, 0xDB, 0x0B, 0x37, 0x60,
1703         0x38, 0xA5, 0xF5, 0xAA, 0x91, 0x83, 0x88, 0x6C
1704     };
1705 #if SMP_DEBUG == TRUE
1706     UINT8   *p_prnt = NULL;
1707 #endif
1708 
1709     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1710 #if SMP_DEBUG == TRUE
1711     p_prnt = salt;
1712     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"salt", BT_OCTET16_LEN);
1713     p_prnt = w;
1714     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"W", BT_OCTET32_LEN);
1715 #endif
1716 
1717     BT_OCTET16 key;
1718     BT_OCTET32 msg;
1719 
1720     p = key;
1721     ARRAY_TO_STREAM(p, salt, BT_OCTET16_LEN);
1722     p = msg;
1723     ARRAY_TO_STREAM(p, w, BT_OCTET32_LEN);
1724 #if SMP_DEBUG == TRUE
1725     p_prnt = key;
1726     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"K", BT_OCTET16_LEN);
1727     p_prnt = msg;
1728     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"M", BT_OCTET32_LEN);
1729 #endif
1730 
1731     BT_OCTET16 cmac;
1732     BOOLEAN ret = TRUE;
1733     if (!aes_cipher_msg_auth_code(key, msg, BT_OCTET32_LEN, BT_OCTET16_LEN, cmac))
1734     {
1735         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1736         ret = FALSE;
1737     }
1738 
1739 #if SMP_DEBUG == TRUE
1740     p_prnt = cmac;
1741     smp_debug_print_nbyte_little_endian (p_prnt, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1742 #endif
1743 
1744     p = t;
1745     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1746     return ret;
1747 }
1748 
1749 /*******************************************************************************
1750 **
1751 ** Function         smp_calculate_local_dhkey_check
1752 **
1753 ** Description      The function calculates and saves local device DHKey check
1754 **                  value in CB.
1755 **                  Before doing this it calls smp_calculate_f5_mackey_and_long_term_key(...).
1756 **                  to calculate MacKey and LTK.
1757 **                  MacKey is used in dhkey calculation.
1758 **
1759 ** Returns          void
1760 **
1761 *******************************************************************************/
smp_calculate_local_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1762 void smp_calculate_local_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1763 {
1764     UINT8   iocap[3], a[7], b[7];
1765 
1766     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1767 
1768     smp_calculate_f5_mackey_and_long_term_key(p_cb);
1769 
1770     smp_collect_local_io_capabilities(iocap, p_cb);
1771 
1772     smp_collect_local_ble_address(a, p_cb);
1773     smp_collect_peer_ble_address(b, p_cb);
1774     smp_calculate_f6(p_cb->mac_key, p_cb->rand, p_cb->rrand, p_cb->peer_random, iocap, a, b,
1775                      p_cb->dhkey_check);
1776 
1777     SMP_TRACE_EVENT ("local DHKey check calculation is completed");
1778 }
1779 
1780 /*******************************************************************************
1781 **
1782 ** Function         smp_calculate_peer_dhkey_check
1783 **
1784 ** Description      The function calculates peer device DHKey check value.
1785 **
1786 ** Returns          void
1787 **
1788 *******************************************************************************/
smp_calculate_peer_dhkey_check(tSMP_CB * p_cb,tSMP_INT_DATA * p_data)1789 void smp_calculate_peer_dhkey_check(tSMP_CB *p_cb, tSMP_INT_DATA *p_data)
1790 {
1791     UINT8       iocap[3], a[7], b[7];
1792     BT_OCTET16  param_buf;
1793     BOOLEAN     ret;
1794     tSMP_KEY    key;
1795     tSMP_STATUS status = SMP_PAIR_FAIL_UNKNOWN;
1796 
1797     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1798 
1799     smp_collect_peer_io_capabilities(iocap, p_cb);
1800 
1801     smp_collect_local_ble_address(a, p_cb);
1802     smp_collect_peer_ble_address(b, p_cb);
1803     ret = smp_calculate_f6(p_cb->mac_key, p_cb->rrand, p_cb->rand, p_cb->local_random, iocap,
1804                            b, a, param_buf);
1805 
1806     if (ret)
1807     {
1808         SMP_TRACE_EVENT ("peer DHKey check calculation is completed");
1809 #if (SMP_DEBUG == TRUE)
1810         smp_debug_print_nbyte_little_endian (param_buf, (const UINT8 *)"peer DHKey check",
1811                                              BT_OCTET16_LEN);
1812 #endif
1813         key.key_type = SMP_KEY_TYPE_PEER_DHK_CHCK;
1814         key.p_data   = param_buf;
1815         smp_sm_event(p_cb, SMP_SC_KEY_READY_EVT, &key);
1816     }
1817     else
1818     {
1819         SMP_TRACE_EVENT ("peer DHKey check calculation failed");
1820         smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &status);
1821     }
1822 }
1823 
1824 /*******************************************************************************
1825 **
1826 ** Function         smp_calculate_f6
1827 **
1828 ** Description      The function calculates
1829 **                  C = f6(W, N1, N2, R, IOcap, A1, A2) = AES-CMAC (N1||N2||R||IOcap||A1||A2)
1830 **                                                                W
1831 **                  where
1832 **                  input:  W is 128 bit,
1833 **                          N1 is 128 bit,
1834 **                          N2 is 128 bit,
1835 **                          R is 128 bit,
1836 **                          IOcap is 24 bit,
1837 **                          A1 is 56 bit,
1838 **                          A2 is 56 bit,
1839 **                  output: C is 128 bit.
1840 **
1841 ** Returns          FALSE if out of resources, TRUE in other cases.
1842 **
1843 ** Note             The LSB is the first octet, the MSB is the last octet of
1844 **                  the AES-CMAC input/output stream.
1845 **
1846 *******************************************************************************/
smp_calculate_f6(UINT8 * w,UINT8 * n1,UINT8 * n2,UINT8 * r,UINT8 * iocap,UINT8 * a1,UINT8 * a2,UINT8 * c)1847 BOOLEAN smp_calculate_f6(UINT8 *w, UINT8 *n1, UINT8 *n2, UINT8 *r, UINT8 *iocap, UINT8 *a1,
1848                          UINT8 *a2, UINT8 *c)
1849 {
1850     UINT8   *p = NULL;
1851     UINT8   msg_len = BT_OCTET16_LEN /* N1 size */ + BT_OCTET16_LEN /* N2 size */ +
1852                       BT_OCTET16_LEN /* R size */ + 3 /* IOcap size */ + 7 /* A1 size*/
1853                       + 7 /* A2 size*/;
1854     UINT8   msg[BT_OCTET16_LEN + BT_OCTET16_LEN + BT_OCTET16_LEN + 3 + 7 + 7];
1855 #if SMP_DEBUG == TRUE
1856     UINT8   *p_print = NULL;
1857 #endif
1858 
1859     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
1860 #if SMP_DEBUG == TRUE
1861     p_print = w;
1862     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
1863     p_print = n1;
1864     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N1", BT_OCTET16_LEN);
1865     p_print = n2;
1866     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"N2", BT_OCTET16_LEN);
1867     p_print = r;
1868     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"R", BT_OCTET16_LEN);
1869     p_print = iocap;
1870     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"IOcap", 3);
1871     p_print = a1;
1872     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A1", 7);
1873     p_print = a2;
1874     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"A2", 7);
1875 #endif
1876 
1877     UINT8 cmac[BT_OCTET16_LEN];
1878     UINT8 key[BT_OCTET16_LEN];
1879 
1880     p = key;
1881     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
1882 #if SMP_DEBUG == TRUE
1883     p_print = key;
1884     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
1885 #endif
1886 
1887     p = msg;
1888     ARRAY_TO_STREAM(p, a2, 7);
1889     ARRAY_TO_STREAM(p, a1, 7);
1890     ARRAY_TO_STREAM(p, iocap, 3);
1891     ARRAY_TO_STREAM(p, r, BT_OCTET16_LEN);
1892     ARRAY_TO_STREAM(p, n2, BT_OCTET16_LEN);
1893     ARRAY_TO_STREAM(p, n1, BT_OCTET16_LEN);
1894 #if SMP_DEBUG == TRUE
1895     p_print = msg;
1896     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"M", msg_len);
1897 #endif
1898 
1899     BOOLEAN ret = TRUE;
1900     if(!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
1901     {
1902         SMP_TRACE_ERROR("%s failed", __FUNCTION__);
1903         ret = FALSE;
1904     }
1905 
1906 #if SMP_DEBUG == TRUE
1907     p_print = cmac;
1908     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
1909 #endif
1910 
1911     p = c;
1912     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
1913     return ret;
1914 }
1915 
1916 /*******************************************************************************
1917 **
1918 ** Function         smp_calculate_link_key_from_long_term_key
1919 **
1920 ** Description      The function calculates and saves BR/EDR link key derived from
1921 **                  LE SC LTK.
1922 **
1923 ** Returns          FALSE if out of resources, TRUE in other cases.
1924 **
1925 *******************************************************************************/
smp_calculate_link_key_from_long_term_key(tSMP_CB * p_cb)1926 BOOLEAN smp_calculate_link_key_from_long_term_key(tSMP_CB *p_cb)
1927 {
1928     tBTM_SEC_DEV_REC *p_dev_rec;
1929     BD_ADDR bda_for_lk;
1930     tBLE_ADDR_TYPE conn_addr_type;
1931 
1932     SMP_TRACE_DEBUG ("%s", __func__);
1933 
1934     if (p_cb->id_addr_rcvd && p_cb->id_addr_type == BLE_ADDR_PUBLIC)
1935     {
1936         SMP_TRACE_DEBUG ("Use rcvd identity address as BD_ADDR of LK rcvd identity address");
1937         memcpy(bda_for_lk, p_cb->id_addr, BD_ADDR_LEN);
1938     }
1939     else if ((BTM_ReadRemoteConnectionAddr(p_cb->pairing_bda, bda_for_lk, &conn_addr_type)) &&
1940               conn_addr_type == BLE_ADDR_PUBLIC)
1941     {
1942         SMP_TRACE_DEBUG ("Use rcvd connection address as BD_ADDR of LK");
1943     }
1944     else
1945     {
1946         SMP_TRACE_WARNING ("Don't have peer public address to associate with LK");
1947         return FALSE;
1948     }
1949 
1950     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
1951     {
1952         SMP_TRACE_ERROR("%s failed to find Security Record", __func__);
1953         return FALSE;
1954     }
1955 
1956     BT_OCTET16 intermediate_link_key;
1957     BOOLEAN ret = TRUE;
1958 
1959     ret = smp_calculate_h6(p_cb->ltk, (UINT8 *)"1pmt" /* reversed "tmp1" */,intermediate_link_key);
1960     if (!ret)
1961     {
1962         SMP_TRACE_ERROR("%s failed to derive intermediate_link_key", __func__);
1963         return ret;
1964     }
1965 
1966     BT_OCTET16 link_key;
1967     ret = smp_calculate_h6(intermediate_link_key, (UINT8 *) "rbel" /* reversed "lebr" */, link_key);
1968     if (!ret)
1969     {
1970         SMP_TRACE_ERROR("%s failed", __func__);
1971     }
1972     else
1973     {
1974         UINT8 link_key_type;
1975         if (btm_cb.security_mode == BTM_SEC_MODE_SC)
1976         {
1977             /* Secure Connections Only Mode */
1978             link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1979         }
1980         else if (controller_get_interface()->supports_secure_connections())
1981         {
1982             /* both transports are SC capable */
1983             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
1984                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB_P_256;
1985             else
1986                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB_P_256;
1987         }
1988         else if (btm_cb.security_mode == BTM_SEC_MODE_SP)
1989         {
1990             /* BR/EDR transport is SSP capable */
1991             if (p_cb->sec_level == SMP_SEC_AUTHENTICATED)
1992                 link_key_type = BTM_LKEY_TYPE_AUTH_COMB;
1993             else
1994                 link_key_type = BTM_LKEY_TYPE_UNAUTH_COMB;
1995         }
1996         else
1997         {
1998             SMP_TRACE_ERROR ("%s failed to update link_key. Sec Mode = %d, sm4 = 0x%02x",
1999                  __func__, btm_cb.security_mode, p_dev_rec->sm4);
2000             return FALSE;
2001         }
2002 
2003         link_key_type += BTM_LTK_DERIVED_LKEY_OFFSET;
2004 
2005         UINT8 *p;
2006         BT_OCTET16 notif_link_key;
2007         p = notif_link_key;
2008         ARRAY16_TO_STREAM(p, link_key);
2009 
2010         btm_sec_link_key_notification (bda_for_lk, notif_link_key, link_key_type);
2011 
2012         SMP_TRACE_EVENT ("%s is completed", __func__);
2013     }
2014 
2015     return ret;
2016 }
2017 
2018 /*******************************************************************************
2019 **
2020 ** Function         smp_calculate_long_term_key_from_link_key
2021 **
2022 ** Description      The function calculates and saves SC LTK derived from BR/EDR
2023 **                  link key.
2024 **
2025 ** Returns          FALSE if out of resources, TRUE in other cases.
2026 **
2027 *******************************************************************************/
smp_calculate_long_term_key_from_link_key(tSMP_CB * p_cb)2028 BOOLEAN smp_calculate_long_term_key_from_link_key(tSMP_CB *p_cb)
2029 {
2030     BOOLEAN ret = TRUE;
2031     tBTM_SEC_DEV_REC *p_dev_rec;
2032     UINT8 rev_link_key[16];
2033 
2034     SMP_TRACE_DEBUG ("%s", __FUNCTION__);
2035 
2036     if ((p_dev_rec = btm_find_dev (p_cb->pairing_bda)) == NULL)
2037     {
2038         SMP_TRACE_ERROR("%s failed to find Security Record",__FUNCTION__);
2039         return FALSE;
2040     }
2041 
2042     UINT8 br_link_key_type;
2043     if ((br_link_key_type = BTM_SecGetDeviceLinkKeyType (p_cb->pairing_bda))
2044         == BTM_LKEY_TYPE_IGNORE)
2045     {
2046         SMP_TRACE_ERROR("%s failed to retrieve BR link type",__FUNCTION__);
2047         return FALSE;
2048     }
2049 
2050     if ((br_link_key_type != BTM_LKEY_TYPE_AUTH_COMB_P_256) &&
2051         (br_link_key_type != BTM_LKEY_TYPE_UNAUTH_COMB_P_256))
2052     {
2053         SMP_TRACE_ERROR("%s LE SC LTK can't be derived from LK %d",
2054                          __FUNCTION__, br_link_key_type);
2055         return FALSE;
2056     }
2057 
2058     UINT8 *p1;
2059     UINT8 *p2;
2060     p1 = rev_link_key;
2061     p2 = p_dev_rec->link_key;
2062     REVERSE_ARRAY_TO_STREAM(p1, p2, 16);
2063 
2064     BT_OCTET16 intermediate_long_term_key;
2065     /* "tmp2" obtained from the spec */
2066     ret = smp_calculate_h6(rev_link_key, (UINT8 *) "2pmt" /* reversed "tmp2" */,
2067                            intermediate_long_term_key);
2068 
2069     if (!ret)
2070     {
2071         SMP_TRACE_ERROR("%s failed to derive intermediate_long_term_key",__FUNCTION__);
2072         return ret;
2073     }
2074 
2075     /* "brle" obtained from the spec */
2076     ret = smp_calculate_h6(intermediate_long_term_key, (UINT8 *) "elrb" /* reversed "brle" */,
2077                            p_cb->ltk);
2078 
2079     if (!ret)
2080     {
2081         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
2082     }
2083     else
2084     {
2085         p_cb->sec_level = (br_link_key_type == BTM_LKEY_TYPE_AUTH_COMB_P_256)
2086                            ? SMP_SEC_AUTHENTICATED : SMP_SEC_UNAUTHENTICATE;
2087         SMP_TRACE_EVENT ("%s is completed",__FUNCTION__);
2088     }
2089 
2090     return ret;
2091 }
2092 
2093 /*******************************************************************************
2094 **
2095 ** Function         smp_calculate_h6
2096 **
2097 ** Description      The function calculates
2098 **                  C = h6(W, KeyID) = AES-CMAC (KeyID)
2099 **                                             W
2100 **                  where
2101 **                  input:  W is 128 bit,
2102 **                          KeyId is 32 bit,
2103 **                  output: C is 128 bit.
2104 **
2105 ** Returns          FALSE if out of resources, TRUE in other cases.
2106 **
2107 ** Note             The LSB is the first octet, the MSB is the last octet of
2108 **                  the AES-CMAC input/output stream.
2109 **
2110 *******************************************************************************/
smp_calculate_h6(UINT8 * w,UINT8 * keyid,UINT8 * c)2111 BOOLEAN smp_calculate_h6(UINT8 *w, UINT8 *keyid, UINT8 *c)
2112 {
2113 #if SMP_DEBUG == TRUE
2114     UINT8   *p_print = NULL;
2115 #endif
2116 
2117     SMP_TRACE_DEBUG ("%s",__FUNCTION__);
2118 #if SMP_DEBUG == TRUE
2119     p_print = w;
2120     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"W", BT_OCTET16_LEN);
2121     p_print = keyid;
2122     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"keyID", 4);
2123 #endif
2124 
2125     UINT8 *p = NULL;
2126     UINT8 key[BT_OCTET16_LEN];
2127 
2128     p = key;
2129     ARRAY_TO_STREAM(p, w, BT_OCTET16_LEN);
2130 
2131 #if SMP_DEBUG == TRUE
2132     p_print = key;
2133     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"K", BT_OCTET16_LEN);
2134 #endif
2135 
2136     UINT8 msg_len = 4 /* KeyID size */;
2137     UINT8 msg[4];
2138 
2139     p = msg;
2140     ARRAY_TO_STREAM(p, keyid, 4);
2141 
2142 #if SMP_DEBUG == TRUE
2143     p_print = msg;
2144     smp_debug_print_nbyte_little_endian (p_print,(const UINT8 *) "M", msg_len);
2145 #endif
2146 
2147     BOOLEAN ret = TRUE;
2148     UINT8 cmac[BT_OCTET16_LEN];
2149     if (!aes_cipher_msg_auth_code(key, msg, msg_len, BT_OCTET16_LEN, cmac))
2150     {
2151         SMP_TRACE_ERROR("%s failed",__FUNCTION__);
2152         ret = FALSE;
2153     }
2154 
2155 #if SMP_DEBUG == TRUE
2156     p_print = cmac;
2157     smp_debug_print_nbyte_little_endian (p_print, (const UINT8 *)"AES-CMAC", BT_OCTET16_LEN);
2158 #endif
2159 
2160     p = c;
2161     ARRAY_TO_STREAM(p, cmac, BT_OCTET16_LEN);
2162     return ret;
2163 }
2164 
2165 /*******************************************************************************
2166 **
2167 ** Function         smp_start_nonce_generation
2168 **
2169 ** Description      This function starts nonce generation.
2170 **
2171 ** Returns          void
2172 **
2173 *******************************************************************************/
smp_start_nonce_generation(tSMP_CB * p_cb)2174 void smp_start_nonce_generation(tSMP_CB *p_cb)
2175 {
2176     SMP_TRACE_DEBUG("%s", __FUNCTION__);
2177     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_0_7;
2178     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
2179         smp_rand_back(NULL);
2180 }
2181 
2182 /*******************************************************************************
2183 **
2184 ** Function         smp_finish_nonce_generation
2185 **
2186 ** Description      This function finishes nonce generation.
2187 **
2188 ** Returns          void
2189 **
2190 *******************************************************************************/
smp_finish_nonce_generation(tSMP_CB * p_cb)2191 void smp_finish_nonce_generation(tSMP_CB *p_cb)
2192 {
2193     SMP_TRACE_DEBUG("%s", __FUNCTION__);
2194     p_cb->rand_enc_proc_state = SMP_GEN_NONCE_8_15;
2195     if (!btsnd_hcic_ble_rand((void *)smp_rand_back))
2196         smp_rand_back(NULL);
2197 }
2198 
2199 /*******************************************************************************
2200 **
2201 ** Function         smp_process_new_nonce
2202 **
2203 ** Description      This function notifies SM that it has new nonce.
2204 **
2205 ** Returns          void
2206 **
2207 *******************************************************************************/
smp_process_new_nonce(tSMP_CB * p_cb)2208 void smp_process_new_nonce(tSMP_CB *p_cb)
2209 {
2210     SMP_TRACE_DEBUG ("%s round %d", __FUNCTION__, p_cb->round);
2211     smp_sm_event(p_cb, SMP_HAVE_LOC_NONCE_EVT, NULL);
2212 }
2213 
2214 /*******************************************************************************
2215 **
2216 ** Function         smp_rand_back
2217 **
2218 ** Description      This function is to process the rand command finished,
2219 **                  process the random/encrypted number for further action.
2220 **
2221 ** Returns          void
2222 **
2223 *******************************************************************************/
smp_rand_back(tBTM_RAND_ENC * p)2224 static void smp_rand_back(tBTM_RAND_ENC *p)
2225 {
2226     tSMP_CB *p_cb = &smp_cb;
2227     UINT8   *pp = p->param_buf;
2228     UINT8   failure = SMP_PAIR_FAIL_UNKNOWN;
2229     UINT8   state = p_cb->rand_enc_proc_state & ~0x80;
2230 
2231     SMP_TRACE_DEBUG ("%s state=0x%x", __FUNCTION__, state);
2232     if (p && p->status == HCI_SUCCESS)
2233     {
2234         switch (state)
2235         {
2236             case SMP_GEN_SRAND_MRAND:
2237                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2238                 smp_generate_rand_cont(p_cb, NULL);
2239                 break;
2240 
2241             case SMP_GEN_SRAND_MRAND_CONT:
2242                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2243                 smp_generate_confirm(p_cb, NULL);
2244                 break;
2245 
2246             case SMP_GEN_DIV_LTK:
2247                 STREAM_TO_UINT16(p_cb->div, pp);
2248                 smp_generate_ltk_cont(p_cb, NULL);
2249                 break;
2250 
2251             case SMP_GEN_DIV_CSRK:
2252                 STREAM_TO_UINT16(p_cb->div, pp);
2253                 smp_compute_csrk(p_cb, NULL);
2254                 break;
2255 
2256             case SMP_GEN_TK:
2257                 smp_proc_passkey(p_cb, p);
2258                 break;
2259 
2260             case SMP_GEN_RAND_V:
2261                 memcpy(p_cb->enc_rand, p->param_buf, BT_OCTET8_LEN);
2262                 smp_generate_y(p_cb, NULL);
2263                 break;
2264 
2265             case SMP_GENERATE_PRIVATE_KEY_0_7:
2266             case SMP_GENERATE_PRIVATE_KEY_8_15:
2267             case SMP_GENERATE_PRIVATE_KEY_16_23:
2268             case SMP_GENERATE_PRIVATE_KEY_24_31:
2269                 smp_continue_private_key_creation(p_cb, p);
2270                 break;
2271 
2272             case SMP_GEN_NONCE_0_7:
2273                 memcpy((void *)p_cb->rand, p->param_buf, p->param_len);
2274                 smp_finish_nonce_generation(p_cb);
2275                 break;
2276 
2277             case SMP_GEN_NONCE_8_15:
2278                 memcpy((void *)&p_cb->rand[8], p->param_buf, p->param_len);
2279                 smp_process_new_nonce(p_cb);
2280                 break;
2281         }
2282 
2283         return;
2284     }
2285 
2286     SMP_TRACE_ERROR("%s key generation failed: (%d)", __FUNCTION__, p_cb->rand_enc_proc_state);
2287     smp_sm_event(p_cb, SMP_AUTH_CMPL_EVT, &failure);
2288 }
2289 
2290 #endif
2291 
2292