1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 /*
12  * lattice.c
13  *
14  * Contains the normalized lattice filter routines (MA and AR) for iSAC codec
15  *
16  */
17 
18 #include "codec.h"
19 #include "settings.h"
20 
21 #define LATTICE_MUL_32_32_RSFT16(a32a, a32b, b32)                  \
22   ((WebRtc_Word32)(WEBRTC_SPL_MUL(a32a, b32) + (WEBRTC_SPL_MUL_16_32_RSFT16(a32b, b32))))
23 /* This macro is FORBIDDEN to use elsewhere than in a function in this file and
24    its corresponding neon version. It might give unpredictable results, since a
25    general WebRtc_Word32*WebRtc_Word32 multiplication results in a 64 bit value.
26    The result is then shifted just 16 steps to the right, giving need for 48
27    bits, i.e. in the generel case, it will NOT fit in a WebRtc_Word32. In the
28    cases used in here, the WebRtc_Word32 will be enough, since (for a good
29    reason) the involved multiplicands aren't big enough to overflow a
30    WebRtc_Word32 after shifting right 16 bits. I have compared the result of a
31    multiplication between t32 and tmp32, done in two ways:
32    1) Using (WebRtc_Word32) (((float)(tmp32))*((float)(tmp32b))/65536.0);
33    2) Using LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
34    By running 25 files, I haven't found any bigger diff than 64 - this was in the
35    case when  method 1) gave 650235648 and 2) gave 650235712.
36 */
37 
38 /* Function prototype: filtering ar_g_Q0[] and ar_f_Q0[] through an AR filter
39    with coefficients cth_Q15[] and sth_Q15[].
40    Implemented for both generic and ARMv7 platforms.
41  */
42 void WebRtcIsacfix_FilterArLoop(int16_t* ar_g_Q0,
43                                 int16_t* ar_f_Q0,
44                                 int16_t* cth_Q15,
45                                 int16_t* sth_Q15,
46                                 int16_t order_coef);
47 
48 /* Inner loop used for function WebRtcIsacfix_NormLatticeFilterMa(). It does:
49    for 0 <= n < HALF_SUBFRAMELEN - 1:
50      *ptr2 = input2 * (*ptr2) + input0 * (*ptr0));
51      *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
52    Note, function WebRtcIsacfix_FilterMaLoopNeon and WebRtcIsacfix_FilterMaLoopC
53    are not bit-exact. The accuracy by the ARM Neon function is same or better.
54 */
WebRtcIsacfix_FilterMaLoopC(int16_t input0,int16_t input1,int32_t input2,int32_t * ptr0,int32_t * ptr1,int32_t * ptr2)55 void WebRtcIsacfix_FilterMaLoopC(int16_t input0,  // Filter coefficient
56                                  int16_t input1,  // Filter coefficient
57                                  int32_t input2,  // Inverse coeff. (1/input1)
58                                  int32_t* ptr0,   // Sample buffer
59                                  int32_t* ptr1,   // Sample buffer
60                                  int32_t* ptr2) { // Sample buffer
61   int n = 0;
62 
63   // Separate the 32-bit variable input2 into two 16-bit integers (high 16 and
64   // low 16 bits), for using LATTICE_MUL_32_32_RSFT16 in the loop.
65   int16_t t16a = (int16_t)(input2 >> 16);
66   int16_t t16b = (int16_t)input2;
67   if (t16b < 0) t16a++;
68 
69   // The loop filtering the samples *ptr0, *ptr1, *ptr2 with filter coefficients
70   // input0, input1, and input2.
71   for(n = 0; n < HALF_SUBFRAMELEN - 1; n++, ptr0++, ptr1++, ptr2++) {
72     int32_t tmp32a = 0;
73     int32_t tmp32b = 0;
74 
75     // Calculate *ptr2 = input2 * (*ptr2 + input0 * (*ptr0));
76     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr0); // Q15 * Q15 >> 15 = Q15
77     tmp32b = *ptr2 + tmp32a; // Q15 + Q15 = Q15
78     *ptr2 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
79 
80     // Calculate *ptr1 = input1 * (*ptr0) + input0 * (*ptr2);
81     tmp32a = WEBRTC_SPL_MUL_16_32_RSFT15(input1, *ptr0); // Q15*Q15>>15 = Q15
82     tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(input0, *ptr2); // Q15*Q15>>15 = Q15
83     *ptr1 = tmp32a + tmp32b; // Q15 + Q15 = Q15
84   }
85 }
86 
87 // Declare a function pointer.
88 FilterMaLoopFix WebRtcIsacfix_FilterMaLoopFix;
89 
90 /* filter the signal using normalized lattice filter */
91 /* MA filter */
WebRtcIsacfix_NormLatticeFilterMa(WebRtc_Word16 orderCoef,WebRtc_Word32 * stateGQ15,WebRtc_Word16 * lat_inQ0,WebRtc_Word16 * filt_coefQ15,WebRtc_Word32 * gain_lo_hiQ17,WebRtc_Word16 lo_hi,WebRtc_Word16 * lat_outQ9)92 void WebRtcIsacfix_NormLatticeFilterMa(WebRtc_Word16 orderCoef,
93                                        WebRtc_Word32 *stateGQ15,
94                                        WebRtc_Word16 *lat_inQ0,
95                                        WebRtc_Word16 *filt_coefQ15,
96                                        WebRtc_Word32 *gain_lo_hiQ17,
97                                        WebRtc_Word16 lo_hi,
98                                        WebRtc_Word16 *lat_outQ9)
99 {
100   WebRtc_Word16 sthQ15[MAX_AR_MODEL_ORDER];
101   WebRtc_Word16 cthQ15[MAX_AR_MODEL_ORDER];
102 
103   int u, i, k, n;
104   WebRtc_Word16 temp2,temp3;
105   WebRtc_Word16 ord_1 = orderCoef+1;
106   WebRtc_Word32 inv_cthQ16[MAX_AR_MODEL_ORDER];
107 
108   WebRtc_Word32 gain32, fQtmp;
109   WebRtc_Word16 gain16;
110   WebRtc_Word16 gain_sh;
111 
112   WebRtc_Word32 tmp32, tmp32b;
113   WebRtc_Word32 fQ15vec[HALF_SUBFRAMELEN];
114   WebRtc_Word32 gQ15[MAX_AR_MODEL_ORDER+1][HALF_SUBFRAMELEN];
115   WebRtc_Word16 sh;
116   WebRtc_Word16 t16a;
117   WebRtc_Word16 t16b;
118 
119   for (u=0;u<SUBFRAMES;u++)
120   {
121     int32_t temp1 = WEBRTC_SPL_MUL_16_16(u, HALF_SUBFRAMELEN);
122 
123     /* set the Direct Form coefficients */
124     temp2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(u, orderCoef);
125     temp3 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(2, u)+lo_hi;
126 
127     /* compute lattice filter coefficients */
128     memcpy(sthQ15, &filt_coefQ15[temp2], orderCoef * sizeof(WebRtc_Word16));
129 
130     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
131 
132     /* compute the gain */
133     gain32 = gain_lo_hiQ17[temp3];
134     gain_sh = WebRtcSpl_NormW32(gain32);
135     gain32 = WEBRTC_SPL_LSHIFT_W32(gain32, gain_sh); //Q(17+gain_sh)
136 
137     for (k=0;k<orderCoef;k++)
138     {
139       gain32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], gain32); //Q15*Q(17+gain_sh)>>15 = Q(17+gain_sh)
140       inv_cthQ16[k] = WebRtcSpl_DivW32W16((WebRtc_Word32)2147483647, cthQ15[k]); // 1/cth[k] in Q31/Q15 = Q16
141     }
142     gain16 = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(gain32, 16); //Q(1+gain_sh)
143 
144     /* normalized lattice filter */
145     /*****************************/
146 
147     /* initial conditions */
148     for (i=0;i<HALF_SUBFRAMELEN;i++)
149     {
150       fQ15vec[i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)lat_inQ0[i + temp1], 15); //Q15
151       gQ15[0][i] = WEBRTC_SPL_LSHIFT_W32((WebRtc_Word32)lat_inQ0[i + temp1], 15); //Q15
152     }
153 
154 
155     fQtmp = fQ15vec[0];
156 
157     /* get the state of f&g for the first input, for all orders */
158     for (i=1;i<ord_1;i++)
159     {
160       // Calculate f[i][0] = inv_cth[i-1]*(f[i-1][0] + sth[i-1]*stateG[i-1]);
161       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], stateGQ15[i-1]);//Q15*Q15>>15 = Q15
162       tmp32b= fQtmp + tmp32; //Q15+Q15=Q15
163       tmp32 = inv_cthQ16[i-1]; //Q16
164       t16a = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(tmp32, 16);
165       t16b = (WebRtc_Word16) (tmp32-WEBRTC_SPL_LSHIFT_W32(((WebRtc_Word32)t16a), 16));
166       if (t16b<0) t16a++;
167       tmp32 = LATTICE_MUL_32_32_RSFT16(t16a, t16b, tmp32b);
168       fQtmp = tmp32; // Q15
169 
170       // Calculate g[i][0] = cth[i-1]*stateG[i-1] + sth[i-1]* f[i][0];
171       tmp32  = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[i-1], stateGQ15[i-1]); //Q15*Q15>>15 = Q15
172       tmp32b = WEBRTC_SPL_MUL_16_32_RSFT15(sthQ15[i-1], fQtmp); //Q15*Q15>>15 = Q15
173       tmp32  = tmp32 + tmp32b;//Q15+Q15 = Q15
174       gQ15[i][0] = tmp32; // Q15
175     }
176 
177     /* filtering */
178     /* save the states */
179     for(k=0;k<orderCoef;k++)
180     {
181       // for 0 <= n < HALF_SUBFRAMELEN - 1:
182       //   f[k+1][n+1] = inv_cth[k]*(f[k][n+1] + sth[k]*g[k][n]);
183       //   g[k+1][n+1] = cth[k]*g[k][n] + sth[k]* f[k+1][n+1];
184       WebRtcIsacfix_FilterMaLoopFix(sthQ15[k], cthQ15[k], inv_cthQ16[k],
185                                     &gQ15[k][0], &gQ15[k+1][1], &fQ15vec[1]);
186     }
187 
188     fQ15vec[0] = fQtmp;
189 
190     for(n=0;n<HALF_SUBFRAMELEN;n++)
191     {
192       //gain32 = WEBRTC_SPL_RSHIFT_W32(gain32, gain_sh); // Q(17+gain_sh) -> Q17
193       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(gain16, fQ15vec[n]); //Q(1+gain_sh)*Q15>>16 = Q(gain_sh)
194       sh = 9-gain_sh; //number of needed shifts to reach Q9
195       t16a = (WebRtc_Word16) WEBRTC_SPL_SHIFT_W32(tmp32, sh);
196       lat_outQ9[n + temp1] = t16a;
197     }
198 
199     /* save the states */
200     for (i=0;i<ord_1;i++)
201     {
202       stateGQ15[i] = gQ15[i][HALF_SUBFRAMELEN-1];
203     }
204     //process next frame
205   }
206 
207   return;
208 }
209 
210 
211 
212 
213 
214 /* ----------------AR filter-------------------------*/
215 /* filter the signal using normalized lattice filter */
WebRtcIsacfix_NormLatticeFilterAr(WebRtc_Word16 orderCoef,WebRtc_Word16 * stateGQ0,WebRtc_Word32 * lat_inQ25,WebRtc_Word16 * filt_coefQ15,WebRtc_Word32 * gain_lo_hiQ17,WebRtc_Word16 lo_hi,WebRtc_Word16 * lat_outQ0)216 void WebRtcIsacfix_NormLatticeFilterAr(WebRtc_Word16 orderCoef,
217                                        WebRtc_Word16 *stateGQ0,
218                                        WebRtc_Word32 *lat_inQ25,
219                                        WebRtc_Word16 *filt_coefQ15,
220                                        WebRtc_Word32 *gain_lo_hiQ17,
221                                        WebRtc_Word16 lo_hi,
222                                        WebRtc_Word16 *lat_outQ0)
223 {
224   int ii,n,k,i,u;
225   WebRtc_Word16 sthQ15[MAX_AR_MODEL_ORDER];
226   WebRtc_Word16 cthQ15[MAX_AR_MODEL_ORDER];
227   WebRtc_Word32 tmp32;
228 
229 
230   WebRtc_Word16 tmpAR;
231   WebRtc_Word16 ARfQ0vec[HALF_SUBFRAMELEN];
232   WebRtc_Word16 ARgQ0vec[MAX_AR_MODEL_ORDER+1];
233 
234   WebRtc_Word32 inv_gain32;
235   WebRtc_Word16 inv_gain16;
236   WebRtc_Word16 den16;
237   WebRtc_Word16 sh;
238 
239   WebRtc_Word16 temp2,temp3;
240   WebRtc_Word16 ord_1 = orderCoef+1;
241 
242   for (u=0;u<SUBFRAMES;u++)
243   {
244     int32_t temp1 = WEBRTC_SPL_MUL_16_16(u, HALF_SUBFRAMELEN);
245 
246     //set the denominator and numerator of the Direct Form
247     temp2 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(u, orderCoef);
248     temp3 = (WebRtc_Word16)WEBRTC_SPL_MUL_16_16(2, u) + lo_hi;
249 
250     for (ii=0; ii<orderCoef; ii++) {
251       sthQ15[ii] = filt_coefQ15[temp2+ii];
252     }
253 
254     WebRtcSpl_SqrtOfOneMinusXSquared(sthQ15, orderCoef, cthQ15);
255 
256     /* Simulation of the 25 files shows that maximum value in
257        the vector gain_lo_hiQ17[] is 441344, which means that
258        it is log2((2^31)/441344) = 12.2 shifting bits from
259        saturation. Therefore, it should be safe to use Q27 instead
260        of Q17. */
261 
262     tmp32 = WEBRTC_SPL_LSHIFT_W32(gain_lo_hiQ17[temp3], 10); // Q27
263 
264     for (k=0;k<orderCoef;k++) {
265       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT15(cthQ15[k], tmp32); // Q15*Q27>>15 = Q27
266     }
267 
268     sh = WebRtcSpl_NormW32(tmp32); // tmp32 is the gain
269     den16 = (WebRtc_Word16) WEBRTC_SPL_SHIFT_W32(tmp32, sh-16); //Q(27+sh-16) = Q(sh+11) (all 16 bits are value bits)
270     inv_gain32 = WebRtcSpl_DivW32W16((WebRtc_Word32)2147483647, den16); // 1/gain in Q31/Q(sh+11) = Q(20-sh)
271 
272     //initial conditions
273     inv_gain16 = (WebRtc_Word16) WEBRTC_SPL_RSHIFT_W32(inv_gain32, 2); // 1/gain in Q(20-sh-2) = Q(18-sh)
274 
275     for (i=0;i<HALF_SUBFRAMELEN;i++)
276     {
277 
278       tmp32 = WEBRTC_SPL_LSHIFT_W32(lat_inQ25[i + temp1], 1); //Q25->Q26
279       tmp32 = WEBRTC_SPL_MUL_16_32_RSFT16(inv_gain16, tmp32); //lat_in[]*inv_gain in (Q(18-sh)*Q26)>>16 = Q(28-sh)
280       tmp32 = WEBRTC_SPL_SHIFT_W32(tmp32, -(28-sh)); // lat_in[]*inv_gain in Q0
281 
282       ARfQ0vec[i] = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0
283     }
284 
285     for (i=orderCoef-1;i>=0;i--) //get the state of f&g for the first input, for all orders
286     {
287       tmp32 = WEBRTC_SPL_RSHIFT_W32(((WEBRTC_SPL_MUL_16_16(cthQ15[i],ARfQ0vec[0])) - (WEBRTC_SPL_MUL_16_16(sthQ15[i],stateGQ0[i])) + 16384), 15);
288       tmpAR = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0
289 
290       tmp32 = WEBRTC_SPL_RSHIFT_W32(((WEBRTC_SPL_MUL_16_16(sthQ15[i],ARfQ0vec[0])) + (WEBRTC_SPL_MUL_16_16(cthQ15[i], stateGQ0[i])) + 16384), 15);
291       ARgQ0vec[i+1] = (WebRtc_Word16)WebRtcSpl_SatW32ToW16(tmp32); // Q0
292       ARfQ0vec[0] = tmpAR;
293     }
294     ARgQ0vec[0] = ARfQ0vec[0];
295 
296     // Filter ARgQ0vec[] and ARfQ0vec[] through coefficients cthQ15[] and sthQ15[].
297     WebRtcIsacfix_FilterArLoop(ARgQ0vec, ARfQ0vec, cthQ15, sthQ15, orderCoef);
298 
299     for(n=0;n<HALF_SUBFRAMELEN;n++)
300     {
301       lat_outQ0[n + temp1] = ARfQ0vec[n];
302     }
303 
304 
305     /* cannot use memcpy in the following */
306 
307     for (i=0;i<ord_1;i++)
308     {
309       stateGQ0[i] = ARgQ0vec[i];
310     }
311   }
312 
313   return;
314 }
315