1 //===- InstCombineCasts.cpp -----------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for cast operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ConstantFolding.h"
16 #include "llvm/IR/DataLayout.h"
17 #include "llvm/IR/PatternMatch.h"
18 #include "llvm/Analysis/TargetLibraryInfo.h"
19 using namespace llvm;
20 using namespace PatternMatch;
21
22 #define DEBUG_TYPE "instcombine"
23
24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
25 /// expression. If so, decompose it, returning some value X, such that Val is
26 /// X*Scale+Offset.
27 ///
DecomposeSimpleLinearExpr(Value * Val,unsigned & Scale,uint64_t & Offset)28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
29 uint64_t &Offset) {
30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
31 Offset = CI->getZExtValue();
32 Scale = 0;
33 return ConstantInt::get(Val->getType(), 0);
34 }
35
36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
37 // Cannot look past anything that might overflow.
38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
40 Scale = 1;
41 Offset = 0;
42 return Val;
43 }
44
45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
46 if (I->getOpcode() == Instruction::Shl) {
47 // This is a value scaled by '1 << the shift amt'.
48 Scale = UINT64_C(1) << RHS->getZExtValue();
49 Offset = 0;
50 return I->getOperand(0);
51 }
52
53 if (I->getOpcode() == Instruction::Mul) {
54 // This value is scaled by 'RHS'.
55 Scale = RHS->getZExtValue();
56 Offset = 0;
57 return I->getOperand(0);
58 }
59
60 if (I->getOpcode() == Instruction::Add) {
61 // We have X+C. Check to see if we really have (X*C2)+C1,
62 // where C1 is divisible by C2.
63 unsigned SubScale;
64 Value *SubVal =
65 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
66 Offset += RHS->getZExtValue();
67 Scale = SubScale;
68 return SubVal;
69 }
70 }
71 }
72
73 // Otherwise, we can't look past this.
74 Scale = 1;
75 Offset = 0;
76 return Val;
77 }
78
79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
80 /// try to eliminate the cast by moving the type information into the alloc.
PromoteCastOfAllocation(BitCastInst & CI,AllocaInst & AI)81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
82 AllocaInst &AI) {
83 PointerType *PTy = cast<PointerType>(CI.getType());
84
85 BuilderTy AllocaBuilder(*Builder);
86 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
87
88 // Get the type really allocated and the type casted to.
89 Type *AllocElTy = AI.getAllocatedType();
90 Type *CastElTy = PTy->getElementType();
91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
92
93 unsigned AllocElTyAlign = DL.getABITypeAlignment(AllocElTy);
94 unsigned CastElTyAlign = DL.getABITypeAlignment(CastElTy);
95 if (CastElTyAlign < AllocElTyAlign) return nullptr;
96
97 // If the allocation has multiple uses, only promote it if we are strictly
98 // increasing the alignment of the resultant allocation. If we keep it the
99 // same, we open the door to infinite loops of various kinds.
100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
101
102 uint64_t AllocElTySize = DL.getTypeAllocSize(AllocElTy);
103 uint64_t CastElTySize = DL.getTypeAllocSize(CastElTy);
104 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
105
106 // If the allocation has multiple uses, only promote it if we're not
107 // shrinking the amount of memory being allocated.
108 uint64_t AllocElTyStoreSize = DL.getTypeStoreSize(AllocElTy);
109 uint64_t CastElTyStoreSize = DL.getTypeStoreSize(CastElTy);
110 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
111
112 // See if we can satisfy the modulus by pulling a scale out of the array
113 // size argument.
114 unsigned ArraySizeScale;
115 uint64_t ArrayOffset;
116 Value *NumElements = // See if the array size is a decomposable linear expr.
117 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
118
119 // If we can now satisfy the modulus, by using a non-1 scale, we really can
120 // do the xform.
121 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
122 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr;
123
124 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
125 Value *Amt = nullptr;
126 if (Scale == 1) {
127 Amt = NumElements;
128 } else {
129 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
130 // Insert before the alloca, not before the cast.
131 Amt = AllocaBuilder.CreateMul(Amt, NumElements);
132 }
133
134 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
135 Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
136 Offset, true);
137 Amt = AllocaBuilder.CreateAdd(Amt, Off);
138 }
139
140 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
141 New->setAlignment(AI.getAlignment());
142 New->takeName(&AI);
143 New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
144
145 // If the allocation has multiple real uses, insert a cast and change all
146 // things that used it to use the new cast. This will also hack on CI, but it
147 // will die soon.
148 if (!AI.hasOneUse()) {
149 // New is the allocation instruction, pointer typed. AI is the original
150 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
151 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
152 ReplaceInstUsesWith(AI, NewCast);
153 }
154 return ReplaceInstUsesWith(CI, New);
155 }
156
157 /// EvaluateInDifferentType - Given an expression that
158 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
159 /// insert the code to evaluate the expression.
EvaluateInDifferentType(Value * V,Type * Ty,bool isSigned)160 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
161 bool isSigned) {
162 if (Constant *C = dyn_cast<Constant>(V)) {
163 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
164 // If we got a constantexpr back, try to simplify it with DL info.
165 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
166 C = ConstantFoldConstantExpression(CE, DL, TLI);
167 return C;
168 }
169
170 // Otherwise, it must be an instruction.
171 Instruction *I = cast<Instruction>(V);
172 Instruction *Res = nullptr;
173 unsigned Opc = I->getOpcode();
174 switch (Opc) {
175 case Instruction::Add:
176 case Instruction::Sub:
177 case Instruction::Mul:
178 case Instruction::And:
179 case Instruction::Or:
180 case Instruction::Xor:
181 case Instruction::AShr:
182 case Instruction::LShr:
183 case Instruction::Shl:
184 case Instruction::UDiv:
185 case Instruction::URem: {
186 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
187 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
188 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
189 break;
190 }
191 case Instruction::Trunc:
192 case Instruction::ZExt:
193 case Instruction::SExt:
194 // If the source type of the cast is the type we're trying for then we can
195 // just return the source. There's no need to insert it because it is not
196 // new.
197 if (I->getOperand(0)->getType() == Ty)
198 return I->getOperand(0);
199
200 // Otherwise, must be the same type of cast, so just reinsert a new one.
201 // This also handles the case of zext(trunc(x)) -> zext(x).
202 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
203 Opc == Instruction::SExt);
204 break;
205 case Instruction::Select: {
206 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
207 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
208 Res = SelectInst::Create(I->getOperand(0), True, False);
209 break;
210 }
211 case Instruction::PHI: {
212 PHINode *OPN = cast<PHINode>(I);
213 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
214 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
215 Value *V =
216 EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
217 NPN->addIncoming(V, OPN->getIncomingBlock(i));
218 }
219 Res = NPN;
220 break;
221 }
222 default:
223 // TODO: Can handle more cases here.
224 llvm_unreachable("Unreachable!");
225 }
226
227 Res->takeName(I);
228 return InsertNewInstWith(Res, *I);
229 }
230
231
232 /// This function is a wrapper around CastInst::isEliminableCastPair. It
233 /// simply extracts arguments and returns what that function returns.
234 static Instruction::CastOps
isEliminableCastPair(const CastInst * CI,unsigned opcode,Type * DstTy,const DataLayout & DL)235 isEliminableCastPair(const CastInst *CI, ///< First cast instruction
236 unsigned opcode, ///< Opcode for the second cast
237 Type *DstTy, ///< Target type for the second cast
238 const DataLayout &DL) {
239 Type *SrcTy = CI->getOperand(0)->getType(); // A from above
240 Type *MidTy = CI->getType(); // B from above
241
242 // Get the opcodes of the two Cast instructions
243 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
244 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
245 Type *SrcIntPtrTy =
246 SrcTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(SrcTy) : nullptr;
247 Type *MidIntPtrTy =
248 MidTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(MidTy) : nullptr;
249 Type *DstIntPtrTy =
250 DstTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(DstTy) : nullptr;
251 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
252 DstTy, SrcIntPtrTy, MidIntPtrTy,
253 DstIntPtrTy);
254
255 // We don't want to form an inttoptr or ptrtoint that converts to an integer
256 // type that differs from the pointer size.
257 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
258 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
259 Res = 0;
260
261 return Instruction::CastOps(Res);
262 }
263
264 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
265 /// results in any code being generated and is interesting to optimize out. If
266 /// the cast can be eliminated by some other simple transformation, we prefer
267 /// to do the simplification first.
ShouldOptimizeCast(Instruction::CastOps opc,const Value * V,Type * Ty)268 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
269 Type *Ty) {
270 // Noop casts and casts of constants should be eliminated trivially.
271 if (V->getType() == Ty || isa<Constant>(V)) return false;
272
273 // If this is another cast that can be eliminated, we prefer to have it
274 // eliminated.
275 if (const CastInst *CI = dyn_cast<CastInst>(V))
276 if (isEliminableCastPair(CI, opc, Ty, DL))
277 return false;
278
279 // If this is a vector sext from a compare, then we don't want to break the
280 // idiom where each element of the extended vector is either zero or all ones.
281 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
282 return false;
283
284 return true;
285 }
286
287
288 /// @brief Implement the transforms common to all CastInst visitors.
commonCastTransforms(CastInst & CI)289 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
290 Value *Src = CI.getOperand(0);
291
292 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
293 // eliminate it now.
294 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
295 if (Instruction::CastOps opc =
296 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
297 // The first cast (CSrc) is eliminable so we need to fix up or replace
298 // the second cast (CI). CSrc will then have a good chance of being dead.
299 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
300 }
301 }
302
303 // If we are casting a select then fold the cast into the select
304 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
305 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
306 return NV;
307
308 // If we are casting a PHI then fold the cast into the PHI
309 if (isa<PHINode>(Src)) {
310 // We don't do this if this would create a PHI node with an illegal type if
311 // it is currently legal.
312 if (!Src->getType()->isIntegerTy() || !CI.getType()->isIntegerTy() ||
313 ShouldChangeType(CI.getType(), Src->getType()))
314 if (Instruction *NV = FoldOpIntoPhi(CI))
315 return NV;
316 }
317
318 return nullptr;
319 }
320
321 /// CanEvaluateTruncated - Return true if we can evaluate the specified
322 /// expression tree as type Ty instead of its larger type, and arrive with the
323 /// same value. This is used by code that tries to eliminate truncates.
324 ///
325 /// Ty will always be a type smaller than V. We should return true if trunc(V)
326 /// can be computed by computing V in the smaller type. If V is an instruction,
327 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
328 /// makes sense if x and y can be efficiently truncated.
329 ///
330 /// This function works on both vectors and scalars.
331 ///
CanEvaluateTruncated(Value * V,Type * Ty,InstCombiner & IC,Instruction * CxtI)332 static bool CanEvaluateTruncated(Value *V, Type *Ty, InstCombiner &IC,
333 Instruction *CxtI) {
334 // We can always evaluate constants in another type.
335 if (isa<Constant>(V))
336 return true;
337
338 Instruction *I = dyn_cast<Instruction>(V);
339 if (!I) return false;
340
341 Type *OrigTy = V->getType();
342
343 // If this is an extension from the dest type, we can eliminate it, even if it
344 // has multiple uses.
345 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
346 I->getOperand(0)->getType() == Ty)
347 return true;
348
349 // We can't extend or shrink something that has multiple uses: doing so would
350 // require duplicating the instruction in general, which isn't profitable.
351 if (!I->hasOneUse()) return false;
352
353 unsigned Opc = I->getOpcode();
354 switch (Opc) {
355 case Instruction::Add:
356 case Instruction::Sub:
357 case Instruction::Mul:
358 case Instruction::And:
359 case Instruction::Or:
360 case Instruction::Xor:
361 // These operators can all arbitrarily be extended or truncated.
362 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
363 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
364
365 case Instruction::UDiv:
366 case Instruction::URem: {
367 // UDiv and URem can be truncated if all the truncated bits are zero.
368 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
369 uint32_t BitWidth = Ty->getScalarSizeInBits();
370 if (BitWidth < OrigBitWidth) {
371 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
372 if (IC.MaskedValueIsZero(I->getOperand(0), Mask, 0, CxtI) &&
373 IC.MaskedValueIsZero(I->getOperand(1), Mask, 0, CxtI)) {
374 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI) &&
375 CanEvaluateTruncated(I->getOperand(1), Ty, IC, CxtI);
376 }
377 }
378 break;
379 }
380 case Instruction::Shl:
381 // If we are truncating the result of this SHL, and if it's a shift of a
382 // constant amount, we can always perform a SHL in a smaller type.
383 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
384 uint32_t BitWidth = Ty->getScalarSizeInBits();
385 if (CI->getLimitedValue(BitWidth) < BitWidth)
386 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
387 }
388 break;
389 case Instruction::LShr:
390 // If this is a truncate of a logical shr, we can truncate it to a smaller
391 // lshr iff we know that the bits we would otherwise be shifting in are
392 // already zeros.
393 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
394 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
395 uint32_t BitWidth = Ty->getScalarSizeInBits();
396 if (IC.MaskedValueIsZero(I->getOperand(0),
397 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth), 0, CxtI) &&
398 CI->getLimitedValue(BitWidth) < BitWidth) {
399 return CanEvaluateTruncated(I->getOperand(0), Ty, IC, CxtI);
400 }
401 }
402 break;
403 case Instruction::Trunc:
404 // trunc(trunc(x)) -> trunc(x)
405 return true;
406 case Instruction::ZExt:
407 case Instruction::SExt:
408 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
409 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
410 return true;
411 case Instruction::Select: {
412 SelectInst *SI = cast<SelectInst>(I);
413 return CanEvaluateTruncated(SI->getTrueValue(), Ty, IC, CxtI) &&
414 CanEvaluateTruncated(SI->getFalseValue(), Ty, IC, CxtI);
415 }
416 case Instruction::PHI: {
417 // We can change a phi if we can change all operands. Note that we never
418 // get into trouble with cyclic PHIs here because we only consider
419 // instructions with a single use.
420 PHINode *PN = cast<PHINode>(I);
421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
422 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty, IC, CxtI))
423 return false;
424 return true;
425 }
426 default:
427 // TODO: Can handle more cases here.
428 break;
429 }
430
431 return false;
432 }
433
visitTrunc(TruncInst & CI)434 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
435 if (Instruction *Result = commonCastTransforms(CI))
436 return Result;
437
438 // See if we can simplify any instructions used by the input whose sole
439 // purpose is to compute bits we don't care about.
440 if (SimplifyDemandedInstructionBits(CI))
441 return &CI;
442
443 Value *Src = CI.getOperand(0);
444 Type *DestTy = CI.getType(), *SrcTy = Src->getType();
445
446 // Attempt to truncate the entire input expression tree to the destination
447 // type. Only do this if the dest type is a simple type, don't convert the
448 // expression tree to something weird like i93 unless the source is also
449 // strange.
450 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
451 CanEvaluateTruncated(Src, DestTy, *this, &CI)) {
452
453 // If this cast is a truncate, evaluting in a different type always
454 // eliminates the cast, so it is always a win.
455 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
456 " to avoid cast: " << CI << '\n');
457 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
458 assert(Res->getType() == DestTy);
459 return ReplaceInstUsesWith(CI, Res);
460 }
461
462 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
463 if (DestTy->getScalarSizeInBits() == 1) {
464 Constant *One = ConstantInt::get(Src->getType(), 1);
465 Src = Builder->CreateAnd(Src, One);
466 Value *Zero = Constant::getNullValue(Src->getType());
467 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
468 }
469
470 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
471 Value *A = nullptr; ConstantInt *Cst = nullptr;
472 if (Src->hasOneUse() &&
473 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
474 // We have three types to worry about here, the type of A, the source of
475 // the truncate (MidSize), and the destination of the truncate. We know that
476 // ASize < MidSize and MidSize > ResultSize, but don't know the relation
477 // between ASize and ResultSize.
478 unsigned ASize = A->getType()->getPrimitiveSizeInBits();
479
480 // If the shift amount is larger than the size of A, then the result is
481 // known to be zero because all the input bits got shifted out.
482 if (Cst->getZExtValue() >= ASize)
483 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
484
485 // Since we're doing an lshr and a zero extend, and know that the shift
486 // amount is smaller than ASize, it is always safe to do the shift in A's
487 // type, then zero extend or truncate to the result.
488 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
489 Shift->takeName(Src);
490 return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
491 }
492
493 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
494 // type isn't non-native.
495 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
496 ShouldChangeType(Src->getType(), CI.getType()) &&
497 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
498 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
499 return BinaryOperator::CreateAnd(NewTrunc,
500 ConstantExpr::getTrunc(Cst, CI.getType()));
501 }
502
503 return nullptr;
504 }
505
506 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
507 /// in order to eliminate the icmp.
transformZExtICmp(ICmpInst * ICI,Instruction & CI,bool DoXform)508 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
509 bool DoXform) {
510 // If we are just checking for a icmp eq of a single bit and zext'ing it
511 // to an integer, then shift the bit to the appropriate place and then
512 // cast to integer to avoid the comparison.
513 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
514 const APInt &Op1CV = Op1C->getValue();
515
516 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
517 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
518 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
519 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
520 if (!DoXform) return ICI;
521
522 Value *In = ICI->getOperand(0);
523 Value *Sh = ConstantInt::get(In->getType(),
524 In->getType()->getScalarSizeInBits()-1);
525 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
526 if (In->getType() != CI.getType())
527 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
528
529 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
530 Constant *One = ConstantInt::get(In->getType(), 1);
531 In = Builder->CreateXor(In, One, In->getName()+".not");
532 }
533
534 return ReplaceInstUsesWith(CI, In);
535 }
536
537 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
538 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
539 // zext (X == 1) to i32 --> X iff X has only the low bit set.
540 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
541 // zext (X != 0) to i32 --> X iff X has only the low bit set.
542 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
543 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
544 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
545 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
546 // This only works for EQ and NE
547 ICI->isEquality()) {
548 // If Op1C some other power of two, convert:
549 uint32_t BitWidth = Op1C->getType()->getBitWidth();
550 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
551 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne, 0, &CI);
552
553 APInt KnownZeroMask(~KnownZero);
554 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
555 if (!DoXform) return ICI;
556
557 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
558 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
559 // (X&4) == 2 --> false
560 // (X&4) != 2 --> true
561 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
562 isNE);
563 Res = ConstantExpr::getZExt(Res, CI.getType());
564 return ReplaceInstUsesWith(CI, Res);
565 }
566
567 uint32_t ShiftAmt = KnownZeroMask.logBase2();
568 Value *In = ICI->getOperand(0);
569 if (ShiftAmt) {
570 // Perform a logical shr by shiftamt.
571 // Insert the shift to put the result in the low bit.
572 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
573 In->getName()+".lobit");
574 }
575
576 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
577 Constant *One = ConstantInt::get(In->getType(), 1);
578 In = Builder->CreateXor(In, One);
579 }
580
581 if (CI.getType() == In->getType())
582 return ReplaceInstUsesWith(CI, In);
583 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
584 }
585 }
586 }
587
588 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
589 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
590 // may lead to additional simplifications.
591 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
592 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
593 uint32_t BitWidth = ITy->getBitWidth();
594 Value *LHS = ICI->getOperand(0);
595 Value *RHS = ICI->getOperand(1);
596
597 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
598 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
599 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS, 0, &CI);
600 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS, 0, &CI);
601
602 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
603 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
604 APInt UnknownBit = ~KnownBits;
605 if (UnknownBit.countPopulation() == 1) {
606 if (!DoXform) return ICI;
607
608 Value *Result = Builder->CreateXor(LHS, RHS);
609
610 // Mask off any bits that are set and won't be shifted away.
611 if (KnownOneLHS.uge(UnknownBit))
612 Result = Builder->CreateAnd(Result,
613 ConstantInt::get(ITy, UnknownBit));
614
615 // Shift the bit we're testing down to the lsb.
616 Result = Builder->CreateLShr(
617 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
618
619 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
620 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
621 Result->takeName(ICI);
622 return ReplaceInstUsesWith(CI, Result);
623 }
624 }
625 }
626 }
627
628 return nullptr;
629 }
630
631 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
632 /// specified wider type and produce the same low bits. If not, return false.
633 ///
634 /// If this function returns true, it can also return a non-zero number of bits
635 /// (in BitsToClear) which indicates that the value it computes is correct for
636 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
637 /// out. For example, to promote something like:
638 ///
639 /// %B = trunc i64 %A to i32
640 /// %C = lshr i32 %B, 8
641 /// %E = zext i32 %C to i64
642 ///
643 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
644 /// set to 8 to indicate that the promoted value needs to have bits 24-31
645 /// cleared in addition to bits 32-63. Since an 'and' will be generated to
646 /// clear the top bits anyway, doing this has no extra cost.
647 ///
648 /// This function works on both vectors and scalars.
CanEvaluateZExtd(Value * V,Type * Ty,unsigned & BitsToClear,InstCombiner & IC,Instruction * CxtI)649 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear,
650 InstCombiner &IC, Instruction *CxtI) {
651 BitsToClear = 0;
652 if (isa<Constant>(V))
653 return true;
654
655 Instruction *I = dyn_cast<Instruction>(V);
656 if (!I) return false;
657
658 // If the input is a truncate from the destination type, we can trivially
659 // eliminate it.
660 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
661 return true;
662
663 // We can't extend or shrink something that has multiple uses: doing so would
664 // require duplicating the instruction in general, which isn't profitable.
665 if (!I->hasOneUse()) return false;
666
667 unsigned Opc = I->getOpcode(), Tmp;
668 switch (Opc) {
669 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
670 case Instruction::SExt: // zext(sext(x)) -> sext(x).
671 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
672 return true;
673 case Instruction::And:
674 case Instruction::Or:
675 case Instruction::Xor:
676 case Instruction::Add:
677 case Instruction::Sub:
678 case Instruction::Mul:
679 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI) ||
680 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI))
681 return false;
682 // These can all be promoted if neither operand has 'bits to clear'.
683 if (BitsToClear == 0 && Tmp == 0)
684 return true;
685
686 // If the operation is an AND/OR/XOR and the bits to clear are zero in the
687 // other side, BitsToClear is ok.
688 if (Tmp == 0 &&
689 (Opc == Instruction::And || Opc == Instruction::Or ||
690 Opc == Instruction::Xor)) {
691 // We use MaskedValueIsZero here for generality, but the case we care
692 // about the most is constant RHS.
693 unsigned VSize = V->getType()->getScalarSizeInBits();
694 if (IC.MaskedValueIsZero(I->getOperand(1),
695 APInt::getHighBitsSet(VSize, BitsToClear),
696 0, CxtI))
697 return true;
698 }
699
700 // Otherwise, we don't know how to analyze this BitsToClear case yet.
701 return false;
702
703 case Instruction::Shl:
704 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the
705 // upper bits we can reduce BitsToClear by the shift amount.
706 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
707 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
708 return false;
709 uint64_t ShiftAmt = Amt->getZExtValue();
710 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
711 return true;
712 }
713 return false;
714 case Instruction::LShr:
715 // We can promote lshr(x, cst) if we can promote x. This requires the
716 // ultimate 'and' to clear out the high zero bits we're clearing out though.
717 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
718 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear, IC, CxtI))
719 return false;
720 BitsToClear += Amt->getZExtValue();
721 if (BitsToClear > V->getType()->getScalarSizeInBits())
722 BitsToClear = V->getType()->getScalarSizeInBits();
723 return true;
724 }
725 // Cannot promote variable LSHR.
726 return false;
727 case Instruction::Select:
728 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp, IC, CxtI) ||
729 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear, IC, CxtI) ||
730 // TODO: If important, we could handle the case when the BitsToClear are
731 // known zero in the disagreeing side.
732 Tmp != BitsToClear)
733 return false;
734 return true;
735
736 case Instruction::PHI: {
737 // We can change a phi if we can change all operands. Note that we never
738 // get into trouble with cyclic PHIs here because we only consider
739 // instructions with a single use.
740 PHINode *PN = cast<PHINode>(I);
741 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear, IC, CxtI))
742 return false;
743 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
744 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp, IC, CxtI) ||
745 // TODO: If important, we could handle the case when the BitsToClear
746 // are known zero in the disagreeing input.
747 Tmp != BitsToClear)
748 return false;
749 return true;
750 }
751 default:
752 // TODO: Can handle more cases here.
753 return false;
754 }
755 }
756
visitZExt(ZExtInst & CI)757 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
758 // If this zero extend is only used by a truncate, let the truncate be
759 // eliminated before we try to optimize this zext.
760 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
761 return nullptr;
762
763 // If one of the common conversion will work, do it.
764 if (Instruction *Result = commonCastTransforms(CI))
765 return Result;
766
767 // See if we can simplify any instructions used by the input whose sole
768 // purpose is to compute bits we don't care about.
769 if (SimplifyDemandedInstructionBits(CI))
770 return &CI;
771
772 Value *Src = CI.getOperand(0);
773 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
774
775 // Attempt to extend the entire input expression tree to the destination
776 // type. Only do this if the dest type is a simple type, don't convert the
777 // expression tree to something weird like i93 unless the source is also
778 // strange.
779 unsigned BitsToClear;
780 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
781 CanEvaluateZExtd(Src, DestTy, BitsToClear, *this, &CI)) {
782 assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
783 "Unreasonable BitsToClear");
784
785 // Okay, we can transform this! Insert the new expression now.
786 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
787 " to avoid zero extend: " << CI);
788 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
789 assert(Res->getType() == DestTy);
790
791 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
792 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
793
794 // If the high bits are already filled with zeros, just replace this
795 // cast with the result.
796 if (MaskedValueIsZero(Res,
797 APInt::getHighBitsSet(DestBitSize,
798 DestBitSize-SrcBitsKept),
799 0, &CI))
800 return ReplaceInstUsesWith(CI, Res);
801
802 // We need to emit an AND to clear the high bits.
803 Constant *C = ConstantInt::get(Res->getType(),
804 APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
805 return BinaryOperator::CreateAnd(Res, C);
806 }
807
808 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
809 // types and if the sizes are just right we can convert this into a logical
810 // 'and' which will be much cheaper than the pair of casts.
811 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
812 // TODO: Subsume this into EvaluateInDifferentType.
813
814 // Get the sizes of the types involved. We know that the intermediate type
815 // will be smaller than A or C, but don't know the relation between A and C.
816 Value *A = CSrc->getOperand(0);
817 unsigned SrcSize = A->getType()->getScalarSizeInBits();
818 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
819 unsigned DstSize = CI.getType()->getScalarSizeInBits();
820 // If we're actually extending zero bits, then if
821 // SrcSize < DstSize: zext(a & mask)
822 // SrcSize == DstSize: a & mask
823 // SrcSize > DstSize: trunc(a) & mask
824 if (SrcSize < DstSize) {
825 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
826 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
827 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
828 return new ZExtInst(And, CI.getType());
829 }
830
831 if (SrcSize == DstSize) {
832 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
833 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
834 AndValue));
835 }
836 if (SrcSize > DstSize) {
837 Value *Trunc = Builder->CreateTrunc(A, CI.getType());
838 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
839 return BinaryOperator::CreateAnd(Trunc,
840 ConstantInt::get(Trunc->getType(),
841 AndValue));
842 }
843 }
844
845 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
846 return transformZExtICmp(ICI, CI);
847
848 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
849 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
850 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
851 // of the (zext icmp) will be transformed.
852 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
853 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
854 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
855 (transformZExtICmp(LHS, CI, false) ||
856 transformZExtICmp(RHS, CI, false))) {
857 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
858 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
859 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
860 }
861 }
862
863 // zext(trunc(X) & C) -> (X & zext(C)).
864 Constant *C;
865 Value *X;
866 if (SrcI &&
867 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
868 X->getType() == CI.getType())
869 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
870
871 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
872 Value *And;
873 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
874 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
875 X->getType() == CI.getType()) {
876 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
877 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
878 }
879
880 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
881 if (SrcI && SrcI->hasOneUse() &&
882 SrcI->getType()->getScalarType()->isIntegerTy(1) &&
883 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
884 Value *New = Builder->CreateZExt(X, CI.getType());
885 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
886 }
887
888 return nullptr;
889 }
890
891 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
892 /// in order to eliminate the icmp.
transformSExtICmp(ICmpInst * ICI,Instruction & CI)893 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
894 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
895 ICmpInst::Predicate Pred = ICI->getPredicate();
896
897 // Don't bother if Op1 isn't of vector or integer type.
898 if (!Op1->getType()->isIntOrIntVectorTy())
899 return nullptr;
900
901 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
902 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
903 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
904 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
905 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
906
907 Value *Sh = ConstantInt::get(Op0->getType(),
908 Op0->getType()->getScalarSizeInBits()-1);
909 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
910 if (In->getType() != CI.getType())
911 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
912
913 if (Pred == ICmpInst::ICMP_SGT)
914 In = Builder->CreateNot(In, In->getName()+".not");
915 return ReplaceInstUsesWith(CI, In);
916 }
917 }
918
919 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
920 // If we know that only one bit of the LHS of the icmp can be set and we
921 // have an equality comparison with zero or a power of 2, we can transform
922 // the icmp and sext into bitwise/integer operations.
923 if (ICI->hasOneUse() &&
924 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
925 unsigned BitWidth = Op1C->getType()->getBitWidth();
926 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
927 computeKnownBits(Op0, KnownZero, KnownOne, 0, &CI);
928
929 APInt KnownZeroMask(~KnownZero);
930 if (KnownZeroMask.isPowerOf2()) {
931 Value *In = ICI->getOperand(0);
932
933 // If the icmp tests for a known zero bit we can constant fold it.
934 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
935 Value *V = Pred == ICmpInst::ICMP_NE ?
936 ConstantInt::getAllOnesValue(CI.getType()) :
937 ConstantInt::getNullValue(CI.getType());
938 return ReplaceInstUsesWith(CI, V);
939 }
940
941 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
942 // sext ((x & 2^n) == 0) -> (x >> n) - 1
943 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
944 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
945 // Perform a right shift to place the desired bit in the LSB.
946 if (ShiftAmt)
947 In = Builder->CreateLShr(In,
948 ConstantInt::get(In->getType(), ShiftAmt));
949
950 // At this point "In" is either 1 or 0. Subtract 1 to turn
951 // {1, 0} -> {0, -1}.
952 In = Builder->CreateAdd(In,
953 ConstantInt::getAllOnesValue(In->getType()),
954 "sext");
955 } else {
956 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
957 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
958 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
959 // Perform a left shift to place the desired bit in the MSB.
960 if (ShiftAmt)
961 In = Builder->CreateShl(In,
962 ConstantInt::get(In->getType(), ShiftAmt));
963
964 // Distribute the bit over the whole bit width.
965 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
966 BitWidth - 1), "sext");
967 }
968
969 if (CI.getType() == In->getType())
970 return ReplaceInstUsesWith(CI, In);
971 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
972 }
973 }
974 }
975
976 return nullptr;
977 }
978
979 /// CanEvaluateSExtd - Return true if we can take the specified value
980 /// and return it as type Ty without inserting any new casts and without
981 /// changing the value of the common low bits. This is used by code that tries
982 /// to promote integer operations to a wider types will allow us to eliminate
983 /// the extension.
984 ///
985 /// This function works on both vectors and scalars.
986 ///
CanEvaluateSExtd(Value * V,Type * Ty)987 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
988 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
989 "Can't sign extend type to a smaller type");
990 // If this is a constant, it can be trivially promoted.
991 if (isa<Constant>(V))
992 return true;
993
994 Instruction *I = dyn_cast<Instruction>(V);
995 if (!I) return false;
996
997 // If this is a truncate from the dest type, we can trivially eliminate it.
998 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
999 return true;
1000
1001 // We can't extend or shrink something that has multiple uses: doing so would
1002 // require duplicating the instruction in general, which isn't profitable.
1003 if (!I->hasOneUse()) return false;
1004
1005 switch (I->getOpcode()) {
1006 case Instruction::SExt: // sext(sext(x)) -> sext(x)
1007 case Instruction::ZExt: // sext(zext(x)) -> zext(x)
1008 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1009 return true;
1010 case Instruction::And:
1011 case Instruction::Or:
1012 case Instruction::Xor:
1013 case Instruction::Add:
1014 case Instruction::Sub:
1015 case Instruction::Mul:
1016 // These operators can all arbitrarily be extended if their inputs can.
1017 return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1018 CanEvaluateSExtd(I->getOperand(1), Ty);
1019
1020 //case Instruction::Shl: TODO
1021 //case Instruction::LShr: TODO
1022
1023 case Instruction::Select:
1024 return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1025 CanEvaluateSExtd(I->getOperand(2), Ty);
1026
1027 case Instruction::PHI: {
1028 // We can change a phi if we can change all operands. Note that we never
1029 // get into trouble with cyclic PHIs here because we only consider
1030 // instructions with a single use.
1031 PHINode *PN = cast<PHINode>(I);
1032 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1033 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1034 return true;
1035 }
1036 default:
1037 // TODO: Can handle more cases here.
1038 break;
1039 }
1040
1041 return false;
1042 }
1043
visitSExt(SExtInst & CI)1044 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1045 // If this sign extend is only used by a truncate, let the truncate be
1046 // eliminated before we try to optimize this sext.
1047 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
1048 return nullptr;
1049
1050 if (Instruction *I = commonCastTransforms(CI))
1051 return I;
1052
1053 // See if we can simplify any instructions used by the input whose sole
1054 // purpose is to compute bits we don't care about.
1055 if (SimplifyDemandedInstructionBits(CI))
1056 return &CI;
1057
1058 Value *Src = CI.getOperand(0);
1059 Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1060
1061 // If we know that the value being extended is positive, we can use a zext
1062 // instead.
1063 bool KnownZero, KnownOne;
1064 ComputeSignBit(Src, KnownZero, KnownOne, 0, &CI);
1065 if (KnownZero) {
1066 Value *ZExt = Builder->CreateZExt(Src, DestTy);
1067 return ReplaceInstUsesWith(CI, ZExt);
1068 }
1069
1070 // Attempt to extend the entire input expression tree to the destination
1071 // type. Only do this if the dest type is a simple type, don't convert the
1072 // expression tree to something weird like i93 unless the source is also
1073 // strange.
1074 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1075 CanEvaluateSExtd(Src, DestTy)) {
1076 // Okay, we can transform this! Insert the new expression now.
1077 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1078 " to avoid sign extend: " << CI);
1079 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1080 assert(Res->getType() == DestTy);
1081
1082 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1083 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1084
1085 // If the high bits are already filled with sign bit, just replace this
1086 // cast with the result.
1087 if (ComputeNumSignBits(Res, 0, &CI) > DestBitSize - SrcBitSize)
1088 return ReplaceInstUsesWith(CI, Res);
1089
1090 // We need to emit a shl + ashr to do the sign extend.
1091 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1092 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1093 ShAmt);
1094 }
1095
1096 // If this input is a trunc from our destination, then turn sext(trunc(x))
1097 // into shifts.
1098 if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1099 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1100 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1101 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1102
1103 // We need to emit a shl + ashr to do the sign extend.
1104 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1105 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1106 return BinaryOperator::CreateAShr(Res, ShAmt);
1107 }
1108
1109 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1110 return transformSExtICmp(ICI, CI);
1111
1112 // If the input is a shl/ashr pair of a same constant, then this is a sign
1113 // extension from a smaller value. If we could trust arbitrary bitwidth
1114 // integers, we could turn this into a truncate to the smaller bit and then
1115 // use a sext for the whole extension. Since we don't, look deeper and check
1116 // for a truncate. If the source and dest are the same type, eliminate the
1117 // trunc and extend and just do shifts. For example, turn:
1118 // %a = trunc i32 %i to i8
1119 // %b = shl i8 %a, 6
1120 // %c = ashr i8 %b, 6
1121 // %d = sext i8 %c to i32
1122 // into:
1123 // %a = shl i32 %i, 30
1124 // %d = ashr i32 %a, 30
1125 Value *A = nullptr;
1126 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1127 ConstantInt *BA = nullptr, *CA = nullptr;
1128 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1129 m_ConstantInt(CA))) &&
1130 BA == CA && A->getType() == CI.getType()) {
1131 unsigned MidSize = Src->getType()->getScalarSizeInBits();
1132 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1133 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1134 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1135 A = Builder->CreateShl(A, ShAmtV, CI.getName());
1136 return BinaryOperator::CreateAShr(A, ShAmtV);
1137 }
1138
1139 return nullptr;
1140 }
1141
1142
1143 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1144 /// in the specified FP type without changing its value.
FitsInFPType(ConstantFP * CFP,const fltSemantics & Sem)1145 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1146 bool losesInfo;
1147 APFloat F = CFP->getValueAPF();
1148 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1149 if (!losesInfo)
1150 return ConstantFP::get(CFP->getContext(), F);
1151 return nullptr;
1152 }
1153
1154 /// LookThroughFPExtensions - If this is an fp extension instruction, look
1155 /// through it until we get the source value.
LookThroughFPExtensions(Value * V)1156 static Value *LookThroughFPExtensions(Value *V) {
1157 if (Instruction *I = dyn_cast<Instruction>(V))
1158 if (I->getOpcode() == Instruction::FPExt)
1159 return LookThroughFPExtensions(I->getOperand(0));
1160
1161 // If this value is a constant, return the constant in the smallest FP type
1162 // that can accurately represent it. This allows us to turn
1163 // (float)((double)X+2.0) into x+2.0f.
1164 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1165 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1166 return V; // No constant folding of this.
1167 // See if the value can be truncated to half and then reextended.
1168 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1169 return V;
1170 // See if the value can be truncated to float and then reextended.
1171 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1172 return V;
1173 if (CFP->getType()->isDoubleTy())
1174 return V; // Won't shrink.
1175 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1176 return V;
1177 // Don't try to shrink to various long double types.
1178 }
1179
1180 return V;
1181 }
1182
visitFPTrunc(FPTruncInst & CI)1183 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1184 if (Instruction *I = commonCastTransforms(CI))
1185 return I;
1186 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
1187 // simpilify this expression to avoid one or more of the trunc/extend
1188 // operations if we can do so without changing the numerical results.
1189 //
1190 // The exact manner in which the widths of the operands interact to limit
1191 // what we can and cannot do safely varies from operation to operation, and
1192 // is explained below in the various case statements.
1193 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1194 if (OpI && OpI->hasOneUse()) {
1195 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
1196 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
1197 unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
1198 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
1199 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
1200 unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
1201 unsigned DstWidth = CI.getType()->getFPMantissaWidth();
1202 switch (OpI->getOpcode()) {
1203 default: break;
1204 case Instruction::FAdd:
1205 case Instruction::FSub:
1206 // For addition and subtraction, the infinitely precise result can
1207 // essentially be arbitrarily wide; proving that double rounding
1208 // will not occur because the result of OpI is exact (as we will for
1209 // FMul, for example) is hopeless. However, we *can* nonetheless
1210 // frequently know that double rounding cannot occur (or that it is
1211 // innocuous) by taking advantage of the specific structure of
1212 // infinitely-precise results that admit double rounding.
1213 //
1214 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
1215 // to represent both sources, we can guarantee that the double
1216 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
1217 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
1218 // for proof of this fact).
1219 //
1220 // Note: Figueroa does not consider the case where DstFormat !=
1221 // SrcFormat. It's possible (likely even!) that this analysis
1222 // could be tightened for those cases, but they are rare (the main
1223 // case of interest here is (float)((double)float + float)).
1224 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
1225 if (LHSOrig->getType() != CI.getType())
1226 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1227 if (RHSOrig->getType() != CI.getType())
1228 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1229 Instruction *RI =
1230 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
1231 RI->copyFastMathFlags(OpI);
1232 return RI;
1233 }
1234 break;
1235 case Instruction::FMul:
1236 // For multiplication, the infinitely precise result has at most
1237 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
1238 // that such a value can be exactly represented, then no double
1239 // rounding can possibly occur; we can safely perform the operation
1240 // in the destination format if it can represent both sources.
1241 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
1242 if (LHSOrig->getType() != CI.getType())
1243 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1244 if (RHSOrig->getType() != CI.getType())
1245 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1246 Instruction *RI =
1247 BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
1248 RI->copyFastMathFlags(OpI);
1249 return RI;
1250 }
1251 break;
1252 case Instruction::FDiv:
1253 // For division, we use again use the bound from Figueroa's
1254 // dissertation. I am entirely certain that this bound can be
1255 // tightened in the unbalanced operand case by an analysis based on
1256 // the diophantine rational approximation bound, but the well-known
1257 // condition used here is a good conservative first pass.
1258 // TODO: Tighten bound via rigorous analysis of the unbalanced case.
1259 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
1260 if (LHSOrig->getType() != CI.getType())
1261 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
1262 if (RHSOrig->getType() != CI.getType())
1263 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
1264 Instruction *RI =
1265 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
1266 RI->copyFastMathFlags(OpI);
1267 return RI;
1268 }
1269 break;
1270 case Instruction::FRem:
1271 // Remainder is straightforward. Remainder is always exact, so the
1272 // type of OpI doesn't enter into things at all. We simply evaluate
1273 // in whichever source type is larger, then convert to the
1274 // destination type.
1275 if (SrcWidth == OpWidth)
1276 break;
1277 if (LHSWidth < SrcWidth)
1278 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
1279 else if (RHSWidth <= SrcWidth)
1280 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
1281 if (LHSOrig != OpI->getOperand(0) || RHSOrig != OpI->getOperand(1)) {
1282 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
1283 if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
1284 RI->copyFastMathFlags(OpI);
1285 return CastInst::CreateFPCast(ExactResult, CI.getType());
1286 }
1287 }
1288
1289 // (fptrunc (fneg x)) -> (fneg (fptrunc x))
1290 if (BinaryOperator::isFNeg(OpI)) {
1291 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
1292 CI.getType());
1293 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
1294 RI->copyFastMathFlags(OpI);
1295 return RI;
1296 }
1297 }
1298
1299 // (fptrunc (select cond, R1, Cst)) -->
1300 // (select cond, (fptrunc R1), (fptrunc Cst))
1301 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
1302 if (SI &&
1303 (isa<ConstantFP>(SI->getOperand(1)) ||
1304 isa<ConstantFP>(SI->getOperand(2)))) {
1305 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
1306 CI.getType());
1307 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
1308 CI.getType());
1309 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
1310 }
1311
1312 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
1313 if (II) {
1314 switch (II->getIntrinsicID()) {
1315 default: break;
1316 case Intrinsic::fabs: {
1317 // (fptrunc (fabs x)) -> (fabs (fptrunc x))
1318 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
1319 CI.getType());
1320 Type *IntrinsicType[] = { CI.getType() };
1321 Function *Overload =
1322 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
1323 II->getIntrinsicID(), IntrinsicType);
1324
1325 Value *Args[] = { InnerTrunc };
1326 return CallInst::Create(Overload, Args, II->getName());
1327 }
1328 }
1329 }
1330
1331 return nullptr;
1332 }
1333
visitFPExt(CastInst & CI)1334 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1335 return commonCastTransforms(CI);
1336 }
1337
1338 // fpto{s/u}i({u/s}itofp(X)) --> X or zext(X) or sext(X) or trunc(X)
1339 // This is safe if the intermediate type has enough bits in its mantissa to
1340 // accurately represent all values of X. For example, this won't work with
1341 // i64 -> float -> i64.
FoldItoFPtoI(Instruction & FI)1342 Instruction *InstCombiner::FoldItoFPtoI(Instruction &FI) {
1343 if (!isa<UIToFPInst>(FI.getOperand(0)) && !isa<SIToFPInst>(FI.getOperand(0)))
1344 return nullptr;
1345 Instruction *OpI = cast<Instruction>(FI.getOperand(0));
1346
1347 Value *SrcI = OpI->getOperand(0);
1348 Type *FITy = FI.getType();
1349 Type *OpITy = OpI->getType();
1350 Type *SrcTy = SrcI->getType();
1351 bool IsInputSigned = isa<SIToFPInst>(OpI);
1352 bool IsOutputSigned = isa<FPToSIInst>(FI);
1353
1354 // We can safely assume the conversion won't overflow the output range,
1355 // because (for example) (uint8_t)18293.f is undefined behavior.
1356
1357 // Since we can assume the conversion won't overflow, our decision as to
1358 // whether the input will fit in the float should depend on the minimum
1359 // of the input range and output range.
1360
1361 // This means this is also safe for a signed input and unsigned output, since
1362 // a negative input would lead to undefined behavior.
1363 int InputSize = (int)SrcTy->getScalarSizeInBits() - IsInputSigned;
1364 int OutputSize = (int)FITy->getScalarSizeInBits() - IsOutputSigned;
1365 int ActualSize = std::min(InputSize, OutputSize);
1366
1367 if (ActualSize <= OpITy->getFPMantissaWidth()) {
1368 if (FITy->getScalarSizeInBits() > SrcTy->getScalarSizeInBits()) {
1369 if (IsInputSigned && IsOutputSigned)
1370 return new SExtInst(SrcI, FITy);
1371 return new ZExtInst(SrcI, FITy);
1372 }
1373 if (FITy->getScalarSizeInBits() < SrcTy->getScalarSizeInBits())
1374 return new TruncInst(SrcI, FITy);
1375 if (SrcTy == FITy)
1376 return ReplaceInstUsesWith(FI, SrcI);
1377 return new BitCastInst(SrcI, FITy);
1378 }
1379 return nullptr;
1380 }
1381
visitFPToUI(FPToUIInst & FI)1382 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1383 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1384 if (!OpI)
1385 return commonCastTransforms(FI);
1386
1387 if (Instruction *I = FoldItoFPtoI(FI))
1388 return I;
1389
1390 return commonCastTransforms(FI);
1391 }
1392
visitFPToSI(FPToSIInst & FI)1393 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1394 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1395 if (!OpI)
1396 return commonCastTransforms(FI);
1397
1398 if (Instruction *I = FoldItoFPtoI(FI))
1399 return I;
1400
1401 return commonCastTransforms(FI);
1402 }
1403
visitUIToFP(CastInst & CI)1404 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1405 return commonCastTransforms(CI);
1406 }
1407
visitSIToFP(CastInst & CI)1408 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1409 return commonCastTransforms(CI);
1410 }
1411
visitIntToPtr(IntToPtrInst & CI)1412 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1413 // If the source integer type is not the intptr_t type for this target, do a
1414 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the
1415 // cast to be exposed to other transforms.
1416 unsigned AS = CI.getAddressSpace();
1417 if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
1418 DL.getPointerSizeInBits(AS)) {
1419 Type *Ty = DL.getIntPtrType(CI.getContext(), AS);
1420 if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
1421 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
1422
1423 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
1424 return new IntToPtrInst(P, CI.getType());
1425 }
1426
1427 if (Instruction *I = commonCastTransforms(CI))
1428 return I;
1429
1430 return nullptr;
1431 }
1432
1433 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
commonPointerCastTransforms(CastInst & CI)1434 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1435 Value *Src = CI.getOperand(0);
1436
1437 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1438 // If casting the result of a getelementptr instruction with no offset, turn
1439 // this into a cast of the original pointer!
1440 if (GEP->hasAllZeroIndices() &&
1441 // If CI is an addrspacecast and GEP changes the poiner type, merging
1442 // GEP into CI would undo canonicalizing addrspacecast with different
1443 // pointer types, causing infinite loops.
1444 (!isa<AddrSpaceCastInst>(CI) ||
1445 GEP->getType() == GEP->getPointerOperand()->getType())) {
1446 // Changing the cast operand is usually not a good idea but it is safe
1447 // here because the pointer operand is being replaced with another
1448 // pointer operand so the opcode doesn't need to change.
1449 Worklist.Add(GEP);
1450 CI.setOperand(0, GEP->getOperand(0));
1451 return &CI;
1452 }
1453 }
1454
1455 return commonCastTransforms(CI);
1456 }
1457
visitPtrToInt(PtrToIntInst & CI)1458 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1459 // If the destination integer type is not the intptr_t type for this target,
1460 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
1461 // to be exposed to other transforms.
1462
1463 Type *Ty = CI.getType();
1464 unsigned AS = CI.getPointerAddressSpace();
1465
1466 if (Ty->getScalarSizeInBits() == DL.getPointerSizeInBits(AS))
1467 return commonPointerCastTransforms(CI);
1468
1469 Type *PtrTy = DL.getIntPtrType(CI.getContext(), AS);
1470 if (Ty->isVectorTy()) // Handle vectors of pointers.
1471 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
1472
1473 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
1474 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
1475 }
1476
1477 /// OptimizeVectorResize - This input value (which is known to have vector type)
1478 /// is being zero extended or truncated to the specified vector type. Try to
1479 /// replace it with a shuffle (and vector/vector bitcast) if possible.
1480 ///
1481 /// The source and destination vector types may have different element types.
OptimizeVectorResize(Value * InVal,VectorType * DestTy,InstCombiner & IC)1482 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1483 InstCombiner &IC) {
1484 // We can only do this optimization if the output is a multiple of the input
1485 // element size, or the input is a multiple of the output element size.
1486 // Convert the input type to have the same element type as the output.
1487 VectorType *SrcTy = cast<VectorType>(InVal->getType());
1488
1489 if (SrcTy->getElementType() != DestTy->getElementType()) {
1490 // The input types don't need to be identical, but for now they must be the
1491 // same size. There is no specific reason we couldn't handle things like
1492 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1493 // there yet.
1494 if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1495 DestTy->getElementType()->getPrimitiveSizeInBits())
1496 return nullptr;
1497
1498 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1499 InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1500 }
1501
1502 // Now that the element types match, get the shuffle mask and RHS of the
1503 // shuffle to use, which depends on whether we're increasing or decreasing the
1504 // size of the input.
1505 SmallVector<uint32_t, 16> ShuffleMask;
1506 Value *V2;
1507
1508 if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1509 // If we're shrinking the number of elements, just shuffle in the low
1510 // elements from the input and use undef as the second shuffle input.
1511 V2 = UndefValue::get(SrcTy);
1512 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1513 ShuffleMask.push_back(i);
1514
1515 } else {
1516 // If we're increasing the number of elements, shuffle in all of the
1517 // elements from InVal and fill the rest of the result elements with zeros
1518 // from a constant zero.
1519 V2 = Constant::getNullValue(SrcTy);
1520 unsigned SrcElts = SrcTy->getNumElements();
1521 for (unsigned i = 0, e = SrcElts; i != e; ++i)
1522 ShuffleMask.push_back(i);
1523
1524 // The excess elements reference the first element of the zero input.
1525 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
1526 ShuffleMask.push_back(SrcElts);
1527 }
1528
1529 return new ShuffleVectorInst(InVal, V2,
1530 ConstantDataVector::get(V2->getContext(),
1531 ShuffleMask));
1532 }
1533
isMultipleOfTypeSize(unsigned Value,Type * Ty)1534 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1535 return Value % Ty->getPrimitiveSizeInBits() == 0;
1536 }
1537
getTypeSizeIndex(unsigned Value,Type * Ty)1538 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1539 return Value / Ty->getPrimitiveSizeInBits();
1540 }
1541
1542 /// CollectInsertionElements - V is a value which is inserted into a vector of
1543 /// VecEltTy. Look through the value to see if we can decompose it into
1544 /// insertions into the vector. See the example in the comment for
1545 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
1546 /// The type of V is always a non-zero multiple of VecEltTy's size.
1547 /// Shift is the number of bits between the lsb of V and the lsb of
1548 /// the vector.
1549 ///
1550 /// This returns false if the pattern can't be matched or true if it can,
1551 /// filling in Elements with the elements found here.
CollectInsertionElements(Value * V,unsigned Shift,SmallVectorImpl<Value * > & Elements,Type * VecEltTy,bool isBigEndian)1552 static bool CollectInsertionElements(Value *V, unsigned Shift,
1553 SmallVectorImpl<Value *> &Elements,
1554 Type *VecEltTy, bool isBigEndian) {
1555 assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
1556 "Shift should be a multiple of the element type size");
1557
1558 // Undef values never contribute useful bits to the result.
1559 if (isa<UndefValue>(V)) return true;
1560
1561 // If we got down to a value of the right type, we win, try inserting into the
1562 // right element.
1563 if (V->getType() == VecEltTy) {
1564 // Inserting null doesn't actually insert any elements.
1565 if (Constant *C = dyn_cast<Constant>(V))
1566 if (C->isNullValue())
1567 return true;
1568
1569 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
1570 if (isBigEndian)
1571 ElementIndex = Elements.size() - ElementIndex - 1;
1572
1573 // Fail if multiple elements are inserted into this slot.
1574 if (Elements[ElementIndex])
1575 return false;
1576
1577 Elements[ElementIndex] = V;
1578 return true;
1579 }
1580
1581 if (Constant *C = dyn_cast<Constant>(V)) {
1582 // Figure out the # elements this provides, and bitcast it or slice it up
1583 // as required.
1584 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1585 VecEltTy);
1586 // If the constant is the size of a vector element, we just need to bitcast
1587 // it to the right type so it gets properly inserted.
1588 if (NumElts == 1)
1589 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1590 Shift, Elements, VecEltTy, isBigEndian);
1591
1592 // Okay, this is a constant that covers multiple elements. Slice it up into
1593 // pieces and insert each element-sized piece into the vector.
1594 if (!isa<IntegerType>(C->getType()))
1595 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1596 C->getType()->getPrimitiveSizeInBits()));
1597 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1598 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1599
1600 for (unsigned i = 0; i != NumElts; ++i) {
1601 unsigned ShiftI = Shift+i*ElementSize;
1602 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1603 ShiftI));
1604 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1605 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy,
1606 isBigEndian))
1607 return false;
1608 }
1609 return true;
1610 }
1611
1612 if (!V->hasOneUse()) return false;
1613
1614 Instruction *I = dyn_cast<Instruction>(V);
1615 if (!I) return false;
1616 switch (I->getOpcode()) {
1617 default: return false; // Unhandled case.
1618 case Instruction::BitCast:
1619 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1620 isBigEndian);
1621 case Instruction::ZExt:
1622 if (!isMultipleOfTypeSize(
1623 I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1624 VecEltTy))
1625 return false;
1626 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1627 isBigEndian);
1628 case Instruction::Or:
1629 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1630 isBigEndian) &&
1631 CollectInsertionElements(I->getOperand(1), Shift, Elements, VecEltTy,
1632 isBigEndian);
1633 case Instruction::Shl: {
1634 // Must be shifting by a constant that is a multiple of the element size.
1635 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1636 if (!CI) return false;
1637 Shift += CI->getZExtValue();
1638 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
1639 return CollectInsertionElements(I->getOperand(0), Shift, Elements, VecEltTy,
1640 isBigEndian);
1641 }
1642
1643 }
1644 }
1645
1646
1647 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1648 /// may be doing shifts and ors to assemble the elements of the vector manually.
1649 /// Try to rip the code out and replace it with insertelements. This is to
1650 /// optimize code like this:
1651 ///
1652 /// %tmp37 = bitcast float %inc to i32
1653 /// %tmp38 = zext i32 %tmp37 to i64
1654 /// %tmp31 = bitcast float %inc5 to i32
1655 /// %tmp32 = zext i32 %tmp31 to i64
1656 /// %tmp33 = shl i64 %tmp32, 32
1657 /// %ins35 = or i64 %tmp33, %tmp38
1658 /// %tmp43 = bitcast i64 %ins35 to <2 x float>
1659 ///
1660 /// Into two insertelements that do "buildvector{%inc, %inc5}".
OptimizeIntegerToVectorInsertions(BitCastInst & CI,InstCombiner & IC)1661 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1662 InstCombiner &IC) {
1663 VectorType *DestVecTy = cast<VectorType>(CI.getType());
1664 Value *IntInput = CI.getOperand(0);
1665
1666 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1667 if (!CollectInsertionElements(IntInput, 0, Elements,
1668 DestVecTy->getElementType(),
1669 IC.getDataLayout().isBigEndian()))
1670 return nullptr;
1671
1672 // If we succeeded, we know that all of the element are specified by Elements
1673 // or are zero if Elements has a null entry. Recast this as a set of
1674 // insertions.
1675 Value *Result = Constant::getNullValue(CI.getType());
1676 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1677 if (!Elements[i]) continue; // Unset element.
1678
1679 Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1680 IC.Builder->getInt32(i));
1681 }
1682
1683 return Result;
1684 }
1685
1686
1687 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1688 /// bitcast. The various long double bitcasts can't get in here.
OptimizeIntToFloatBitCast(BitCastInst & CI,InstCombiner & IC,const DataLayout & DL)1689 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI, InstCombiner &IC,
1690 const DataLayout &DL) {
1691 Value *Src = CI.getOperand(0);
1692 Type *DestTy = CI.getType();
1693
1694 // If this is a bitcast from int to float, check to see if the int is an
1695 // extraction from a vector.
1696 Value *VecInput = nullptr;
1697 // bitcast(trunc(bitcast(somevector)))
1698 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1699 isa<VectorType>(VecInput->getType())) {
1700 VectorType *VecTy = cast<VectorType>(VecInput->getType());
1701 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1702
1703 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1704 // If the element type of the vector doesn't match the result type,
1705 // bitcast it to be a vector type we can extract from.
1706 if (VecTy->getElementType() != DestTy) {
1707 VecTy = VectorType::get(DestTy,
1708 VecTy->getPrimitiveSizeInBits() / DestWidth);
1709 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1710 }
1711
1712 unsigned Elt = 0;
1713 if (DL.isBigEndian())
1714 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
1715 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1716 }
1717 }
1718
1719 // bitcast(trunc(lshr(bitcast(somevector), cst))
1720 ConstantInt *ShAmt = nullptr;
1721 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1722 m_ConstantInt(ShAmt)))) &&
1723 isa<VectorType>(VecInput->getType())) {
1724 VectorType *VecTy = cast<VectorType>(VecInput->getType());
1725 unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1726 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1727 ShAmt->getZExtValue() % DestWidth == 0) {
1728 // If the element type of the vector doesn't match the result type,
1729 // bitcast it to be a vector type we can extract from.
1730 if (VecTy->getElementType() != DestTy) {
1731 VecTy = VectorType::get(DestTy,
1732 VecTy->getPrimitiveSizeInBits() / DestWidth);
1733 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1734 }
1735
1736 unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1737 if (DL.isBigEndian())
1738 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
1739 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1740 }
1741 }
1742 return nullptr;
1743 }
1744
visitBitCast(BitCastInst & CI)1745 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1746 // If the operands are integer typed then apply the integer transforms,
1747 // otherwise just apply the common ones.
1748 Value *Src = CI.getOperand(0);
1749 Type *SrcTy = Src->getType();
1750 Type *DestTy = CI.getType();
1751
1752 // Get rid of casts from one type to the same type. These are useless and can
1753 // be replaced by the operand.
1754 if (DestTy == Src->getType())
1755 return ReplaceInstUsesWith(CI, Src);
1756
1757 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1758 PointerType *SrcPTy = cast<PointerType>(SrcTy);
1759 Type *DstElTy = DstPTy->getElementType();
1760 Type *SrcElTy = SrcPTy->getElementType();
1761
1762 // If we are casting a alloca to a pointer to a type of the same
1763 // size, rewrite the allocation instruction to allocate the "right" type.
1764 // There is no need to modify malloc calls because it is their bitcast that
1765 // needs to be cleaned up.
1766 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1767 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1768 return V;
1769
1770 // If the source and destination are pointers, and this cast is equivalent
1771 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1772 // This can enhance SROA and other transforms that want type-safe pointers.
1773 Constant *ZeroUInt =
1774 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1775 unsigned NumZeros = 0;
1776 while (SrcElTy != DstElTy &&
1777 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1778 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1779 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1780 ++NumZeros;
1781 }
1782
1783 // If we found a path from the src to dest, create the getelementptr now.
1784 if (SrcElTy == DstElTy) {
1785 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1786 return GetElementPtrInst::CreateInBounds(Src, Idxs);
1787 }
1788 }
1789
1790 // Try to optimize int -> float bitcasts.
1791 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1792 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this, DL))
1793 return I;
1794
1795 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1796 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1797 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1798 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1799 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1800 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1801 }
1802
1803 if (isa<IntegerType>(SrcTy)) {
1804 // If this is a cast from an integer to vector, check to see if the input
1805 // is a trunc or zext of a bitcast from vector. If so, we can replace all
1806 // the casts with a shuffle and (potentially) a bitcast.
1807 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1808 CastInst *SrcCast = cast<CastInst>(Src);
1809 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1810 if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1811 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1812 cast<VectorType>(DestTy), *this))
1813 return I;
1814 }
1815
1816 // If the input is an 'or' instruction, we may be doing shifts and ors to
1817 // assemble the elements of the vector manually. Try to rip the code out
1818 // and replace it with insertelements.
1819 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1820 return ReplaceInstUsesWith(CI, V);
1821 }
1822 }
1823
1824 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1825 if (SrcVTy->getNumElements() == 1) {
1826 // If our destination is not a vector, then make this a straight
1827 // scalar-scalar cast.
1828 if (!DestTy->isVectorTy()) {
1829 Value *Elem =
1830 Builder->CreateExtractElement(Src,
1831 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1832 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1833 }
1834
1835 // Otherwise, see if our source is an insert. If so, then use the scalar
1836 // component directly.
1837 if (InsertElementInst *IEI =
1838 dyn_cast<InsertElementInst>(CI.getOperand(0)))
1839 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
1840 DestTy);
1841 }
1842 }
1843
1844 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1845 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
1846 // a bitcast to a vector with the same # elts.
1847 if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1848 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
1849 SVI->getType()->getNumElements() ==
1850 SVI->getOperand(0)->getType()->getVectorNumElements()) {
1851 BitCastInst *Tmp;
1852 // If either of the operands is a cast from CI.getType(), then
1853 // evaluating the shuffle in the casted destination's type will allow
1854 // us to eliminate at least one cast.
1855 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1856 Tmp->getOperand(0)->getType() == DestTy) ||
1857 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1858 Tmp->getOperand(0)->getType() == DestTy)) {
1859 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1860 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1861 // Return a new shuffle vector. Use the same element ID's, as we
1862 // know the vector types match #elts.
1863 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1864 }
1865 }
1866 }
1867
1868 if (SrcTy->isPointerTy())
1869 return commonPointerCastTransforms(CI);
1870 return commonCastTransforms(CI);
1871 }
1872
visitAddrSpaceCast(AddrSpaceCastInst & CI)1873 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
1874 // If the destination pointer element type is not the same as the source's
1875 // first do a bitcast to the destination type, and then the addrspacecast.
1876 // This allows the cast to be exposed to other transforms.
1877 Value *Src = CI.getOperand(0);
1878 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
1879 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
1880
1881 Type *DestElemTy = DestTy->getElementType();
1882 if (SrcTy->getElementType() != DestElemTy) {
1883 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
1884 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
1885 // Handle vectors of pointers.
1886 MidTy = VectorType::get(MidTy, VT->getNumElements());
1887 }
1888
1889 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
1890 return new AddrSpaceCastInst(NewBitCast, CI.getType());
1891 }
1892
1893 return commonPointerCastTransforms(CI);
1894 }
1895