1 //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the interfaces declared in ThreadSafetyCommon.h
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
21 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
22 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
23 #include "clang/Analysis/AnalysisContext.h"
24 #include "clang/Analysis/CFG.h"
25 #include "clang/Basic/OperatorKinds.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/StringRef.h"
31 #include <algorithm>
32 #include <climits>
33 #include <vector>
34 using namespace clang;
35 using namespace threadSafety;
36
37 // From ThreadSafetyUtil.h
getSourceLiteralString(const clang::Expr * CE)38 std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) {
39 switch (CE->getStmtClass()) {
40 case Stmt::IntegerLiteralClass:
41 return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
42 case Stmt::StringLiteralClass: {
43 std::string ret("\"");
44 ret += cast<StringLiteral>(CE)->getString();
45 ret += "\"";
46 return ret;
47 }
48 case Stmt::CharacterLiteralClass:
49 case Stmt::CXXNullPtrLiteralExprClass:
50 case Stmt::GNUNullExprClass:
51 case Stmt::CXXBoolLiteralExprClass:
52 case Stmt::FloatingLiteralClass:
53 case Stmt::ImaginaryLiteralClass:
54 case Stmt::ObjCStringLiteralClass:
55 default:
56 return "#lit";
57 }
58 }
59
60 // Return true if E is a variable that points to an incomplete Phi node.
isIncompletePhi(const til::SExpr * E)61 static bool isIncompletePhi(const til::SExpr *E) {
62 if (const auto *Ph = dyn_cast<til::Phi>(E))
63 return Ph->status() == til::Phi::PH_Incomplete;
64 return false;
65 }
66
67 typedef SExprBuilder::CallingContext CallingContext;
68
69
lookupStmt(const Stmt * S)70 til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
71 auto It = SMap.find(S);
72 if (It != SMap.end())
73 return It->second;
74 return nullptr;
75 }
76
77
buildCFG(CFGWalker & Walker)78 til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
79 Walker.walk(*this);
80 return Scfg;
81 }
82
isCalleeArrow(const Expr * E)83 static bool isCalleeArrow(const Expr *E) {
84 const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
85 return ME ? ME->isArrow() : false;
86 }
87
88
89 /// \brief Translate a clang expression in an attribute to a til::SExpr.
90 /// Constructs the context from D, DeclExp, and SelfDecl.
91 ///
92 /// \param AttrExp The expression to translate.
93 /// \param D The declaration to which the attribute is attached.
94 /// \param DeclExp An expression involving the Decl to which the attribute
95 /// is attached. E.g. the call to a function.
translateAttrExpr(const Expr * AttrExp,const NamedDecl * D,const Expr * DeclExp,VarDecl * SelfDecl)96 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
97 const NamedDecl *D,
98 const Expr *DeclExp,
99 VarDecl *SelfDecl) {
100 // If we are processing a raw attribute expression, with no substitutions.
101 if (!DeclExp)
102 return translateAttrExpr(AttrExp, nullptr);
103
104 CallingContext Ctx(nullptr, D);
105
106 // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
107 // for formal parameters when we call buildMutexID later.
108 if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
109 Ctx.SelfArg = ME->getBase();
110 Ctx.SelfArrow = ME->isArrow();
111 } else if (const CXXMemberCallExpr *CE =
112 dyn_cast<CXXMemberCallExpr>(DeclExp)) {
113 Ctx.SelfArg = CE->getImplicitObjectArgument();
114 Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
115 Ctx.NumArgs = CE->getNumArgs();
116 Ctx.FunArgs = CE->getArgs();
117 } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
118 Ctx.NumArgs = CE->getNumArgs();
119 Ctx.FunArgs = CE->getArgs();
120 } else if (const CXXConstructExpr *CE =
121 dyn_cast<CXXConstructExpr>(DeclExp)) {
122 Ctx.SelfArg = nullptr; // Will be set below
123 Ctx.NumArgs = CE->getNumArgs();
124 Ctx.FunArgs = CE->getArgs();
125 } else if (D && isa<CXXDestructorDecl>(D)) {
126 // There's no such thing as a "destructor call" in the AST.
127 Ctx.SelfArg = DeclExp;
128 }
129
130 // Hack to handle constructors, where self cannot be recovered from
131 // the expression.
132 if (SelfDecl && !Ctx.SelfArg) {
133 DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
134 SelfDecl->getLocation());
135 Ctx.SelfArg = &SelfDRE;
136
137 // If the attribute has no arguments, then assume the argument is "this".
138 if (!AttrExp)
139 return translateAttrExpr(Ctx.SelfArg, nullptr);
140 else // For most attributes.
141 return translateAttrExpr(AttrExp, &Ctx);
142 }
143
144 // If the attribute has no arguments, then assume the argument is "this".
145 if (!AttrExp)
146 return translateAttrExpr(Ctx.SelfArg, nullptr);
147 else // For most attributes.
148 return translateAttrExpr(AttrExp, &Ctx);
149 }
150
151
152 /// \brief Translate a clang expression in an attribute to a til::SExpr.
153 // This assumes a CallingContext has already been created.
translateAttrExpr(const Expr * AttrExp,CallingContext * Ctx)154 CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
155 CallingContext *Ctx) {
156 if (!AttrExp)
157 return CapabilityExpr(nullptr, false);
158
159 if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
160 if (SLit->getString() == StringRef("*"))
161 // The "*" expr is a universal lock, which essentially turns off
162 // checks until it is removed from the lockset.
163 return CapabilityExpr(new (Arena) til::Wildcard(), false);
164 else
165 // Ignore other string literals for now.
166 return CapabilityExpr(nullptr, false);
167 }
168
169 bool Neg = false;
170 if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
171 if (OE->getOperator() == OO_Exclaim) {
172 Neg = true;
173 AttrExp = OE->getArg(0);
174 }
175 }
176 else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
177 if (UO->getOpcode() == UO_LNot) {
178 Neg = true;
179 AttrExp = UO->getSubExpr();
180 }
181 }
182
183 til::SExpr *E = translate(AttrExp, Ctx);
184
185 // Trap mutex expressions like nullptr, or 0.
186 // Any literal value is nonsense.
187 if (!E || isa<til::Literal>(E))
188 return CapabilityExpr(nullptr, false);
189
190 // Hack to deal with smart pointers -- strip off top-level pointer casts.
191 if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
192 if (CE->castOpcode() == til::CAST_objToPtr)
193 return CapabilityExpr(CE->expr(), Neg);
194 }
195 return CapabilityExpr(E, Neg);
196 }
197
198
199
200 // Translate a clang statement or expression to a TIL expression.
201 // Also performs substitution of variables; Ctx provides the context.
202 // Dispatches on the type of S.
translate(const Stmt * S,CallingContext * Ctx)203 til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
204 if (!S)
205 return nullptr;
206
207 // Check if S has already been translated and cached.
208 // This handles the lookup of SSA names for DeclRefExprs here.
209 if (til::SExpr *E = lookupStmt(S))
210 return E;
211
212 switch (S->getStmtClass()) {
213 case Stmt::DeclRefExprClass:
214 return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
215 case Stmt::CXXThisExprClass:
216 return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
217 case Stmt::MemberExprClass:
218 return translateMemberExpr(cast<MemberExpr>(S), Ctx);
219 case Stmt::CallExprClass:
220 return translateCallExpr(cast<CallExpr>(S), Ctx);
221 case Stmt::CXXMemberCallExprClass:
222 return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
223 case Stmt::CXXOperatorCallExprClass:
224 return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
225 case Stmt::UnaryOperatorClass:
226 return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
227 case Stmt::BinaryOperatorClass:
228 case Stmt::CompoundAssignOperatorClass:
229 return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
230
231 case Stmt::ArraySubscriptExprClass:
232 return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
233 case Stmt::ConditionalOperatorClass:
234 return translateAbstractConditionalOperator(
235 cast<ConditionalOperator>(S), Ctx);
236 case Stmt::BinaryConditionalOperatorClass:
237 return translateAbstractConditionalOperator(
238 cast<BinaryConditionalOperator>(S), Ctx);
239
240 // We treat these as no-ops
241 case Stmt::ParenExprClass:
242 return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
243 case Stmt::ExprWithCleanupsClass:
244 return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
245 case Stmt::CXXBindTemporaryExprClass:
246 return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
247
248 // Collect all literals
249 case Stmt::CharacterLiteralClass:
250 case Stmt::CXXNullPtrLiteralExprClass:
251 case Stmt::GNUNullExprClass:
252 case Stmt::CXXBoolLiteralExprClass:
253 case Stmt::FloatingLiteralClass:
254 case Stmt::ImaginaryLiteralClass:
255 case Stmt::IntegerLiteralClass:
256 case Stmt::StringLiteralClass:
257 case Stmt::ObjCStringLiteralClass:
258 return new (Arena) til::Literal(cast<Expr>(S));
259
260 case Stmt::DeclStmtClass:
261 return translateDeclStmt(cast<DeclStmt>(S), Ctx);
262 default:
263 break;
264 }
265 if (const CastExpr *CE = dyn_cast<CastExpr>(S))
266 return translateCastExpr(CE, Ctx);
267
268 return new (Arena) til::Undefined(S);
269 }
270
271
272
translateDeclRefExpr(const DeclRefExpr * DRE,CallingContext * Ctx)273 til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
274 CallingContext *Ctx) {
275 const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
276
277 // Function parameters require substitution and/or renaming.
278 if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
279 const FunctionDecl *FD =
280 cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
281 unsigned I = PV->getFunctionScopeIndex();
282
283 if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
284 // Substitute call arguments for references to function parameters
285 assert(I < Ctx->NumArgs);
286 return translate(Ctx->FunArgs[I], Ctx->Prev);
287 }
288 // Map the param back to the param of the original function declaration
289 // for consistent comparisons.
290 VD = FD->getParamDecl(I);
291 }
292
293 // For non-local variables, treat it as a referenced to a named object.
294 return new (Arena) til::LiteralPtr(VD);
295 }
296
297
translateCXXThisExpr(const CXXThisExpr * TE,CallingContext * Ctx)298 til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
299 CallingContext *Ctx) {
300 // Substitute for 'this'
301 if (Ctx && Ctx->SelfArg)
302 return translate(Ctx->SelfArg, Ctx->Prev);
303 assert(SelfVar && "We have no variable for 'this'!");
304 return SelfVar;
305 }
306
getValueDeclFromSExpr(const til::SExpr * E)307 static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
308 if (auto *V = dyn_cast<til::Variable>(E))
309 return V->clangDecl();
310 if (auto *Ph = dyn_cast<til::Phi>(E))
311 return Ph->clangDecl();
312 if (auto *P = dyn_cast<til::Project>(E))
313 return P->clangDecl();
314 if (auto *L = dyn_cast<til::LiteralPtr>(E))
315 return L->clangDecl();
316 return 0;
317 }
318
hasCppPointerType(const til::SExpr * E)319 static bool hasCppPointerType(const til::SExpr *E) {
320 auto *VD = getValueDeclFromSExpr(E);
321 if (VD && VD->getType()->isPointerType())
322 return true;
323 if (auto *C = dyn_cast<til::Cast>(E))
324 return C->castOpcode() == til::CAST_objToPtr;
325
326 return false;
327 }
328
329 // Grab the very first declaration of virtual method D
getFirstVirtualDecl(const CXXMethodDecl * D)330 static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
331 while (true) {
332 D = D->getCanonicalDecl();
333 CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
334 E = D->end_overridden_methods();
335 if (I == E)
336 return D; // Method does not override anything
337 D = *I; // FIXME: this does not work with multiple inheritance.
338 }
339 return nullptr;
340 }
341
translateMemberExpr(const MemberExpr * ME,CallingContext * Ctx)342 til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
343 CallingContext *Ctx) {
344 til::SExpr *BE = translate(ME->getBase(), Ctx);
345 til::SExpr *E = new (Arena) til::SApply(BE);
346
347 const ValueDecl *D = ME->getMemberDecl();
348 if (auto *VD = dyn_cast<CXXMethodDecl>(D))
349 D = getFirstVirtualDecl(VD);
350
351 til::Project *P = new (Arena) til::Project(E, D);
352 if (hasCppPointerType(BE))
353 P->setArrow(true);
354 return P;
355 }
356
357
translateCallExpr(const CallExpr * CE,CallingContext * Ctx,const Expr * SelfE)358 til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
359 CallingContext *Ctx,
360 const Expr *SelfE) {
361 if (CapabilityExprMode) {
362 // Handle LOCK_RETURNED
363 const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
364 if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
365 CallingContext LRCallCtx(Ctx);
366 LRCallCtx.AttrDecl = CE->getDirectCallee();
367 LRCallCtx.SelfArg = SelfE;
368 LRCallCtx.NumArgs = CE->getNumArgs();
369 LRCallCtx.FunArgs = CE->getArgs();
370 return const_cast<til::SExpr*>(
371 translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
372 }
373 }
374
375 til::SExpr *E = translate(CE->getCallee(), Ctx);
376 for (const auto *Arg : CE->arguments()) {
377 til::SExpr *A = translate(Arg, Ctx);
378 E = new (Arena) til::Apply(E, A);
379 }
380 return new (Arena) til::Call(E, CE);
381 }
382
383
translateCXXMemberCallExpr(const CXXMemberCallExpr * ME,CallingContext * Ctx)384 til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
385 const CXXMemberCallExpr *ME, CallingContext *Ctx) {
386 if (CapabilityExprMode) {
387 // Ignore calls to get() on smart pointers.
388 if (ME->getMethodDecl()->getNameAsString() == "get" &&
389 ME->getNumArgs() == 0) {
390 auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
391 return new (Arena) til::Cast(til::CAST_objToPtr, E);
392 // return E;
393 }
394 }
395 return translateCallExpr(cast<CallExpr>(ME), Ctx,
396 ME->getImplicitObjectArgument());
397 }
398
399
translateCXXOperatorCallExpr(const CXXOperatorCallExpr * OCE,CallingContext * Ctx)400 til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
401 const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
402 if (CapabilityExprMode) {
403 // Ignore operator * and operator -> on smart pointers.
404 OverloadedOperatorKind k = OCE->getOperator();
405 if (k == OO_Star || k == OO_Arrow) {
406 auto *E = translate(OCE->getArg(0), Ctx);
407 return new (Arena) til::Cast(til::CAST_objToPtr, E);
408 // return E;
409 }
410 }
411 return translateCallExpr(cast<CallExpr>(OCE), Ctx);
412 }
413
414
translateUnaryOperator(const UnaryOperator * UO,CallingContext * Ctx)415 til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
416 CallingContext *Ctx) {
417 switch (UO->getOpcode()) {
418 case UO_PostInc:
419 case UO_PostDec:
420 case UO_PreInc:
421 case UO_PreDec:
422 return new (Arena) til::Undefined(UO);
423
424 case UO_AddrOf: {
425 if (CapabilityExprMode) {
426 // interpret &Graph::mu_ as an existential.
427 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
428 if (DRE->getDecl()->isCXXInstanceMember()) {
429 // This is a pointer-to-member expression, e.g. &MyClass::mu_.
430 // We interpret this syntax specially, as a wildcard.
431 auto *W = new (Arena) til::Wildcard();
432 return new (Arena) til::Project(W, DRE->getDecl());
433 }
434 }
435 }
436 // otherwise, & is a no-op
437 return translate(UO->getSubExpr(), Ctx);
438 }
439
440 // We treat these as no-ops
441 case UO_Deref:
442 case UO_Plus:
443 return translate(UO->getSubExpr(), Ctx);
444
445 case UO_Minus:
446 return new (Arena)
447 til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
448 case UO_Not:
449 return new (Arena)
450 til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
451 case UO_LNot:
452 return new (Arena)
453 til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
454
455 // Currently unsupported
456 case UO_Real:
457 case UO_Imag:
458 case UO_Extension:
459 return new (Arena) til::Undefined(UO);
460 }
461 return new (Arena) til::Undefined(UO);
462 }
463
464
translateBinOp(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Reverse)465 til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
466 const BinaryOperator *BO,
467 CallingContext *Ctx, bool Reverse) {
468 til::SExpr *E0 = translate(BO->getLHS(), Ctx);
469 til::SExpr *E1 = translate(BO->getRHS(), Ctx);
470 if (Reverse)
471 return new (Arena) til::BinaryOp(Op, E1, E0);
472 else
473 return new (Arena) til::BinaryOp(Op, E0, E1);
474 }
475
476
translateBinAssign(til::TIL_BinaryOpcode Op,const BinaryOperator * BO,CallingContext * Ctx,bool Assign)477 til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
478 const BinaryOperator *BO,
479 CallingContext *Ctx,
480 bool Assign) {
481 const Expr *LHS = BO->getLHS();
482 const Expr *RHS = BO->getRHS();
483 til::SExpr *E0 = translate(LHS, Ctx);
484 til::SExpr *E1 = translate(RHS, Ctx);
485
486 const ValueDecl *VD = nullptr;
487 til::SExpr *CV = nullptr;
488 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
489 VD = DRE->getDecl();
490 CV = lookupVarDecl(VD);
491 }
492
493 if (!Assign) {
494 til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
495 E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
496 E1 = addStatement(E1, nullptr, VD);
497 }
498 if (VD && CV)
499 return updateVarDecl(VD, E1);
500 return new (Arena) til::Store(E0, E1);
501 }
502
503
translateBinaryOperator(const BinaryOperator * BO,CallingContext * Ctx)504 til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
505 CallingContext *Ctx) {
506 switch (BO->getOpcode()) {
507 case BO_PtrMemD:
508 case BO_PtrMemI:
509 return new (Arena) til::Undefined(BO);
510
511 case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
512 case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
513 case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
514 case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
515 case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
516 case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
517 case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
518 case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
519 case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
520 case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
521 case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
522 case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
523 case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
524 case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
525 case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
526 case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
527 case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
528 case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
529
530 case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
531 case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
532 case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
533 case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
534 case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
535 case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
536 case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
537 case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
538 case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
539 case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
540 case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
541
542 case BO_Comma:
543 // The clang CFG should have already processed both sides.
544 return translate(BO->getRHS(), Ctx);
545 }
546 return new (Arena) til::Undefined(BO);
547 }
548
549
translateCastExpr(const CastExpr * CE,CallingContext * Ctx)550 til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
551 CallingContext *Ctx) {
552 clang::CastKind K = CE->getCastKind();
553 switch (K) {
554 case CK_LValueToRValue: {
555 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
556 til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
557 if (E0)
558 return E0;
559 }
560 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
561 return E0;
562 // FIXME!! -- get Load working properly
563 // return new (Arena) til::Load(E0);
564 }
565 case CK_NoOp:
566 case CK_DerivedToBase:
567 case CK_UncheckedDerivedToBase:
568 case CK_ArrayToPointerDecay:
569 case CK_FunctionToPointerDecay: {
570 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
571 return E0;
572 }
573 default: {
574 // FIXME: handle different kinds of casts.
575 til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
576 if (CapabilityExprMode)
577 return E0;
578 return new (Arena) til::Cast(til::CAST_none, E0);
579 }
580 }
581 }
582
583
584 til::SExpr *
translateArraySubscriptExpr(const ArraySubscriptExpr * E,CallingContext * Ctx)585 SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
586 CallingContext *Ctx) {
587 til::SExpr *E0 = translate(E->getBase(), Ctx);
588 til::SExpr *E1 = translate(E->getIdx(), Ctx);
589 return new (Arena) til::ArrayIndex(E0, E1);
590 }
591
592
593 til::SExpr *
translateAbstractConditionalOperator(const AbstractConditionalOperator * CO,CallingContext * Ctx)594 SExprBuilder::translateAbstractConditionalOperator(
595 const AbstractConditionalOperator *CO, CallingContext *Ctx) {
596 auto *C = translate(CO->getCond(), Ctx);
597 auto *T = translate(CO->getTrueExpr(), Ctx);
598 auto *E = translate(CO->getFalseExpr(), Ctx);
599 return new (Arena) til::IfThenElse(C, T, E);
600 }
601
602
603 til::SExpr *
translateDeclStmt(const DeclStmt * S,CallingContext * Ctx)604 SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
605 DeclGroupRef DGrp = S->getDeclGroup();
606 for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
607 if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
608 Expr *E = VD->getInit();
609 til::SExpr* SE = translate(E, Ctx);
610
611 // Add local variables with trivial type to the variable map
612 QualType T = VD->getType();
613 if (T.isTrivialType(VD->getASTContext())) {
614 return addVarDecl(VD, SE);
615 }
616 else {
617 // TODO: add alloca
618 }
619 }
620 }
621 return nullptr;
622 }
623
624
625
626 // If (E) is non-trivial, then add it to the current basic block, and
627 // update the statement map so that S refers to E. Returns a new variable
628 // that refers to E.
629 // If E is trivial returns E.
addStatement(til::SExpr * E,const Stmt * S,const ValueDecl * VD)630 til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
631 const ValueDecl *VD) {
632 if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
633 return E;
634 if (VD)
635 E = new (Arena) til::Variable(E, VD);
636 CurrentInstructions.push_back(E);
637 if (S)
638 insertStmt(S, E);
639 return E;
640 }
641
642
643 // Returns the current value of VD, if known, and nullptr otherwise.
lookupVarDecl(const ValueDecl * VD)644 til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
645 auto It = LVarIdxMap.find(VD);
646 if (It != LVarIdxMap.end()) {
647 assert(CurrentLVarMap[It->second].first == VD);
648 return CurrentLVarMap[It->second].second;
649 }
650 return nullptr;
651 }
652
653
654 // if E is a til::Variable, update its clangDecl.
maybeUpdateVD(til::SExpr * E,const ValueDecl * VD)655 static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
656 if (!E)
657 return;
658 if (til::Variable *V = dyn_cast<til::Variable>(E)) {
659 if (!V->clangDecl())
660 V->setClangDecl(VD);
661 }
662 }
663
664 // Adds a new variable declaration.
addVarDecl(const ValueDecl * VD,til::SExpr * E)665 til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
666 maybeUpdateVD(E, VD);
667 LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
668 CurrentLVarMap.makeWritable();
669 CurrentLVarMap.push_back(std::make_pair(VD, E));
670 return E;
671 }
672
673
674 // Updates a current variable declaration. (E.g. by assignment)
updateVarDecl(const ValueDecl * VD,til::SExpr * E)675 til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
676 maybeUpdateVD(E, VD);
677 auto It = LVarIdxMap.find(VD);
678 if (It == LVarIdxMap.end()) {
679 til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
680 til::SExpr *St = new (Arena) til::Store(Ptr, E);
681 return St;
682 }
683 CurrentLVarMap.makeWritable();
684 CurrentLVarMap.elem(It->second).second = E;
685 return E;
686 }
687
688
689 // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
690 // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
691 // If E == null, this is a backedge and will be set later.
makePhiNodeVar(unsigned i,unsigned NPreds,til::SExpr * E)692 void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
693 unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
694 assert(ArgIndex > 0 && ArgIndex < NPreds);
695
696 til::SExpr *CurrE = CurrentLVarMap[i].second;
697 if (CurrE->block() == CurrentBB) {
698 // We already have a Phi node in the current block,
699 // so just add the new variable to the Phi node.
700 til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
701 assert(Ph && "Expecting Phi node.");
702 if (E)
703 Ph->values()[ArgIndex] = E;
704 return;
705 }
706
707 // Make a new phi node: phi(..., E)
708 // All phi args up to the current index are set to the current value.
709 til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
710 Ph->values().setValues(NPreds, nullptr);
711 for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
712 Ph->values()[PIdx] = CurrE;
713 if (E)
714 Ph->values()[ArgIndex] = E;
715 Ph->setClangDecl(CurrentLVarMap[i].first);
716 // If E is from a back-edge, or either E or CurrE are incomplete, then
717 // mark this node as incomplete; we may need to remove it later.
718 if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
719 Ph->setStatus(til::Phi::PH_Incomplete);
720 }
721
722 // Add Phi node to current block, and update CurrentLVarMap[i]
723 CurrentArguments.push_back(Ph);
724 if (Ph->status() == til::Phi::PH_Incomplete)
725 IncompleteArgs.push_back(Ph);
726
727 CurrentLVarMap.makeWritable();
728 CurrentLVarMap.elem(i).second = Ph;
729 }
730
731
732 // Merge values from Map into the current variable map.
733 // This will construct Phi nodes in the current basic block as necessary.
mergeEntryMap(LVarDefinitionMap Map)734 void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
735 assert(CurrentBlockInfo && "Not processing a block!");
736
737 if (!CurrentLVarMap.valid()) {
738 // Steal Map, using copy-on-write.
739 CurrentLVarMap = std::move(Map);
740 return;
741 }
742 if (CurrentLVarMap.sameAs(Map))
743 return; // Easy merge: maps from different predecessors are unchanged.
744
745 unsigned NPreds = CurrentBB->numPredecessors();
746 unsigned ESz = CurrentLVarMap.size();
747 unsigned MSz = Map.size();
748 unsigned Sz = std::min(ESz, MSz);
749
750 for (unsigned i=0; i<Sz; ++i) {
751 if (CurrentLVarMap[i].first != Map[i].first) {
752 // We've reached the end of variables in common.
753 CurrentLVarMap.makeWritable();
754 CurrentLVarMap.downsize(i);
755 break;
756 }
757 if (CurrentLVarMap[i].second != Map[i].second)
758 makePhiNodeVar(i, NPreds, Map[i].second);
759 }
760 if (ESz > MSz) {
761 CurrentLVarMap.makeWritable();
762 CurrentLVarMap.downsize(Map.size());
763 }
764 }
765
766
767 // Merge a back edge into the current variable map.
768 // This will create phi nodes for all variables in the variable map.
mergeEntryMapBackEdge()769 void SExprBuilder::mergeEntryMapBackEdge() {
770 // We don't have definitions for variables on the backedge, because we
771 // haven't gotten that far in the CFG. Thus, when encountering a back edge,
772 // we conservatively create Phi nodes for all variables. Unnecessary Phi
773 // nodes will be marked as incomplete, and stripped out at the end.
774 //
775 // An Phi node is unnecessary if it only refers to itself and one other
776 // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
777
778 assert(CurrentBlockInfo && "Not processing a block!");
779
780 if (CurrentBlockInfo->HasBackEdges)
781 return;
782 CurrentBlockInfo->HasBackEdges = true;
783
784 CurrentLVarMap.makeWritable();
785 unsigned Sz = CurrentLVarMap.size();
786 unsigned NPreds = CurrentBB->numPredecessors();
787
788 for (unsigned i=0; i < Sz; ++i) {
789 makePhiNodeVar(i, NPreds, nullptr);
790 }
791 }
792
793
794 // Update the phi nodes that were initially created for a back edge
795 // once the variable definitions have been computed.
796 // I.e., merge the current variable map into the phi nodes for Blk.
mergePhiNodesBackEdge(const CFGBlock * Blk)797 void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
798 til::BasicBlock *BB = lookupBlock(Blk);
799 unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
800 assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
801
802 for (til::SExpr *PE : BB->arguments()) {
803 til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
804 assert(Ph && "Expecting Phi Node.");
805 assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
806
807 til::SExpr *E = lookupVarDecl(Ph->clangDecl());
808 assert(E && "Couldn't find local variable for Phi node.");
809 Ph->values()[ArgIndex] = E;
810 }
811 }
812
enterCFG(CFG * Cfg,const NamedDecl * D,const CFGBlock * First)813 void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
814 const CFGBlock *First) {
815 // Perform initial setup operations.
816 unsigned NBlocks = Cfg->getNumBlockIDs();
817 Scfg = new (Arena) til::SCFG(Arena, NBlocks);
818
819 // allocate all basic blocks immediately, to handle forward references.
820 BBInfo.resize(NBlocks);
821 BlockMap.resize(NBlocks, nullptr);
822 // create map from clang blockID to til::BasicBlocks
823 for (auto *B : *Cfg) {
824 auto *BB = new (Arena) til::BasicBlock(Arena);
825 BB->reserveInstructions(B->size());
826 BlockMap[B->getBlockID()] = BB;
827 }
828
829 CurrentBB = lookupBlock(&Cfg->getEntry());
830 auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
831 : cast<FunctionDecl>(D)->parameters();
832 for (auto *Pm : Parms) {
833 QualType T = Pm->getType();
834 if (!T.isTrivialType(Pm->getASTContext()))
835 continue;
836
837 // Add parameters to local variable map.
838 // FIXME: right now we emulate params with loads; that should be fixed.
839 til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
840 til::SExpr *Ld = new (Arena) til::Load(Lp);
841 til::SExpr *V = addStatement(Ld, nullptr, Pm);
842 addVarDecl(Pm, V);
843 }
844 }
845
846
enterCFGBlock(const CFGBlock * B)847 void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
848 // Intialize TIL basic block and add it to the CFG.
849 CurrentBB = lookupBlock(B);
850 CurrentBB->reservePredecessors(B->pred_size());
851 Scfg->add(CurrentBB);
852
853 CurrentBlockInfo = &BBInfo[B->getBlockID()];
854
855 // CurrentLVarMap is moved to ExitMap on block exit.
856 // FIXME: the entry block will hold function parameters.
857 // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
858 }
859
860
handlePredecessor(const CFGBlock * Pred)861 void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
862 // Compute CurrentLVarMap on entry from ExitMaps of predecessors
863
864 CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
865 BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
866 assert(PredInfo->UnprocessedSuccessors > 0);
867
868 if (--PredInfo->UnprocessedSuccessors == 0)
869 mergeEntryMap(std::move(PredInfo->ExitMap));
870 else
871 mergeEntryMap(PredInfo->ExitMap.clone());
872
873 ++CurrentBlockInfo->ProcessedPredecessors;
874 }
875
876
handlePredecessorBackEdge(const CFGBlock * Pred)877 void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
878 mergeEntryMapBackEdge();
879 }
880
881
enterCFGBlockBody(const CFGBlock * B)882 void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
883 // The merge*() methods have created arguments.
884 // Push those arguments onto the basic block.
885 CurrentBB->arguments().reserve(
886 static_cast<unsigned>(CurrentArguments.size()), Arena);
887 for (auto *A : CurrentArguments)
888 CurrentBB->addArgument(A);
889 }
890
891
handleStatement(const Stmt * S)892 void SExprBuilder::handleStatement(const Stmt *S) {
893 til::SExpr *E = translate(S, nullptr);
894 addStatement(E, S);
895 }
896
897
handleDestructorCall(const VarDecl * VD,const CXXDestructorDecl * DD)898 void SExprBuilder::handleDestructorCall(const VarDecl *VD,
899 const CXXDestructorDecl *DD) {
900 til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
901 til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
902 til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
903 til::SExpr *E = new (Arena) til::Call(Ap);
904 addStatement(E, nullptr);
905 }
906
907
908
exitCFGBlockBody(const CFGBlock * B)909 void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
910 CurrentBB->instructions().reserve(
911 static_cast<unsigned>(CurrentInstructions.size()), Arena);
912 for (auto *V : CurrentInstructions)
913 CurrentBB->addInstruction(V);
914
915 // Create an appropriate terminator
916 unsigned N = B->succ_size();
917 auto It = B->succ_begin();
918 if (N == 1) {
919 til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
920 // TODO: set index
921 unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
922 auto *Tm = new (Arena) til::Goto(BB, Idx);
923 CurrentBB->setTerminator(Tm);
924 }
925 else if (N == 2) {
926 til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
927 til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
928 ++It;
929 til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
930 // FIXME: make sure these arent' critical edges.
931 auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
932 CurrentBB->setTerminator(Tm);
933 }
934 }
935
936
handleSuccessor(const CFGBlock * Succ)937 void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
938 ++CurrentBlockInfo->UnprocessedSuccessors;
939 }
940
941
handleSuccessorBackEdge(const CFGBlock * Succ)942 void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
943 mergePhiNodesBackEdge(Succ);
944 ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
945 }
946
947
exitCFGBlock(const CFGBlock * B)948 void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
949 CurrentArguments.clear();
950 CurrentInstructions.clear();
951 CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
952 CurrentBB = nullptr;
953 CurrentBlockInfo = nullptr;
954 }
955
956
exitCFG(const CFGBlock * Last)957 void SExprBuilder::exitCFG(const CFGBlock *Last) {
958 for (auto *Ph : IncompleteArgs) {
959 if (Ph->status() == til::Phi::PH_Incomplete)
960 simplifyIncompleteArg(Ph);
961 }
962
963 CurrentArguments.clear();
964 CurrentInstructions.clear();
965 IncompleteArgs.clear();
966 }
967
968
969 /*
970 void printSCFG(CFGWalker &Walker) {
971 llvm::BumpPtrAllocator Bpa;
972 til::MemRegionRef Arena(&Bpa);
973 SExprBuilder SxBuilder(Arena);
974 til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
975 TILPrinter::print(Scfg, llvm::errs());
976 }
977 */
978