1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17
18 #include "fault_handler.h"
19
20 #include <sys/ucontext.h>
21
22 #include "art_method-inl.h"
23 #include "base/macros.h"
24 #include "globals.h"
25 #include "base/logging.h"
26 #include "base/hex_dump.h"
27 #include "thread.h"
28 #include "thread-inl.h"
29
30 #if defined(__APPLE__)
31 #define ucontext __darwin_ucontext
32
33 #if defined(__x86_64__)
34 // 64 bit mac build.
35 #define CTX_ESP uc_mcontext->__ss.__rsp
36 #define CTX_EIP uc_mcontext->__ss.__rip
37 #define CTX_EAX uc_mcontext->__ss.__rax
38 #define CTX_METHOD uc_mcontext->__ss.__rdi
39 #define CTX_JMP_BUF uc_mcontext->__ss.__rdi
40 #else
41 // 32 bit mac build.
42 #define CTX_ESP uc_mcontext->__ss.__esp
43 #define CTX_EIP uc_mcontext->__ss.__eip
44 #define CTX_EAX uc_mcontext->__ss.__eax
45 #define CTX_METHOD uc_mcontext->__ss.__eax
46 #define CTX_JMP_BUF uc_mcontext->__ss.__eax
47 #endif
48
49 #elif defined(__x86_64__)
50 // 64 bit linux build.
51 #define CTX_ESP uc_mcontext.gregs[REG_RSP]
52 #define CTX_EIP uc_mcontext.gregs[REG_RIP]
53 #define CTX_EAX uc_mcontext.gregs[REG_RAX]
54 #define CTX_METHOD uc_mcontext.gregs[REG_RDI]
55 #define CTX_RDI uc_mcontext.gregs[REG_RDI]
56 #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
57 #else
58 // 32 bit linux build.
59 #define CTX_ESP uc_mcontext.gregs[REG_ESP]
60 #define CTX_EIP uc_mcontext.gregs[REG_EIP]
61 #define CTX_EAX uc_mcontext.gregs[REG_EAX]
62 #define CTX_METHOD uc_mcontext.gregs[REG_EAX]
63 #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
64 #endif
65
66 //
67 // X86 (and X86_64) specific fault handler functions.
68 //
69
70 namespace art {
71
72 #if defined(__APPLE__) && defined(__x86_64__)
73 // mac symbols have a prefix of _ on x86_64
74 extern "C" void _art_quick_throw_null_pointer_exception();
75 extern "C" void _art_quick_throw_stack_overflow();
76 extern "C" void _art_quick_test_suspend();
77 #define EXT_SYM(sym) _ ## sym
78 #else
79 extern "C" void art_quick_throw_null_pointer_exception();
80 extern "C" void art_quick_throw_stack_overflow();
81 extern "C" void art_quick_test_suspend();
82 #define EXT_SYM(sym) sym
83 #endif
84
85 // Note this is different from the others (no underscore on 64 bit mac) due to
86 // the way the symbol is defined in the .S file.
87 // TODO: fix the symbols for 64 bit mac - there is a double underscore prefix for some
88 // of them.
89 extern "C" void art_nested_signal_return();
90
91 // Get the size of an instruction in bytes.
92 // Return 0 if the instruction is not handled.
GetInstructionSize(const uint8_t * pc)93 static uint32_t GetInstructionSize(const uint8_t* pc) {
94 #if defined(__x86_64)
95 const bool x86_64 = true;
96 #else
97 const bool x86_64 = false;
98 #endif
99
100 const uint8_t* startpc = pc;
101
102 uint8_t opcode = *pc++;
103 uint8_t modrm;
104 bool has_modrm = false;
105 bool two_byte = false;
106 uint32_t displacement_size = 0;
107 uint32_t immediate_size = 0;
108 bool operand_size_prefix = false;
109
110 // Prefixes.
111 while (true) {
112 bool prefix_present = false;
113 switch (opcode) {
114 // Group 3
115 case 0x66:
116 operand_size_prefix = true;
117 FALLTHROUGH_INTENDED;
118
119 // Group 1
120 case 0xf0:
121 case 0xf2:
122 case 0xf3:
123
124 // Group 2
125 case 0x2e:
126 case 0x36:
127 case 0x3e:
128 case 0x26:
129 case 0x64:
130 case 0x65:
131
132 // Group 4
133 case 0x67:
134 opcode = *pc++;
135 prefix_present = true;
136 break;
137 }
138 if (!prefix_present) {
139 break;
140 }
141 }
142
143 if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
144 opcode = *pc++;
145 }
146
147 if (opcode == 0x0f) {
148 // Two byte opcode
149 two_byte = true;
150 opcode = *pc++;
151 }
152
153 bool unhandled_instruction = false;
154
155 if (two_byte) {
156 switch (opcode) {
157 case 0x10: // vmovsd/ss
158 case 0x11: // vmovsd/ss
159 case 0xb6: // movzx
160 case 0xb7:
161 case 0xbe: // movsx
162 case 0xbf:
163 modrm = *pc++;
164 has_modrm = true;
165 break;
166 default:
167 unhandled_instruction = true;
168 break;
169 }
170 } else {
171 switch (opcode) {
172 case 0x88: // mov byte
173 case 0x89: // mov
174 case 0x8b:
175 case 0x38: // cmp with memory.
176 case 0x39:
177 case 0x3a:
178 case 0x3b:
179 case 0x3c:
180 case 0x3d:
181 case 0x85: // test.
182 modrm = *pc++;
183 has_modrm = true;
184 break;
185
186 case 0x80: // group 1, byte immediate.
187 case 0x83:
188 case 0xc6:
189 modrm = *pc++;
190 has_modrm = true;
191 immediate_size = 1;
192 break;
193
194 case 0x81: // group 1, word immediate.
195 case 0xc7: // mov
196 modrm = *pc++;
197 has_modrm = true;
198 immediate_size = operand_size_prefix ? 2 : 4;
199 break;
200
201 default:
202 unhandled_instruction = true;
203 break;
204 }
205 }
206
207 if (unhandled_instruction) {
208 VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
209 return 0;
210 }
211
212 if (has_modrm) {
213 uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
214
215 // Check for SIB.
216 if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
217 ++pc; // SIB
218 }
219
220 switch (mod) {
221 case 0U /* 0b00 */: break;
222 case 1U /* 0b01 */: displacement_size = 1; break;
223 case 2U /* 0b10 */: displacement_size = 4; break;
224 case 3U /* 0b11 */:
225 break;
226 }
227 }
228
229 // Skip displacement and immediate.
230 pc += displacement_size + immediate_size;
231
232 VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
233 return pc - startpc;
234 }
235
HandleNestedSignal(int,siginfo_t *,void * context)236 void FaultManager::HandleNestedSignal(int, siginfo_t*, void* context) {
237 // For the Intel architectures we need to go to an assembly language
238 // stub. This is because the 32 bit call to longjmp is much different
239 // from the 64 bit ABI call and pushing things onto the stack inside this
240 // handler was unwieldy and ugly. The use of the stub means we can keep
241 // this code the same for both 32 and 64 bit.
242
243 Thread* self = Thread::Current();
244 CHECK(self != nullptr); // This will cause a SIGABRT if self is null.
245
246 struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
247 uc->CTX_JMP_BUF = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState());
248 uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_nested_signal_return);
249 }
250
GetMethodAndReturnPcAndSp(siginfo_t * siginfo,void * context,ArtMethod ** out_method,uintptr_t * out_return_pc,uintptr_t * out_sp)251 void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
252 ArtMethod** out_method,
253 uintptr_t* out_return_pc, uintptr_t* out_sp) {
254 struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
255 *out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
256 VLOG(signals) << "sp: " << std::hex << *out_sp;
257 if (*out_sp == 0) {
258 return;
259 }
260
261 // In the case of a stack overflow, the stack is not valid and we can't
262 // get the method from the top of the stack. However it's in EAX(x86)/RDI(x86_64).
263 uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
264 uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
265 #if defined(__x86_64__)
266 reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86_64));
267 #else
268 reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86));
269 #endif
270 if (overflow_addr == fault_addr) {
271 *out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
272 } else {
273 // The method is at the top of the stack.
274 *out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
275 }
276
277 uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
278 VLOG(signals) << HexDump(pc, 32, true, "PC ");
279
280 if (pc == nullptr) {
281 // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
282 *out_method = nullptr;
283 return;
284 }
285
286 uint32_t instr_size = GetInstructionSize(pc);
287 if (instr_size == 0) {
288 // Unknown instruction, tell caller it's not ours.
289 *out_method = nullptr;
290 return;
291 }
292 *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
293 }
294
Action(int,siginfo_t *,void * context)295 bool NullPointerHandler::Action(int, siginfo_t*, void* context) {
296 struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
297 uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
298 uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
299
300 uint32_t instr_size = GetInstructionSize(pc);
301 if (instr_size == 0) {
302 // Unknown instruction, can't really happen.
303 return false;
304 }
305
306 // We need to arrange for the signal handler to return to the null pointer
307 // exception generator. The return address must be the address of the
308 // next instruction (this instruction + instruction size). The return address
309 // is on the stack at the top address of the current frame.
310
311 // Push the return address onto the stack.
312 uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
313 uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
314 *next_sp = retaddr;
315 uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
316
317 uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_null_pointer_exception));
318 VLOG(signals) << "Generating null pointer exception";
319 return true;
320 }
321
322 // A suspend check is done using the following instruction sequence:
323 // (x86)
324 // 0xf720f1df: 648B058C000000 mov eax, fs:[0x8c] ; suspend_trigger
325 // .. some intervening instructions.
326 // 0xf720f1e6: 8500 test eax, [eax]
327 // (x86_64)
328 // 0x7f579de45d9e: 65488B0425A8000000 movq rax, gs:[0xa8] ; suspend_trigger
329 // .. some intervening instructions.
330 // 0x7f579de45da7: 8500 test eax, [eax]
331
332 // The offset from fs is Thread::ThreadSuspendTriggerOffset().
333 // To check for a suspend check, we examine the instructions that caused
334 // the fault.
Action(int,siginfo_t *,void * context)335 bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
336 // These are the instructions to check for. The first one is the mov eax, fs:[xxx]
337 // where xxx is the offset of the suspend trigger.
338 #if defined(__x86_64__)
339 uint32_t trigger = Thread::ThreadSuspendTriggerOffset<8>().Int32Value();
340 #else
341 uint32_t trigger = Thread::ThreadSuspendTriggerOffset<4>().Int32Value();
342 #endif
343
344 VLOG(signals) << "Checking for suspension point";
345 #if defined(__x86_64__)
346 uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
347 static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
348 #else
349 uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
350 static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
351 #endif
352 uint8_t checkinst2[] = {0x85, 0x00};
353
354 struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
355 uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
356 uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
357
358 if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
359 // Second instruction is not correct (test eax,[eax]).
360 VLOG(signals) << "Not a suspension point";
361 return false;
362 }
363
364 // The first instruction can a little bit up the stream due to load hoisting
365 // in the compiler.
366 uint8_t* limit = pc - 100; // Compiler will hoist to a max of 20 instructions.
367 uint8_t* ptr = pc - sizeof(checkinst1);
368 bool found = false;
369 while (ptr > limit) {
370 if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
371 found = true;
372 break;
373 }
374 ptr -= 1;
375 }
376
377 if (found) {
378 VLOG(signals) << "suspend check match";
379
380 // We need to arrange for the signal handler to return to the null pointer
381 // exception generator. The return address must be the address of the
382 // next instruction (this instruction + 2). The return address
383 // is on the stack at the top address of the current frame.
384
385 // Push the return address onto the stack.
386 uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
387 uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
388 *next_sp = retaddr;
389 uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
390
391 uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_test_suspend));
392
393 // Now remove the suspend trigger that caused this fault.
394 Thread::Current()->RemoveSuspendTrigger();
395 VLOG(signals) << "removed suspend trigger invoking test suspend";
396 return true;
397 }
398 VLOG(signals) << "Not a suspend check match, first instruction mismatch";
399 return false;
400 }
401
402 // The stack overflow check is done using the following instruction:
403 // test eax, [esp+ -xxx]
404 // where 'xxx' is the size of the overflow area.
405 //
406 // This is done before any frame is established in the method. The return
407 // address for the previous method is on the stack at ESP.
408
Action(int,siginfo_t * info,void * context)409 bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
410 struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
411 uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
412
413 uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
414 VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
415 VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
416 ", fault_addr: " << fault_addr;
417
418 #if defined(__x86_64__)
419 uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86_64);
420 #else
421 uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86);
422 #endif
423
424 // Check that the fault address is the value expected for a stack overflow.
425 if (fault_addr != overflow_addr) {
426 VLOG(signals) << "Not a stack overflow";
427 return false;
428 }
429
430 VLOG(signals) << "Stack overflow found";
431
432 // Since the compiler puts the implicit overflow
433 // check before the callee save instructions, the SP is already pointing to
434 // the previous frame.
435
436 // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
437 uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_stack_overflow));
438
439 return true;
440 }
441 } // namespace art
442