1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 
18 #include "fault_handler.h"
19 
20 #include <sys/ucontext.h>
21 
22 #include "art_method-inl.h"
23 #include "base/macros.h"
24 #include "globals.h"
25 #include "base/logging.h"
26 #include "base/hex_dump.h"
27 #include "thread.h"
28 #include "thread-inl.h"
29 
30 #if defined(__APPLE__)
31 #define ucontext __darwin_ucontext
32 
33 #if defined(__x86_64__)
34 // 64 bit mac build.
35 #define CTX_ESP uc_mcontext->__ss.__rsp
36 #define CTX_EIP uc_mcontext->__ss.__rip
37 #define CTX_EAX uc_mcontext->__ss.__rax
38 #define CTX_METHOD uc_mcontext->__ss.__rdi
39 #define CTX_JMP_BUF uc_mcontext->__ss.__rdi
40 #else
41 // 32 bit mac build.
42 #define CTX_ESP uc_mcontext->__ss.__esp
43 #define CTX_EIP uc_mcontext->__ss.__eip
44 #define CTX_EAX uc_mcontext->__ss.__eax
45 #define CTX_METHOD uc_mcontext->__ss.__eax
46 #define CTX_JMP_BUF uc_mcontext->__ss.__eax
47 #endif
48 
49 #elif defined(__x86_64__)
50 // 64 bit linux build.
51 #define CTX_ESP uc_mcontext.gregs[REG_RSP]
52 #define CTX_EIP uc_mcontext.gregs[REG_RIP]
53 #define CTX_EAX uc_mcontext.gregs[REG_RAX]
54 #define CTX_METHOD uc_mcontext.gregs[REG_RDI]
55 #define CTX_RDI uc_mcontext.gregs[REG_RDI]
56 #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI]
57 #else
58 // 32 bit linux build.
59 #define CTX_ESP uc_mcontext.gregs[REG_ESP]
60 #define CTX_EIP uc_mcontext.gregs[REG_EIP]
61 #define CTX_EAX uc_mcontext.gregs[REG_EAX]
62 #define CTX_METHOD uc_mcontext.gregs[REG_EAX]
63 #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX]
64 #endif
65 
66 //
67 // X86 (and X86_64) specific fault handler functions.
68 //
69 
70 namespace art {
71 
72 #if defined(__APPLE__) && defined(__x86_64__)
73 // mac symbols have a prefix of _ on x86_64
74 extern "C" void _art_quick_throw_null_pointer_exception();
75 extern "C" void _art_quick_throw_stack_overflow();
76 extern "C" void _art_quick_test_suspend();
77 #define EXT_SYM(sym) _ ## sym
78 #else
79 extern "C" void art_quick_throw_null_pointer_exception();
80 extern "C" void art_quick_throw_stack_overflow();
81 extern "C" void art_quick_test_suspend();
82 #define EXT_SYM(sym) sym
83 #endif
84 
85 // Note this is different from the others (no underscore on 64 bit mac) due to
86 // the way the symbol is defined in the .S file.
87 // TODO: fix the symbols for 64 bit mac - there is a double underscore prefix for some
88 // of them.
89 extern "C" void art_nested_signal_return();
90 
91 // Get the size of an instruction in bytes.
92 // Return 0 if the instruction is not handled.
GetInstructionSize(const uint8_t * pc)93 static uint32_t GetInstructionSize(const uint8_t* pc) {
94 #if defined(__x86_64)
95   const bool x86_64 = true;
96 #else
97   const bool x86_64 = false;
98 #endif
99 
100   const uint8_t* startpc = pc;
101 
102   uint8_t opcode = *pc++;
103   uint8_t modrm;
104   bool has_modrm = false;
105   bool two_byte = false;
106   uint32_t displacement_size = 0;
107   uint32_t immediate_size = 0;
108   bool operand_size_prefix = false;
109 
110   // Prefixes.
111   while (true) {
112     bool prefix_present = false;
113     switch (opcode) {
114       // Group 3
115       case 0x66:
116         operand_size_prefix = true;
117         FALLTHROUGH_INTENDED;
118 
119       // Group 1
120       case 0xf0:
121       case 0xf2:
122       case 0xf3:
123 
124       // Group 2
125       case 0x2e:
126       case 0x36:
127       case 0x3e:
128       case 0x26:
129       case 0x64:
130       case 0x65:
131 
132       // Group 4
133       case 0x67:
134         opcode = *pc++;
135         prefix_present = true;
136         break;
137     }
138     if (!prefix_present) {
139       break;
140     }
141   }
142 
143   if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) {
144     opcode = *pc++;
145   }
146 
147   if (opcode == 0x0f) {
148     // Two byte opcode
149     two_byte = true;
150     opcode = *pc++;
151   }
152 
153   bool unhandled_instruction = false;
154 
155   if (two_byte) {
156     switch (opcode) {
157       case 0x10:        // vmovsd/ss
158       case 0x11:        // vmovsd/ss
159       case 0xb6:        // movzx
160       case 0xb7:
161       case 0xbe:        // movsx
162       case 0xbf:
163         modrm = *pc++;
164         has_modrm = true;
165         break;
166       default:
167         unhandled_instruction = true;
168         break;
169     }
170   } else {
171     switch (opcode) {
172       case 0x88:        // mov byte
173       case 0x89:        // mov
174       case 0x8b:
175       case 0x38:        // cmp with memory.
176       case 0x39:
177       case 0x3a:
178       case 0x3b:
179       case 0x3c:
180       case 0x3d:
181       case 0x85:        // test.
182         modrm = *pc++;
183         has_modrm = true;
184         break;
185 
186       case 0x80:        // group 1, byte immediate.
187       case 0x83:
188       case 0xc6:
189         modrm = *pc++;
190         has_modrm = true;
191         immediate_size = 1;
192         break;
193 
194       case 0x81:        // group 1, word immediate.
195       case 0xc7:        // mov
196         modrm = *pc++;
197         has_modrm = true;
198         immediate_size = operand_size_prefix ? 2 : 4;
199         break;
200 
201       default:
202         unhandled_instruction = true;
203         break;
204     }
205   }
206 
207   if (unhandled_instruction) {
208     VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast<int>(opcode);
209     return 0;
210   }
211 
212   if (has_modrm) {
213     uint8_t mod = (modrm >> 6) & 3U /* 0b11 */;
214 
215     // Check for SIB.
216     if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) {
217       ++pc;     // SIB
218     }
219 
220     switch (mod) {
221       case 0U /* 0b00 */: break;
222       case 1U /* 0b01 */: displacement_size = 1; break;
223       case 2U /* 0b10 */: displacement_size = 4; break;
224       case 3U /* 0b11 */:
225         break;
226     }
227   }
228 
229   // Skip displacement and immediate.
230   pc += displacement_size + immediate_size;
231 
232   VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc);
233   return pc - startpc;
234 }
235 
HandleNestedSignal(int,siginfo_t *,void * context)236 void FaultManager::HandleNestedSignal(int, siginfo_t*, void* context) {
237   // For the Intel architectures we need to go to an assembly language
238   // stub.  This is because the 32 bit call to longjmp is much different
239   // from the 64 bit ABI call and pushing things onto the stack inside this
240   // handler was unwieldy and ugly.  The use of the stub means we can keep
241   // this code the same for both 32 and 64 bit.
242 
243   Thread* self = Thread::Current();
244   CHECK(self != nullptr);  // This will cause a SIGABRT if self is null.
245 
246   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
247   uc->CTX_JMP_BUF = reinterpret_cast<uintptr_t>(*self->GetNestedSignalState());
248   uc->CTX_EIP = reinterpret_cast<uintptr_t>(art_nested_signal_return);
249 }
250 
GetMethodAndReturnPcAndSp(siginfo_t * siginfo,void * context,ArtMethod ** out_method,uintptr_t * out_return_pc,uintptr_t * out_sp)251 void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context,
252                                              ArtMethod** out_method,
253                                              uintptr_t* out_return_pc, uintptr_t* out_sp) {
254   struct ucontext* uc = reinterpret_cast<struct ucontext*>(context);
255   *out_sp = static_cast<uintptr_t>(uc->CTX_ESP);
256   VLOG(signals) << "sp: " << std::hex << *out_sp;
257   if (*out_sp == 0) {
258     return;
259   }
260 
261   // In the case of a stack overflow, the stack is not valid and we can't
262   // get the method from the top of the stack.  However it's in EAX(x86)/RDI(x86_64).
263   uintptr_t* fault_addr = reinterpret_cast<uintptr_t*>(siginfo->si_addr);
264   uintptr_t* overflow_addr = reinterpret_cast<uintptr_t*>(
265 #if defined(__x86_64__)
266       reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86_64));
267 #else
268       reinterpret_cast<uint8_t*>(*out_sp) - GetStackOverflowReservedBytes(kX86));
269 #endif
270   if (overflow_addr == fault_addr) {
271     *out_method = reinterpret_cast<ArtMethod*>(uc->CTX_METHOD);
272   } else {
273     // The method is at the top of the stack.
274     *out_method = *reinterpret_cast<ArtMethod**>(*out_sp);
275   }
276 
277   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
278   VLOG(signals) << HexDump(pc, 32, true, "PC ");
279 
280   if (pc == nullptr) {
281     // Somebody jumped to 0x0. Definitely not ours, and will definitely segfault below.
282     *out_method = nullptr;
283     return;
284   }
285 
286   uint32_t instr_size = GetInstructionSize(pc);
287   if (instr_size == 0) {
288     // Unknown instruction, tell caller it's not ours.
289     *out_method = nullptr;
290     return;
291   }
292   *out_return_pc = reinterpret_cast<uintptr_t>(pc + instr_size);
293 }
294 
Action(int,siginfo_t *,void * context)295 bool NullPointerHandler::Action(int, siginfo_t*, void* context) {
296   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
297   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
298   uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
299 
300   uint32_t instr_size = GetInstructionSize(pc);
301   if (instr_size == 0) {
302     // Unknown instruction, can't really happen.
303     return false;
304   }
305 
306   // We need to arrange for the signal handler to return to the null pointer
307   // exception generator.  The return address must be the address of the
308   // next instruction (this instruction + instruction size).  The return address
309   // is on the stack at the top address of the current frame.
310 
311   // Push the return address onto the stack.
312   uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + instr_size);
313   uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
314   *next_sp = retaddr;
315   uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
316 
317   uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_null_pointer_exception));
318   VLOG(signals) << "Generating null pointer exception";
319   return true;
320 }
321 
322 // A suspend check is done using the following instruction sequence:
323 // (x86)
324 // 0xf720f1df:         648B058C000000      mov     eax, fs:[0x8c]  ; suspend_trigger
325 // .. some intervening instructions.
326 // 0xf720f1e6:                   8500      test    eax, [eax]
327 // (x86_64)
328 // 0x7f579de45d9e: 65488B0425A8000000      movq    rax, gs:[0xa8]  ; suspend_trigger
329 // .. some intervening instructions.
330 // 0x7f579de45da7:               8500      test    eax, [eax]
331 
332 // The offset from fs is Thread::ThreadSuspendTriggerOffset().
333 // To check for a suspend check, we examine the instructions that caused
334 // the fault.
Action(int,siginfo_t *,void * context)335 bool SuspensionHandler::Action(int, siginfo_t*, void* context) {
336   // These are the instructions to check for.  The first one is the mov eax, fs:[xxx]
337   // where xxx is the offset of the suspend trigger.
338 #if defined(__x86_64__)
339   uint32_t trigger = Thread::ThreadSuspendTriggerOffset<8>().Int32Value();
340 #else
341   uint32_t trigger = Thread::ThreadSuspendTriggerOffset<4>().Int32Value();
342 #endif
343 
344   VLOG(signals) << "Checking for suspension point";
345 #if defined(__x86_64__)
346   uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast<uint8_t>(trigger & 0xff),
347       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
348 #else
349   uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast<uint8_t>(trigger & 0xff),
350       static_cast<uint8_t>((trigger >> 8) & 0xff), 0, 0};
351 #endif
352   uint8_t checkinst2[] = {0x85, 0x00};
353 
354   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
355   uint8_t* pc = reinterpret_cast<uint8_t*>(uc->CTX_EIP);
356   uint8_t* sp = reinterpret_cast<uint8_t*>(uc->CTX_ESP);
357 
358   if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) {
359     // Second instruction is not correct (test eax,[eax]).
360     VLOG(signals) << "Not a suspension point";
361     return false;
362   }
363 
364   // The first instruction can a little bit up the stream due to load hoisting
365   // in the compiler.
366   uint8_t* limit = pc - 100;   // Compiler will hoist to a max of 20 instructions.
367   uint8_t* ptr = pc - sizeof(checkinst1);
368   bool found = false;
369   while (ptr > limit) {
370     if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) {
371       found = true;
372       break;
373     }
374     ptr -= 1;
375   }
376 
377   if (found) {
378     VLOG(signals) << "suspend check match";
379 
380     // We need to arrange for the signal handler to return to the null pointer
381     // exception generator.  The return address must be the address of the
382     // next instruction (this instruction + 2).  The return address
383     // is on the stack at the top address of the current frame.
384 
385     // Push the return address onto the stack.
386     uintptr_t retaddr = reinterpret_cast<uintptr_t>(pc + 2);
387     uintptr_t* next_sp = reinterpret_cast<uintptr_t*>(sp - sizeof(uintptr_t));
388     *next_sp = retaddr;
389     uc->CTX_ESP = reinterpret_cast<uintptr_t>(next_sp);
390 
391     uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_test_suspend));
392 
393     // Now remove the suspend trigger that caused this fault.
394     Thread::Current()->RemoveSuspendTrigger();
395     VLOG(signals) << "removed suspend trigger invoking test suspend";
396     return true;
397   }
398   VLOG(signals) << "Not a suspend check match, first instruction mismatch";
399   return false;
400 }
401 
402 // The stack overflow check is done using the following instruction:
403 // test eax, [esp+ -xxx]
404 // where 'xxx' is the size of the overflow area.
405 //
406 // This is done before any frame is established in the method.  The return
407 // address for the previous method is on the stack at ESP.
408 
Action(int,siginfo_t * info,void * context)409 bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) {
410   struct ucontext *uc = reinterpret_cast<struct ucontext*>(context);
411   uintptr_t sp = static_cast<uintptr_t>(uc->CTX_ESP);
412 
413   uintptr_t fault_addr = reinterpret_cast<uintptr_t>(info->si_addr);
414   VLOG(signals) << "fault_addr: " << std::hex << fault_addr;
415   VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp <<
416     ", fault_addr: " << fault_addr;
417 
418 #if defined(__x86_64__)
419   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86_64);
420 #else
421   uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(kX86);
422 #endif
423 
424   // Check that the fault address is the value expected for a stack overflow.
425   if (fault_addr != overflow_addr) {
426     VLOG(signals) << "Not a stack overflow";
427     return false;
428   }
429 
430   VLOG(signals) << "Stack overflow found";
431 
432   // Since the compiler puts the implicit overflow
433   // check before the callee save instructions, the SP is already pointing to
434   // the previous frame.
435 
436   // Now arrange for the signal handler to return to art_quick_throw_stack_overflow.
437   uc->CTX_EIP = reinterpret_cast<uintptr_t>(EXT_SYM(art_quick_throw_stack_overflow));
438 
439   return true;
440 }
441 }       // namespace art
442