1 /*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 */
17
18 #include <testUtil.h>
19
20 #include <assert.h>
21 #include <errno.h>
22 #include <math.h>
23 #include <stdarg.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <time.h>
29
30 #include <sys/time.h>
31 #include <sys/wait.h>
32
33 #include <cutils/log.h>
34
35 #define ALEN(a) (sizeof(a) / sizeof(a [0])) // Array length
36 typedef unsigned int bool_t;
37 #define true (0 == 0)
38 #define false (!true)
39
40 #define MAXSTR 200
41
42 static const char *logCatTag;
43 static const unsigned int uSecsPerSec = 1000000;
44 static const unsigned int nSecsPerSec = 1000000000;
45
46 // struct timespec to double
ts2double(const struct timespec * val)47 double ts2double(const struct timespec *val)
48 {
49 double rv;
50
51 rv = val->tv_sec;
52 rv += (double) val->tv_nsec / nSecsPerSec;
53
54 return rv;
55 }
56
57 // struct timeval to double
tv2double(const struct timeval * val)58 double tv2double(const struct timeval *val)
59 {
60 double rv;
61
62 rv = val->tv_sec;
63 rv += (double) val->tv_usec / uSecsPerSec;
64
65 return rv;
66 }
67
68 // double to struct timespec
double2ts(double amt)69 struct timespec double2ts(double amt)
70 {
71 struct timespec rv;
72
73 rv.tv_sec = floor(amt);
74 rv.tv_nsec = (amt - rv.tv_sec) * nSecsPerSec;
75 // TODO: Handle cases where amt is negative
76 while ((unsigned) rv.tv_nsec >= nSecsPerSec) {
77 rv.tv_nsec -= nSecsPerSec;
78 rv.tv_sec++;
79 }
80
81 return rv;
82 }
83
84 // double to struct timeval
double2tv(double amt)85 struct timeval double2tv(double amt)
86 {
87 struct timeval rv;
88
89 rv.tv_sec = floor(amt);
90 rv.tv_usec = (amt - rv.tv_sec) * uSecsPerSec;
91 // TODO: Handle cases where amt is negative
92 while ((unsigned) rv.tv_usec >= uSecsPerSec) {
93 rv.tv_usec -= uSecsPerSec;
94 rv.tv_sec++;
95 }
96
97 return rv;
98 }
99
100 // Delta (difference) between two struct timespec.
101 // It is expected that the time given by the structure pointed to by
102 // second, is later than the time pointed to by first.
tsDelta(const struct timespec * first,const struct timespec * second)103 struct timespec tsDelta(const struct timespec *first,
104 const struct timespec *second)
105 {
106 struct timespec rv;
107
108 assert(first != NULL);
109 assert(second != NULL);
110 assert(first->tv_nsec >= 0 && first->tv_nsec < nSecsPerSec);
111 assert(second->tv_nsec >= 0 && second->tv_nsec < nSecsPerSec);
112 rv.tv_sec = second->tv_sec - first->tv_sec;
113 if (second->tv_nsec >= first->tv_nsec) {
114 rv.tv_nsec = second->tv_nsec - first->tv_nsec;
115 } else {
116 rv.tv_nsec = (second->tv_nsec + nSecsPerSec) - first->tv_nsec;
117 rv.tv_sec--;
118 }
119
120 return rv;
121 }
122
123 // Delta (difference) between two struct timeval.
124 // It is expected that the time given by the structure pointed to by
125 // second, is later than the time pointed to by first.
tvDelta(const struct timeval * first,const struct timeval * second)126 struct timeval tvDelta(const struct timeval *first,
127 const struct timeval *second)
128 {
129 struct timeval rv;
130
131 assert(first != NULL);
132 assert(second != NULL);
133 assert(first->tv_usec >= 0 && first->tv_usec < uSecsPerSec);
134 assert(second->tv_usec >= 0 && second->tv_usec < uSecsPerSec);
135 rv.tv_sec = second->tv_sec - first->tv_sec;
136 if (second->tv_usec >= first->tv_usec) {
137 rv.tv_usec = second->tv_usec - first->tv_usec;
138 } else {
139 rv.tv_usec = (second->tv_usec + uSecsPerSec) - first->tv_usec;
140 rv.tv_sec--;
141 }
142
143 return rv;
144 }
145
testPrint(FILE * stream,const char * fmt,...)146 void testPrint(FILE *stream, const char *fmt, ...)
147 {
148 char line[MAXSTR];
149 va_list args;
150
151 va_start(args, fmt);
152 vsnprintf(line, sizeof(line), fmt, args);
153 if (stream == stderr) {
154 ALOG(LOG_ERROR, logCatTag, "%s", line);
155 } else {
156 ALOG(LOG_INFO, logCatTag, "%s", line);
157 }
158 vfprintf(stream, fmt, args);
159 fputc('\n', stream);
160 }
161
162 // Set tag used while logging to the logcat error interface
testSetLogCatTag(const char * tag)163 void testSetLogCatTag(const char *tag)
164 {
165 logCatTag = tag;
166 }
167
168 // Obtain pointer to current log to logcat error interface tag
testGetLogCatTag(void)169 const char * testGetLogCatTag(void)
170 {
171 return logCatTag;
172 }
173
174 /*
175 * Random
176 *
177 * Returns a pseudo random number in the range [0:2^32-1].
178 *
179 * Precondition: srand48() called to set the seed of
180 * the pseudo random number generator.
181 */
testRand(void)182 uint32_t testRand(void)
183 {
184 uint32_t val;
185
186 // Use lrand48() to obtain 31 bits worth
187 // of randomness.
188 val = lrand48();
189
190 // Make an additional lrand48() call and merge
191 // the randomness into the most significant bits.
192 val ^= lrand48() << 1;
193
194 return val;
195 }
196
197 /*
198 * Random Modulus
199 *
200 * Pseudo randomly returns unsigned integer in the range [0, mod).
201 *
202 * Precondition: srand48() called to set the seed of
203 * the pseudo random number generator.
204 */
testRandMod(uint32_t mod)205 uint32_t testRandMod(uint32_t mod)
206 {
207 // Obtain the random value
208 // Use lrand48() when it would produce a sufficient
209 // number of random bits, otherwise use testRand().
210 const uint32_t lrand48maxVal = ((uint32_t) 1 << 31) - 1;
211 uint32_t val = (mod <= lrand48maxVal) ? (uint32_t) lrand48() : testRand();
212
213 /*
214 * The contents of individual bytes tend to be less than random
215 * across different seeds. For example, srand48(x) and
216 * srand48(x + n * 4) cause lrand48() to return the same sequence of
217 * least significant bits. For small mod values this can produce
218 * noticably non-random sequnces. For mod values of less than 2
219 * bytes, will use the randomness from all the bytes.
220 */
221 if (mod <= 0x10000) {
222 val = (val & 0xffff) ^ (val >> 16);
223
224 // If mod less than a byte, can further combine down to
225 // a single byte.
226 if (mod <= 0x100) {
227 val = (val & 0xff) ^ (val >> 8);
228 }
229 }
230
231 return val % mod;
232 }
233
234 /*
235 * Random Boolean
236 *
237 * Pseudo randomly returns 0 (false) or 1 (true).
238 *
239 * Precondition: srand48() called to set the seed of
240 * the pseudo random number generator.
241 */
testRandBool(void)242 int testRandBool(void)
243 {
244 return (testRandMod(2));
245 }
246
247 /*
248 * Random Fraction
249 *
250 * Pseudo randomly return a value in the range [0.0, 1.0).
251 *
252 * Precondition: srand48() called to set the seed of
253 * the pseudo random number generator.
254 */
testRandFract(void)255 double testRandFract(void)
256 {
257 return drand48();
258 }
259
260 // Delays for the number of seconds specified by amt or a greater amount.
261 // The amt variable is of type float and thus non-integer amounts
262 // of time can be specified. This function automatically handles cases
263 // where nanosleep(2) returns early due to reception of a signal.
testDelay(float amt)264 void testDelay(float amt)
265 {
266 struct timespec start, current, delta;
267 struct timespec remaining;
268
269 // Get the time at which we started
270 clock_gettime(CLOCK_MONOTONIC, &start);
271
272 do {
273 // Get current time
274 clock_gettime(CLOCK_MONOTONIC, ¤t);
275
276 // How much time is left
277 delta = tsDelta(&start, ¤t);
278 if (ts2double(&delta) > amt) { break; }
279
280 // Request to sleep for the remaining time
281 remaining = double2ts(amt - ts2double(&delta));
282 (void) nanosleep(&remaining, NULL);
283 } while (true);
284 }
285
286 // Delay spins for the number of seconds specified by amt or a greater
287 // amount. The amt variable is of type float and thus non-integer amounts
288 // of time can be specified. Differs from testDelay() in that
289 // testDelaySpin() performs a spin loop, instead of using nanosleep().
testDelaySpin(float amt)290 void testDelaySpin(float amt)
291 {
292 struct timespec start, current, delta;
293
294 // Get the time at which we started
295 clock_gettime(CLOCK_MONOTONIC, &start);
296
297 do {
298 // Get current time
299 clock_gettime(CLOCK_MONOTONIC, ¤t);
300
301 // How much time is left
302 delta = tsDelta(&start, ¤t);
303 if (ts2double(&delta) > amt) { break; }
304 } while (true);
305 }
306
307 /*
308 * Hex Dump
309 *
310 * Displays in hex the contents of the memory starting at the location
311 * pointed to by buf, for the number of bytes given by size.
312 * Each line of output is indented by a number of spaces that
313 * can be set by calling xDumpSetIndent(). It is also possible
314 * to offset the displayed address by an amount set by calling
315 * xDumpSetOffset.
316 */
317 static uint8_t xDumpIndent;
318 static uint64_t xDumpOffset;
319 void
testXDump(const void * buf,size_t size)320 testXDump(const void *buf, size_t size)
321 {
322 const unsigned int bytesPerLine = 16;
323 int rv;
324 char line[MAXSTR];
325 const unsigned char *ptr = buf, *start = buf;
326 size_t num = size;
327 char *linep = line;
328
329 while (num) {
330 if (((ptr - start) % bytesPerLine) == 0) {
331 if (linep != line) {
332 testPrintE("%s", line);
333 }
334 linep = line;
335 rv = snprintf(linep, ALEN(line) - (linep - line),
336 "%*s%06llx:", xDumpIndent, "",
337 (long long) (ptr - start) + xDumpOffset);
338 linep += rv;
339 }
340
341 // Check that there is at least room for 4
342 // more characters. The 4 characters being
343 // a space, 2 hex digits and the terminating
344 // '\0'.
345 assert((ALEN(line) - 4) >= (linep - line));
346 rv = snprintf(linep, ALEN(line) - (linep - line),
347 " %02x", *ptr++);
348 linep += rv;
349 num--;
350 }
351 if (linep != line) {
352 testPrintE("%s", line);
353 }
354 }
355
356 // Set an indent of spaces for each line of hex dump output
357 void
testXDumpSetIndent(uint8_t indent)358 testXDumpSetIndent(uint8_t indent)
359 {
360 xDumpIndent = indent;
361 }
362
363 // Obtain the current hex dump indent amount
364 uint8_t
testXDumpGetIndent(void)365 testXDumpGetIndent(void)
366 {
367 return xDumpIndent;
368 }
369
370 // Set the hex dump address offset amount
371 void
testXDumpSetOffset(uint64_t offset)372 testXDumpSetOffset(uint64_t offset)
373 {
374 xDumpOffset = offset;
375 }
376
377 // Get the current hex dump address offset amount
378 uint64_t
testXDumpGetOffset(void)379 testXDumpGetOffset(void)
380 {
381 return xDumpOffset;
382 }
383
384 /*
385 * Execute Command
386 *
387 * Executes the command pointed to by cmd. Output from the
388 * executed command is captured and sent to LogCat Info. Once
389 * the command has finished execution, it's exit status is captured
390 * and checked for an exit status of zero. Any other exit status
391 * causes diagnostic information to be printed and an immediate
392 * testcase failure.
393 */
testExecCmd(const char * cmd)394 void testExecCmd(const char *cmd)
395 {
396 FILE *fp;
397 int rv;
398 int status;
399 char str[MAXSTR];
400
401 // Display command to be executed
402 testPrintI("cmd: %s", cmd);
403
404 // Execute the command
405 fflush(stdout);
406 if ((fp = popen(cmd, "r")) == NULL) {
407 testPrintE("execCmd popen failed, errno: %i", errno);
408 exit(100);
409 }
410
411 // Obtain and display each line of output from the executed command
412 while (fgets(str, sizeof(str), fp) != NULL) {
413 if ((strlen(str) > 1) && (str[strlen(str) - 1] == '\n')) {
414 str[strlen(str) - 1] = '\0';
415 }
416 testPrintI(" out: %s", str);
417 }
418
419 // Obtain and check return status of executed command.
420 // Fail on non-zero exit status
421 status = pclose(fp);
422 if (!(WIFEXITED(status) && (WEXITSTATUS(status) == 0))) {
423 testPrintE("Unexpected command failure");
424 testPrintE(" status: %#x", status);
425 if (WIFEXITED(status)) {
426 testPrintE("WEXITSTATUS: %i", WEXITSTATUS(status));
427 }
428 if (WIFSIGNALED(status)) {
429 testPrintE("WTERMSIG: %i", WTERMSIG(status));
430 }
431 exit(101);
432 }
433 }
434