1 /* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51 /* In OpenSSH, this file is compiled twice, with different #defines set on the
52 * command line. Since we don't want to stretch the Android build system, in
53 * Android this file is duplicated as umac.c and umac128.c. The latter contains
54 * the #defines (that were set in OpenSSH's Makefile) at the top of the
55 * file. */
56
57 /* ---------------------------------------------------------------------- */
58 /* --- User Switches ---------------------------------------------------- */
59 /* ---------------------------------------------------------------------- */
60
61 #ifndef UMAC_OUTPUT_LEN
62 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
63 #endif
64
65 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
66 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
67 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
68 #endif
69
70 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
71 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
72 /* #define SSE2 0 Is SSE2 is available? */
73 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
74 /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
75
76 /* ---------------------------------------------------------------------- */
77 /* -- Global Includes --------------------------------------------------- */
78 /* ---------------------------------------------------------------------- */
79
80 #include "includes.h"
81 #include <sys/types.h>
82 #include <string.h>
83 #include <stdio.h>
84 #include <stdlib.h>
85 #include <stddef.h>
86
87 #include "xmalloc.h"
88 #include "umac.h"
89 #include "misc.h"
90
91 /* ---------------------------------------------------------------------- */
92 /* --- Primitive Data Types --- */
93 /* ---------------------------------------------------------------------- */
94
95 /* The following assumptions may need change on your system */
96 typedef u_int8_t UINT8; /* 1 byte */
97 typedef u_int16_t UINT16; /* 2 byte */
98 typedef u_int32_t UINT32; /* 4 byte */
99 typedef u_int64_t UINT64; /* 8 bytes */
100 typedef unsigned int UWORD; /* Register */
101
102 /* ---------------------------------------------------------------------- */
103 /* --- Constants -------------------------------------------------------- */
104 /* ---------------------------------------------------------------------- */
105
106 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
107
108 /* Message "words" are read from memory in an endian-specific manner. */
109 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
110 /* be set true if the host computer is little-endian. */
111
112 #if BYTE_ORDER == LITTLE_ENDIAN
113 #define __LITTLE_ENDIAN__ 1
114 #else
115 #define __LITTLE_ENDIAN__ 0
116 #endif
117
118 /* ---------------------------------------------------------------------- */
119 /* ---------------------------------------------------------------------- */
120 /* ----- Architecture Specific ------------------------------------------ */
121 /* ---------------------------------------------------------------------- */
122 /* ---------------------------------------------------------------------- */
123
124
125 /* ---------------------------------------------------------------------- */
126 /* ---------------------------------------------------------------------- */
127 /* ----- Primitive Routines --------------------------------------------- */
128 /* ---------------------------------------------------------------------- */
129 /* ---------------------------------------------------------------------- */
130
131
132 /* ---------------------------------------------------------------------- */
133 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
134 /* ---------------------------------------------------------------------- */
135
136 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
137
138 /* ---------------------------------------------------------------------- */
139 /* --- Endian Conversion --- Forcing assembly on some platforms */
140 /* ---------------------------------------------------------------------- */
141
142 #if (__LITTLE_ENDIAN__)
143 #define LOAD_UINT32_REVERSED(p) get_u32(p)
144 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
145 #else
146 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
147 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
148 #endif
149
150 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
151 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
152
153 /* ---------------------------------------------------------------------- */
154 /* ---------------------------------------------------------------------- */
155 /* ----- Begin KDF & PDF Section ---------------------------------------- */
156 /* ---------------------------------------------------------------------- */
157 /* ---------------------------------------------------------------------- */
158
159 /* UMAC uses AES with 16 byte block and key lengths */
160 #define AES_BLOCK_LEN 16
161
162 /* OpenSSL's AES */
163 #ifdef WITH_OPENSSL
164 #include "openbsd-compat/openssl-compat.h"
165 #ifndef USE_BUILTIN_RIJNDAEL
166 # include <openssl/aes.h>
167 #endif
168 typedef AES_KEY aes_int_key[1];
169 #define aes_encryption(in,out,int_key) \
170 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
171 #define aes_key_setup(key,int_key) \
172 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
173 #else
174 #include "rijndael.h"
175 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
176 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
177 #define aes_encryption(in,out,int_key) \
178 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
179 #define aes_key_setup(key,int_key) \
180 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
181 UMAC_KEY_LEN*8)
182 #endif
183
184 /* The user-supplied UMAC key is stretched using AES in a counter
185 * mode to supply all random bits needed by UMAC. The kdf function takes
186 * an AES internal key representation 'key' and writes a stream of
187 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
188 * 'ndx' causes a distinct byte stream.
189 */
kdf(void * bufp,aes_int_key key,UINT8 ndx,int nbytes)190 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
191 {
192 UINT8 in_buf[AES_BLOCK_LEN] = {0};
193 UINT8 out_buf[AES_BLOCK_LEN];
194 UINT8 *dst_buf = (UINT8 *)bufp;
195 int i;
196
197 /* Setup the initial value */
198 in_buf[AES_BLOCK_LEN-9] = ndx;
199 in_buf[AES_BLOCK_LEN-1] = i = 1;
200
201 while (nbytes >= AES_BLOCK_LEN) {
202 aes_encryption(in_buf, out_buf, key);
203 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
204 in_buf[AES_BLOCK_LEN-1] = ++i;
205 nbytes -= AES_BLOCK_LEN;
206 dst_buf += AES_BLOCK_LEN;
207 }
208 if (nbytes) {
209 aes_encryption(in_buf, out_buf, key);
210 memcpy(dst_buf,out_buf,nbytes);
211 }
212 }
213
214 /* The final UHASH result is XOR'd with the output of a pseudorandom
215 * function. Here, we use AES to generate random output and
216 * xor the appropriate bytes depending on the last bits of nonce.
217 * This scheme is optimized for sequential, increasing big-endian nonces.
218 */
219
220 typedef struct {
221 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
222 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
223 aes_int_key prf_key; /* Expanded AES key for PDF */
224 } pdf_ctx;
225
pdf_init(pdf_ctx * pc,aes_int_key prf_key)226 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
227 {
228 UINT8 buf[UMAC_KEY_LEN];
229
230 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
231 aes_key_setup(buf, pc->prf_key);
232
233 /* Initialize pdf and cache */
234 memset(pc->nonce, 0, sizeof(pc->nonce));
235 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
236 }
237
pdf_gen_xor(pdf_ctx * pc,const UINT8 nonce[8],UINT8 buf[8])238 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
239 {
240 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
241 * of the AES output. If last time around we returned the ndx-1st
242 * element, then we may have the result in the cache already.
243 */
244
245 #if (UMAC_OUTPUT_LEN == 4)
246 #define LOW_BIT_MASK 3
247 #elif (UMAC_OUTPUT_LEN == 8)
248 #define LOW_BIT_MASK 1
249 #elif (UMAC_OUTPUT_LEN > 8)
250 #define LOW_BIT_MASK 0
251 #endif
252 union {
253 UINT8 tmp_nonce_lo[4];
254 UINT32 align;
255 } t;
256 #if LOW_BIT_MASK != 0
257 int ndx = nonce[7] & LOW_BIT_MASK;
258 #endif
259 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
260 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
261
262 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
263 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
264 {
265 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
266 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
267 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
268 }
269
270 #if (UMAC_OUTPUT_LEN == 4)
271 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
272 #elif (UMAC_OUTPUT_LEN == 8)
273 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
274 #elif (UMAC_OUTPUT_LEN == 12)
275 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
276 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
277 #elif (UMAC_OUTPUT_LEN == 16)
278 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
279 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
280 #endif
281 }
282
283 /* ---------------------------------------------------------------------- */
284 /* ---------------------------------------------------------------------- */
285 /* ----- Begin NH Hash Section ------------------------------------------ */
286 /* ---------------------------------------------------------------------- */
287 /* ---------------------------------------------------------------------- */
288
289 /* The NH-based hash functions used in UMAC are described in the UMAC paper
290 * and specification, both of which can be found at the UMAC website.
291 * The interface to this implementation has two
292 * versions, one expects the entire message being hashed to be passed
293 * in a single buffer and returns the hash result immediately. The second
294 * allows the message to be passed in a sequence of buffers. In the
295 * muliple-buffer interface, the client calls the routine nh_update() as
296 * many times as necessary. When there is no more data to be fed to the
297 * hash, the client calls nh_final() which calculates the hash output.
298 * Before beginning another hash calculation the nh_reset() routine
299 * must be called. The single-buffer routine, nh(), is equivalent to
300 * the sequence of calls nh_update() and nh_final(); however it is
301 * optimized and should be prefered whenever the multiple-buffer interface
302 * is not necessary. When using either interface, it is the client's
303 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
304 *
305 * The routine nh_init() initializes the nh_ctx data structure and
306 * must be called once, before any other PDF routine.
307 */
308
309 /* The "nh_aux" routines do the actual NH hashing work. They
310 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
311 * produce output for all STREAMS NH iterations in one call,
312 * allowing the parallel implementation of the streams.
313 */
314
315 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
316 #define L1_KEY_LEN 1024 /* Internal key bytes */
317 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
318 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
319 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
320 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
321
322 typedef struct {
323 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
324 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
325 int next_data_empty; /* Bookeeping variable for data buffer. */
326 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
327 UINT64 state[STREAMS]; /* on-line state */
328 } nh_ctx;
329
330
331 #if (UMAC_OUTPUT_LEN == 4)
332
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)333 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
334 /* NH hashing primitive. Previous (partial) hash result is loaded and
335 * then stored via hp pointer. The length of the data pointed at by "dp",
336 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
337 * is expected to be endian compensated in memory at key setup.
338 */
339 {
340 UINT64 h;
341 UWORD c = dlen / 32;
342 UINT32 *k = (UINT32 *)kp;
343 const UINT32 *d = (const UINT32 *)dp;
344 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
345 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
346
347 h = *((UINT64 *)hp);
348 do {
349 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
350 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
351 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
352 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
353 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
354 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
355 h += MUL64((k0 + d0), (k4 + d4));
356 h += MUL64((k1 + d1), (k5 + d5));
357 h += MUL64((k2 + d2), (k6 + d6));
358 h += MUL64((k3 + d3), (k7 + d7));
359
360 d += 8;
361 k += 8;
362 } while (--c);
363 *((UINT64 *)hp) = h;
364 }
365
366 #elif (UMAC_OUTPUT_LEN == 8)
367
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)368 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
369 /* Same as previous nh_aux, but two streams are handled in one pass,
370 * reading and writing 16 bytes of hash-state per call.
371 */
372 {
373 UINT64 h1,h2;
374 UWORD c = dlen / 32;
375 UINT32 *k = (UINT32 *)kp;
376 const UINT32 *d = (const UINT32 *)dp;
377 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
378 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
379 k8,k9,k10,k11;
380
381 h1 = *((UINT64 *)hp);
382 h2 = *((UINT64 *)hp + 1);
383 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
384 do {
385 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
386 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
387 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
388 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
389 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
390 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
391
392 h1 += MUL64((k0 + d0), (k4 + d4));
393 h2 += MUL64((k4 + d0), (k8 + d4));
394
395 h1 += MUL64((k1 + d1), (k5 + d5));
396 h2 += MUL64((k5 + d1), (k9 + d5));
397
398 h1 += MUL64((k2 + d2), (k6 + d6));
399 h2 += MUL64((k6 + d2), (k10 + d6));
400
401 h1 += MUL64((k3 + d3), (k7 + d7));
402 h2 += MUL64((k7 + d3), (k11 + d7));
403
404 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
405
406 d += 8;
407 k += 8;
408 } while (--c);
409 ((UINT64 *)hp)[0] = h1;
410 ((UINT64 *)hp)[1] = h2;
411 }
412
413 #elif (UMAC_OUTPUT_LEN == 12)
414
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)415 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
416 /* Same as previous nh_aux, but two streams are handled in one pass,
417 * reading and writing 24 bytes of hash-state per call.
418 */
419 {
420 UINT64 h1,h2,h3;
421 UWORD c = dlen / 32;
422 UINT32 *k = (UINT32 *)kp;
423 const UINT32 *d = (const UINT32 *)dp;
424 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
425 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
426 k8,k9,k10,k11,k12,k13,k14,k15;
427
428 h1 = *((UINT64 *)hp);
429 h2 = *((UINT64 *)hp + 1);
430 h3 = *((UINT64 *)hp + 2);
431 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
432 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
433 do {
434 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
435 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
436 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
437 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
438 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
439 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
440
441 h1 += MUL64((k0 + d0), (k4 + d4));
442 h2 += MUL64((k4 + d0), (k8 + d4));
443 h3 += MUL64((k8 + d0), (k12 + d4));
444
445 h1 += MUL64((k1 + d1), (k5 + d5));
446 h2 += MUL64((k5 + d1), (k9 + d5));
447 h3 += MUL64((k9 + d1), (k13 + d5));
448
449 h1 += MUL64((k2 + d2), (k6 + d6));
450 h2 += MUL64((k6 + d2), (k10 + d6));
451 h3 += MUL64((k10 + d2), (k14 + d6));
452
453 h1 += MUL64((k3 + d3), (k7 + d7));
454 h2 += MUL64((k7 + d3), (k11 + d7));
455 h3 += MUL64((k11 + d3), (k15 + d7));
456
457 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
458 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
459
460 d += 8;
461 k += 8;
462 } while (--c);
463 ((UINT64 *)hp)[0] = h1;
464 ((UINT64 *)hp)[1] = h2;
465 ((UINT64 *)hp)[2] = h3;
466 }
467
468 #elif (UMAC_OUTPUT_LEN == 16)
469
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)470 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
471 /* Same as previous nh_aux, but two streams are handled in one pass,
472 * reading and writing 24 bytes of hash-state per call.
473 */
474 {
475 UINT64 h1,h2,h3,h4;
476 UWORD c = dlen / 32;
477 UINT32 *k = (UINT32 *)kp;
478 const UINT32 *d = (const UINT32 *)dp;
479 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
480 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
481 k8,k9,k10,k11,k12,k13,k14,k15,
482 k16,k17,k18,k19;
483
484 h1 = *((UINT64 *)hp);
485 h2 = *((UINT64 *)hp + 1);
486 h3 = *((UINT64 *)hp + 2);
487 h4 = *((UINT64 *)hp + 3);
488 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
489 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
490 do {
491 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
492 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
493 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
494 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
495 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
496 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
497 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
498
499 h1 += MUL64((k0 + d0), (k4 + d4));
500 h2 += MUL64((k4 + d0), (k8 + d4));
501 h3 += MUL64((k8 + d0), (k12 + d4));
502 h4 += MUL64((k12 + d0), (k16 + d4));
503
504 h1 += MUL64((k1 + d1), (k5 + d5));
505 h2 += MUL64((k5 + d1), (k9 + d5));
506 h3 += MUL64((k9 + d1), (k13 + d5));
507 h4 += MUL64((k13 + d1), (k17 + d5));
508
509 h1 += MUL64((k2 + d2), (k6 + d6));
510 h2 += MUL64((k6 + d2), (k10 + d6));
511 h3 += MUL64((k10 + d2), (k14 + d6));
512 h4 += MUL64((k14 + d2), (k18 + d6));
513
514 h1 += MUL64((k3 + d3), (k7 + d7));
515 h2 += MUL64((k7 + d3), (k11 + d7));
516 h3 += MUL64((k11 + d3), (k15 + d7));
517 h4 += MUL64((k15 + d3), (k19 + d7));
518
519 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
520 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
521 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
522
523 d += 8;
524 k += 8;
525 } while (--c);
526 ((UINT64 *)hp)[0] = h1;
527 ((UINT64 *)hp)[1] = h2;
528 ((UINT64 *)hp)[2] = h3;
529 ((UINT64 *)hp)[3] = h4;
530 }
531
532 /* ---------------------------------------------------------------------- */
533 #endif /* UMAC_OUTPUT_LENGTH */
534 /* ---------------------------------------------------------------------- */
535
536
537 /* ---------------------------------------------------------------------- */
538
nh_transform(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)539 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
540 /* This function is a wrapper for the primitive NH hash functions. It takes
541 * as argument "hc" the current hash context and a buffer which must be a
542 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
543 * appropriately according to how much message has been hashed already.
544 */
545 {
546 UINT8 *key;
547
548 key = hc->nh_key + hc->bytes_hashed;
549 nh_aux(key, buf, hc->state, nbytes);
550 }
551
552 /* ---------------------------------------------------------------------- */
553
554 #if (__LITTLE_ENDIAN__)
endian_convert(void * buf,UWORD bpw,UINT32 num_bytes)555 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
556 /* We endian convert the keys on little-endian computers to */
557 /* compensate for the lack of big-endian memory reads during hashing. */
558 {
559 UWORD iters = num_bytes / bpw;
560 if (bpw == 4) {
561 UINT32 *p = (UINT32 *)buf;
562 do {
563 *p = LOAD_UINT32_REVERSED(p);
564 p++;
565 } while (--iters);
566 } else if (bpw == 8) {
567 UINT32 *p = (UINT32 *)buf;
568 UINT32 t;
569 do {
570 t = LOAD_UINT32_REVERSED(p+1);
571 p[1] = LOAD_UINT32_REVERSED(p);
572 p[0] = t;
573 p += 2;
574 } while (--iters);
575 }
576 }
577 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
578 #else
579 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
580 #endif
581
582 /* ---------------------------------------------------------------------- */
583
nh_reset(nh_ctx * hc)584 static void nh_reset(nh_ctx *hc)
585 /* Reset nh_ctx to ready for hashing of new data */
586 {
587 hc->bytes_hashed = 0;
588 hc->next_data_empty = 0;
589 hc->state[0] = 0;
590 #if (UMAC_OUTPUT_LEN >= 8)
591 hc->state[1] = 0;
592 #endif
593 #if (UMAC_OUTPUT_LEN >= 12)
594 hc->state[2] = 0;
595 #endif
596 #if (UMAC_OUTPUT_LEN == 16)
597 hc->state[3] = 0;
598 #endif
599
600 }
601
602 /* ---------------------------------------------------------------------- */
603
nh_init(nh_ctx * hc,aes_int_key prf_key)604 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
605 /* Generate nh_key, endian convert and reset to be ready for hashing. */
606 {
607 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
608 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
609 nh_reset(hc);
610 }
611
612 /* ---------------------------------------------------------------------- */
613
nh_update(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)614 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
615 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
616 /* even multiple of HASH_BUF_BYTES. */
617 {
618 UINT32 i,j;
619
620 j = hc->next_data_empty;
621 if ((j + nbytes) >= HASH_BUF_BYTES) {
622 if (j) {
623 i = HASH_BUF_BYTES - j;
624 memcpy(hc->data+j, buf, i);
625 nh_transform(hc,hc->data,HASH_BUF_BYTES);
626 nbytes -= i;
627 buf += i;
628 hc->bytes_hashed += HASH_BUF_BYTES;
629 }
630 if (nbytes >= HASH_BUF_BYTES) {
631 i = nbytes & ~(HASH_BUF_BYTES - 1);
632 nh_transform(hc, buf, i);
633 nbytes -= i;
634 buf += i;
635 hc->bytes_hashed += i;
636 }
637 j = 0;
638 }
639 memcpy(hc->data + j, buf, nbytes);
640 hc->next_data_empty = j + nbytes;
641 }
642
643 /* ---------------------------------------------------------------------- */
644
zero_pad(UINT8 * p,int nbytes)645 static void zero_pad(UINT8 *p, int nbytes)
646 {
647 /* Write "nbytes" of zeroes, beginning at "p" */
648 if (nbytes >= (int)sizeof(UWORD)) {
649 while ((ptrdiff_t)p % sizeof(UWORD)) {
650 *p = 0;
651 nbytes--;
652 p++;
653 }
654 while (nbytes >= (int)sizeof(UWORD)) {
655 *(UWORD *)p = 0;
656 nbytes -= sizeof(UWORD);
657 p += sizeof(UWORD);
658 }
659 }
660 while (nbytes) {
661 *p = 0;
662 nbytes--;
663 p++;
664 }
665 }
666
667 /* ---------------------------------------------------------------------- */
668
nh_final(nh_ctx * hc,UINT8 * result)669 static void nh_final(nh_ctx *hc, UINT8 *result)
670 /* After passing some number of data buffers to nh_update() for integration
671 * into an NH context, nh_final is called to produce a hash result. If any
672 * bytes are in the buffer hc->data, incorporate them into the
673 * NH context. Finally, add into the NH accumulation "state" the total number
674 * of bits hashed. The resulting numbers are written to the buffer "result".
675 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
676 */
677 {
678 int nh_len, nbits;
679
680 if (hc->next_data_empty != 0) {
681 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
682 ~(L1_PAD_BOUNDARY - 1));
683 zero_pad(hc->data + hc->next_data_empty,
684 nh_len - hc->next_data_empty);
685 nh_transform(hc, hc->data, nh_len);
686 hc->bytes_hashed += hc->next_data_empty;
687 } else if (hc->bytes_hashed == 0) {
688 nh_len = L1_PAD_BOUNDARY;
689 zero_pad(hc->data, L1_PAD_BOUNDARY);
690 nh_transform(hc, hc->data, nh_len);
691 }
692
693 nbits = (hc->bytes_hashed << 3);
694 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
695 #if (UMAC_OUTPUT_LEN >= 8)
696 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
697 #endif
698 #if (UMAC_OUTPUT_LEN >= 12)
699 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
700 #endif
701 #if (UMAC_OUTPUT_LEN == 16)
702 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
703 #endif
704 nh_reset(hc);
705 }
706
707 /* ---------------------------------------------------------------------- */
708
nh(nh_ctx * hc,const UINT8 * buf,UINT32 padded_len,UINT32 unpadded_len,UINT8 * result)709 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
710 UINT32 unpadded_len, UINT8 *result)
711 /* All-in-one nh_update() and nh_final() equivalent.
712 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
713 * well aligned
714 */
715 {
716 UINT32 nbits;
717
718 /* Initialize the hash state */
719 nbits = (unpadded_len << 3);
720
721 ((UINT64 *)result)[0] = nbits;
722 #if (UMAC_OUTPUT_LEN >= 8)
723 ((UINT64 *)result)[1] = nbits;
724 #endif
725 #if (UMAC_OUTPUT_LEN >= 12)
726 ((UINT64 *)result)[2] = nbits;
727 #endif
728 #if (UMAC_OUTPUT_LEN == 16)
729 ((UINT64 *)result)[3] = nbits;
730 #endif
731
732 nh_aux(hc->nh_key, buf, result, padded_len);
733 }
734
735 /* ---------------------------------------------------------------------- */
736 /* ---------------------------------------------------------------------- */
737 /* ----- Begin UHASH Section -------------------------------------------- */
738 /* ---------------------------------------------------------------------- */
739 /* ---------------------------------------------------------------------- */
740
741 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
742 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
743 * unless the initial data to be hashed is short. After the polynomial-
744 * layer, an inner-product hash is used to produce the final UHASH output.
745 *
746 * UHASH provides two interfaces, one all-at-once and another where data
747 * buffers are presented sequentially. In the sequential interface, the
748 * UHASH client calls the routine uhash_update() as many times as necessary.
749 * When there is no more data to be fed to UHASH, the client calls
750 * uhash_final() which
751 * calculates the UHASH output. Before beginning another UHASH calculation
752 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
753 * uhash(), is equivalent to the sequence of calls uhash_update() and
754 * uhash_final(); however it is optimized and should be
755 * used whenever the sequential interface is not necessary.
756 *
757 * The routine uhash_init() initializes the uhash_ctx data structure and
758 * must be called once, before any other UHASH routine.
759 */
760
761 /* ---------------------------------------------------------------------- */
762 /* ----- Constants and uhash_ctx ---------------------------------------- */
763 /* ---------------------------------------------------------------------- */
764
765 /* ---------------------------------------------------------------------- */
766 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
767 /* ---------------------------------------------------------------------- */
768
769 /* Primes and masks */
770 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
771 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
772 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
773
774
775 /* ---------------------------------------------------------------------- */
776
777 typedef struct uhash_ctx {
778 nh_ctx hash; /* Hash context for L1 NH hash */
779 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
780 UINT64 poly_accum[STREAMS]; /* poly hash result */
781 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
782 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
783 UINT32 msg_len; /* Total length of data passed */
784 /* to uhash */
785 } uhash_ctx;
786 typedef struct uhash_ctx *uhash_ctx_t;
787
788 /* ---------------------------------------------------------------------- */
789
790
791 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
792 * word at a time. As described in the specification, poly32 and poly64
793 * require keys from special domains. The following implementations exploit
794 * the special domains to avoid overflow. The results are not guaranteed to
795 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
796 * patches any errant values.
797 */
798
poly64(UINT64 cur,UINT64 key,UINT64 data)799 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
800 {
801 UINT32 key_hi = (UINT32)(key >> 32),
802 key_lo = (UINT32)key,
803 cur_hi = (UINT32)(cur >> 32),
804 cur_lo = (UINT32)cur,
805 x_lo,
806 x_hi;
807 UINT64 X,T,res;
808
809 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
810 x_lo = (UINT32)X;
811 x_hi = (UINT32)(X >> 32);
812
813 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
814
815 T = ((UINT64)x_lo << 32);
816 res += T;
817 if (res < T)
818 res += 59;
819
820 res += data;
821 if (res < data)
822 res += 59;
823
824 return res;
825 }
826
827
828 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
829 * implementation does not handle all ramp levels. Because we don't handle
830 * the ramp up to p128 modulus in this implementation, we are limited to
831 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
832 * bytes input to UMAC per tag, ie. 16MB).
833 */
poly_hash(uhash_ctx_t hc,UINT32 data_in[])834 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
835 {
836 int i;
837 UINT64 *data=(UINT64*)data_in;
838
839 for (i = 0; i < STREAMS; i++) {
840 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
841 hc->poly_accum[i] = poly64(hc->poly_accum[i],
842 hc->poly_key_8[i], p64 - 1);
843 hc->poly_accum[i] = poly64(hc->poly_accum[i],
844 hc->poly_key_8[i], (data[i] - 59));
845 } else {
846 hc->poly_accum[i] = poly64(hc->poly_accum[i],
847 hc->poly_key_8[i], data[i]);
848 }
849 }
850 }
851
852
853 /* ---------------------------------------------------------------------- */
854
855
856 /* The final step in UHASH is an inner-product hash. The poly hash
857 * produces a result not neccesarily WORD_LEN bytes long. The inner-
858 * product hash breaks the polyhash output into 16-bit chunks and
859 * multiplies each with a 36 bit key.
860 */
861
ip_aux(UINT64 t,UINT64 * ipkp,UINT64 data)862 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
863 {
864 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
865 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
866 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
867 t = t + ipkp[3] * (UINT64)(UINT16)(data);
868
869 return t;
870 }
871
ip_reduce_p36(UINT64 t)872 static UINT32 ip_reduce_p36(UINT64 t)
873 {
874 /* Divisionless modular reduction */
875 UINT64 ret;
876
877 ret = (t & m36) + 5 * (t >> 36);
878 if (ret >= p36)
879 ret -= p36;
880
881 /* return least significant 32 bits */
882 return (UINT32)(ret);
883 }
884
885
886 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
887 * the polyhash stage is skipped and ip_short is applied directly to the
888 * NH output.
889 */
ip_short(uhash_ctx_t ahc,UINT8 * nh_res,u_char * res)890 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
891 {
892 UINT64 t;
893 UINT64 *nhp = (UINT64 *)nh_res;
894
895 t = ip_aux(0,ahc->ip_keys, nhp[0]);
896 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
897 #if (UMAC_OUTPUT_LEN >= 8)
898 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
899 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
900 #endif
901 #if (UMAC_OUTPUT_LEN >= 12)
902 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
903 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
904 #endif
905 #if (UMAC_OUTPUT_LEN == 16)
906 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
907 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
908 #endif
909 }
910
911 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
912 * the polyhash stage is not skipped and ip_long is applied to the
913 * polyhash output.
914 */
ip_long(uhash_ctx_t ahc,u_char * res)915 static void ip_long(uhash_ctx_t ahc, u_char *res)
916 {
917 int i;
918 UINT64 t;
919
920 for (i = 0; i < STREAMS; i++) {
921 /* fix polyhash output not in Z_p64 */
922 if (ahc->poly_accum[i] >= p64)
923 ahc->poly_accum[i] -= p64;
924 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
925 STORE_UINT32_BIG((UINT32 *)res+i,
926 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
927 }
928 }
929
930
931 /* ---------------------------------------------------------------------- */
932
933 /* ---------------------------------------------------------------------- */
934
935 /* Reset uhash context for next hash session */
uhash_reset(uhash_ctx_t pc)936 static int uhash_reset(uhash_ctx_t pc)
937 {
938 nh_reset(&pc->hash);
939 pc->msg_len = 0;
940 pc->poly_accum[0] = 1;
941 #if (UMAC_OUTPUT_LEN >= 8)
942 pc->poly_accum[1] = 1;
943 #endif
944 #if (UMAC_OUTPUT_LEN >= 12)
945 pc->poly_accum[2] = 1;
946 #endif
947 #if (UMAC_OUTPUT_LEN == 16)
948 pc->poly_accum[3] = 1;
949 #endif
950 return 1;
951 }
952
953 /* ---------------------------------------------------------------------- */
954
955 /* Given a pointer to the internal key needed by kdf() and a uhash context,
956 * initialize the NH context and generate keys needed for poly and inner-
957 * product hashing. All keys are endian adjusted in memory so that native
958 * loads cause correct keys to be in registers during calculation.
959 */
uhash_init(uhash_ctx_t ahc,aes_int_key prf_key)960 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
961 {
962 int i;
963 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
964
965 /* Zero the entire uhash context */
966 memset(ahc, 0, sizeof(uhash_ctx));
967
968 /* Initialize the L1 hash */
969 nh_init(&ahc->hash, prf_key);
970
971 /* Setup L2 hash variables */
972 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
973 for (i = 0; i < STREAMS; i++) {
974 /* Fill keys from the buffer, skipping bytes in the buffer not
975 * used by this implementation. Endian reverse the keys if on a
976 * little-endian computer.
977 */
978 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
979 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
980 /* Mask the 64-bit keys to their special domain */
981 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
982 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
983 }
984
985 /* Setup L3-1 hash variables */
986 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
987 for (i = 0; i < STREAMS; i++)
988 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
989 4*sizeof(UINT64));
990 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
991 sizeof(ahc->ip_keys));
992 for (i = 0; i < STREAMS*4; i++)
993 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
994
995 /* Setup L3-2 hash variables */
996 /* Fill buffer with index 4 key */
997 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
998 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
999 STREAMS * sizeof(UINT32));
1000 }
1001
1002 /* ---------------------------------------------------------------------- */
1003
1004 #if 0
1005 static uhash_ctx_t uhash_alloc(u_char key[])
1006 {
1007 /* Allocate memory and force to a 16-byte boundary. */
1008 uhash_ctx_t ctx;
1009 u_char bytes_to_add;
1010 aes_int_key prf_key;
1011
1012 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1013 if (ctx) {
1014 if (ALLOC_BOUNDARY) {
1015 bytes_to_add = ALLOC_BOUNDARY -
1016 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1017 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1018 *((u_char *)ctx - 1) = bytes_to_add;
1019 }
1020 aes_key_setup(key,prf_key);
1021 uhash_init(ctx, prf_key);
1022 }
1023 return (ctx);
1024 }
1025 #endif
1026
1027 /* ---------------------------------------------------------------------- */
1028
1029 #if 0
1030 static int uhash_free(uhash_ctx_t ctx)
1031 {
1032 /* Free memory allocated by uhash_alloc */
1033 u_char bytes_to_sub;
1034
1035 if (ctx) {
1036 if (ALLOC_BOUNDARY) {
1037 bytes_to_sub = *((u_char *)ctx - 1);
1038 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1039 }
1040 free(ctx);
1041 }
1042 return (1);
1043 }
1044 #endif
1045 /* ---------------------------------------------------------------------- */
1046
uhash_update(uhash_ctx_t ctx,const u_char * input,long len)1047 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1048 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1049 * hash each one with NH, calling the polyhash on each NH output.
1050 */
1051 {
1052 UWORD bytes_hashed, bytes_remaining;
1053 UINT64 result_buf[STREAMS];
1054 UINT8 *nh_result = (UINT8 *)&result_buf;
1055
1056 if (ctx->msg_len + len <= L1_KEY_LEN) {
1057 nh_update(&ctx->hash, (const UINT8 *)input, len);
1058 ctx->msg_len += len;
1059 } else {
1060
1061 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1062 if (ctx->msg_len == L1_KEY_LEN)
1063 bytes_hashed = L1_KEY_LEN;
1064
1065 if (bytes_hashed + len >= L1_KEY_LEN) {
1066
1067 /* If some bytes have been passed to the hash function */
1068 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1069 /* bytes to complete the current nh_block. */
1070 if (bytes_hashed) {
1071 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1072 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1073 nh_final(&ctx->hash, nh_result);
1074 ctx->msg_len += bytes_remaining;
1075 poly_hash(ctx,(UINT32 *)nh_result);
1076 len -= bytes_remaining;
1077 input += bytes_remaining;
1078 }
1079
1080 /* Hash directly from input stream if enough bytes */
1081 while (len >= L1_KEY_LEN) {
1082 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1083 L1_KEY_LEN, nh_result);
1084 ctx->msg_len += L1_KEY_LEN;
1085 len -= L1_KEY_LEN;
1086 input += L1_KEY_LEN;
1087 poly_hash(ctx,(UINT32 *)nh_result);
1088 }
1089 }
1090
1091 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1092 if (len) {
1093 nh_update(&ctx->hash, (const UINT8 *)input, len);
1094 ctx->msg_len += len;
1095 }
1096 }
1097
1098 return (1);
1099 }
1100
1101 /* ---------------------------------------------------------------------- */
1102
uhash_final(uhash_ctx_t ctx,u_char * res)1103 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1104 /* Incorporate any pending data, pad, and generate tag */
1105 {
1106 UINT64 result_buf[STREAMS];
1107 UINT8 *nh_result = (UINT8 *)&result_buf;
1108
1109 if (ctx->msg_len > L1_KEY_LEN) {
1110 if (ctx->msg_len % L1_KEY_LEN) {
1111 nh_final(&ctx->hash, nh_result);
1112 poly_hash(ctx,(UINT32 *)nh_result);
1113 }
1114 ip_long(ctx, res);
1115 } else {
1116 nh_final(&ctx->hash, nh_result);
1117 ip_short(ctx,nh_result, res);
1118 }
1119 uhash_reset(ctx);
1120 return (1);
1121 }
1122
1123 /* ---------------------------------------------------------------------- */
1124
1125 #if 0
1126 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1127 /* assumes that msg is in a writable buffer of length divisible by */
1128 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1129 {
1130 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1131 UINT32 nh_len;
1132 int extra_zeroes_needed;
1133
1134 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1135 * the polyhash.
1136 */
1137 if (len <= L1_KEY_LEN) {
1138 if (len == 0) /* If zero length messages will not */
1139 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1140 else
1141 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1142 extra_zeroes_needed = nh_len - len;
1143 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1144 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1145 ip_short(ahc,nh_result, res);
1146 } else {
1147 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1148 * output to poly_hash().
1149 */
1150 do {
1151 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1152 poly_hash(ahc,(UINT32 *)nh_result);
1153 len -= L1_KEY_LEN;
1154 msg += L1_KEY_LEN;
1155 } while (len >= L1_KEY_LEN);
1156 if (len) {
1157 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1158 extra_zeroes_needed = nh_len - len;
1159 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1160 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1161 poly_hash(ahc,(UINT32 *)nh_result);
1162 }
1163
1164 ip_long(ahc, res);
1165 }
1166
1167 uhash_reset(ahc);
1168 return 1;
1169 }
1170 #endif
1171
1172 /* ---------------------------------------------------------------------- */
1173 /* ---------------------------------------------------------------------- */
1174 /* ----- Begin UMAC Section --------------------------------------------- */
1175 /* ---------------------------------------------------------------------- */
1176 /* ---------------------------------------------------------------------- */
1177
1178 /* The UMAC interface has two interfaces, an all-at-once interface where
1179 * the entire message to be authenticated is passed to UMAC in one buffer,
1180 * and a sequential interface where the message is presented a little at a
1181 * time. The all-at-once is more optimaized than the sequential version and
1182 * should be preferred when the sequential interface is not required.
1183 */
1184 struct umac_ctx {
1185 uhash_ctx hash; /* Hash function for message compression */
1186 pdf_ctx pdf; /* PDF for hashed output */
1187 void *free_ptr; /* Address to free this struct via */
1188 } umac_ctx;
1189
1190 /* ---------------------------------------------------------------------- */
1191
1192 #if 0
1193 int umac_reset(struct umac_ctx *ctx)
1194 /* Reset the hash function to begin a new authentication. */
1195 {
1196 uhash_reset(&ctx->hash);
1197 return (1);
1198 }
1199 #endif
1200
1201 /* ---------------------------------------------------------------------- */
1202
umac_delete(struct umac_ctx * ctx)1203 int umac_delete(struct umac_ctx *ctx)
1204 /* Deallocate the ctx structure */
1205 {
1206 if (ctx) {
1207 if (ALLOC_BOUNDARY)
1208 ctx = (struct umac_ctx *)ctx->free_ptr;
1209 free(ctx);
1210 }
1211 return (1);
1212 }
1213
1214 /* ---------------------------------------------------------------------- */
1215
umac_new(const u_char key[])1216 struct umac_ctx *umac_new(const u_char key[])
1217 /* Dynamically allocate a umac_ctx struct, initialize variables,
1218 * generate subkeys from key. Align to 16-byte boundary.
1219 */
1220 {
1221 struct umac_ctx *ctx, *octx;
1222 size_t bytes_to_add;
1223 aes_int_key prf_key;
1224
1225 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1226 if (ctx) {
1227 if (ALLOC_BOUNDARY) {
1228 bytes_to_add = ALLOC_BOUNDARY -
1229 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1230 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1231 }
1232 ctx->free_ptr = octx;
1233 aes_key_setup(key, prf_key);
1234 pdf_init(&ctx->pdf, prf_key);
1235 uhash_init(&ctx->hash, prf_key);
1236 }
1237
1238 return (ctx);
1239 }
1240
1241 /* ---------------------------------------------------------------------- */
1242
umac_final(struct umac_ctx * ctx,u_char tag[],const u_char nonce[8])1243 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1244 /* Incorporate any pending data, pad, and generate tag */
1245 {
1246 uhash_final(&ctx->hash, (u_char *)tag);
1247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1248
1249 return (1);
1250 }
1251
1252 /* ---------------------------------------------------------------------- */
1253
umac_update(struct umac_ctx * ctx,const u_char * input,long len)1254 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1255 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1256 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1257 /* output buffer is full. */
1258 {
1259 uhash_update(&ctx->hash, input, len);
1260 return (1);
1261 }
1262
1263 /* ---------------------------------------------------------------------- */
1264
1265 #if 0
1266 int umac(struct umac_ctx *ctx, u_char *input,
1267 long len, u_char tag[],
1268 u_char nonce[8])
1269 /* All-in-one version simply calls umac_update() and umac_final(). */
1270 {
1271 uhash(&ctx->hash, input, len, (u_char *)tag);
1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1273
1274 return (1);
1275 }
1276 #endif
1277
1278 /* ---------------------------------------------------------------------- */
1279 /* ---------------------------------------------------------------------- */
1280 /* ----- End UMAC Section ----------------------------------------------- */
1281 /* ---------------------------------------------------------------------- */
1282 /* ---------------------------------------------------------------------- */
1283