1 /*
2 *******************************************************************************
3 *   Copyright (C) 2010, International Business Machines
4 *   Corporation and others.  All Rights Reserved.
5 *******************************************************************************
6 *   file name:  denseranges.cpp
7 *   encoding:   US-ASCII
8 *   tab size:   8 (not used)
9 *   indentation:4
10 *
11 *   created on: 2010sep25
12 *   created by: Markus W. Scherer
13 *
14 * Helper code for finding a small number of dense ranges.
15 */
16 
17 #include "unicode/utypes.h"
18 #include "denseranges.h"
19 
20 // Definitions in the anonymous namespace are invisible outside this file.
21 namespace {
22 
23 /**
24  * Collect up to 15 range gaps and sort them by ascending gap size.
25  */
26 class LargestGaps {
27 public:
LargestGaps(int32_t max)28     LargestGaps(int32_t max) : maxLength(max<=kCapacity ? max : kCapacity), length(0) {}
29 
add(int32_t gapStart,int64_t gapLength)30     void add(int32_t gapStart, int64_t gapLength) {
31         int32_t i=length;
32         while(i>0 && gapLength>gapLengths[i-1]) {
33             --i;
34         }
35         if(i<maxLength) {
36             // The new gap is now one of the maxLength largest.
37             // Insert the new gap, moving up smaller ones of the previous
38             // length largest.
39             int32_t j= length<maxLength ? length++ : maxLength-1;
40             while(j>i) {
41                 gapStarts[j]=gapStarts[j-1];
42                 gapLengths[j]=gapLengths[j-1];
43                 --j;
44             }
45             gapStarts[i]=gapStart;
46             gapLengths[i]=gapLength;
47         }
48     }
49 
truncate(int32_t newLength)50     void truncate(int32_t newLength) {
51         if(newLength<length) {
52             length=newLength;
53         }
54     }
55 
count() const56     int32_t count() const { return length; }
gapStart(int32_t i) const57     int32_t gapStart(int32_t i) const { return gapStarts[i]; }
gapLength(int32_t i) const58     int64_t gapLength(int32_t i) const { return gapLengths[i]; }
59 
firstAfter(int32_t value) const60     int32_t firstAfter(int32_t value) const {
61         if(length==0) {
62             return -1;
63         }
64         int32_t minValue=0;
65         int32_t minIndex=-1;
66         for(int32_t i=0; i<length; ++i) {
67             if(value<gapStarts[i] && (minIndex<0 || gapStarts[i]<minValue)) {
68                 minValue=gapStarts[i];
69                 minIndex=i;
70             }
71         }
72         return minIndex;
73     }
74 
75 private:
76     static const int32_t kCapacity=15;
77 
78     int32_t maxLength;
79     int32_t length;
80     int32_t gapStarts[kCapacity];
81     int64_t gapLengths[kCapacity];
82 };
83 
84 }  // namespace
85 
86 /**
87  * Does it make sense to write 1..capacity ranges?
88  * Returns 0 if not, otherwise the number of ranges.
89  * @param values Sorted array of signed-integer values.
90  * @param length Number of values.
91  * @param density Minimum average range density, in 256th. (0x100=100%=perfectly dense.)
92  *                Should be 0x80..0x100, must be 1..0x100.
93  * @param ranges Output ranges array.
94  * @param capacity Maximum number of ranges.
95  * @return Minimum number of ranges (at most capacity) that have the desired density,
96  *         or 0 if that density cannot be achieved.
97  */
98 U_CAPI int32_t U_EXPORT2
uprv_makeDenseRanges(const int32_t values[],int32_t length,int32_t density,int32_t ranges[][2],int32_t capacity)99 uprv_makeDenseRanges(const int32_t values[], int32_t length,
100                      int32_t density,
101                      int32_t ranges[][2], int32_t capacity) {
102     if(length<=2) {
103         return 0;
104     }
105     int32_t minValue=values[0];
106     int32_t maxValue=values[length-1];  // Assume minValue<=maxValue.
107     // Use int64_t variables for intermediate-value precision and to avoid
108     // signed-int32_t overflow of maxValue-minValue.
109     int64_t maxLength=(int64_t)maxValue-(int64_t)minValue+1;
110     if(length>=(density*maxLength)/0x100) {
111         // Use one range.
112         ranges[0][0]=minValue;
113         ranges[0][1]=maxValue;
114         return 1;
115     }
116     if(length<=4) {
117         return 0;
118     }
119     // See if we can split [minValue, maxValue] into 2..capacity ranges,
120     // divided by the 1..(capacity-1) largest gaps.
121     LargestGaps gaps(capacity-1);
122     int32_t i;
123     int32_t expectedValue=minValue;
124     for(i=1; i<length; ++i) {
125         ++expectedValue;
126         int32_t actualValue=values[i];
127         if(expectedValue!=actualValue) {
128             gaps.add(expectedValue, (int64_t)actualValue-(int64_t)expectedValue);
129             expectedValue=actualValue;
130         }
131     }
132     // We know gaps.count()>=1 because we have fewer values (length) than
133     // the length of the [minValue..maxValue] range (maxLength).
134     // (Otherwise we would have returned with the one range above.)
135     int32_t num;
136     for(i=0, num=2;; ++i, ++num) {
137         if(i>=gaps.count()) {
138             // The values are too sparse for capacity or fewer ranges
139             // of the requested density.
140             return 0;
141         }
142         maxLength-=gaps.gapLength(i);
143         if(length>num*2 && length>=(density*maxLength)/0x100) {
144             break;
145         }
146     }
147     // Use the num ranges with the num-1 largest gaps.
148     gaps.truncate(num-1);
149     ranges[0][0]=minValue;
150     for(i=0; i<=num-2; ++i) {
151         int32_t gapIndex=gaps.firstAfter(minValue);
152         int32_t gapStart=gaps.gapStart(gapIndex);
153         ranges[i][1]=gapStart-1;
154         ranges[i+1][0]=minValue=(int32_t)(gapStart+gaps.gapLength(gapIndex));
155     }
156     ranges[num-1][1]=maxValue;
157     return num;
158 }
159