1 /**************************************************************************
2  *
3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * Math utilities and approximations for common math functions.
31  * Reduced precision is usually acceptable in shaders...
32  *
33  * "fast" is used in the names of functions which are low-precision,
34  * or at least lower-precision than the normal C lib functions.
35  */
36 
37 
38 #ifndef U_MATH_H
39 #define U_MATH_H
40 
41 
42 #include "pipe/p_compiler.h"
43 #include "util/u_debug.h"
44 
45 
46 #ifdef __cplusplus
47 extern "C" {
48 #endif
49 
50 
51 #include <math.h>
52 #include <stdarg.h>
53 
54 #ifdef PIPE_OS_UNIX
55 #include <strings.h> /* for ffs */
56 #endif
57 
58 
59 #ifndef M_SQRT2
60 #define M_SQRT2 1.41421356237309504880
61 #endif
62 
63 
64 #if defined(_MSC_VER)
65 
66 #if _MSC_VER < 1400 && !defined(__cplusplus)
67 
cosf(float f)68 static INLINE float cosf( float f )
69 {
70    return (float) cos( (double) f );
71 }
72 
sinf(float f)73 static INLINE float sinf( float f )
74 {
75    return (float) sin( (double) f );
76 }
77 
ceilf(float f)78 static INLINE float ceilf( float f )
79 {
80    return (float) ceil( (double) f );
81 }
82 
floorf(float f)83 static INLINE float floorf( float f )
84 {
85    return (float) floor( (double) f );
86 }
87 
powf(float f,float g)88 static INLINE float powf( float f, float g )
89 {
90    return (float) pow( (double) f, (double) g );
91 }
92 
sqrtf(float f)93 static INLINE float sqrtf( float f )
94 {
95    return (float) sqrt( (double) f );
96 }
97 
fabsf(float f)98 static INLINE float fabsf( float f )
99 {
100    return (float) fabs( (double) f );
101 }
102 
logf(float f)103 static INLINE float logf( float f )
104 {
105    return (float) log( (double) f );
106 }
107 
108 #else
109 /* Work-around an extra semi-colon in VS 2005 logf definition */
110 #ifdef logf
111 #undef logf
112 #define logf(x) ((float)log((double)(x)))
113 #endif /* logf */
114 
115 #define isfinite(x) _finite((double)(x))
116 #define isnan(x) _isnan((double)(x))
117 #endif /* _MSC_VER < 1400 && !defined(__cplusplus) */
118 
log2(double x)119 static INLINE double log2( double x )
120 {
121    const double invln2 = 1.442695041;
122    return log( x ) * invln2;
123 }
124 
125 static INLINE double
round(double x)126 round(double x)
127 {
128    return x >= 0.0 ? floor(x + 0.5) : ceil(x - 0.5);
129 }
130 
131 static INLINE float
roundf(float x)132 roundf(float x)
133 {
134    return x >= 0.0f ? floorf(x + 0.5f) : ceilf(x - 0.5f);
135 }
136 
137 #endif /* _MSC_VER */
138 
139 
140 #ifdef PIPE_OS_ANDROID
141 
142 static INLINE
log2(double d)143 double log2(double d)
144 {
145    return log(d) * (1.0 / M_LN2);
146 }
147 
148 /* workaround a conflict with main/imports.h */
149 #ifdef log2f
150 #undef log2f
151 #endif
152 
153 static INLINE
log2f(float f)154 float log2f(float f)
155 {
156    return logf(f) * (float) (1.0 / M_LN2);
157 }
158 
159 #endif
160 
161 
162 
163 
164 #define POW2_TABLE_SIZE_LOG2 9
165 #define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
166 #define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
167 #define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
168 extern float pow2_table[POW2_TABLE_SIZE];
169 
170 
171 /**
172  * Initialize math module.  This should be called before using any
173  * other functions in this module.
174  */
175 extern void
176 util_init_math(void);
177 
178 
179 union fi {
180    float f;
181    int32_t i;
182    uint32_t ui;
183 };
184 
185 
186 union di {
187    double d;
188    int64_t i;
189    uint64_t ui;
190 };
191 
192 
193 /**
194  * Fast version of 2^x
195  * Identity: exp2(a + b) = exp2(a) * exp2(b)
196  * Let ipart = int(x)
197  * Let fpart = x - ipart;
198  * So, exp2(x) = exp2(ipart) * exp2(fpart)
199  * Compute exp2(ipart) with i << ipart
200  * Compute exp2(fpart) with lookup table.
201  */
202 static INLINE float
util_fast_exp2(float x)203 util_fast_exp2(float x)
204 {
205    int32_t ipart;
206    float fpart, mpart;
207    union fi epart;
208 
209    if(x > 129.00000f)
210       return 3.402823466e+38f;
211 
212    if (x < -126.99999f)
213       return 0.0f;
214 
215    ipart = (int32_t) x;
216    fpart = x - (float) ipart;
217 
218    /* same as
219     *   epart.f = (float) (1 << ipart)
220     * but faster and without integer overflow for ipart > 31
221     */
222    epart.i = (ipart + 127 ) << 23;
223 
224    mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
225 
226    return epart.f * mpart;
227 }
228 
229 
230 /**
231  * Fast approximation to exp(x).
232  */
233 static INLINE float
util_fast_exp(float x)234 util_fast_exp(float x)
235 {
236    const float k = 1.44269f; /* = log2(e) */
237    return util_fast_exp2(k * x);
238 }
239 
240 
241 #define LOG2_TABLE_SIZE_LOG2 16
242 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
243 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
244 extern float log2_table[LOG2_TABLE_SIZE];
245 
246 
247 /**
248  * Fast approximation to log2(x).
249  */
250 static INLINE float
util_fast_log2(float x)251 util_fast_log2(float x)
252 {
253    union fi num;
254    float epart, mpart;
255    num.f = x;
256    epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
257    /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
258    mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
259    return epart + mpart;
260 }
261 
262 
263 /**
264  * Fast approximation to x^y.
265  */
266 static INLINE float
util_fast_pow(float x,float y)267 util_fast_pow(float x, float y)
268 {
269    return util_fast_exp2(util_fast_log2(x) * y);
270 }
271 
272 /* Note that this counts zero as a power of two.
273  */
274 static INLINE boolean
util_is_power_of_two(unsigned v)275 util_is_power_of_two( unsigned v )
276 {
277    return (v & (v-1)) == 0;
278 }
279 
280 
281 /**
282  * Floor(x), returned as int.
283  */
284 static INLINE int
util_ifloor(float f)285 util_ifloor(float f)
286 {
287    int ai, bi;
288    double af, bf;
289    union fi u;
290    af = (3 << 22) + 0.5 + (double) f;
291    bf = (3 << 22) + 0.5 - (double) f;
292    u.f = (float) af;  ai = u.i;
293    u.f = (float) bf;  bi = u.i;
294    return (ai - bi) >> 1;
295 }
296 
297 
298 /**
299  * Round float to nearest int.
300  */
301 static INLINE int
util_iround(float f)302 util_iround(float f)
303 {
304 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
305    int r;
306    __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
307    return r;
308 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
309    int r;
310    _asm {
311       fld f
312       fistp r
313    }
314    return r;
315 #else
316    if (f >= 0.0f)
317       return (int) (f + 0.5f);
318    else
319       return (int) (f - 0.5f);
320 #endif
321 }
322 
323 
324 /**
325  * Approximate floating point comparison
326  */
327 static INLINE boolean
util_is_approx(float a,float b,float tol)328 util_is_approx(float a, float b, float tol)
329 {
330    return fabs(b - a) <= tol;
331 }
332 
333 
334 /**
335  * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
336  * util_is_X_nan        = test if x is NaN
337  * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
338  *
339  * NaN can be checked with x != x, however this fails with the fast math flag
340  **/
341 
342 
343 /**
344  * Single-float
345  */
346 static INLINE boolean
util_is_inf_or_nan(float x)347 util_is_inf_or_nan(float x)
348 {
349    union fi tmp;
350    tmp.f = x;
351    return (tmp.ui & 0x7f800000) == 0x7f800000;
352 }
353 
354 
355 static INLINE boolean
util_is_nan(float x)356 util_is_nan(float x)
357 {
358    union fi tmp;
359    tmp.f = x;
360    return (tmp.ui & 0x7fffffff) > 0x7f800000;
361 }
362 
363 
364 static INLINE int
util_inf_sign(float x)365 util_inf_sign(float x)
366 {
367    union fi tmp;
368    tmp.f = x;
369    if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
370       return 0;
371    }
372 
373    return (x < 0) ? -1 : 1;
374 }
375 
376 
377 /**
378  * Double-float
379  */
380 static INLINE boolean
util_is_double_inf_or_nan(double x)381 util_is_double_inf_or_nan(double x)
382 {
383    union di tmp;
384    tmp.d = x;
385    return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
386 }
387 
388 
389 static INLINE boolean
util_is_double_nan(double x)390 util_is_double_nan(double x)
391 {
392    union di tmp;
393    tmp.d = x;
394    return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
395 }
396 
397 
398 static INLINE int
util_double_inf_sign(double x)399 util_double_inf_sign(double x)
400 {
401    union di tmp;
402    tmp.d = x;
403    if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
404       return 0;
405    }
406 
407    return (x < 0) ? -1 : 1;
408 }
409 
410 
411 /**
412  * Half-float
413  */
414 static INLINE boolean
util_is_half_inf_or_nan(int16_t x)415 util_is_half_inf_or_nan(int16_t x)
416 {
417    return (x & 0x7c00) == 0x7c00;
418 }
419 
420 
421 static INLINE boolean
util_is_half_nan(int16_t x)422 util_is_half_nan(int16_t x)
423 {
424    return (x & 0x7fff) > 0x7c00;
425 }
426 
427 
428 static INLINE int
util_half_inf_sign(int16_t x)429 util_half_inf_sign(int16_t x)
430 {
431    if ((x & 0x7fff) != 0x7c00) {
432       return 0;
433    }
434 
435    return (x < 0) ? -1 : 1;
436 }
437 
438 
439 /**
440  * Find first bit set in word.  Least significant bit is 1.
441  * Return 0 if no bits set.
442  */
443 #ifndef FFS_DEFINED
444 #define FFS_DEFINED 1
445 
446 #if defined(_MSC_VER) && _MSC_VER >= 1300 && (_M_IX86 || _M_AMD64 || _M_IA64)
447 unsigned char _BitScanForward(unsigned long* Index, unsigned long Mask);
448 #pragma intrinsic(_BitScanForward)
449 static INLINE
ffs(unsigned long u)450 unsigned long ffs( unsigned long u )
451 {
452    unsigned long i;
453    if (_BitScanForward(&i, u))
454       return i + 1;
455    else
456       return 0;
457 }
458 #elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
459 static INLINE
ffs(unsigned u)460 unsigned ffs( unsigned u )
461 {
462    unsigned i;
463 
464    if (u == 0) {
465       return 0;
466    }
467 
468    __asm bsf eax, [u]
469    __asm inc eax
470    __asm mov [i], eax
471 
472    return i;
473 }
474 #elif defined(__MINGW32__) || defined(PIPE_OS_ANDROID)
475 #define ffs __builtin_ffs
476 #endif
477 
478 #endif /* FFS_DEFINED */
479 
480 /**
481  * Find last bit set in a word.  The least significant bit is 1.
482  * Return 0 if no bits are set.
483  */
util_last_bit(unsigned u)484 static INLINE unsigned util_last_bit(unsigned u)
485 {
486    unsigned r = 0;
487    while (u) {
488        r++;
489        u >>= 1;
490    }
491    return r;
492 }
493 
494 
495 /* Destructively loop over all of the bits in a mask as in:
496  *
497  * while (mymask) {
498  *   int i = u_bit_scan(&mymask);
499  *   ... process element i
500  * }
501  *
502  */
u_bit_scan(unsigned * mask)503 static INLINE int u_bit_scan(unsigned *mask)
504 {
505    int i = ffs(*mask) - 1;
506    *mask &= ~(1 << i);
507    return i;
508 }
509 
510 
511 /**
512  * Return float bits.
513  */
514 static INLINE unsigned
fui(float f)515 fui( float f )
516 {
517    union fi fi;
518    fi.f = f;
519    return fi.ui;
520 }
521 
522 
523 /**
524  * Convert ubyte to float in [0, 1].
525  * XXX a 256-entry lookup table would be slightly faster.
526  */
527 static INLINE float
ubyte_to_float(ubyte ub)528 ubyte_to_float(ubyte ub)
529 {
530    return (float) ub * (1.0f / 255.0f);
531 }
532 
533 
534 /**
535  * Convert float in [0,1] to ubyte in [0,255] with clamping.
536  */
537 static INLINE ubyte
float_to_ubyte(float f)538 float_to_ubyte(float f)
539 {
540    const int ieee_0996 = 0x3f7f0000;   /* 0.996 or so */
541    union fi tmp;
542 
543    tmp.f = f;
544    if (tmp.i < 0) {
545       return (ubyte) 0;
546    }
547    else if (tmp.i >= ieee_0996) {
548       return (ubyte) 255;
549    }
550    else {
551       tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
552       return (ubyte) tmp.i;
553    }
554 }
555 
556 static INLINE float
byte_to_float_tex(int8_t b)557 byte_to_float_tex(int8_t b)
558 {
559    return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
560 }
561 
562 static INLINE int8_t
float_to_byte_tex(float f)563 float_to_byte_tex(float f)
564 {
565    return (int8_t) (127.0F * f);
566 }
567 
568 /**
569  * Calc log base 2
570  */
571 static INLINE unsigned
util_logbase2(unsigned n)572 util_logbase2(unsigned n)
573 {
574 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
575    return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
576 #else
577    unsigned pos = 0;
578    if (n >= 1<<16) { n >>= 16; pos += 16; }
579    if (n >= 1<< 8) { n >>=  8; pos +=  8; }
580    if (n >= 1<< 4) { n >>=  4; pos +=  4; }
581    if (n >= 1<< 2) { n >>=  2; pos +=  2; }
582    if (n >= 1<< 1) {           pos +=  1; }
583    return pos;
584 #endif
585 }
586 
587 
588 /**
589  * Returns the smallest power of two >= x
590  */
591 static INLINE unsigned
util_next_power_of_two(unsigned x)592 util_next_power_of_two(unsigned x)
593 {
594 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
595    if (x <= 1)
596        return 1;
597 
598    return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
599 #else
600    unsigned val = x;
601 
602    if (x <= 1)
603       return 1;
604 
605    if (util_is_power_of_two(x))
606       return x;
607 
608    val--;
609    val = (val >> 1) | val;
610    val = (val >> 2) | val;
611    val = (val >> 4) | val;
612    val = (val >> 8) | val;
613    val = (val >> 16) | val;
614    val++;
615    return val;
616 #endif
617 }
618 
619 
620 /**
621  * Return number of bits set in n.
622  */
623 static INLINE unsigned
util_bitcount(unsigned n)624 util_bitcount(unsigned n)
625 {
626 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 304)
627    return __builtin_popcount(n);
628 #else
629    /* K&R classic bitcount.
630     *
631     * For each iteration, clear the LSB from the bitfield.
632     * Requires only one iteration per set bit, instead of
633     * one iteration per bit less than highest set bit.
634     */
635    unsigned bits = 0;
636    for (bits; n; bits++) {
637       n &= n - 1;
638    }
639    return bits;
640 #endif
641 }
642 
643 
644 /**
645  * Convert from little endian to CPU byte order.
646  */
647 
648 #ifdef PIPE_ARCH_BIG_ENDIAN
649 #define util_le32_to_cpu(x) util_bswap32(x)
650 #define util_le16_to_cpu(x) util_bswap16(x)
651 #else
652 #define util_le32_to_cpu(x) (x)
653 #define util_le16_to_cpu(x) (x)
654 #endif
655 
656 
657 /**
658  * Reverse byte order of a 32 bit word.
659  */
660 static INLINE uint32_t
util_bswap32(uint32_t n)661 util_bswap32(uint32_t n)
662 {
663 #if defined(PIPE_CC_GCC) && (PIPE_CC_GCC_VERSION >= 403)
664    return __builtin_bswap32(n);
665 #else
666    return (n >> 24) |
667           ((n >> 8) & 0x0000ff00) |
668           ((n << 8) & 0x00ff0000) |
669           (n << 24);
670 #endif
671 }
672 
673 
674 /**
675  * Reverse byte order of a 16 bit word.
676  */
677 static INLINE uint16_t
util_bswap16(uint16_t n)678 util_bswap16(uint16_t n)
679 {
680    return (n >> 8) |
681           (n << 8);
682 }
683 
684 
685 /**
686  * Clamp X to [MIN, MAX].
687  * This is a macro to allow float, int, uint, etc. types.
688  */
689 #define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
690 
691 #define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
692 #define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
693 
694 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
695 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
696 
697 #define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
698 #define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
699 
700 
701 /**
702  * Align a value, only works pot alignemnts.
703  */
704 static INLINE int
align(int value,int alignment)705 align(int value, int alignment)
706 {
707    return (value + alignment - 1) & ~(alignment - 1);
708 }
709 
710 /**
711  * Works like align but on npot alignments.
712  */
713 static INLINE size_t
util_align_npot(size_t value,size_t alignment)714 util_align_npot(size_t value, size_t alignment)
715 {
716    if (value % alignment)
717       return value + (alignment - (value % alignment));
718    return value;
719 }
720 
721 static INLINE unsigned
u_minify(unsigned value,unsigned levels)722 u_minify(unsigned value, unsigned levels)
723 {
724     return MAX2(1, value >> levels);
725 }
726 
727 #ifndef COPY_4V
728 #define COPY_4V( DST, SRC )         \
729 do {                                \
730    (DST)[0] = (SRC)[0];             \
731    (DST)[1] = (SRC)[1];             \
732    (DST)[2] = (SRC)[2];             \
733    (DST)[3] = (SRC)[3];             \
734 } while (0)
735 #endif
736 
737 
738 #ifndef COPY_4FV
739 #define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
740 #endif
741 
742 
743 #ifndef ASSIGN_4V
744 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
745 do {                                     \
746    (DST)[0] = (V0);                      \
747    (DST)[1] = (V1);                      \
748    (DST)[2] = (V2);                      \
749    (DST)[3] = (V3);                      \
750 } while (0)
751 #endif
752 
753 
util_unsigned_fixed(float value,unsigned frac_bits)754 static INLINE uint32_t util_unsigned_fixed(float value, unsigned frac_bits)
755 {
756    return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
757 }
758 
util_signed_fixed(float value,unsigned frac_bits)759 static INLINE int32_t util_signed_fixed(float value, unsigned frac_bits)
760 {
761    return (int32_t)(value * (1<<frac_bits));
762 }
763 
764 
765 
766 #ifdef __cplusplus
767 }
768 #endif
769 
770 #endif /* U_MATH_H */
771