1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 
6 // Declares a Simulator for ARM instructions if we are not generating a native
7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
8 // regular desktop machines.
9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
10 // which will start execution in the Simulator or forwards to the real entry
11 // on a ARM HW platform.
12 
13 #ifndef V8_ARM_SIMULATOR_ARM_H_
14 #define V8_ARM_SIMULATOR_ARM_H_
15 
16 #include "src/allocation.h"
17 
18 #if !defined(USE_SIMULATOR)
19 // Running without a simulator on a native arm platform.
20 
21 namespace v8 {
22 namespace internal {
23 
24 // When running without a simulator we call the entry directly.
25 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
26   (entry(p0, p1, p2, p3, p4))
27 
28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
29                                   void*, int*, int, Address, int, Isolate*);
30 
31 
32 // Call the generated regexp code directly. The code at the entry address
33 // should act as a function matching the type arm_regexp_matcher.
34 // The fifth argument is a dummy that reserves the space used for
35 // the return address added by the ExitFrame in native calls.
36 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
37   (FUNCTION_CAST<arm_regexp_matcher>(entry)(                              \
38       p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8))
39 
40 // The stack limit beyond which we will throw stack overflow errors in
41 // generated code. Because generated code on arm uses the C stack, we
42 // just use the C stack limit.
43 class SimulatorStack : public v8::internal::AllStatic {
44  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)45   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
46                                             uintptr_t c_limit) {
47     USE(isolate);
48     return c_limit;
49   }
50 
RegisterCTryCatch(uintptr_t try_catch_address)51   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
52     return try_catch_address;
53   }
54 
UnregisterCTryCatch()55   static inline void UnregisterCTryCatch() { }
56 };
57 
58 } }  // namespace v8::internal
59 
60 #else  // !defined(USE_SIMULATOR)
61 // Running with a simulator.
62 
63 #include "src/arm/constants-arm.h"
64 #include "src/assembler.h"
65 #include "src/hashmap.h"
66 
67 namespace v8 {
68 namespace internal {
69 
70 class CachePage {
71  public:
72   static const int LINE_VALID = 0;
73   static const int LINE_INVALID = 1;
74 
75   static const int kPageShift = 12;
76   static const int kPageSize = 1 << kPageShift;
77   static const int kPageMask = kPageSize - 1;
78   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
79   static const int kLineLength = 1 << kLineShift;
80   static const int kLineMask = kLineLength - 1;
81 
CachePage()82   CachePage() {
83     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
84   }
85 
ValidityByte(int offset)86   char* ValidityByte(int offset) {
87     return &validity_map_[offset >> kLineShift];
88   }
89 
CachedData(int offset)90   char* CachedData(int offset) {
91     return &data_[offset];
92   }
93 
94  private:
95   char data_[kPageSize];   // The cached data.
96   static const int kValidityMapSize = kPageSize >> kLineShift;
97   char validity_map_[kValidityMapSize];  // One byte per line.
98 };
99 
100 
101 class Simulator {
102  public:
103   friend class ArmDebugger;
104   enum Register {
105     no_reg = -1,
106     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
107     r8, r9, r10, r11, r12, r13, r14, r15,
108     num_registers,
109     sp = 13,
110     lr = 14,
111     pc = 15,
112     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
113     s8, s9, s10, s11, s12, s13, s14, s15,
114     s16, s17, s18, s19, s20, s21, s22, s23,
115     s24, s25, s26, s27, s28, s29, s30, s31,
116     num_s_registers = 32,
117     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
118     d8, d9, d10, d11, d12, d13, d14, d15,
119     d16, d17, d18, d19, d20, d21, d22, d23,
120     d24, d25, d26, d27, d28, d29, d30, d31,
121     num_d_registers = 32,
122     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
123     q8, q9, q10, q11, q12, q13, q14, q15,
124     num_q_registers = 16
125   };
126 
127   explicit Simulator(Isolate* isolate);
128   ~Simulator();
129 
130   // The currently executing Simulator instance. Potentially there can be one
131   // for each native thread.
132   static Simulator* current(v8::internal::Isolate* isolate);
133 
134   // Accessors for register state. Reading the pc value adheres to the ARM
135   // architecture specification and is off by a 8 from the currently executing
136   // instruction.
137   void set_register(int reg, int32_t value);
138   int32_t get_register(int reg) const;
139   double get_double_from_register_pair(int reg);
140   void set_register_pair_from_double(int reg, double* value);
141   void set_dw_register(int dreg, const int* dbl);
142 
143   // Support for VFP.
144   void get_d_register(int dreg, uint64_t* value);
145   void set_d_register(int dreg, const uint64_t* value);
146   void get_d_register(int dreg, uint32_t* value);
147   void set_d_register(int dreg, const uint32_t* value);
148   void get_q_register(int qreg, uint64_t* value);
149   void set_q_register(int qreg, const uint64_t* value);
150   void get_q_register(int qreg, uint32_t* value);
151   void set_q_register(int qreg, const uint32_t* value);
152 
153   void set_s_register(int reg, unsigned int value);
154   unsigned int get_s_register(int reg) const;
155 
set_d_register_from_double(int dreg,const double & dbl)156   void set_d_register_from_double(int dreg, const double& dbl) {
157     SetVFPRegister<double, 2>(dreg, dbl);
158   }
159 
get_double_from_d_register(int dreg)160   double get_double_from_d_register(int dreg) {
161     return GetFromVFPRegister<double, 2>(dreg);
162   }
163 
set_s_register_from_float(int sreg,const float flt)164   void set_s_register_from_float(int sreg, const float flt) {
165     SetVFPRegister<float, 1>(sreg, flt);
166   }
167 
get_float_from_s_register(int sreg)168   float get_float_from_s_register(int sreg) {
169     return GetFromVFPRegister<float, 1>(sreg);
170   }
171 
set_s_register_from_sinteger(int sreg,const int sint)172   void set_s_register_from_sinteger(int sreg, const int sint) {
173     SetVFPRegister<int, 1>(sreg, sint);
174   }
175 
get_sinteger_from_s_register(int sreg)176   int get_sinteger_from_s_register(int sreg) {
177     return GetFromVFPRegister<int, 1>(sreg);
178   }
179 
180   // Special case of set_register and get_register to access the raw PC value.
181   void set_pc(int32_t value);
182   int32_t get_pc() const;
183 
get_sp()184   Address get_sp() {
185     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
186   }
187 
188   // Accessor to the internal simulator stack area.
189   uintptr_t StackLimit() const;
190 
191   // Executes ARM instructions until the PC reaches end_sim_pc.
192   void Execute();
193 
194   // Call on program start.
195   static void Initialize(Isolate* isolate);
196 
197   // V8 generally calls into generated JS code with 5 parameters and into
198   // generated RegExp code with 7 parameters. This is a convenience function,
199   // which sets up the simulator state and grabs the result on return.
200   int32_t Call(byte* entry, int argument_count, ...);
201   // Alternative: call a 2-argument double function.
202   void CallFP(byte* entry, double d0, double d1);
203   int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
204   double CallFPReturnsDouble(byte* entry, double d0, double d1);
205 
206   // Push an address onto the JS stack.
207   uintptr_t PushAddress(uintptr_t address);
208 
209   // Pop an address from the JS stack.
210   uintptr_t PopAddress();
211 
212   // Debugger input.
213   void set_last_debugger_input(char* input);
last_debugger_input()214   char* last_debugger_input() { return last_debugger_input_; }
215 
216   // ICache checking.
217   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
218                           size_t size);
219 
220   // Returns true if pc register contains one of the 'special_values' defined
221   // below (bad_lr, end_sim_pc).
222   bool has_bad_pc() const;
223 
224   // EABI variant for double arguments in use.
use_eabi_hardfloat()225   bool use_eabi_hardfloat() {
226 #if USE_EABI_HARDFLOAT
227     return true;
228 #else
229     return false;
230 #endif
231   }
232 
233  private:
234   enum special_values {
235     // Known bad pc value to ensure that the simulator does not execute
236     // without being properly setup.
237     bad_lr = -1,
238     // A pc value used to signal the simulator to stop execution.  Generally
239     // the lr is set to this value on transition from native C code to
240     // simulated execution, so that the simulator can "return" to the native
241     // C code.
242     end_sim_pc = -2
243   };
244 
245   // Unsupported instructions use Format to print an error and stop execution.
246   void Format(Instruction* instr, const char* format);
247 
248   // Checks if the current instruction should be executed based on its
249   // condition bits.
250   inline bool ConditionallyExecute(Instruction* instr);
251 
252   // Helper functions to set the conditional flags in the architecture state.
253   void SetNZFlags(int32_t val);
254   void SetCFlag(bool val);
255   void SetVFlag(bool val);
256   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
257   bool BorrowFrom(int32_t left, int32_t right);
258   bool OverflowFrom(int32_t alu_out,
259                     int32_t left,
260                     int32_t right,
261                     bool addition);
262 
GetCarry()263   inline int GetCarry() {
264     return c_flag_ ? 1 : 0;
265   }
266 
267   // Support for VFP.
268   void Compute_FPSCR_Flags(double val1, double val2);
269   void Copy_FPSCR_to_APSR();
270   inline double canonicalizeNaN(double value);
271 
272   // Helper functions to decode common "addressing" modes
273   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
274   int32_t GetImm(Instruction* instr, bool* carry_out);
275   int32_t ProcessPU(Instruction* instr,
276                     int num_regs,
277                     int operand_size,
278                     intptr_t* start_address,
279                     intptr_t* end_address);
280   void HandleRList(Instruction* instr, bool load);
281   void HandleVList(Instruction* inst);
282   void SoftwareInterrupt(Instruction* instr);
283 
284   // Stop helper functions.
285   inline bool isStopInstruction(Instruction* instr);
286   inline bool isWatchedStop(uint32_t bkpt_code);
287   inline bool isEnabledStop(uint32_t bkpt_code);
288   inline void EnableStop(uint32_t bkpt_code);
289   inline void DisableStop(uint32_t bkpt_code);
290   inline void IncreaseStopCounter(uint32_t bkpt_code);
291   void PrintStopInfo(uint32_t code);
292 
293   // Read and write memory.
294   inline uint8_t ReadBU(int32_t addr);
295   inline int8_t ReadB(int32_t addr);
296   inline void WriteB(int32_t addr, uint8_t value);
297   inline void WriteB(int32_t addr, int8_t value);
298 
299   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
300   inline int16_t ReadH(int32_t addr, Instruction* instr);
301   // Note: Overloaded on the sign of the value.
302   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
303   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
304 
305   inline int ReadW(int32_t addr, Instruction* instr);
306   inline void WriteW(int32_t addr, int value, Instruction* instr);
307 
308   int32_t* ReadDW(int32_t addr);
309   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
310 
311   // Executing is handled based on the instruction type.
312   // Both type 0 and type 1 rolled into one.
313   void DecodeType01(Instruction* instr);
314   void DecodeType2(Instruction* instr);
315   void DecodeType3(Instruction* instr);
316   void DecodeType4(Instruction* instr);
317   void DecodeType5(Instruction* instr);
318   void DecodeType6(Instruction* instr);
319   void DecodeType7(Instruction* instr);
320 
321   // Support for VFP.
322   void DecodeTypeVFP(Instruction* instr);
323   void DecodeType6CoprocessorIns(Instruction* instr);
324   void DecodeSpecialCondition(Instruction* instr);
325 
326   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
327   void DecodeVCMP(Instruction* instr);
328   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
329   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
330 
331   // Executes one instruction.
332   void InstructionDecode(Instruction* instr);
333 
334   // ICache.
335   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
336   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
337                            int size);
338   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
339 
340   // Runtime call support.
341   static void* RedirectExternalReference(
342       void* external_function,
343       v8::internal::ExternalReference::Type type);
344 
345   // Handle arguments and return value for runtime FP functions.
346   void GetFpArgs(double* x, double* y, int32_t* z);
347   void SetFpResult(const double& result);
348   void TrashCallerSaveRegisters();
349 
350   template<class ReturnType, int register_size>
351       ReturnType GetFromVFPRegister(int reg_index);
352 
353   template<class InputType, int register_size>
354       void SetVFPRegister(int reg_index, const InputType& value);
355 
356   void CallInternal(byte* entry);
357 
358   // Architecture state.
359   // Saturating instructions require a Q flag to indicate saturation.
360   // There is currently no way to read the CPSR directly, and thus read the Q
361   // flag, so this is left unimplemented.
362   int32_t registers_[16];
363   bool n_flag_;
364   bool z_flag_;
365   bool c_flag_;
366   bool v_flag_;
367 
368   // VFP architecture state.
369   unsigned int vfp_registers_[num_d_registers * 2];
370   bool n_flag_FPSCR_;
371   bool z_flag_FPSCR_;
372   bool c_flag_FPSCR_;
373   bool v_flag_FPSCR_;
374 
375   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
376   VFPRoundingMode FPSCR_rounding_mode_;
377   bool FPSCR_default_NaN_mode_;
378 
379   // VFP FP exception flags architecture state.
380   bool inv_op_vfp_flag_;
381   bool div_zero_vfp_flag_;
382   bool overflow_vfp_flag_;
383   bool underflow_vfp_flag_;
384   bool inexact_vfp_flag_;
385 
386   // Simulator support.
387   char* stack_;
388   bool pc_modified_;
389   int icount_;
390 
391   // Debugger input.
392   char* last_debugger_input_;
393 
394   // Icache simulation
395   v8::internal::HashMap* i_cache_;
396 
397   // Registered breakpoints.
398   Instruction* break_pc_;
399   Instr break_instr_;
400 
401   v8::internal::Isolate* isolate_;
402 
403   // A stop is watched if its code is less than kNumOfWatchedStops.
404   // Only watched stops support enabling/disabling and the counter feature.
405   static const uint32_t kNumOfWatchedStops = 256;
406 
407   // Breakpoint is disabled if bit 31 is set.
408   static const uint32_t kStopDisabledBit = 1 << 31;
409 
410   // A stop is enabled, meaning the simulator will stop when meeting the
411   // instruction, if bit 31 of watched_stops_[code].count is unset.
412   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
413   // the breakpoint was hit or gone through.
414   struct StopCountAndDesc {
415     uint32_t count;
416     char* desc;
417   };
418   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
419 };
420 
421 
422 // When running with the simulator transition into simulated execution at this
423 // point.
424 #define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
425   reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
426       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
427 
428 #define CALL_GENERATED_FP_INT(entry, p0, p1) \
429   Simulator::current(Isolate::Current())->CallFPReturnsInt( \
430       FUNCTION_ADDR(entry), p0, p1)
431 
432 #define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
433   Simulator::current(Isolate::Current())->Call( \
434       entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
435 
436 
437 // The simulator has its own stack. Thus it has a different stack limit from
438 // the C-based native code.  Setting the c_limit to indicate a very small
439 // stack cause stack overflow errors, since the simulator ignores the input.
440 // This is unlikely to be an issue in practice, though it might cause testing
441 // trouble down the line.
442 class SimulatorStack : public v8::internal::AllStatic {
443  public:
JsLimitFromCLimit(v8::internal::Isolate * isolate,uintptr_t c_limit)444   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
445                                             uintptr_t c_limit) {
446     return Simulator::current(isolate)->StackLimit();
447   }
448 
RegisterCTryCatch(uintptr_t try_catch_address)449   static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
450     Simulator* sim = Simulator::current(Isolate::Current());
451     return sim->PushAddress(try_catch_address);
452   }
453 
UnregisterCTryCatch()454   static inline void UnregisterCTryCatch() {
455     Simulator::current(Isolate::Current())->PopAddress();
456   }
457 };
458 
459 } }  // namespace v8::internal
460 
461 #endif  // !defined(USE_SIMULATOR)
462 #endif  // V8_ARM_SIMULATOR_ARM_H_
463