1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // InstructionCombining - Combine instructions to form fewer, simple
11 // instructions. This pass does not modify the CFG. This pass is where
12 // algebraic simplification happens.
13 //
14 // This pass combines things like:
15 // %Y = add i32 %X, 1
16 // %Z = add i32 %Y, 1
17 // into:
18 // %Z = add i32 %X, 2
19 //
20 // This is a simple worklist driven algorithm.
21 //
22 // This pass guarantees that the following canonicalizations are performed on
23 // the program:
24 // 1. If a binary operator has a constant operand, it is moved to the RHS
25 // 2. Bitwise operators with constant operands are always grouped so that
26 // shifts are performed first, then or's, then and's, then xor's.
27 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28 // 4. All cmp instructions on boolean values are replaced with logical ops
29 // 5. add X, X is represented as (X*2) => (X << 1)
30 // 6. Multiplies with a power-of-two constant argument are transformed into
31 // shifts.
32 // ... etc.
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "llvm/Transforms/InstCombine/InstCombine.h"
37 #include "InstCombineInternal.h"
38 #include "llvm-c/Initialization.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/ADT/StringSwitch.h"
42 #include "llvm/Analysis/AssumptionCache.h"
43 #include "llvm/Analysis/CFG.h"
44 #include "llvm/Analysis/ConstantFolding.h"
45 #include "llvm/Analysis/InstructionSimplify.h"
46 #include "llvm/Analysis/LibCallSemantics.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/MemoryBuiltins.h"
49 #include "llvm/Analysis/TargetLibraryInfo.h"
50 #include "llvm/Analysis/ValueTracking.h"
51 #include "llvm/IR/CFG.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Scalar.h"
62 #include "llvm/Transforms/Utils/Local.h"
63 #include <algorithm>
64 #include <climits>
65 using namespace llvm;
66 using namespace llvm::PatternMatch;
67
68 #define DEBUG_TYPE "instcombine"
69
70 STATISTIC(NumCombined , "Number of insts combined");
71 STATISTIC(NumConstProp, "Number of constant folds");
72 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
73 STATISTIC(NumSunkInst , "Number of instructions sunk");
74 STATISTIC(NumExpand, "Number of expansions");
75 STATISTIC(NumFactor , "Number of factorizations");
76 STATISTIC(NumReassoc , "Number of reassociations");
77
EmitGEPOffset(User * GEP)78 Value *InstCombiner::EmitGEPOffset(User *GEP) {
79 return llvm::EmitGEPOffset(Builder, DL, GEP);
80 }
81
82 /// ShouldChangeType - Return true if it is desirable to convert a computation
83 /// from 'From' to 'To'. We don't want to convert from a legal to an illegal
84 /// type for example, or from a smaller to a larger illegal type.
ShouldChangeType(Type * From,Type * To) const85 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
86 assert(From->isIntegerTy() && To->isIntegerTy());
87
88 unsigned FromWidth = From->getPrimitiveSizeInBits();
89 unsigned ToWidth = To->getPrimitiveSizeInBits();
90 bool FromLegal = DL.isLegalInteger(FromWidth);
91 bool ToLegal = DL.isLegalInteger(ToWidth);
92
93 // If this is a legal integer from type, and the result would be an illegal
94 // type, don't do the transformation.
95 if (FromLegal && !ToLegal)
96 return false;
97
98 // Otherwise, if both are illegal, do not increase the size of the result. We
99 // do allow things like i160 -> i64, but not i64 -> i160.
100 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
101 return false;
102
103 return true;
104 }
105
106 // Return true, if No Signed Wrap should be maintained for I.
107 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
108 // where both B and C should be ConstantInts, results in a constant that does
109 // not overflow. This function only handles the Add and Sub opcodes. For
110 // all other opcodes, the function conservatively returns false.
MaintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)111 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
112 OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
113 if (!OBO || !OBO->hasNoSignedWrap()) {
114 return false;
115 }
116
117 // We reason about Add and Sub Only.
118 Instruction::BinaryOps Opcode = I.getOpcode();
119 if (Opcode != Instruction::Add &&
120 Opcode != Instruction::Sub) {
121 return false;
122 }
123
124 ConstantInt *CB = dyn_cast<ConstantInt>(B);
125 ConstantInt *CC = dyn_cast<ConstantInt>(C);
126
127 if (!CB || !CC) {
128 return false;
129 }
130
131 const APInt &BVal = CB->getValue();
132 const APInt &CVal = CC->getValue();
133 bool Overflow = false;
134
135 if (Opcode == Instruction::Add) {
136 BVal.sadd_ov(CVal, Overflow);
137 } else {
138 BVal.ssub_ov(CVal, Overflow);
139 }
140
141 return !Overflow;
142 }
143
144 /// Conservatively clears subclassOptionalData after a reassociation or
145 /// commutation. We preserve fast-math flags when applicable as they can be
146 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)147 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
148 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
149 if (!FPMO) {
150 I.clearSubclassOptionalData();
151 return;
152 }
153
154 FastMathFlags FMF = I.getFastMathFlags();
155 I.clearSubclassOptionalData();
156 I.setFastMathFlags(FMF);
157 }
158
159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160 /// operators which are associative or commutative:
161 //
162 // Commutative operators:
163 //
164 // 1. Order operands such that they are listed from right (least complex) to
165 // left (most complex). This puts constants before unary operators before
166 // binary operators.
167 //
168 // Associative operators:
169 //
170 // 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171 // 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172 //
173 // Associative and commutative operators:
174 //
175 // 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176 // 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177 // 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178 // if C1 and C2 are constants.
179 //
SimplifyAssociativeOrCommutative(BinaryOperator & I)180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
181 Instruction::BinaryOps Opcode = I.getOpcode();
182 bool Changed = false;
183
184 do {
185 // Order operands such that they are listed from right (least complex) to
186 // left (most complex). This puts constants before unary operators before
187 // binary operators.
188 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189 getComplexity(I.getOperand(1)))
190 Changed = !I.swapOperands();
191
192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195 if (I.isAssociative()) {
196 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197 if (Op0 && Op0->getOpcode() == Opcode) {
198 Value *A = Op0->getOperand(0);
199 Value *B = Op0->getOperand(1);
200 Value *C = I.getOperand(1);
201
202 // Does "B op C" simplify?
203 if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
204 // It simplifies to V. Form "A op V".
205 I.setOperand(0, A);
206 I.setOperand(1, V);
207 // Conservatively clear the optional flags, since they may not be
208 // preserved by the reassociation.
209 if (MaintainNoSignedWrap(I, B, C) &&
210 (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
211 // Note: this is only valid because SimplifyBinOp doesn't look at
212 // the operands to Op0.
213 I.clearSubclassOptionalData();
214 I.setHasNoSignedWrap(true);
215 } else {
216 ClearSubclassDataAfterReassociation(I);
217 }
218
219 Changed = true;
220 ++NumReassoc;
221 continue;
222 }
223 }
224
225 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226 if (Op1 && Op1->getOpcode() == Opcode) {
227 Value *A = I.getOperand(0);
228 Value *B = Op1->getOperand(0);
229 Value *C = Op1->getOperand(1);
230
231 // Does "A op B" simplify?
232 if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
233 // It simplifies to V. Form "V op C".
234 I.setOperand(0, V);
235 I.setOperand(1, C);
236 // Conservatively clear the optional flags, since they may not be
237 // preserved by the reassociation.
238 ClearSubclassDataAfterReassociation(I);
239 Changed = true;
240 ++NumReassoc;
241 continue;
242 }
243 }
244 }
245
246 if (I.isAssociative() && I.isCommutative()) {
247 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248 if (Op0 && Op0->getOpcode() == Opcode) {
249 Value *A = Op0->getOperand(0);
250 Value *B = Op0->getOperand(1);
251 Value *C = I.getOperand(1);
252
253 // Does "C op A" simplify?
254 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
255 // It simplifies to V. Form "V op B".
256 I.setOperand(0, V);
257 I.setOperand(1, B);
258 // Conservatively clear the optional flags, since they may not be
259 // preserved by the reassociation.
260 ClearSubclassDataAfterReassociation(I);
261 Changed = true;
262 ++NumReassoc;
263 continue;
264 }
265 }
266
267 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268 if (Op1 && Op1->getOpcode() == Opcode) {
269 Value *A = I.getOperand(0);
270 Value *B = Op1->getOperand(0);
271 Value *C = Op1->getOperand(1);
272
273 // Does "C op A" simplify?
274 if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
275 // It simplifies to V. Form "B op V".
276 I.setOperand(0, B);
277 I.setOperand(1, V);
278 // Conservatively clear the optional flags, since they may not be
279 // preserved by the reassociation.
280 ClearSubclassDataAfterReassociation(I);
281 Changed = true;
282 ++NumReassoc;
283 continue;
284 }
285 }
286
287 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288 // if C1 and C2 are constants.
289 if (Op0 && Op1 &&
290 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291 isa<Constant>(Op0->getOperand(1)) &&
292 isa<Constant>(Op1->getOperand(1)) &&
293 Op0->hasOneUse() && Op1->hasOneUse()) {
294 Value *A = Op0->getOperand(0);
295 Constant *C1 = cast<Constant>(Op0->getOperand(1));
296 Value *B = Op1->getOperand(0);
297 Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299 Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
300 BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
301 if (isa<FPMathOperator>(New)) {
302 FastMathFlags Flags = I.getFastMathFlags();
303 Flags &= Op0->getFastMathFlags();
304 Flags &= Op1->getFastMathFlags();
305 New->setFastMathFlags(Flags);
306 }
307 InsertNewInstWith(New, I);
308 New->takeName(Op1);
309 I.setOperand(0, New);
310 I.setOperand(1, Folded);
311 // Conservatively clear the optional flags, since they may not be
312 // preserved by the reassociation.
313 ClearSubclassDataAfterReassociation(I);
314
315 Changed = true;
316 continue;
317 }
318 }
319
320 // No further simplifications.
321 return Changed;
322 } while (1);
323 }
324
325 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
326 /// "(X LOp Y) ROp (X LOp Z)".
LeftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)327 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
328 Instruction::BinaryOps ROp) {
329 switch (LOp) {
330 default:
331 return false;
332
333 case Instruction::And:
334 // And distributes over Or and Xor.
335 switch (ROp) {
336 default:
337 return false;
338 case Instruction::Or:
339 case Instruction::Xor:
340 return true;
341 }
342
343 case Instruction::Mul:
344 // Multiplication distributes over addition and subtraction.
345 switch (ROp) {
346 default:
347 return false;
348 case Instruction::Add:
349 case Instruction::Sub:
350 return true;
351 }
352
353 case Instruction::Or:
354 // Or distributes over And.
355 switch (ROp) {
356 default:
357 return false;
358 case Instruction::And:
359 return true;
360 }
361 }
362 }
363
364 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
365 /// "(X ROp Z) LOp (Y ROp Z)".
RightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)366 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
367 Instruction::BinaryOps ROp) {
368 if (Instruction::isCommutative(ROp))
369 return LeftDistributesOverRight(ROp, LOp);
370
371 switch (LOp) {
372 default:
373 return false;
374 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
375 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
376 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
377 case Instruction::And:
378 case Instruction::Or:
379 case Instruction::Xor:
380 switch (ROp) {
381 default:
382 return false;
383 case Instruction::Shl:
384 case Instruction::LShr:
385 case Instruction::AShr:
386 return true;
387 }
388 }
389 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
390 // but this requires knowing that the addition does not overflow and other
391 // such subtleties.
392 return false;
393 }
394
395 /// This function returns identity value for given opcode, which can be used to
396 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps OpCode,Value * V)397 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
398 if (isa<Constant>(V))
399 return nullptr;
400
401 if (OpCode == Instruction::Mul)
402 return ConstantInt::get(V->getType(), 1);
403
404 // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
405
406 return nullptr;
407 }
408
409 /// This function factors binary ops which can be combined using distributive
410 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
411 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
412 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
413 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
414 /// RHS to 4.
415 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)416 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
417 BinaryOperator *Op, Value *&LHS, Value *&RHS) {
418 if (!Op)
419 return Instruction::BinaryOpsEnd;
420
421 LHS = Op->getOperand(0);
422 RHS = Op->getOperand(1);
423
424 switch (TopLevelOpcode) {
425 default:
426 return Op->getOpcode();
427
428 case Instruction::Add:
429 case Instruction::Sub:
430 if (Op->getOpcode() == Instruction::Shl) {
431 if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
432 // The multiplier is really 1 << CST.
433 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
434 return Instruction::Mul;
435 }
436 }
437 return Op->getOpcode();
438 }
439
440 // TODO: We can add other conversions e.g. shr => div etc.
441 }
442
443 /// This tries to simplify binary operations by factorizing out common terms
444 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(InstCombiner::BuilderTy * Builder,const DataLayout & DL,BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)445 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
446 const DataLayout &DL, BinaryOperator &I,
447 Instruction::BinaryOps InnerOpcode, Value *A,
448 Value *B, Value *C, Value *D) {
449
450 // If any of A, B, C, D are null, we can not factor I, return early.
451 // Checking A and C should be enough.
452 if (!A || !C || !B || !D)
453 return nullptr;
454
455 Value *SimplifiedInst = nullptr;
456 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
457 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
458
459 // Does "X op' Y" always equal "Y op' X"?
460 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
461
462 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
463 if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
464 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
465 // commutative case, "(A op' B) op (C op' A)"?
466 if (A == C || (InnerCommutative && A == D)) {
467 if (A != C)
468 std::swap(C, D);
469 // Consider forming "A op' (B op D)".
470 // If "B op D" simplifies then it can be formed with no cost.
471 Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
472 // If "B op D" doesn't simplify then only go on if both of the existing
473 // operations "A op' B" and "C op' D" will be zapped as no longer used.
474 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
475 V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
476 if (V) {
477 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
478 }
479 }
480
481 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
482 if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
483 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
484 // commutative case, "(A op' B) op (B op' D)"?
485 if (B == D || (InnerCommutative && B == C)) {
486 if (B != D)
487 std::swap(C, D);
488 // Consider forming "(A op C) op' B".
489 // If "A op C" simplifies then it can be formed with no cost.
490 Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
491
492 // If "A op C" doesn't simplify then only go on if both of the existing
493 // operations "A op' B" and "C op' D" will be zapped as no longer used.
494 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
495 V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
496 if (V) {
497 SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
498 }
499 }
500
501 if (SimplifiedInst) {
502 ++NumFactor;
503 SimplifiedInst->takeName(&I);
504
505 // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
506 // TODO: Check for NUW.
507 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
508 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
509 bool HasNSW = false;
510 if (isa<OverflowingBinaryOperator>(&I))
511 HasNSW = I.hasNoSignedWrap();
512
513 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
514 if (isa<OverflowingBinaryOperator>(Op0))
515 HasNSW &= Op0->hasNoSignedWrap();
516
517 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
518 if (isa<OverflowingBinaryOperator>(Op1))
519 HasNSW &= Op1->hasNoSignedWrap();
520 BO->setHasNoSignedWrap(HasNSW);
521 }
522 }
523 }
524 return SimplifiedInst;
525 }
526
527 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
528 /// which some other binary operation distributes over either by factorizing
529 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
530 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
531 /// a win). Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)532 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
533 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
534 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
535 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
536
537 // Factorization.
538 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
539 auto TopLevelOpcode = I.getOpcode();
540 auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
541 auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
542
543 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
544 // a common term.
545 if (LHSOpcode == RHSOpcode) {
546 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
547 return V;
548 }
549
550 // The instruction has the form "(A op' B) op (C)". Try to factorize common
551 // term.
552 if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
553 getIdentityValue(LHSOpcode, RHS)))
554 return V;
555
556 // The instruction has the form "(B) op (C op' D)". Try to factorize common
557 // term.
558 if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
559 getIdentityValue(RHSOpcode, LHS), C, D))
560 return V;
561
562 // Expansion.
563 if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
564 // The instruction has the form "(A op' B) op C". See if expanding it out
565 // to "(A op C) op' (B op C)" results in simplifications.
566 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
567 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
568
569 // Do "A op C" and "B op C" both simplify?
570 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
571 if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
572 // They do! Return "L op' R".
573 ++NumExpand;
574 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
575 if ((L == A && R == B) ||
576 (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
577 return Op0;
578 // Otherwise return "L op' R" if it simplifies.
579 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
580 return V;
581 // Otherwise, create a new instruction.
582 C = Builder->CreateBinOp(InnerOpcode, L, R);
583 C->takeName(&I);
584 return C;
585 }
586 }
587
588 if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
589 // The instruction has the form "A op (B op' C)". See if expanding it out
590 // to "(A op B) op' (A op C)" results in simplifications.
591 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
592 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
593
594 // Do "A op B" and "A op C" both simplify?
595 if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
596 if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
597 // They do! Return "L op' R".
598 ++NumExpand;
599 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
600 if ((L == B && R == C) ||
601 (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
602 return Op1;
603 // Otherwise return "L op' R" if it simplifies.
604 if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
605 return V;
606 // Otherwise, create a new instruction.
607 A = Builder->CreateBinOp(InnerOpcode, L, R);
608 A->takeName(&I);
609 return A;
610 }
611 }
612
613 return nullptr;
614 }
615
616 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
617 // if the LHS is a constant zero (which is the 'negate' form).
618 //
dyn_castNegVal(Value * V) const619 Value *InstCombiner::dyn_castNegVal(Value *V) const {
620 if (BinaryOperator::isNeg(V))
621 return BinaryOperator::getNegArgument(V);
622
623 // Constants can be considered to be negated values if they can be folded.
624 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
625 return ConstantExpr::getNeg(C);
626
627 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
628 if (C->getType()->getElementType()->isIntegerTy())
629 return ConstantExpr::getNeg(C);
630
631 return nullptr;
632 }
633
634 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
635 // instruction if the LHS is a constant negative zero (which is the 'negate'
636 // form).
637 //
dyn_castFNegVal(Value * V,bool IgnoreZeroSign) const638 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
639 if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
640 return BinaryOperator::getFNegArgument(V);
641
642 // Constants can be considered to be negated values if they can be folded.
643 if (ConstantFP *C = dyn_cast<ConstantFP>(V))
644 return ConstantExpr::getFNeg(C);
645
646 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
647 if (C->getType()->getElementType()->isFloatingPointTy())
648 return ConstantExpr::getFNeg(C);
649
650 return nullptr;
651 }
652
FoldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner * IC)653 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
654 InstCombiner *IC) {
655 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
656 return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
657 }
658
659 // Figure out if the constant is the left or the right argument.
660 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
661 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
662
663 if (Constant *SOC = dyn_cast<Constant>(SO)) {
664 if (ConstIsRHS)
665 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
666 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
667 }
668
669 Value *Op0 = SO, *Op1 = ConstOperand;
670 if (!ConstIsRHS)
671 std::swap(Op0, Op1);
672
673 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
674 Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
675 SO->getName()+".op");
676 Instruction *FPInst = dyn_cast<Instruction>(RI);
677 if (FPInst && isa<FPMathOperator>(FPInst))
678 FPInst->copyFastMathFlags(BO);
679 return RI;
680 }
681 if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
682 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
683 SO->getName()+".cmp");
684 if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
685 return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
686 SO->getName()+".cmp");
687 llvm_unreachable("Unknown binary instruction type!");
688 }
689
690 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
691 // constant as the other operand, try to fold the binary operator into the
692 // select arguments. This also works for Cast instructions, which obviously do
693 // not have a second operand.
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)694 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
695 // Don't modify shared select instructions
696 if (!SI->hasOneUse()) return nullptr;
697 Value *TV = SI->getOperand(1);
698 Value *FV = SI->getOperand(2);
699
700 if (isa<Constant>(TV) || isa<Constant>(FV)) {
701 // Bool selects with constant operands can be folded to logical ops.
702 if (SI->getType()->isIntegerTy(1)) return nullptr;
703
704 // If it's a bitcast involving vectors, make sure it has the same number of
705 // elements on both sides.
706 if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
707 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
708 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
709
710 // Verify that either both or neither are vectors.
711 if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
712 // If vectors, verify that they have the same number of elements.
713 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
714 return nullptr;
715 }
716
717 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
718 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
719
720 return SelectInst::Create(SI->getCondition(),
721 SelectTrueVal, SelectFalseVal);
722 }
723 return nullptr;
724 }
725
726
727 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
728 /// has a PHI node as operand #0, see if we can fold the instruction into the
729 /// PHI (which is only possible if all operands to the PHI are constants).
730 ///
FoldOpIntoPhi(Instruction & I)731 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
732 PHINode *PN = cast<PHINode>(I.getOperand(0));
733 unsigned NumPHIValues = PN->getNumIncomingValues();
734 if (NumPHIValues == 0)
735 return nullptr;
736
737 // We normally only transform phis with a single use. However, if a PHI has
738 // multiple uses and they are all the same operation, we can fold *all* of the
739 // uses into the PHI.
740 if (!PN->hasOneUse()) {
741 // Walk the use list for the instruction, comparing them to I.
742 for (User *U : PN->users()) {
743 Instruction *UI = cast<Instruction>(U);
744 if (UI != &I && !I.isIdenticalTo(UI))
745 return nullptr;
746 }
747 // Otherwise, we can replace *all* users with the new PHI we form.
748 }
749
750 // Check to see if all of the operands of the PHI are simple constants
751 // (constantint/constantfp/undef). If there is one non-constant value,
752 // remember the BB it is in. If there is more than one or if *it* is a PHI,
753 // bail out. We don't do arbitrary constant expressions here because moving
754 // their computation can be expensive without a cost model.
755 BasicBlock *NonConstBB = nullptr;
756 for (unsigned i = 0; i != NumPHIValues; ++i) {
757 Value *InVal = PN->getIncomingValue(i);
758 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
759 continue;
760
761 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
762 if (NonConstBB) return nullptr; // More than one non-const value.
763
764 NonConstBB = PN->getIncomingBlock(i);
765
766 // If the InVal is an invoke at the end of the pred block, then we can't
767 // insert a computation after it without breaking the edge.
768 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
769 if (II->getParent() == NonConstBB)
770 return nullptr;
771
772 // If the incoming non-constant value is in I's block, we will remove one
773 // instruction, but insert another equivalent one, leading to infinite
774 // instcombine.
775 if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
776 return nullptr;
777 }
778
779 // If there is exactly one non-constant value, we can insert a copy of the
780 // operation in that block. However, if this is a critical edge, we would be
781 // inserting the computation on some other paths (e.g. inside a loop). Only
782 // do this if the pred block is unconditionally branching into the phi block.
783 if (NonConstBB != nullptr) {
784 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
785 if (!BI || !BI->isUnconditional()) return nullptr;
786 }
787
788 // Okay, we can do the transformation: create the new PHI node.
789 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
790 InsertNewInstBefore(NewPN, *PN);
791 NewPN->takeName(PN);
792
793 // If we are going to have to insert a new computation, do so right before the
794 // predecessors terminator.
795 if (NonConstBB)
796 Builder->SetInsertPoint(NonConstBB->getTerminator());
797
798 // Next, add all of the operands to the PHI.
799 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
800 // We only currently try to fold the condition of a select when it is a phi,
801 // not the true/false values.
802 Value *TrueV = SI->getTrueValue();
803 Value *FalseV = SI->getFalseValue();
804 BasicBlock *PhiTransBB = PN->getParent();
805 for (unsigned i = 0; i != NumPHIValues; ++i) {
806 BasicBlock *ThisBB = PN->getIncomingBlock(i);
807 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
808 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
809 Value *InV = nullptr;
810 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
811 // even if currently isNullValue gives false.
812 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
813 if (InC && !isa<ConstantExpr>(InC))
814 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
815 else
816 InV = Builder->CreateSelect(PN->getIncomingValue(i),
817 TrueVInPred, FalseVInPred, "phitmp");
818 NewPN->addIncoming(InV, ThisBB);
819 }
820 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
821 Constant *C = cast<Constant>(I.getOperand(1));
822 for (unsigned i = 0; i != NumPHIValues; ++i) {
823 Value *InV = nullptr;
824 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
825 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
826 else if (isa<ICmpInst>(CI))
827 InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
828 C, "phitmp");
829 else
830 InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
831 C, "phitmp");
832 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
833 }
834 } else if (I.getNumOperands() == 2) {
835 Constant *C = cast<Constant>(I.getOperand(1));
836 for (unsigned i = 0; i != NumPHIValues; ++i) {
837 Value *InV = nullptr;
838 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
839 InV = ConstantExpr::get(I.getOpcode(), InC, C);
840 else
841 InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
842 PN->getIncomingValue(i), C, "phitmp");
843 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
844 }
845 } else {
846 CastInst *CI = cast<CastInst>(&I);
847 Type *RetTy = CI->getType();
848 for (unsigned i = 0; i != NumPHIValues; ++i) {
849 Value *InV;
850 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
851 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
852 else
853 InV = Builder->CreateCast(CI->getOpcode(),
854 PN->getIncomingValue(i), I.getType(), "phitmp");
855 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
856 }
857 }
858
859 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
860 Instruction *User = cast<Instruction>(*UI++);
861 if (User == &I) continue;
862 ReplaceInstUsesWith(*User, NewPN);
863 EraseInstFromFunction(*User);
864 }
865 return ReplaceInstUsesWith(I, NewPN);
866 }
867
868 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
869 /// whether or not there is a sequence of GEP indices into the pointed type that
870 /// will land us at the specified offset. If so, fill them into NewIndices and
871 /// return the resultant element type, otherwise return null.
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)872 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
873 SmallVectorImpl<Value *> &NewIndices) {
874 Type *Ty = PtrTy->getElementType();
875 if (!Ty->isSized())
876 return nullptr;
877
878 // Start with the index over the outer type. Note that the type size
879 // might be zero (even if the offset isn't zero) if the indexed type
880 // is something like [0 x {int, int}]
881 Type *IntPtrTy = DL.getIntPtrType(PtrTy);
882 int64_t FirstIdx = 0;
883 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
884 FirstIdx = Offset/TySize;
885 Offset -= FirstIdx*TySize;
886
887 // Handle hosts where % returns negative instead of values [0..TySize).
888 if (Offset < 0) {
889 --FirstIdx;
890 Offset += TySize;
891 assert(Offset >= 0);
892 }
893 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
894 }
895
896 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
897
898 // Index into the types. If we fail, set OrigBase to null.
899 while (Offset) {
900 // Indexing into tail padding between struct/array elements.
901 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
902 return nullptr;
903
904 if (StructType *STy = dyn_cast<StructType>(Ty)) {
905 const StructLayout *SL = DL.getStructLayout(STy);
906 assert(Offset < (int64_t)SL->getSizeInBytes() &&
907 "Offset must stay within the indexed type");
908
909 unsigned Elt = SL->getElementContainingOffset(Offset);
910 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
911 Elt));
912
913 Offset -= SL->getElementOffset(Elt);
914 Ty = STy->getElementType(Elt);
915 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
916 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
917 assert(EltSize && "Cannot index into a zero-sized array");
918 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
919 Offset %= EltSize;
920 Ty = AT->getElementType();
921 } else {
922 // Otherwise, we can't index into the middle of this atomic type, bail.
923 return nullptr;
924 }
925 }
926
927 return Ty;
928 }
929
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)930 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
931 // If this GEP has only 0 indices, it is the same pointer as
932 // Src. If Src is not a trivial GEP too, don't combine
933 // the indices.
934 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
935 !Src.hasOneUse())
936 return false;
937 return true;
938 }
939
940 /// Descale - Return a value X such that Val = X * Scale, or null if none. If
941 /// the multiplication is known not to overflow then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)942 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
943 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
944 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
945 Scale.getBitWidth() && "Scale not compatible with value!");
946
947 // If Val is zero or Scale is one then Val = Val * Scale.
948 if (match(Val, m_Zero()) || Scale == 1) {
949 NoSignedWrap = true;
950 return Val;
951 }
952
953 // If Scale is zero then it does not divide Val.
954 if (Scale.isMinValue())
955 return nullptr;
956
957 // Look through chains of multiplications, searching for a constant that is
958 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
959 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
960 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
961 // down from Val:
962 //
963 // Val = M1 * X || Analysis starts here and works down
964 // M1 = M2 * Y || Doesn't descend into terms with more
965 // M2 = Z * 4 \/ than one use
966 //
967 // Then to modify a term at the bottom:
968 //
969 // Val = M1 * X
970 // M1 = Z * Y || Replaced M2 with Z
971 //
972 // Then to work back up correcting nsw flags.
973
974 // Op - the term we are currently analyzing. Starts at Val then drills down.
975 // Replaced with its descaled value before exiting from the drill down loop.
976 Value *Op = Val;
977
978 // Parent - initially null, but after drilling down notes where Op came from.
979 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
980 // 0'th operand of Val.
981 std::pair<Instruction*, unsigned> Parent;
982
983 // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
984 // levels that doesn't overflow.
985 bool RequireNoSignedWrap = false;
986
987 // logScale - log base 2 of the scale. Negative if not a power of 2.
988 int32_t logScale = Scale.exactLogBase2();
989
990 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
991
992 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
993 // If Op is a constant divisible by Scale then descale to the quotient.
994 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
995 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
996 if (!Remainder.isMinValue())
997 // Not divisible by Scale.
998 return nullptr;
999 // Replace with the quotient in the parent.
1000 Op = ConstantInt::get(CI->getType(), Quotient);
1001 NoSignedWrap = true;
1002 break;
1003 }
1004
1005 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1006
1007 if (BO->getOpcode() == Instruction::Mul) {
1008 // Multiplication.
1009 NoSignedWrap = BO->hasNoSignedWrap();
1010 if (RequireNoSignedWrap && !NoSignedWrap)
1011 return nullptr;
1012
1013 // There are three cases for multiplication: multiplication by exactly
1014 // the scale, multiplication by a constant different to the scale, and
1015 // multiplication by something else.
1016 Value *LHS = BO->getOperand(0);
1017 Value *RHS = BO->getOperand(1);
1018
1019 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1020 // Multiplication by a constant.
1021 if (CI->getValue() == Scale) {
1022 // Multiplication by exactly the scale, replace the multiplication
1023 // by its left-hand side in the parent.
1024 Op = LHS;
1025 break;
1026 }
1027
1028 // Otherwise drill down into the constant.
1029 if (!Op->hasOneUse())
1030 return nullptr;
1031
1032 Parent = std::make_pair(BO, 1);
1033 continue;
1034 }
1035
1036 // Multiplication by something else. Drill down into the left-hand side
1037 // since that's where the reassociate pass puts the good stuff.
1038 if (!Op->hasOneUse())
1039 return nullptr;
1040
1041 Parent = std::make_pair(BO, 0);
1042 continue;
1043 }
1044
1045 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1046 isa<ConstantInt>(BO->getOperand(1))) {
1047 // Multiplication by a power of 2.
1048 NoSignedWrap = BO->hasNoSignedWrap();
1049 if (RequireNoSignedWrap && !NoSignedWrap)
1050 return nullptr;
1051
1052 Value *LHS = BO->getOperand(0);
1053 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1054 getLimitedValue(Scale.getBitWidth());
1055 // Op = LHS << Amt.
1056
1057 if (Amt == logScale) {
1058 // Multiplication by exactly the scale, replace the multiplication
1059 // by its left-hand side in the parent.
1060 Op = LHS;
1061 break;
1062 }
1063 if (Amt < logScale || !Op->hasOneUse())
1064 return nullptr;
1065
1066 // Multiplication by more than the scale. Reduce the multiplying amount
1067 // by the scale in the parent.
1068 Parent = std::make_pair(BO, 1);
1069 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1070 break;
1071 }
1072 }
1073
1074 if (!Op->hasOneUse())
1075 return nullptr;
1076
1077 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1078 if (Cast->getOpcode() == Instruction::SExt) {
1079 // Op is sign-extended from a smaller type, descale in the smaller type.
1080 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1081 APInt SmallScale = Scale.trunc(SmallSize);
1082 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1083 // descale Op as (sext Y) * Scale. In order to have
1084 // sext (Y * SmallScale) = (sext Y) * Scale
1085 // some conditions need to hold however: SmallScale must sign-extend to
1086 // Scale and the multiplication Y * SmallScale should not overflow.
1087 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1088 // SmallScale does not sign-extend to Scale.
1089 return nullptr;
1090 assert(SmallScale.exactLogBase2() == logScale);
1091 // Require that Y * SmallScale must not overflow.
1092 RequireNoSignedWrap = true;
1093
1094 // Drill down through the cast.
1095 Parent = std::make_pair(Cast, 0);
1096 Scale = SmallScale;
1097 continue;
1098 }
1099
1100 if (Cast->getOpcode() == Instruction::Trunc) {
1101 // Op is truncated from a larger type, descale in the larger type.
1102 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1103 // trunc (Y * sext Scale) = (trunc Y) * Scale
1104 // always holds. However (trunc Y) * Scale may overflow even if
1105 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1106 // from this point up in the expression (see later).
1107 if (RequireNoSignedWrap)
1108 return nullptr;
1109
1110 // Drill down through the cast.
1111 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1112 Parent = std::make_pair(Cast, 0);
1113 Scale = Scale.sext(LargeSize);
1114 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1115 logScale = -1;
1116 assert(Scale.exactLogBase2() == logScale);
1117 continue;
1118 }
1119 }
1120
1121 // Unsupported expression, bail out.
1122 return nullptr;
1123 }
1124
1125 // If Op is zero then Val = Op * Scale.
1126 if (match(Op, m_Zero())) {
1127 NoSignedWrap = true;
1128 return Op;
1129 }
1130
1131 // We know that we can successfully descale, so from here on we can safely
1132 // modify the IR. Op holds the descaled version of the deepest term in the
1133 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1134 // not to overflow.
1135
1136 if (!Parent.first)
1137 // The expression only had one term.
1138 return Op;
1139
1140 // Rewrite the parent using the descaled version of its operand.
1141 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1142 assert(Op != Parent.first->getOperand(Parent.second) &&
1143 "Descaling was a no-op?");
1144 Parent.first->setOperand(Parent.second, Op);
1145 Worklist.Add(Parent.first);
1146
1147 // Now work back up the expression correcting nsw flags. The logic is based
1148 // on the following observation: if X * Y is known not to overflow as a signed
1149 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1150 // then X * Z will not overflow as a signed multiplication either. As we work
1151 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1152 // current level has strictly smaller absolute value than the original.
1153 Instruction *Ancestor = Parent.first;
1154 do {
1155 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1156 // If the multiplication wasn't nsw then we can't say anything about the
1157 // value of the descaled multiplication, and we have to clear nsw flags
1158 // from this point on up.
1159 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1160 NoSignedWrap &= OpNoSignedWrap;
1161 if (NoSignedWrap != OpNoSignedWrap) {
1162 BO->setHasNoSignedWrap(NoSignedWrap);
1163 Worklist.Add(Ancestor);
1164 }
1165 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1166 // The fact that the descaled input to the trunc has smaller absolute
1167 // value than the original input doesn't tell us anything useful about
1168 // the absolute values of the truncations.
1169 NoSignedWrap = false;
1170 }
1171 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1172 "Failed to keep proper track of nsw flags while drilling down?");
1173
1174 if (Ancestor == Val)
1175 // Got to the top, all done!
1176 return Val;
1177
1178 // Move up one level in the expression.
1179 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1180 Ancestor = Ancestor->user_back();
1181 } while (1);
1182 }
1183
1184 /// \brief Creates node of binary operation with the same attributes as the
1185 /// specified one but with other operands.
CreateBinOpAsGiven(BinaryOperator & Inst,Value * LHS,Value * RHS,InstCombiner::BuilderTy * B)1186 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
1187 InstCombiner::BuilderTy *B) {
1188 Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
1189 if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
1190 if (isa<OverflowingBinaryOperator>(NewBO)) {
1191 NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
1192 NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
1193 }
1194 if (isa<PossiblyExactOperator>(NewBO))
1195 NewBO->setIsExact(Inst.isExact());
1196 }
1197 return BORes;
1198 }
1199
1200 /// \brief Makes transformation of binary operation specific for vector types.
1201 /// \param Inst Binary operator to transform.
1202 /// \return Pointer to node that must replace the original binary operator, or
1203 /// null pointer if no transformation was made.
SimplifyVectorOp(BinaryOperator & Inst)1204 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
1205 if (!Inst.getType()->isVectorTy()) return nullptr;
1206
1207 // It may not be safe to reorder shuffles and things like div, urem, etc.
1208 // because we may trap when executing those ops on unknown vector elements.
1209 // See PR20059.
1210 if (!isSafeToSpeculativelyExecute(&Inst))
1211 return nullptr;
1212
1213 unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
1214 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1215 assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
1216 assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
1217
1218 // If both arguments of binary operation are shuffles, which use the same
1219 // mask and shuffle within a single vector, it is worthwhile to move the
1220 // shuffle after binary operation:
1221 // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
1222 if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
1223 ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
1224 ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
1225 if (isa<UndefValue>(LShuf->getOperand(1)) &&
1226 isa<UndefValue>(RShuf->getOperand(1)) &&
1227 LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
1228 LShuf->getMask() == RShuf->getMask()) {
1229 Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
1230 RShuf->getOperand(0), Builder);
1231 Value *Res = Builder->CreateShuffleVector(NewBO,
1232 UndefValue::get(NewBO->getType()), LShuf->getMask());
1233 return Res;
1234 }
1235 }
1236
1237 // If one argument is a shuffle within one vector, the other is a constant,
1238 // try moving the shuffle after the binary operation.
1239 ShuffleVectorInst *Shuffle = nullptr;
1240 Constant *C1 = nullptr;
1241 if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
1242 if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
1243 if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
1244 if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
1245 if (Shuffle && C1 &&
1246 (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
1247 isa<UndefValue>(Shuffle->getOperand(1)) &&
1248 Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
1249 SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
1250 // Find constant C2 that has property:
1251 // shuffle(C2, ShMask) = C1
1252 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
1253 // reorder is not possible.
1254 SmallVector<Constant*, 16> C2M(VWidth,
1255 UndefValue::get(C1->getType()->getScalarType()));
1256 bool MayChange = true;
1257 for (unsigned I = 0; I < VWidth; ++I) {
1258 if (ShMask[I] >= 0) {
1259 assert(ShMask[I] < (int)VWidth);
1260 if (!isa<UndefValue>(C2M[ShMask[I]])) {
1261 MayChange = false;
1262 break;
1263 }
1264 C2M[ShMask[I]] = C1->getAggregateElement(I);
1265 }
1266 }
1267 if (MayChange) {
1268 Constant *C2 = ConstantVector::get(C2M);
1269 Value *NewLHS, *NewRHS;
1270 if (isa<Constant>(LHS)) {
1271 NewLHS = C2;
1272 NewRHS = Shuffle->getOperand(0);
1273 } else {
1274 NewLHS = Shuffle->getOperand(0);
1275 NewRHS = C2;
1276 }
1277 Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
1278 Value *Res = Builder->CreateShuffleVector(NewBO,
1279 UndefValue::get(Inst.getType()), Shuffle->getMask());
1280 return Res;
1281 }
1282 }
1283
1284 return nullptr;
1285 }
1286
visitGetElementPtrInst(GetElementPtrInst & GEP)1287 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1288 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
1289
1290 if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
1291 return ReplaceInstUsesWith(GEP, V);
1292
1293 Value *PtrOp = GEP.getOperand(0);
1294
1295 // Eliminate unneeded casts for indices, and replace indices which displace
1296 // by multiples of a zero size type with zero.
1297 bool MadeChange = false;
1298 Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
1299
1300 gep_type_iterator GTI = gep_type_begin(GEP);
1301 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1302 ++I, ++GTI) {
1303 // Skip indices into struct types.
1304 SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
1305 if (!SeqTy)
1306 continue;
1307
1308 // If the element type has zero size then any index over it is equivalent
1309 // to an index of zero, so replace it with zero if it is not zero already.
1310 if (SeqTy->getElementType()->isSized() &&
1311 DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
1312 if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
1313 *I = Constant::getNullValue(IntPtrTy);
1314 MadeChange = true;
1315 }
1316
1317 Type *IndexTy = (*I)->getType();
1318 if (IndexTy != IntPtrTy) {
1319 // If we are using a wider index than needed for this platform, shrink
1320 // it to what we need. If narrower, sign-extend it to what we need.
1321 // This explicit cast can make subsequent optimizations more obvious.
1322 *I = Builder->CreateIntCast(*I, IntPtrTy, true);
1323 MadeChange = true;
1324 }
1325 }
1326 if (MadeChange)
1327 return &GEP;
1328
1329 // Check to see if the inputs to the PHI node are getelementptr instructions.
1330 if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
1331 GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1332 if (!Op1)
1333 return nullptr;
1334
1335 // Don't fold a GEP into itself through a PHI node. This can only happen
1336 // through the back-edge of a loop. Folding a GEP into itself means that
1337 // the value of the previous iteration needs to be stored in the meantime,
1338 // thus requiring an additional register variable to be live, but not
1339 // actually achieving anything (the GEP still needs to be executed once per
1340 // loop iteration).
1341 if (Op1 == &GEP)
1342 return nullptr;
1343
1344 signed DI = -1;
1345
1346 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1347 GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
1348 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1349 return nullptr;
1350
1351 // As for Op1 above, don't try to fold a GEP into itself.
1352 if (Op2 == &GEP)
1353 return nullptr;
1354
1355 // Keep track of the type as we walk the GEP.
1356 Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
1357
1358 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1359 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1360 return nullptr;
1361
1362 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1363 if (DI == -1) {
1364 // We have not seen any differences yet in the GEPs feeding the
1365 // PHI yet, so we record this one if it is allowed to be a
1366 // variable.
1367
1368 // The first two arguments can vary for any GEP, the rest have to be
1369 // static for struct slots
1370 if (J > 1 && CurTy->isStructTy())
1371 return nullptr;
1372
1373 DI = J;
1374 } else {
1375 // The GEP is different by more than one input. While this could be
1376 // extended to support GEPs that vary by more than one variable it
1377 // doesn't make sense since it greatly increases the complexity and
1378 // would result in an R+R+R addressing mode which no backend
1379 // directly supports and would need to be broken into several
1380 // simpler instructions anyway.
1381 return nullptr;
1382 }
1383 }
1384
1385 // Sink down a layer of the type for the next iteration.
1386 if (J > 0) {
1387 if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
1388 CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
1389 } else {
1390 CurTy = nullptr;
1391 }
1392 }
1393 }
1394 }
1395
1396 GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
1397
1398 if (DI == -1) {
1399 // All the GEPs feeding the PHI are identical. Clone one down into our
1400 // BB so that it can be merged with the current GEP.
1401 GEP.getParent()->getInstList().insert(
1402 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1403 } else {
1404 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
1405 // into the current block so it can be merged, and create a new PHI to
1406 // set that index.
1407 Instruction *InsertPt = Builder->GetInsertPoint();
1408 Builder->SetInsertPoint(PN);
1409 PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
1410 PN->getNumOperands());
1411 Builder->SetInsertPoint(InsertPt);
1412
1413 for (auto &I : PN->operands())
1414 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
1415 PN->getIncomingBlock(I));
1416
1417 NewGEP->setOperand(DI, NewPN);
1418 GEP.getParent()->getInstList().insert(
1419 GEP.getParent()->getFirstInsertionPt(), NewGEP);
1420 NewGEP->setOperand(DI, NewPN);
1421 }
1422
1423 GEP.setOperand(0, NewGEP);
1424 PtrOp = NewGEP;
1425 }
1426
1427 // Combine Indices - If the source pointer to this getelementptr instruction
1428 // is a getelementptr instruction, combine the indices of the two
1429 // getelementptr instructions into a single instruction.
1430 //
1431 if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
1432 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
1433 return nullptr;
1434
1435 // Note that if our source is a gep chain itself then we wait for that
1436 // chain to be resolved before we perform this transformation. This
1437 // avoids us creating a TON of code in some cases.
1438 if (GEPOperator *SrcGEP =
1439 dyn_cast<GEPOperator>(Src->getOperand(0)))
1440 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
1441 return nullptr; // Wait until our source is folded to completion.
1442
1443 SmallVector<Value*, 8> Indices;
1444
1445 // Find out whether the last index in the source GEP is a sequential idx.
1446 bool EndsWithSequential = false;
1447 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
1448 I != E; ++I)
1449 EndsWithSequential = !(*I)->isStructTy();
1450
1451 // Can we combine the two pointer arithmetics offsets?
1452 if (EndsWithSequential) {
1453 // Replace: gep (gep %P, long B), long A, ...
1454 // With: T = long A+B; gep %P, T, ...
1455 //
1456 Value *Sum;
1457 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
1458 Value *GO1 = GEP.getOperand(1);
1459 if (SO1 == Constant::getNullValue(SO1->getType())) {
1460 Sum = GO1;
1461 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
1462 Sum = SO1;
1463 } else {
1464 // If they aren't the same type, then the input hasn't been processed
1465 // by the loop above yet (which canonicalizes sequential index types to
1466 // intptr_t). Just avoid transforming this until the input has been
1467 // normalized.
1468 if (SO1->getType() != GO1->getType())
1469 return nullptr;
1470 Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
1471 }
1472
1473 // Update the GEP in place if possible.
1474 if (Src->getNumOperands() == 2) {
1475 GEP.setOperand(0, Src->getOperand(0));
1476 GEP.setOperand(1, Sum);
1477 return &GEP;
1478 }
1479 Indices.append(Src->op_begin()+1, Src->op_end()-1);
1480 Indices.push_back(Sum);
1481 Indices.append(GEP.op_begin()+2, GEP.op_end());
1482 } else if (isa<Constant>(*GEP.idx_begin()) &&
1483 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
1484 Src->getNumOperands() != 1) {
1485 // Otherwise we can do the fold if the first index of the GEP is a zero
1486 Indices.append(Src->op_begin()+1, Src->op_end());
1487 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
1488 }
1489
1490 if (!Indices.empty())
1491 return GEP.isInBounds() && Src->isInBounds()
1492 ? GetElementPtrInst::CreateInBounds(
1493 Src->getSourceElementType(), Src->getOperand(0), Indices,
1494 GEP.getName())
1495 : GetElementPtrInst::Create(Src->getSourceElementType(),
1496 Src->getOperand(0), Indices,
1497 GEP.getName());
1498 }
1499
1500 if (GEP.getNumIndices() == 1) {
1501 unsigned AS = GEP.getPointerAddressSpace();
1502 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
1503 DL.getPointerSizeInBits(AS)) {
1504 Type *PtrTy = GEP.getPointerOperandType();
1505 Type *Ty = PtrTy->getPointerElementType();
1506 uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
1507
1508 bool Matched = false;
1509 uint64_t C;
1510 Value *V = nullptr;
1511 if (TyAllocSize == 1) {
1512 V = GEP.getOperand(1);
1513 Matched = true;
1514 } else if (match(GEP.getOperand(1),
1515 m_AShr(m_Value(V), m_ConstantInt(C)))) {
1516 if (TyAllocSize == 1ULL << C)
1517 Matched = true;
1518 } else if (match(GEP.getOperand(1),
1519 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
1520 if (TyAllocSize == C)
1521 Matched = true;
1522 }
1523
1524 if (Matched) {
1525 // Canonicalize (gep i8* X, -(ptrtoint Y))
1526 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
1527 // The GEP pattern is emitted by the SCEV expander for certain kinds of
1528 // pointer arithmetic.
1529 if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
1530 Operator *Index = cast<Operator>(V);
1531 Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
1532 Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
1533 return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
1534 }
1535 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
1536 // to (bitcast Y)
1537 Value *Y;
1538 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
1539 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
1540 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
1541 GEP.getType());
1542 }
1543 }
1544 }
1545 }
1546
1547 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
1548 Value *StrippedPtr = PtrOp->stripPointerCasts();
1549 PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
1550
1551 // We do not handle pointer-vector geps here.
1552 if (!StrippedPtrTy)
1553 return nullptr;
1554
1555 if (StrippedPtr != PtrOp) {
1556 bool HasZeroPointerIndex = false;
1557 if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
1558 HasZeroPointerIndex = C->isZero();
1559
1560 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
1561 // into : GEP [10 x i8]* X, i32 0, ...
1562 //
1563 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
1564 // into : GEP i8* X, ...
1565 //
1566 // This occurs when the program declares an array extern like "int X[];"
1567 if (HasZeroPointerIndex) {
1568 PointerType *CPTy = cast<PointerType>(PtrOp->getType());
1569 if (ArrayType *CATy =
1570 dyn_cast<ArrayType>(CPTy->getElementType())) {
1571 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
1572 if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
1573 // -> GEP i8* X, ...
1574 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
1575 GetElementPtrInst *Res = GetElementPtrInst::Create(
1576 StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
1577 Res->setIsInBounds(GEP.isInBounds());
1578 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
1579 return Res;
1580 // Insert Res, and create an addrspacecast.
1581 // e.g.,
1582 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
1583 // ->
1584 // %0 = GEP i8 addrspace(1)* X, ...
1585 // addrspacecast i8 addrspace(1)* %0 to i8*
1586 return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
1587 }
1588
1589 if (ArrayType *XATy =
1590 dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
1591 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
1592 if (CATy->getElementType() == XATy->getElementType()) {
1593 // -> GEP [10 x i8]* X, i32 0, ...
1594 // At this point, we know that the cast source type is a pointer
1595 // to an array of the same type as the destination pointer
1596 // array. Because the array type is never stepped over (there
1597 // is a leading zero) we can fold the cast into this GEP.
1598 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
1599 GEP.setOperand(0, StrippedPtr);
1600 return &GEP;
1601 }
1602 // Cannot replace the base pointer directly because StrippedPtr's
1603 // address space is different. Instead, create a new GEP followed by
1604 // an addrspacecast.
1605 // e.g.,
1606 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
1607 // i32 0, ...
1608 // ->
1609 // %0 = GEP [10 x i8] addrspace(1)* X, ...
1610 // addrspacecast i8 addrspace(1)* %0 to i8*
1611 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
1612 Value *NewGEP = GEP.isInBounds()
1613 ? Builder->CreateInBoundsGEP(
1614 nullptr, StrippedPtr, Idx, GEP.getName())
1615 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
1616 GEP.getName());
1617 return new AddrSpaceCastInst(NewGEP, GEP.getType());
1618 }
1619 }
1620 }
1621 } else if (GEP.getNumOperands() == 2) {
1622 // Transform things like:
1623 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
1624 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
1625 Type *SrcElTy = StrippedPtrTy->getElementType();
1626 Type *ResElTy = PtrOp->getType()->getPointerElementType();
1627 if (SrcElTy->isArrayTy() &&
1628 DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
1629 DL.getTypeAllocSize(ResElTy)) {
1630 Type *IdxType = DL.getIntPtrType(GEP.getType());
1631 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
1632 Value *NewGEP =
1633 GEP.isInBounds()
1634 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
1635 GEP.getName())
1636 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
1637
1638 // V and GEP are both pointer types --> BitCast
1639 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1640 GEP.getType());
1641 }
1642
1643 // Transform things like:
1644 // %V = mul i64 %N, 4
1645 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
1646 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
1647 if (ResElTy->isSized() && SrcElTy->isSized()) {
1648 // Check that changing the type amounts to dividing the index by a scale
1649 // factor.
1650 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1651 uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
1652 if (ResSize && SrcSize % ResSize == 0) {
1653 Value *Idx = GEP.getOperand(1);
1654 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1655 uint64_t Scale = SrcSize / ResSize;
1656
1657 // Earlier transforms ensure that the index has type IntPtrType, which
1658 // considerably simplifies the logic by eliminating implicit casts.
1659 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1660 "Index not cast to pointer width?");
1661
1662 bool NSW;
1663 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1664 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1665 // If the multiplication NewIdx * Scale may overflow then the new
1666 // GEP may not be "inbounds".
1667 Value *NewGEP =
1668 GEP.isInBounds() && NSW
1669 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
1670 GEP.getName())
1671 : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
1672 GEP.getName());
1673
1674 // The NewGEP must be pointer typed, so must the old one -> BitCast
1675 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1676 GEP.getType());
1677 }
1678 }
1679 }
1680
1681 // Similarly, transform things like:
1682 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
1683 // (where tmp = 8*tmp2) into:
1684 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
1685 if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
1686 // Check that changing to the array element type amounts to dividing the
1687 // index by a scale factor.
1688 uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
1689 uint64_t ArrayEltSize =
1690 DL.getTypeAllocSize(SrcElTy->getArrayElementType());
1691 if (ResSize && ArrayEltSize % ResSize == 0) {
1692 Value *Idx = GEP.getOperand(1);
1693 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
1694 uint64_t Scale = ArrayEltSize / ResSize;
1695
1696 // Earlier transforms ensure that the index has type IntPtrType, which
1697 // considerably simplifies the logic by eliminating implicit casts.
1698 assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
1699 "Index not cast to pointer width?");
1700
1701 bool NSW;
1702 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
1703 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
1704 // If the multiplication NewIdx * Scale may overflow then the new
1705 // GEP may not be "inbounds".
1706 Value *Off[2] = {
1707 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
1708 NewIdx};
1709
1710 Value *NewGEP = GEP.isInBounds() && NSW
1711 ? Builder->CreateInBoundsGEP(
1712 SrcElTy, StrippedPtr, Off, GEP.getName())
1713 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
1714 GEP.getName());
1715 // The NewGEP must be pointer typed, so must the old one -> BitCast
1716 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
1717 GEP.getType());
1718 }
1719 }
1720 }
1721 }
1722 }
1723
1724 // addrspacecast between types is canonicalized as a bitcast, then an
1725 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
1726 // through the addrspacecast.
1727 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
1728 // X = bitcast A addrspace(1)* to B addrspace(1)*
1729 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
1730 // Z = gep Y, <...constant indices...>
1731 // Into an addrspacecasted GEP of the struct.
1732 if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
1733 PtrOp = BC;
1734 }
1735
1736 /// See if we can simplify:
1737 /// X = bitcast A* to B*
1738 /// Y = gep X, <...constant indices...>
1739 /// into a gep of the original struct. This is important for SROA and alias
1740 /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
1741 if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1742 Value *Operand = BCI->getOperand(0);
1743 PointerType *OpType = cast<PointerType>(Operand->getType());
1744 unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
1745 APInt Offset(OffsetBits, 0);
1746 if (!isa<BitCastInst>(Operand) &&
1747 GEP.accumulateConstantOffset(DL, Offset)) {
1748
1749 // If this GEP instruction doesn't move the pointer, just replace the GEP
1750 // with a bitcast of the real input to the dest type.
1751 if (!Offset) {
1752 // If the bitcast is of an allocation, and the allocation will be
1753 // converted to match the type of the cast, don't touch this.
1754 if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
1755 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1756 if (Instruction *I = visitBitCast(*BCI)) {
1757 if (I != BCI) {
1758 I->takeName(BCI);
1759 BCI->getParent()->getInstList().insert(BCI, I);
1760 ReplaceInstUsesWith(*BCI, I);
1761 }
1762 return &GEP;
1763 }
1764 }
1765
1766 if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1767 return new AddrSpaceCastInst(Operand, GEP.getType());
1768 return new BitCastInst(Operand, GEP.getType());
1769 }
1770
1771 // Otherwise, if the offset is non-zero, we need to find out if there is a
1772 // field at Offset in 'A's type. If so, we can pull the cast through the
1773 // GEP.
1774 SmallVector<Value*, 8> NewIndices;
1775 if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
1776 Value *NGEP =
1777 GEP.isInBounds()
1778 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
1779 : Builder->CreateGEP(nullptr, Operand, NewIndices);
1780
1781 if (NGEP->getType() == GEP.getType())
1782 return ReplaceInstUsesWith(GEP, NGEP);
1783 NGEP->takeName(&GEP);
1784
1785 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
1786 return new AddrSpaceCastInst(NGEP, GEP.getType());
1787 return new BitCastInst(NGEP, GEP.getType());
1788 }
1789 }
1790 }
1791
1792 return nullptr;
1793 }
1794
1795 static bool
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakVH> & Users,const TargetLibraryInfo * TLI)1796 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1797 const TargetLibraryInfo *TLI) {
1798 SmallVector<Instruction*, 4> Worklist;
1799 Worklist.push_back(AI);
1800
1801 do {
1802 Instruction *PI = Worklist.pop_back_val();
1803 for (User *U : PI->users()) {
1804 Instruction *I = cast<Instruction>(U);
1805 switch (I->getOpcode()) {
1806 default:
1807 // Give up the moment we see something we can't handle.
1808 return false;
1809
1810 case Instruction::BitCast:
1811 case Instruction::GetElementPtr:
1812 Users.push_back(I);
1813 Worklist.push_back(I);
1814 continue;
1815
1816 case Instruction::ICmp: {
1817 ICmpInst *ICI = cast<ICmpInst>(I);
1818 // We can fold eq/ne comparisons with null to false/true, respectively.
1819 if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1820 return false;
1821 Users.push_back(I);
1822 continue;
1823 }
1824
1825 case Instruction::Call:
1826 // Ignore no-op and store intrinsics.
1827 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1828 switch (II->getIntrinsicID()) {
1829 default:
1830 return false;
1831
1832 case Intrinsic::memmove:
1833 case Intrinsic::memcpy:
1834 case Intrinsic::memset: {
1835 MemIntrinsic *MI = cast<MemIntrinsic>(II);
1836 if (MI->isVolatile() || MI->getRawDest() != PI)
1837 return false;
1838 }
1839 // fall through
1840 case Intrinsic::dbg_declare:
1841 case Intrinsic::dbg_value:
1842 case Intrinsic::invariant_start:
1843 case Intrinsic::invariant_end:
1844 case Intrinsic::lifetime_start:
1845 case Intrinsic::lifetime_end:
1846 case Intrinsic::objectsize:
1847 Users.push_back(I);
1848 continue;
1849 }
1850 }
1851
1852 if (isFreeCall(I, TLI)) {
1853 Users.push_back(I);
1854 continue;
1855 }
1856 return false;
1857
1858 case Instruction::Store: {
1859 StoreInst *SI = cast<StoreInst>(I);
1860 if (SI->isVolatile() || SI->getPointerOperand() != PI)
1861 return false;
1862 Users.push_back(I);
1863 continue;
1864 }
1865 }
1866 llvm_unreachable("missing a return?");
1867 }
1868 } while (!Worklist.empty());
1869 return true;
1870 }
1871
visitAllocSite(Instruction & MI)1872 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1873 // If we have a malloc call which is only used in any amount of comparisons
1874 // to null and free calls, delete the calls and replace the comparisons with
1875 // true or false as appropriate.
1876 SmallVector<WeakVH, 64> Users;
1877 if (isAllocSiteRemovable(&MI, Users, TLI)) {
1878 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1879 Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1880 if (!I) continue;
1881
1882 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1883 ReplaceInstUsesWith(*C,
1884 ConstantInt::get(Type::getInt1Ty(C->getContext()),
1885 C->isFalseWhenEqual()));
1886 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1887 ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1888 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1889 if (II->getIntrinsicID() == Intrinsic::objectsize) {
1890 ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1891 uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1892 ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1893 }
1894 }
1895 EraseInstFromFunction(*I);
1896 }
1897
1898 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1899 // Replace invoke with a NOP intrinsic to maintain the original CFG
1900 Module *M = II->getParent()->getParent()->getParent();
1901 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1902 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1903 None, "", II->getParent());
1904 }
1905 return EraseInstFromFunction(MI);
1906 }
1907 return nullptr;
1908 }
1909
1910 /// \brief Move the call to free before a NULL test.
1911 ///
1912 /// Check if this free is accessed after its argument has been test
1913 /// against NULL (property 0).
1914 /// If yes, it is legal to move this call in its predecessor block.
1915 ///
1916 /// The move is performed only if the block containing the call to free
1917 /// will be removed, i.e.:
1918 /// 1. it has only one predecessor P, and P has two successors
1919 /// 2. it contains the call and an unconditional branch
1920 /// 3. its successor is the same as its predecessor's successor
1921 ///
1922 /// The profitability is out-of concern here and this function should
1923 /// be called only if the caller knows this transformation would be
1924 /// profitable (e.g., for code size).
1925 static Instruction *
tryToMoveFreeBeforeNullTest(CallInst & FI)1926 tryToMoveFreeBeforeNullTest(CallInst &FI) {
1927 Value *Op = FI.getArgOperand(0);
1928 BasicBlock *FreeInstrBB = FI.getParent();
1929 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
1930
1931 // Validate part of constraint #1: Only one predecessor
1932 // FIXME: We can extend the number of predecessor, but in that case, we
1933 // would duplicate the call to free in each predecessor and it may
1934 // not be profitable even for code size.
1935 if (!PredBB)
1936 return nullptr;
1937
1938 // Validate constraint #2: Does this block contains only the call to
1939 // free and an unconditional branch?
1940 // FIXME: We could check if we can speculate everything in the
1941 // predecessor block
1942 if (FreeInstrBB->size() != 2)
1943 return nullptr;
1944 BasicBlock *SuccBB;
1945 if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
1946 return nullptr;
1947
1948 // Validate the rest of constraint #1 by matching on the pred branch.
1949 TerminatorInst *TI = PredBB->getTerminator();
1950 BasicBlock *TrueBB, *FalseBB;
1951 ICmpInst::Predicate Pred;
1952 if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
1953 return nullptr;
1954 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
1955 return nullptr;
1956
1957 // Validate constraint #3: Ensure the null case just falls through.
1958 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
1959 return nullptr;
1960 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
1961 "Broken CFG: missing edge from predecessor to successor");
1962
1963 FI.moveBefore(TI);
1964 return &FI;
1965 }
1966
1967
visitFree(CallInst & FI)1968 Instruction *InstCombiner::visitFree(CallInst &FI) {
1969 Value *Op = FI.getArgOperand(0);
1970
1971 // free undef -> unreachable.
1972 if (isa<UndefValue>(Op)) {
1973 // Insert a new store to null because we cannot modify the CFG here.
1974 Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1975 UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1976 return EraseInstFromFunction(FI);
1977 }
1978
1979 // If we have 'free null' delete the instruction. This can happen in stl code
1980 // when lots of inlining happens.
1981 if (isa<ConstantPointerNull>(Op))
1982 return EraseInstFromFunction(FI);
1983
1984 // If we optimize for code size, try to move the call to free before the null
1985 // test so that simplify cfg can remove the empty block and dead code
1986 // elimination the branch. I.e., helps to turn something like:
1987 // if (foo) free(foo);
1988 // into
1989 // free(foo);
1990 if (MinimizeSize)
1991 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
1992 return I;
1993
1994 return nullptr;
1995 }
1996
visitReturnInst(ReturnInst & RI)1997 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
1998 if (RI.getNumOperands() == 0) // ret void
1999 return nullptr;
2000
2001 Value *ResultOp = RI.getOperand(0);
2002 Type *VTy = ResultOp->getType();
2003 if (!VTy->isIntegerTy())
2004 return nullptr;
2005
2006 // There might be assume intrinsics dominating this return that completely
2007 // determine the value. If so, constant fold it.
2008 unsigned BitWidth = VTy->getPrimitiveSizeInBits();
2009 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2010 computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
2011 if ((KnownZero|KnownOne).isAllOnesValue())
2012 RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
2013
2014 return nullptr;
2015 }
2016
visitBranchInst(BranchInst & BI)2017 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
2018 // Change br (not X), label True, label False to: br X, label False, True
2019 Value *X = nullptr;
2020 BasicBlock *TrueDest;
2021 BasicBlock *FalseDest;
2022 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
2023 !isa<Constant>(X)) {
2024 // Swap Destinations and condition...
2025 BI.setCondition(X);
2026 BI.swapSuccessors();
2027 return &BI;
2028 }
2029
2030 // If the condition is irrelevant, remove the use so that other
2031 // transforms on the condition become more effective.
2032 if (BI.isConditional() &&
2033 BI.getSuccessor(0) == BI.getSuccessor(1) &&
2034 !isa<UndefValue>(BI.getCondition())) {
2035 BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
2036 return &BI;
2037 }
2038
2039 // Canonicalize fcmp_one -> fcmp_oeq
2040 FCmpInst::Predicate FPred; Value *Y;
2041 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
2042 TrueDest, FalseDest)) &&
2043 BI.getCondition()->hasOneUse())
2044 if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
2045 FPred == FCmpInst::FCMP_OGE) {
2046 FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
2047 Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
2048
2049 // Swap Destinations and condition.
2050 BI.swapSuccessors();
2051 Worklist.Add(Cond);
2052 return &BI;
2053 }
2054
2055 // Canonicalize icmp_ne -> icmp_eq
2056 ICmpInst::Predicate IPred;
2057 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
2058 TrueDest, FalseDest)) &&
2059 BI.getCondition()->hasOneUse())
2060 if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
2061 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
2062 IPred == ICmpInst::ICMP_SGE) {
2063 ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
2064 Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
2065 // Swap Destinations and condition.
2066 BI.swapSuccessors();
2067 Worklist.Add(Cond);
2068 return &BI;
2069 }
2070
2071 return nullptr;
2072 }
2073
visitSwitchInst(SwitchInst & SI)2074 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
2075 Value *Cond = SI.getCondition();
2076 unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
2077 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
2078 computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
2079 unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
2080 unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
2081
2082 // Compute the number of leading bits we can ignore.
2083 for (auto &C : SI.cases()) {
2084 LeadingKnownZeros = std::min(
2085 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2086 LeadingKnownOnes = std::min(
2087 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2088 }
2089
2090 unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
2091
2092 // Truncate the condition operand if the new type is equal to or larger than
2093 // the largest legal integer type. We need to be conservative here since
2094 // x86 generates redundant zero-extenstion instructions if the operand is
2095 // truncated to i8 or i16.
2096 bool TruncCond = false;
2097 if (NewWidth > 0 && BitWidth > NewWidth &&
2098 NewWidth >= DL.getLargestLegalIntTypeSize()) {
2099 TruncCond = true;
2100 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2101 Builder->SetInsertPoint(&SI);
2102 Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
2103 SI.setCondition(NewCond);
2104
2105 for (auto &C : SI.cases())
2106 static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
2107 SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
2108 }
2109
2110 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
2111 if (I->getOpcode() == Instruction::Add)
2112 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2113 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
2114 // Skip the first item since that's the default case.
2115 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
2116 i != e; ++i) {
2117 ConstantInt* CaseVal = i.getCaseValue();
2118 Constant *LHS = CaseVal;
2119 if (TruncCond)
2120 LHS = LeadingKnownZeros
2121 ? ConstantExpr::getZExt(CaseVal, Cond->getType())
2122 : ConstantExpr::getSExt(CaseVal, Cond->getType());
2123 Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
2124 assert(isa<ConstantInt>(NewCaseVal) &&
2125 "Result of expression should be constant");
2126 i.setValue(cast<ConstantInt>(NewCaseVal));
2127 }
2128 SI.setCondition(I->getOperand(0));
2129 Worklist.Add(I);
2130 return &SI;
2131 }
2132 }
2133
2134 return TruncCond ? &SI : nullptr;
2135 }
2136
visitExtractValueInst(ExtractValueInst & EV)2137 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
2138 Value *Agg = EV.getAggregateOperand();
2139
2140 if (!EV.hasIndices())
2141 return ReplaceInstUsesWith(EV, Agg);
2142
2143 if (Constant *C = dyn_cast<Constant>(Agg)) {
2144 if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
2145 if (EV.getNumIndices() == 0)
2146 return ReplaceInstUsesWith(EV, C2);
2147 // Extract the remaining indices out of the constant indexed by the
2148 // first index
2149 return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
2150 }
2151 return nullptr; // Can't handle other constants
2152 }
2153
2154 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
2155 // We're extracting from an insertvalue instruction, compare the indices
2156 const unsigned *exti, *exte, *insi, *inse;
2157 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
2158 exte = EV.idx_end(), inse = IV->idx_end();
2159 exti != exte && insi != inse;
2160 ++exti, ++insi) {
2161 if (*insi != *exti)
2162 // The insert and extract both reference distinctly different elements.
2163 // This means the extract is not influenced by the insert, and we can
2164 // replace the aggregate operand of the extract with the aggregate
2165 // operand of the insert. i.e., replace
2166 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2167 // %E = extractvalue { i32, { i32 } } %I, 0
2168 // with
2169 // %E = extractvalue { i32, { i32 } } %A, 0
2170 return ExtractValueInst::Create(IV->getAggregateOperand(),
2171 EV.getIndices());
2172 }
2173 if (exti == exte && insi == inse)
2174 // Both iterators are at the end: Index lists are identical. Replace
2175 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2176 // %C = extractvalue { i32, { i32 } } %B, 1, 0
2177 // with "i32 42"
2178 return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
2179 if (exti == exte) {
2180 // The extract list is a prefix of the insert list. i.e. replace
2181 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
2182 // %E = extractvalue { i32, { i32 } } %I, 1
2183 // with
2184 // %X = extractvalue { i32, { i32 } } %A, 1
2185 // %E = insertvalue { i32 } %X, i32 42, 0
2186 // by switching the order of the insert and extract (though the
2187 // insertvalue should be left in, since it may have other uses).
2188 Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
2189 EV.getIndices());
2190 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
2191 makeArrayRef(insi, inse));
2192 }
2193 if (insi == inse)
2194 // The insert list is a prefix of the extract list
2195 // We can simply remove the common indices from the extract and make it
2196 // operate on the inserted value instead of the insertvalue result.
2197 // i.e., replace
2198 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
2199 // %E = extractvalue { i32, { i32 } } %I, 1, 0
2200 // with
2201 // %E extractvalue { i32 } { i32 42 }, 0
2202 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
2203 makeArrayRef(exti, exte));
2204 }
2205 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
2206 // We're extracting from an intrinsic, see if we're the only user, which
2207 // allows us to simplify multiple result intrinsics to simpler things that
2208 // just get one value.
2209 if (II->hasOneUse()) {
2210 // Check if we're grabbing the overflow bit or the result of a 'with
2211 // overflow' intrinsic. If it's the latter we can remove the intrinsic
2212 // and replace it with a traditional binary instruction.
2213 switch (II->getIntrinsicID()) {
2214 case Intrinsic::uadd_with_overflow:
2215 case Intrinsic::sadd_with_overflow:
2216 if (*EV.idx_begin() == 0) { // Normal result.
2217 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2218 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2219 EraseInstFromFunction(*II);
2220 return BinaryOperator::CreateAdd(LHS, RHS);
2221 }
2222
2223 // If the normal result of the add is dead, and the RHS is a constant,
2224 // we can transform this into a range comparison.
2225 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
2226 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
2227 if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
2228 return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
2229 ConstantExpr::getNot(CI));
2230 break;
2231 case Intrinsic::usub_with_overflow:
2232 case Intrinsic::ssub_with_overflow:
2233 if (*EV.idx_begin() == 0) { // Normal result.
2234 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2235 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2236 EraseInstFromFunction(*II);
2237 return BinaryOperator::CreateSub(LHS, RHS);
2238 }
2239 break;
2240 case Intrinsic::umul_with_overflow:
2241 case Intrinsic::smul_with_overflow:
2242 if (*EV.idx_begin() == 0) { // Normal result.
2243 Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
2244 ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
2245 EraseInstFromFunction(*II);
2246 return BinaryOperator::CreateMul(LHS, RHS);
2247 }
2248 break;
2249 default:
2250 break;
2251 }
2252 }
2253 }
2254 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
2255 // If the (non-volatile) load only has one use, we can rewrite this to a
2256 // load from a GEP. This reduces the size of the load.
2257 // FIXME: If a load is used only by extractvalue instructions then this
2258 // could be done regardless of having multiple uses.
2259 if (L->isSimple() && L->hasOneUse()) {
2260 // extractvalue has integer indices, getelementptr has Value*s. Convert.
2261 SmallVector<Value*, 4> Indices;
2262 // Prefix an i32 0 since we need the first element.
2263 Indices.push_back(Builder->getInt32(0));
2264 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
2265 I != E; ++I)
2266 Indices.push_back(Builder->getInt32(*I));
2267
2268 // We need to insert these at the location of the old load, not at that of
2269 // the extractvalue.
2270 Builder->SetInsertPoint(L->getParent(), L);
2271 Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
2272 L->getPointerOperand(), Indices);
2273 // Returning the load directly will cause the main loop to insert it in
2274 // the wrong spot, so use ReplaceInstUsesWith().
2275 return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
2276 }
2277 // We could simplify extracts from other values. Note that nested extracts may
2278 // already be simplified implicitly by the above: extract (extract (insert) )
2279 // will be translated into extract ( insert ( extract ) ) first and then just
2280 // the value inserted, if appropriate. Similarly for extracts from single-use
2281 // loads: extract (extract (load)) will be translated to extract (load (gep))
2282 // and if again single-use then via load (gep (gep)) to load (gep).
2283 // However, double extracts from e.g. function arguments or return values
2284 // aren't handled yet.
2285 return nullptr;
2286 }
2287
2288 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)2289 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
2290 switch (Personality) {
2291 case EHPersonality::GNU_C:
2292 // The GCC C EH personality only exists to support cleanups, so it's not
2293 // clear what the semantics of catch clauses are.
2294 return false;
2295 case EHPersonality::Unknown:
2296 return false;
2297 case EHPersonality::GNU_Ada:
2298 // While __gnat_all_others_value will match any Ada exception, it doesn't
2299 // match foreign exceptions (or didn't, before gcc-4.7).
2300 return false;
2301 case EHPersonality::GNU_CXX:
2302 case EHPersonality::GNU_ObjC:
2303 case EHPersonality::MSVC_X86SEH:
2304 case EHPersonality::MSVC_Win64SEH:
2305 case EHPersonality::MSVC_CXX:
2306 return TypeInfo->isNullValue();
2307 }
2308 llvm_unreachable("invalid enum");
2309 }
2310
shorter_filter(const Value * LHS,const Value * RHS)2311 static bool shorter_filter(const Value *LHS, const Value *RHS) {
2312 return
2313 cast<ArrayType>(LHS->getType())->getNumElements()
2314 <
2315 cast<ArrayType>(RHS->getType())->getNumElements();
2316 }
2317
visitLandingPadInst(LandingPadInst & LI)2318 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
2319 // The logic here should be correct for any real-world personality function.
2320 // However if that turns out not to be true, the offending logic can always
2321 // be conditioned on the personality function, like the catch-all logic is.
2322 EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn());
2323
2324 // Simplify the list of clauses, eg by removing repeated catch clauses
2325 // (these are often created by inlining).
2326 bool MakeNewInstruction = false; // If true, recreate using the following:
2327 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
2328 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
2329
2330 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
2331 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
2332 bool isLastClause = i + 1 == e;
2333 if (LI.isCatch(i)) {
2334 // A catch clause.
2335 Constant *CatchClause = LI.getClause(i);
2336 Constant *TypeInfo = CatchClause->stripPointerCasts();
2337
2338 // If we already saw this clause, there is no point in having a second
2339 // copy of it.
2340 if (AlreadyCaught.insert(TypeInfo).second) {
2341 // This catch clause was not already seen.
2342 NewClauses.push_back(CatchClause);
2343 } else {
2344 // Repeated catch clause - drop the redundant copy.
2345 MakeNewInstruction = true;
2346 }
2347
2348 // If this is a catch-all then there is no point in keeping any following
2349 // clauses or marking the landingpad as having a cleanup.
2350 if (isCatchAll(Personality, TypeInfo)) {
2351 if (!isLastClause)
2352 MakeNewInstruction = true;
2353 CleanupFlag = false;
2354 break;
2355 }
2356 } else {
2357 // A filter clause. If any of the filter elements were already caught
2358 // then they can be dropped from the filter. It is tempting to try to
2359 // exploit the filter further by saying that any typeinfo that does not
2360 // occur in the filter can't be caught later (and thus can be dropped).
2361 // However this would be wrong, since typeinfos can match without being
2362 // equal (for example if one represents a C++ class, and the other some
2363 // class derived from it).
2364 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
2365 Constant *FilterClause = LI.getClause(i);
2366 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
2367 unsigned NumTypeInfos = FilterType->getNumElements();
2368
2369 // An empty filter catches everything, so there is no point in keeping any
2370 // following clauses or marking the landingpad as having a cleanup. By
2371 // dealing with this case here the following code is made a bit simpler.
2372 if (!NumTypeInfos) {
2373 NewClauses.push_back(FilterClause);
2374 if (!isLastClause)
2375 MakeNewInstruction = true;
2376 CleanupFlag = false;
2377 break;
2378 }
2379
2380 bool MakeNewFilter = false; // If true, make a new filter.
2381 SmallVector<Constant *, 16> NewFilterElts; // New elements.
2382 if (isa<ConstantAggregateZero>(FilterClause)) {
2383 // Not an empty filter - it contains at least one null typeinfo.
2384 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
2385 Constant *TypeInfo =
2386 Constant::getNullValue(FilterType->getElementType());
2387 // If this typeinfo is a catch-all then the filter can never match.
2388 if (isCatchAll(Personality, TypeInfo)) {
2389 // Throw the filter away.
2390 MakeNewInstruction = true;
2391 continue;
2392 }
2393
2394 // There is no point in having multiple copies of this typeinfo, so
2395 // discard all but the first copy if there is more than one.
2396 NewFilterElts.push_back(TypeInfo);
2397 if (NumTypeInfos > 1)
2398 MakeNewFilter = true;
2399 } else {
2400 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
2401 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
2402 NewFilterElts.reserve(NumTypeInfos);
2403
2404 // Remove any filter elements that were already caught or that already
2405 // occurred in the filter. While there, see if any of the elements are
2406 // catch-alls. If so, the filter can be discarded.
2407 bool SawCatchAll = false;
2408 for (unsigned j = 0; j != NumTypeInfos; ++j) {
2409 Constant *Elt = Filter->getOperand(j);
2410 Constant *TypeInfo = Elt->stripPointerCasts();
2411 if (isCatchAll(Personality, TypeInfo)) {
2412 // This element is a catch-all. Bail out, noting this fact.
2413 SawCatchAll = true;
2414 break;
2415 }
2416 if (AlreadyCaught.count(TypeInfo))
2417 // Already caught by an earlier clause, so having it in the filter
2418 // is pointless.
2419 continue;
2420 // There is no point in having multiple copies of the same typeinfo in
2421 // a filter, so only add it if we didn't already.
2422 if (SeenInFilter.insert(TypeInfo).second)
2423 NewFilterElts.push_back(cast<Constant>(Elt));
2424 }
2425 // A filter containing a catch-all cannot match anything by definition.
2426 if (SawCatchAll) {
2427 // Throw the filter away.
2428 MakeNewInstruction = true;
2429 continue;
2430 }
2431
2432 // If we dropped something from the filter, make a new one.
2433 if (NewFilterElts.size() < NumTypeInfos)
2434 MakeNewFilter = true;
2435 }
2436 if (MakeNewFilter) {
2437 FilterType = ArrayType::get(FilterType->getElementType(),
2438 NewFilterElts.size());
2439 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
2440 MakeNewInstruction = true;
2441 }
2442
2443 NewClauses.push_back(FilterClause);
2444
2445 // If the new filter is empty then it will catch everything so there is
2446 // no point in keeping any following clauses or marking the landingpad
2447 // as having a cleanup. The case of the original filter being empty was
2448 // already handled above.
2449 if (MakeNewFilter && !NewFilterElts.size()) {
2450 assert(MakeNewInstruction && "New filter but not a new instruction!");
2451 CleanupFlag = false;
2452 break;
2453 }
2454 }
2455 }
2456
2457 // If several filters occur in a row then reorder them so that the shortest
2458 // filters come first (those with the smallest number of elements). This is
2459 // advantageous because shorter filters are more likely to match, speeding up
2460 // unwinding, but mostly because it increases the effectiveness of the other
2461 // filter optimizations below.
2462 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
2463 unsigned j;
2464 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
2465 for (j = i; j != e; ++j)
2466 if (!isa<ArrayType>(NewClauses[j]->getType()))
2467 break;
2468
2469 // Check whether the filters are already sorted by length. We need to know
2470 // if sorting them is actually going to do anything so that we only make a
2471 // new landingpad instruction if it does.
2472 for (unsigned k = i; k + 1 < j; ++k)
2473 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
2474 // Not sorted, so sort the filters now. Doing an unstable sort would be
2475 // correct too but reordering filters pointlessly might confuse users.
2476 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
2477 shorter_filter);
2478 MakeNewInstruction = true;
2479 break;
2480 }
2481
2482 // Look for the next batch of filters.
2483 i = j + 1;
2484 }
2485
2486 // If typeinfos matched if and only if equal, then the elements of a filter L
2487 // that occurs later than a filter F could be replaced by the intersection of
2488 // the elements of F and L. In reality two typeinfos can match without being
2489 // equal (for example if one represents a C++ class, and the other some class
2490 // derived from it) so it would be wrong to perform this transform in general.
2491 // However the transform is correct and useful if F is a subset of L. In that
2492 // case L can be replaced by F, and thus removed altogether since repeating a
2493 // filter is pointless. So here we look at all pairs of filters F and L where
2494 // L follows F in the list of clauses, and remove L if every element of F is
2495 // an element of L. This can occur when inlining C++ functions with exception
2496 // specifications.
2497 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
2498 // Examine each filter in turn.
2499 Value *Filter = NewClauses[i];
2500 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
2501 if (!FTy)
2502 // Not a filter - skip it.
2503 continue;
2504 unsigned FElts = FTy->getNumElements();
2505 // Examine each filter following this one. Doing this backwards means that
2506 // we don't have to worry about filters disappearing under us when removed.
2507 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
2508 Value *LFilter = NewClauses[j];
2509 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
2510 if (!LTy)
2511 // Not a filter - skip it.
2512 continue;
2513 // If Filter is a subset of LFilter, i.e. every element of Filter is also
2514 // an element of LFilter, then discard LFilter.
2515 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
2516 // If Filter is empty then it is a subset of LFilter.
2517 if (!FElts) {
2518 // Discard LFilter.
2519 NewClauses.erase(J);
2520 MakeNewInstruction = true;
2521 // Move on to the next filter.
2522 continue;
2523 }
2524 unsigned LElts = LTy->getNumElements();
2525 // If Filter is longer than LFilter then it cannot be a subset of it.
2526 if (FElts > LElts)
2527 // Move on to the next filter.
2528 continue;
2529 // At this point we know that LFilter has at least one element.
2530 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
2531 // Filter is a subset of LFilter iff Filter contains only zeros (as we
2532 // already know that Filter is not longer than LFilter).
2533 if (isa<ConstantAggregateZero>(Filter)) {
2534 assert(FElts <= LElts && "Should have handled this case earlier!");
2535 // Discard LFilter.
2536 NewClauses.erase(J);
2537 MakeNewInstruction = true;
2538 }
2539 // Move on to the next filter.
2540 continue;
2541 }
2542 ConstantArray *LArray = cast<ConstantArray>(LFilter);
2543 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
2544 // Since Filter is non-empty and contains only zeros, it is a subset of
2545 // LFilter iff LFilter contains a zero.
2546 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
2547 for (unsigned l = 0; l != LElts; ++l)
2548 if (LArray->getOperand(l)->isNullValue()) {
2549 // LFilter contains a zero - discard it.
2550 NewClauses.erase(J);
2551 MakeNewInstruction = true;
2552 break;
2553 }
2554 // Move on to the next filter.
2555 continue;
2556 }
2557 // At this point we know that both filters are ConstantArrays. Loop over
2558 // operands to see whether every element of Filter is also an element of
2559 // LFilter. Since filters tend to be short this is probably faster than
2560 // using a method that scales nicely.
2561 ConstantArray *FArray = cast<ConstantArray>(Filter);
2562 bool AllFound = true;
2563 for (unsigned f = 0; f != FElts; ++f) {
2564 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
2565 AllFound = false;
2566 for (unsigned l = 0; l != LElts; ++l) {
2567 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
2568 if (LTypeInfo == FTypeInfo) {
2569 AllFound = true;
2570 break;
2571 }
2572 }
2573 if (!AllFound)
2574 break;
2575 }
2576 if (AllFound) {
2577 // Discard LFilter.
2578 NewClauses.erase(J);
2579 MakeNewInstruction = true;
2580 }
2581 // Move on to the next filter.
2582 }
2583 }
2584
2585 // If we changed any of the clauses, replace the old landingpad instruction
2586 // with a new one.
2587 if (MakeNewInstruction) {
2588 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
2589 LI.getPersonalityFn(),
2590 NewClauses.size());
2591 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
2592 NLI->addClause(NewClauses[i]);
2593 // A landing pad with no clauses must have the cleanup flag set. It is
2594 // theoretically possible, though highly unlikely, that we eliminated all
2595 // clauses. If so, force the cleanup flag to true.
2596 if (NewClauses.empty())
2597 CleanupFlag = true;
2598 NLI->setCleanup(CleanupFlag);
2599 return NLI;
2600 }
2601
2602 // Even if none of the clauses changed, we may nonetheless have understood
2603 // that the cleanup flag is pointless. Clear it if so.
2604 if (LI.isCleanup() != CleanupFlag) {
2605 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
2606 LI.setCleanup(CleanupFlag);
2607 return &LI;
2608 }
2609
2610 return nullptr;
2611 }
2612
2613 /// TryToSinkInstruction - Try to move the specified instruction from its
2614 /// current block into the beginning of DestBlock, which can only happen if it's
2615 /// safe to move the instruction past all of the instructions between it and the
2616 /// end of its block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)2617 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
2618 assert(I->hasOneUse() && "Invariants didn't hold!");
2619
2620 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
2621 if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
2622 isa<TerminatorInst>(I))
2623 return false;
2624
2625 // Do not sink alloca instructions out of the entry block.
2626 if (isa<AllocaInst>(I) && I->getParent() ==
2627 &DestBlock->getParent()->getEntryBlock())
2628 return false;
2629
2630 // We can only sink load instructions if there is nothing between the load and
2631 // the end of block that could change the value.
2632 if (I->mayReadFromMemory()) {
2633 for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
2634 Scan != E; ++Scan)
2635 if (Scan->mayWriteToMemory())
2636 return false;
2637 }
2638
2639 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
2640 I->moveBefore(InsertPos);
2641 ++NumSunkInst;
2642 return true;
2643 }
2644
run()2645 bool InstCombiner::run() {
2646 while (!Worklist.isEmpty()) {
2647 Instruction *I = Worklist.RemoveOne();
2648 if (I == nullptr) continue; // skip null values.
2649
2650 // Check to see if we can DCE the instruction.
2651 if (isInstructionTriviallyDead(I, TLI)) {
2652 DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
2653 EraseInstFromFunction(*I);
2654 ++NumDeadInst;
2655 MadeIRChange = true;
2656 continue;
2657 }
2658
2659 // Instruction isn't dead, see if we can constant propagate it.
2660 if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
2661 if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
2662 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2663
2664 // Add operands to the worklist.
2665 ReplaceInstUsesWith(*I, C);
2666 ++NumConstProp;
2667 EraseInstFromFunction(*I);
2668 MadeIRChange = true;
2669 continue;
2670 }
2671 }
2672
2673 // See if we can trivially sink this instruction to a successor basic block.
2674 if (I->hasOneUse()) {
2675 BasicBlock *BB = I->getParent();
2676 Instruction *UserInst = cast<Instruction>(*I->user_begin());
2677 BasicBlock *UserParent;
2678
2679 // Get the block the use occurs in.
2680 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2681 UserParent = PN->getIncomingBlock(*I->use_begin());
2682 else
2683 UserParent = UserInst->getParent();
2684
2685 if (UserParent != BB) {
2686 bool UserIsSuccessor = false;
2687 // See if the user is one of our successors.
2688 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2689 if (*SI == UserParent) {
2690 UserIsSuccessor = true;
2691 break;
2692 }
2693
2694 // If the user is one of our immediate successors, and if that successor
2695 // only has us as a predecessors (we'd have to split the critical edge
2696 // otherwise), we can keep going.
2697 if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
2698 // Okay, the CFG is simple enough, try to sink this instruction.
2699 if (TryToSinkInstruction(I, UserParent)) {
2700 MadeIRChange = true;
2701 // We'll add uses of the sunk instruction below, but since sinking
2702 // can expose opportunities for it's *operands* add them to the
2703 // worklist
2704 for (Use &U : I->operands())
2705 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
2706 Worklist.Add(OpI);
2707 }
2708 }
2709 }
2710 }
2711
2712 // Now that we have an instruction, try combining it to simplify it.
2713 Builder->SetInsertPoint(I->getParent(), I);
2714 Builder->SetCurrentDebugLocation(I->getDebugLoc());
2715
2716 #ifndef NDEBUG
2717 std::string OrigI;
2718 #endif
2719 DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2720 DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
2721
2722 if (Instruction *Result = visit(*I)) {
2723 ++NumCombined;
2724 // Should we replace the old instruction with a new one?
2725 if (Result != I) {
2726 DEBUG(dbgs() << "IC: Old = " << *I << '\n'
2727 << " New = " << *Result << '\n');
2728
2729 if (I->getDebugLoc())
2730 Result->setDebugLoc(I->getDebugLoc());
2731 // Everything uses the new instruction now.
2732 I->replaceAllUsesWith(Result);
2733
2734 // Move the name to the new instruction first.
2735 Result->takeName(I);
2736
2737 // Push the new instruction and any users onto the worklist.
2738 Worklist.Add(Result);
2739 Worklist.AddUsersToWorkList(*Result);
2740
2741 // Insert the new instruction into the basic block...
2742 BasicBlock *InstParent = I->getParent();
2743 BasicBlock::iterator InsertPos = I;
2744
2745 // If we replace a PHI with something that isn't a PHI, fix up the
2746 // insertion point.
2747 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2748 InsertPos = InstParent->getFirstInsertionPt();
2749
2750 InstParent->getInstList().insert(InsertPos, Result);
2751
2752 EraseInstFromFunction(*I);
2753 } else {
2754 #ifndef NDEBUG
2755 DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
2756 << " New = " << *I << '\n');
2757 #endif
2758
2759 // If the instruction was modified, it's possible that it is now dead.
2760 // if so, remove it.
2761 if (isInstructionTriviallyDead(I, TLI)) {
2762 EraseInstFromFunction(*I);
2763 } else {
2764 Worklist.Add(I);
2765 Worklist.AddUsersToWorkList(*I);
2766 }
2767 }
2768 MadeIRChange = true;
2769 }
2770 }
2771
2772 Worklist.Zap();
2773 return MadeIRChange;
2774 }
2775
2776 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
2777 /// all reachable code to the worklist.
2778 ///
2779 /// This has a couple of tricks to make the code faster and more powerful. In
2780 /// particular, we constant fold and DCE instructions as we go, to avoid adding
2781 /// them to the worklist (this significantly speeds up instcombine on code where
2782 /// many instructions are dead or constant). Additionally, if we find a branch
2783 /// whose condition is a known constant, we only visit the reachable successors.
2784 ///
AddReachableCodeToWorklist(BasicBlock * BB,const DataLayout & DL,SmallPtrSetImpl<BasicBlock * > & Visited,InstCombineWorklist & ICWorklist,const TargetLibraryInfo * TLI)2785 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
2786 SmallPtrSetImpl<BasicBlock *> &Visited,
2787 InstCombineWorklist &ICWorklist,
2788 const TargetLibraryInfo *TLI) {
2789 bool MadeIRChange = false;
2790 SmallVector<BasicBlock*, 256> Worklist;
2791 Worklist.push_back(BB);
2792
2793 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
2794 DenseMap<ConstantExpr*, Constant*> FoldedConstants;
2795
2796 do {
2797 BB = Worklist.pop_back_val();
2798
2799 // We have now visited this block! If we've already been here, ignore it.
2800 if (!Visited.insert(BB).second)
2801 continue;
2802
2803 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
2804 Instruction *Inst = BBI++;
2805
2806 // DCE instruction if trivially dead.
2807 if (isInstructionTriviallyDead(Inst, TLI)) {
2808 ++NumDeadInst;
2809 DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
2810 Inst->eraseFromParent();
2811 continue;
2812 }
2813
2814 // ConstantProp instruction if trivially constant.
2815 if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
2816 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
2817 DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
2818 << *Inst << '\n');
2819 Inst->replaceAllUsesWith(C);
2820 ++NumConstProp;
2821 Inst->eraseFromParent();
2822 continue;
2823 }
2824
2825 // See if we can constant fold its operands.
2826 for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
2827 ++i) {
2828 ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
2829 if (CE == nullptr)
2830 continue;
2831
2832 Constant *&FoldRes = FoldedConstants[CE];
2833 if (!FoldRes)
2834 FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
2835 if (!FoldRes)
2836 FoldRes = CE;
2837
2838 if (FoldRes != CE) {
2839 *i = FoldRes;
2840 MadeIRChange = true;
2841 }
2842 }
2843
2844 InstrsForInstCombineWorklist.push_back(Inst);
2845 }
2846
2847 // Recursively visit successors. If this is a branch or switch on a
2848 // constant, only visit the reachable successor.
2849 TerminatorInst *TI = BB->getTerminator();
2850 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2851 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
2852 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
2853 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
2854 Worklist.push_back(ReachableBB);
2855 continue;
2856 }
2857 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2858 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
2859 // See if this is an explicit destination.
2860 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2861 i != e; ++i)
2862 if (i.getCaseValue() == Cond) {
2863 BasicBlock *ReachableBB = i.getCaseSuccessor();
2864 Worklist.push_back(ReachableBB);
2865 continue;
2866 }
2867
2868 // Otherwise it is the default destination.
2869 Worklist.push_back(SI->getDefaultDest());
2870 continue;
2871 }
2872 }
2873
2874 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
2875 Worklist.push_back(TI->getSuccessor(i));
2876 } while (!Worklist.empty());
2877
2878 // Once we've found all of the instructions to add to instcombine's worklist,
2879 // add them in reverse order. This way instcombine will visit from the top
2880 // of the function down. This jives well with the way that it adds all uses
2881 // of instructions to the worklist after doing a transformation, thus avoiding
2882 // some N^2 behavior in pathological cases.
2883 ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
2884 InstrsForInstCombineWorklist.size());
2885
2886 return MadeIRChange;
2887 }
2888
2889 /// \brief Populate the IC worklist from a function, and prune any dead basic
2890 /// blocks discovered in the process.
2891 ///
2892 /// This also does basic constant propagation and other forward fixing to make
2893 /// the combiner itself run much faster.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)2894 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
2895 TargetLibraryInfo *TLI,
2896 InstCombineWorklist &ICWorklist) {
2897 bool MadeIRChange = false;
2898
2899 // Do a depth-first traversal of the function, populate the worklist with
2900 // the reachable instructions. Ignore blocks that are not reachable. Keep
2901 // track of which blocks we visit.
2902 SmallPtrSet<BasicBlock *, 64> Visited;
2903 MadeIRChange |=
2904 AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
2905
2906 // Do a quick scan over the function. If we find any blocks that are
2907 // unreachable, remove any instructions inside of them. This prevents
2908 // the instcombine code from having to deal with some bad special cases.
2909 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2910 if (Visited.count(BB))
2911 continue;
2912
2913 // Delete the instructions backwards, as it has a reduced likelihood of
2914 // having to update as many def-use and use-def chains.
2915 Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
2916 while (EndInst != BB->begin()) {
2917 // Delete the next to last instruction.
2918 BasicBlock::iterator I = EndInst;
2919 Instruction *Inst = --I;
2920 if (!Inst->use_empty())
2921 Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
2922 if (isa<LandingPadInst>(Inst)) {
2923 EndInst = Inst;
2924 continue;
2925 }
2926 if (!isa<DbgInfoIntrinsic>(Inst)) {
2927 ++NumDeadInst;
2928 MadeIRChange = true;
2929 }
2930 Inst->eraseFromParent();
2931 }
2932 }
2933
2934 return MadeIRChange;
2935 }
2936
2937 static bool
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AssumptionCache & AC,TargetLibraryInfo & TLI,DominatorTree & DT,LoopInfo * LI=nullptr)2938 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
2939 AssumptionCache &AC, TargetLibraryInfo &TLI,
2940 DominatorTree &DT, LoopInfo *LI = nullptr) {
2941 // Minimizing size?
2942 bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
2943 auto &DL = F.getParent()->getDataLayout();
2944
2945 /// Builder - This is an IRBuilder that automatically inserts new
2946 /// instructions into the worklist when they are created.
2947 IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
2948 F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
2949
2950 // Lower dbg.declare intrinsics otherwise their value may be clobbered
2951 // by instcombiner.
2952 bool DbgDeclaresChanged = LowerDbgDeclare(F);
2953
2954 // Iterate while there is work to do.
2955 int Iteration = 0;
2956 for (;;) {
2957 ++Iteration;
2958 DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
2959 << F.getName() << "\n");
2960
2961 bool Changed = false;
2962 if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
2963 Changed = true;
2964
2965 InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
2966 if (IC.run())
2967 Changed = true;
2968
2969 if (!Changed)
2970 break;
2971 }
2972
2973 return DbgDeclaresChanged || Iteration > 1;
2974 }
2975
run(Function & F,AnalysisManager<Function> * AM)2976 PreservedAnalyses InstCombinePass::run(Function &F,
2977 AnalysisManager<Function> *AM) {
2978 auto &AC = AM->getResult<AssumptionAnalysis>(F);
2979 auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
2980 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
2981
2982 auto *LI = AM->getCachedResult<LoopAnalysis>(F);
2983
2984 if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI))
2985 // No changes, all analyses are preserved.
2986 return PreservedAnalyses::all();
2987
2988 // Mark all the analyses that instcombine updates as preserved.
2989 // FIXME: Need a way to preserve CFG analyses here!
2990 PreservedAnalyses PA;
2991 PA.preserve<DominatorTreeAnalysis>();
2992 return PA;
2993 }
2994
2995 namespace {
2996 /// \brief The legacy pass manager's instcombine pass.
2997 ///
2998 /// This is a basic whole-function wrapper around the instcombine utility. It
2999 /// will try to combine all instructions in the function.
3000 class InstructionCombiningPass : public FunctionPass {
3001 InstCombineWorklist Worklist;
3002
3003 public:
3004 static char ID; // Pass identification, replacement for typeid
3005
InstructionCombiningPass()3006 InstructionCombiningPass() : FunctionPass(ID) {
3007 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
3008 }
3009
3010 void getAnalysisUsage(AnalysisUsage &AU) const override;
3011 bool runOnFunction(Function &F) override;
3012 };
3013 }
3014
getAnalysisUsage(AnalysisUsage & AU) const3015 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
3016 AU.setPreservesCFG();
3017 AU.addRequired<AssumptionCacheTracker>();
3018 AU.addRequired<TargetLibraryInfoWrapperPass>();
3019 AU.addRequired<DominatorTreeWrapperPass>();
3020 AU.addPreserved<DominatorTreeWrapperPass>();
3021 }
3022
runOnFunction(Function & F)3023 bool InstructionCombiningPass::runOnFunction(Function &F) {
3024 if (skipOptnoneFunction(F))
3025 return false;
3026
3027 // Required analyses.
3028 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3029 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
3030 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3031
3032 // Optional analyses.
3033 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
3034 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
3035
3036 return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI);
3037 }
3038
3039 char InstructionCombiningPass::ID = 0;
3040 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
3041 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)3042 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
3043 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3044 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3045 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
3046 "Combine redundant instructions", false, false)
3047
3048 // Initialization Routines
3049 void llvm::initializeInstCombine(PassRegistry &Registry) {
3050 initializeInstructionCombiningPassPass(Registry);
3051 }
3052
LLVMInitializeInstCombine(LLVMPassRegistryRef R)3053 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
3054 initializeInstructionCombiningPassPass(*unwrap(R));
3055 }
3056
createInstructionCombiningPass()3057 FunctionPass *llvm::createInstructionCombiningPass() {
3058 return new InstructionCombiningPass();
3059 }
3060