1 /*
2 * Copyright (c) 2011 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12
13 #include "error_concealment.h"
14 #include "onyxd_int.h"
15 #include "decodemv.h"
16 #include "vpx_mem/vpx_mem.h"
17 #include "vp8/common/findnearmv.h"
18 #include "vp8/common/common.h"
19
20 #define FLOOR(x,q) ((x) & -(1 << (q)))
21
22 #define NUM_NEIGHBORS 20
23
24 typedef struct ec_position
25 {
26 int row;
27 int col;
28 } EC_POS;
29
30 /*
31 * Regenerate the table in Matlab with:
32 * x = meshgrid((1:4), (1:4));
33 * y = meshgrid((1:4), (1:4))';
34 * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
35 * W(1,1) = 0;
36 */
37 static const int weights_q7[5][5] = {
38 { 0, 128, 64, 43, 32 },
39 {128, 91, 57, 40, 31 },
40 { 64, 57, 45, 36, 29 },
41 { 43, 40, 36, 30, 26 },
42 { 32, 31, 29, 26, 23 }
43 };
44
vp8_alloc_overlap_lists(VP8D_COMP * pbi)45 int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
46 {
47 if (pbi->overlaps != NULL)
48 {
49 vpx_free(pbi->overlaps);
50 pbi->overlaps = NULL;
51 }
52
53 pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
54 sizeof(MB_OVERLAP));
55
56 if (pbi->overlaps == NULL)
57 return -1;
58
59 return 0;
60 }
61
vp8_de_alloc_overlap_lists(VP8D_COMP * pbi)62 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
63 {
64 vpx_free(pbi->overlaps);
65 pbi->overlaps = NULL;
66 }
67
68 /* Inserts a new overlap area value to the list of overlaps of a block */
assign_overlap(OVERLAP_NODE * overlaps,union b_mode_info * bmi,int overlap)69 static void assign_overlap(OVERLAP_NODE* overlaps,
70 union b_mode_info *bmi,
71 int overlap)
72 {
73 int i;
74 if (overlap <= 0)
75 return;
76 /* Find and assign to the next empty overlap node in the list of overlaps.
77 * Empty is defined as bmi == NULL */
78 for (i = 0; i < MAX_OVERLAPS; i++)
79 {
80 if (overlaps[i].bmi == NULL)
81 {
82 overlaps[i].bmi = bmi;
83 overlaps[i].overlap = overlap;
84 break;
85 }
86 }
87 }
88
89 /* Calculates the overlap area between two 4x4 squares, where the first
90 * square has its upper-left corner at (b1_row, b1_col) and the second
91 * square has its upper-left corner at (b2_row, b2_col). Doesn't
92 * properly handle squares which do not overlap.
93 */
block_overlap(int b1_row,int b1_col,int b2_row,int b2_col)94 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
95 {
96 const int int_top = MAX(b1_row, b2_row); // top
97 const int int_left = MAX(b1_col, b2_col); // left
98 /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
99 * gives us the right/bottom edge.
100 */
101 const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
102 const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
103 return (int_bottom - int_top) * (int_right - int_left);
104 }
105
106 /* Calculates the overlap area for all blocks in a macroblock at position
107 * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
108 * overlapping block at position (new_row, new_col) (in pixels, Q3). The
109 * first block being overlapped in the macroblock has position (first_blk_row,
110 * first_blk_col) in blocks relative the upper-left corner of the image.
111 */
calculate_overlaps_mb(B_OVERLAP * b_overlaps,union b_mode_info * bmi,int new_row,int new_col,int mb_row,int mb_col,int first_blk_row,int first_blk_col)112 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
113 int new_row, int new_col,
114 int mb_row, int mb_col,
115 int first_blk_row, int first_blk_col)
116 {
117 /* Find the blocks within this MB (defined by mb_row, mb_col) which are
118 * overlapped by bmi and calculate and assign overlap for each of those
119 * blocks. */
120
121 /* Block coordinates relative the upper-left block */
122 const int rel_ol_blk_row = first_blk_row - mb_row * 4;
123 const int rel_ol_blk_col = first_blk_col - mb_col * 4;
124 /* If the block partly overlaps any previous MB, these coordinates
125 * can be < 0. We don't want to access blocks in previous MBs.
126 */
127 const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
128 /* Upper left overlapping block */
129 B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
130
131 /* Calculate and assign overlaps for all blocks in this MB
132 * which the motion compensated block overlaps
133 */
134 /* Avoid calculating overlaps for blocks in later MBs */
135 int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2);
136 int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2);
137 int row, col;
138
139 /* Check if new_row and new_col are evenly divisible by 4 (Q3),
140 * and if so we shouldn't check neighboring blocks
141 */
142 if (new_row >= 0 && (new_row & 0x1F) == 0)
143 end_row = 1;
144 if (new_col >= 0 && (new_col & 0x1F) == 0)
145 end_col = 1;
146
147 /* Check if the overlapping block partly overlaps a previous MB
148 * and if so, we're overlapping fewer blocks in this MB.
149 */
150 if (new_row < (mb_row*16)<<3)
151 end_row = 1;
152 if (new_col < (mb_col*16)<<3)
153 end_col = 1;
154
155 for (row = 0; row < end_row; ++row)
156 {
157 for (col = 0; col < end_col; ++col)
158 {
159 /* input in Q3, result in Q6 */
160 const int overlap = block_overlap(new_row, new_col,
161 (((first_blk_row + row) *
162 4) << 3),
163 (((first_blk_col + col) *
164 4) << 3));
165 assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
166 }
167 }
168 }
169
vp8_calculate_overlaps(MB_OVERLAP * overlap_ul,int mb_rows,int mb_cols,union b_mode_info * bmi,int b_row,int b_col)170 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul,
171 int mb_rows, int mb_cols,
172 union b_mode_info *bmi,
173 int b_row, int b_col)
174 {
175 MB_OVERLAP *mb_overlap;
176 int row, col, rel_row, rel_col;
177 int new_row, new_col;
178 int end_row, end_col;
179 int overlap_b_row, overlap_b_col;
180 int overlap_mb_row, overlap_mb_col;
181
182 /* mb subpixel position */
183 row = (4 * b_row) << 3; /* Q3 */
184 col = (4 * b_col) << 3; /* Q3 */
185
186 /* reverse compensate for motion */
187 new_row = row - bmi->mv.as_mv.row;
188 new_col = col - bmi->mv.as_mv.col;
189
190 if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
191 {
192 /* the new block ended up outside the frame */
193 return;
194 }
195
196 if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
197 {
198 /* outside the frame */
199 return;
200 }
201 /* overlapping block's position in blocks */
202 overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
203 overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
204
205 /* overlapping block's MB position in MBs
206 * operations are done in Q3
207 */
208 overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
209 overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
210
211 end_row = MIN(mb_rows - overlap_mb_row, 2);
212 end_col = MIN(mb_cols - overlap_mb_col, 2);
213
214 /* Don't calculate overlap for MBs we don't overlap */
215 /* Check if the new block row starts at the last block row of the MB */
216 if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
217 end_row = 1;
218 /* Check if the new block col starts at the last block col of the MB */
219 if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
220 end_col = 1;
221
222 /* find the MB(s) this block is overlapping */
223 for (rel_row = 0; rel_row < end_row; ++rel_row)
224 {
225 for (rel_col = 0; rel_col < end_col; ++rel_col)
226 {
227 if (overlap_mb_row + rel_row < 0 ||
228 overlap_mb_col + rel_col < 0)
229 continue;
230 mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
231 overlap_mb_col + rel_col;
232
233 calculate_overlaps_mb(mb_overlap->overlaps, bmi,
234 new_row, new_col,
235 overlap_mb_row + rel_row,
236 overlap_mb_col + rel_col,
237 overlap_b_row + rel_row,
238 overlap_b_col + rel_col);
239 }
240 }
241 }
242
243 /* Estimates a motion vector given the overlapping blocks' motion vectors.
244 * Filters out all overlapping blocks which do not refer to the correct
245 * reference frame type.
246 */
estimate_mv(const OVERLAP_NODE * overlaps,union b_mode_info * bmi)247 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi)
248 {
249 int i;
250 int overlap_sum = 0;
251 int row_acc = 0;
252 int col_acc = 0;
253
254 bmi->mv.as_int = 0;
255 for (i=0; i < MAX_OVERLAPS; ++i)
256 {
257 if (overlaps[i].bmi == NULL)
258 break;
259 col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
260 row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
261 overlap_sum += overlaps[i].overlap;
262 }
263 if (overlap_sum > 0)
264 {
265 /* Q9 / Q6 = Q3 */
266 bmi->mv.as_mv.col = col_acc / overlap_sum;
267 bmi->mv.as_mv.row = row_acc / overlap_sum;
268 }
269 else
270 {
271 bmi->mv.as_mv.col = 0;
272 bmi->mv.as_mv.row = 0;
273 }
274 }
275
276 /* Estimates all motion vectors for a macroblock given the lists of
277 * overlaps for each block. Decides whether or not the MVs must be clamped.
278 */
estimate_mb_mvs(const B_OVERLAP * block_overlaps,MODE_INFO * mi,int mb_to_left_edge,int mb_to_right_edge,int mb_to_top_edge,int mb_to_bottom_edge)279 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps,
280 MODE_INFO *mi,
281 int mb_to_left_edge,
282 int mb_to_right_edge,
283 int mb_to_top_edge,
284 int mb_to_bottom_edge)
285 {
286 int row, col;
287 int non_zero_count = 0;
288 MV * const filtered_mv = &(mi->mbmi.mv.as_mv);
289 union b_mode_info * const bmi = mi->bmi;
290 filtered_mv->col = 0;
291 filtered_mv->row = 0;
292 mi->mbmi.need_to_clamp_mvs = 0;
293 for (row = 0; row < 4; ++row)
294 {
295 int this_b_to_top_edge = mb_to_top_edge + ((row*4)<<3);
296 int this_b_to_bottom_edge = mb_to_bottom_edge - ((row*4)<<3);
297 for (col = 0; col < 4; ++col)
298 {
299 int i = row * 4 + col;
300 int this_b_to_left_edge = mb_to_left_edge + ((col*4)<<3);
301 int this_b_to_right_edge = mb_to_right_edge - ((col*4)<<3);
302 /* Estimate vectors for all blocks which are overlapped by this */
303 /* type. Interpolate/extrapolate the rest of the block's MVs */
304 estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
305 mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
306 &bmi[i].mv,
307 this_b_to_left_edge,
308 this_b_to_right_edge,
309 this_b_to_top_edge,
310 this_b_to_bottom_edge);
311 if (bmi[i].mv.as_int != 0)
312 {
313 ++non_zero_count;
314 filtered_mv->col += bmi[i].mv.as_mv.col;
315 filtered_mv->row += bmi[i].mv.as_mv.row;
316 }
317 }
318 }
319 if (non_zero_count > 0)
320 {
321 filtered_mv->col /= non_zero_count;
322 filtered_mv->row /= non_zero_count;
323 }
324 }
325
calc_prev_mb_overlaps(MB_OVERLAP * overlaps,MODE_INFO * prev_mi,int mb_row,int mb_col,int mb_rows,int mb_cols)326 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
327 int mb_row, int mb_col,
328 int mb_rows, int mb_cols)
329 {
330 int sub_row;
331 int sub_col;
332 for (sub_row = 0; sub_row < 4; ++sub_row)
333 {
334 for (sub_col = 0; sub_col < 4; ++sub_col)
335 {
336 vp8_calculate_overlaps(
337 overlaps, mb_rows, mb_cols,
338 &(prev_mi->bmi[sub_row * 4 + sub_col]),
339 4 * mb_row + sub_row,
340 4 * mb_col + sub_col);
341 }
342 }
343 }
344
345 /* Estimate all missing motion vectors. This function does the same as the one
346 * above, but has different input arguments. */
estimate_missing_mvs(MB_OVERLAP * overlaps,MODE_INFO * mi,MODE_INFO * prev_mi,int mb_rows,int mb_cols,unsigned int first_corrupt)347 static void estimate_missing_mvs(MB_OVERLAP *overlaps,
348 MODE_INFO *mi, MODE_INFO *prev_mi,
349 int mb_rows, int mb_cols,
350 unsigned int first_corrupt)
351 {
352 int mb_row, mb_col;
353 vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
354 /* First calculate the overlaps for all blocks */
355 for (mb_row = 0; mb_row < mb_rows; ++mb_row)
356 {
357 for (mb_col = 0; mb_col < mb_cols; ++mb_col)
358 {
359 /* We're only able to use blocks referring to the last frame
360 * when extrapolating new vectors.
361 */
362 if (prev_mi->mbmi.ref_frame == LAST_FRAME)
363 {
364 calc_prev_mb_overlaps(overlaps, prev_mi,
365 mb_row, mb_col,
366 mb_rows, mb_cols);
367 }
368 ++prev_mi;
369 }
370 ++prev_mi;
371 }
372
373 mb_row = first_corrupt / mb_cols;
374 mb_col = first_corrupt - mb_row * mb_cols;
375 mi += mb_row*(mb_cols + 1) + mb_col;
376 /* Go through all macroblocks in the current image with missing MVs
377 * and calculate new MVs using the overlaps.
378 */
379 for (; mb_row < mb_rows; ++mb_row)
380 {
381 int mb_to_top_edge = -((mb_row * 16)) << 3;
382 int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
383 for (; mb_col < mb_cols; ++mb_col)
384 {
385 int mb_to_left_edge = -((mb_col * 16) << 3);
386 int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
387 const B_OVERLAP *block_overlaps =
388 overlaps[mb_row*mb_cols + mb_col].overlaps;
389 mi->mbmi.ref_frame = LAST_FRAME;
390 mi->mbmi.mode = SPLITMV;
391 mi->mbmi.uv_mode = DC_PRED;
392 mi->mbmi.partitioning = 3;
393 mi->mbmi.segment_id = 0;
394 estimate_mb_mvs(block_overlaps,
395 mi,
396 mb_to_left_edge,
397 mb_to_right_edge,
398 mb_to_top_edge,
399 mb_to_bottom_edge);
400 ++mi;
401 }
402 mb_col = 0;
403 ++mi;
404 }
405 }
406
vp8_estimate_missing_mvs(VP8D_COMP * pbi)407 void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
408 {
409 VP8_COMMON * const pc = &pbi->common;
410 estimate_missing_mvs(pbi->overlaps,
411 pc->mi, pc->prev_mi,
412 pc->mb_rows, pc->mb_cols,
413 pbi->mvs_corrupt_from_mb);
414 }
415
assign_neighbor(EC_BLOCK * neighbor,MODE_INFO * mi,int block_idx)416 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx)
417 {
418 assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
419 neighbor->ref_frame = mi->mbmi.ref_frame;
420 neighbor->mv = mi->bmi[block_idx].mv.as_mv;
421 }
422
423 /* Finds the neighboring blocks of a macroblocks. In the general case
424 * 20 blocks are found. If a fewer number of blocks are found due to
425 * image boundaries, those positions in the EC_BLOCK array are left "empty".
426 * The neighbors are enumerated with the upper-left neighbor as the first
427 * element, the second element refers to the neighbor to right of the previous
428 * neighbor, and so on. The last element refers to the neighbor below the first
429 * neighbor.
430 */
find_neighboring_blocks(MODE_INFO * mi,EC_BLOCK * neighbors,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)431 static void find_neighboring_blocks(MODE_INFO *mi,
432 EC_BLOCK *neighbors,
433 int mb_row, int mb_col,
434 int mb_rows, int mb_cols,
435 int mi_stride)
436 {
437 int i = 0;
438 int j;
439 if (mb_row > 0)
440 {
441 /* upper left */
442 if (mb_col > 0)
443 assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
444 ++i;
445 /* above */
446 for (j = 12; j < 16; ++j, ++i)
447 assign_neighbor(&neighbors[i], mi - mi_stride, j);
448 }
449 else
450 i += 5;
451 if (mb_col < mb_cols - 1)
452 {
453 /* upper right */
454 if (mb_row > 0)
455 assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
456 ++i;
457 /* right */
458 for (j = 0; j <= 12; j += 4, ++i)
459 assign_neighbor(&neighbors[i], mi + 1, j);
460 }
461 else
462 i += 5;
463 if (mb_row < mb_rows - 1)
464 {
465 /* lower right */
466 if (mb_col < mb_cols - 1)
467 assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
468 ++i;
469 /* below */
470 for (j = 0; j < 4; ++j, ++i)
471 assign_neighbor(&neighbors[i], mi + mi_stride, j);
472 }
473 else
474 i += 5;
475 if (mb_col > 0)
476 {
477 /* lower left */
478 if (mb_row < mb_rows - 1)
479 assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
480 ++i;
481 /* left */
482 for (j = 3; j < 16; j += 4, ++i)
483 {
484 assign_neighbor(&neighbors[i], mi - 1, j);
485 }
486 }
487 else
488 i += 5;
489 assert(i == 20);
490 }
491
492 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
493 * motion vectors.
494 */
interpolate_mvs(MACROBLOCKD * mb,EC_BLOCK * neighbors,MV_REFERENCE_FRAME dom_ref_frame)495 static void interpolate_mvs(MACROBLOCKD *mb,
496 EC_BLOCK *neighbors,
497 MV_REFERENCE_FRAME dom_ref_frame)
498 {
499 int row, col, i;
500 MODE_INFO * const mi = mb->mode_info_context;
501 /* Table with the position of the neighboring blocks relative the position
502 * of the upper left block of the current MB. Starting with the upper left
503 * neighbor and going to the right.
504 */
505 const EC_POS neigh_pos[NUM_NEIGHBORS] = {
506 {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3},
507 {-1,4}, {0,4}, {1,4}, {2,4}, {3,4},
508 {4,4}, {4,3}, {4,2}, {4,1}, {4,0},
509 {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1}
510 };
511 mi->mbmi.need_to_clamp_mvs = 0;
512 for (row = 0; row < 4; ++row)
513 {
514 int mb_to_top_edge = mb->mb_to_top_edge + ((row*4)<<3);
515 int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row*4)<<3);
516 for (col = 0; col < 4; ++col)
517 {
518 int mb_to_left_edge = mb->mb_to_left_edge + ((col*4)<<3);
519 int mb_to_right_edge = mb->mb_to_right_edge - ((col*4)<<3);
520 int w_sum = 0;
521 int mv_row_sum = 0;
522 int mv_col_sum = 0;
523 int_mv * const mv = &(mi->bmi[row*4 + col].mv);
524 mv->as_int = 0;
525 for (i = 0; i < NUM_NEIGHBORS; ++i)
526 {
527 /* Calculate the weighted sum of neighboring MVs referring
528 * to the dominant frame type.
529 */
530 const int w = weights_q7[abs(row - neigh_pos[i].row)]
531 [abs(col - neigh_pos[i].col)];
532 if (neighbors[i].ref_frame != dom_ref_frame)
533 continue;
534 w_sum += w;
535 /* Q7 * Q3 = Q10 */
536 mv_row_sum += w*neighbors[i].mv.row;
537 mv_col_sum += w*neighbors[i].mv.col;
538 }
539 if (w_sum > 0)
540 {
541 /* Avoid division by zero.
542 * Normalize with the sum of the coefficients
543 * Q3 = Q10 / Q7
544 */
545 mv->as_mv.row = mv_row_sum / w_sum;
546 mv->as_mv.col = mv_col_sum / w_sum;
547 mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
548 mv,
549 mb_to_left_edge,
550 mb_to_right_edge,
551 mb_to_top_edge,
552 mb_to_bottom_edge);
553 }
554 }
555 }
556 }
557
vp8_interpolate_motion(MACROBLOCKD * mb,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)558 void vp8_interpolate_motion(MACROBLOCKD *mb,
559 int mb_row, int mb_col,
560 int mb_rows, int mb_cols,
561 int mi_stride)
562 {
563 /* Find relevant neighboring blocks */
564 EC_BLOCK neighbors[NUM_NEIGHBORS];
565 int i;
566 /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
567 for (i = 0; i < NUM_NEIGHBORS; ++i)
568 {
569 neighbors[i].ref_frame = MAX_REF_FRAMES;
570 neighbors[i].mv.row = neighbors[i].mv.col = 0;
571 }
572 find_neighboring_blocks(mb->mode_info_context,
573 neighbors,
574 mb_row, mb_col,
575 mb_rows, mb_cols,
576 mb->mode_info_stride);
577 /* Interpolate MVs for the missing blocks from the surrounding
578 * blocks which refer to the last frame. */
579 interpolate_mvs(mb, neighbors, LAST_FRAME);
580
581 mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
582 mb->mode_info_context->mbmi.mode = SPLITMV;
583 mb->mode_info_context->mbmi.uv_mode = DC_PRED;
584 mb->mode_info_context->mbmi.partitioning = 3;
585 mb->mode_info_context->mbmi.segment_id = 0;
586 }
587
vp8_conceal_corrupt_mb(MACROBLOCKD * xd)588 void vp8_conceal_corrupt_mb(MACROBLOCKD *xd)
589 {
590 /* This macroblock has corrupt residual, use the motion compensated
591 image (predictor) for concealment */
592
593 /* The build predictor functions now output directly into the dst buffer,
594 * so the copies are no longer necessary */
595
596 }
597