1 /*
2  *  Copyright (c) 2011 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 
13 #include "error_concealment.h"
14 #include "onyxd_int.h"
15 #include "decodemv.h"
16 #include "vpx_mem/vpx_mem.h"
17 #include "vp8/common/findnearmv.h"
18 #include "vp8/common/common.h"
19 
20 #define FLOOR(x,q) ((x) & -(1 << (q)))
21 
22 #define NUM_NEIGHBORS 20
23 
24 typedef struct ec_position
25 {
26     int row;
27     int col;
28 } EC_POS;
29 
30 /*
31  * Regenerate the table in Matlab with:
32  * x = meshgrid((1:4), (1:4));
33  * y = meshgrid((1:4), (1:4))';
34  * W = round((1./(sqrt(x.^2 + y.^2))*2^7));
35  * W(1,1) = 0;
36  */
37 static const int weights_q7[5][5] = {
38        {  0,   128,    64,    43,    32 },
39        {128,    91,    57,    40,    31 },
40        { 64,    57,    45,    36,    29 },
41        { 43,    40,    36,    30,    26 },
42        { 32,    31,    29,    26,    23 }
43 };
44 
vp8_alloc_overlap_lists(VP8D_COMP * pbi)45 int vp8_alloc_overlap_lists(VP8D_COMP *pbi)
46 {
47     if (pbi->overlaps != NULL)
48     {
49         vpx_free(pbi->overlaps);
50         pbi->overlaps = NULL;
51     }
52 
53     pbi->overlaps = vpx_calloc(pbi->common.mb_rows * pbi->common.mb_cols,
54                                sizeof(MB_OVERLAP));
55 
56     if (pbi->overlaps == NULL)
57         return -1;
58 
59     return 0;
60 }
61 
vp8_de_alloc_overlap_lists(VP8D_COMP * pbi)62 void vp8_de_alloc_overlap_lists(VP8D_COMP *pbi)
63 {
64     vpx_free(pbi->overlaps);
65     pbi->overlaps = NULL;
66 }
67 
68 /* Inserts a new overlap area value to the list of overlaps of a block */
assign_overlap(OVERLAP_NODE * overlaps,union b_mode_info * bmi,int overlap)69 static void assign_overlap(OVERLAP_NODE* overlaps,
70                            union b_mode_info *bmi,
71                            int overlap)
72 {
73     int i;
74     if (overlap <= 0)
75         return;
76     /* Find and assign to the next empty overlap node in the list of overlaps.
77      * Empty is defined as bmi == NULL */
78     for (i = 0; i < MAX_OVERLAPS; i++)
79     {
80         if (overlaps[i].bmi == NULL)
81         {
82             overlaps[i].bmi = bmi;
83             overlaps[i].overlap = overlap;
84             break;
85         }
86     }
87 }
88 
89 /* Calculates the overlap area between two 4x4 squares, where the first
90  * square has its upper-left corner at (b1_row, b1_col) and the second
91  * square has its upper-left corner at (b2_row, b2_col). Doesn't
92  * properly handle squares which do not overlap.
93  */
block_overlap(int b1_row,int b1_col,int b2_row,int b2_col)94 static int block_overlap(int b1_row, int b1_col, int b2_row, int b2_col)
95 {
96     const int int_top = MAX(b1_row, b2_row); // top
97     const int int_left = MAX(b1_col, b2_col); // left
98     /* Since each block is 4x4 pixels, adding 4 (Q3) to the left/top edge
99      * gives us the right/bottom edge.
100      */
101     const int int_right = MIN(b1_col + (4<<3), b2_col + (4<<3)); // right
102     const int int_bottom = MIN(b1_row + (4<<3), b2_row + (4<<3)); // bottom
103     return (int_bottom - int_top) * (int_right - int_left);
104 }
105 
106 /* Calculates the overlap area for all blocks in a macroblock at position
107  * (mb_row, mb_col) in macroblocks, which are being overlapped by a given
108  * overlapping block at position (new_row, new_col) (in pixels, Q3). The
109  * first block being overlapped in the macroblock has position (first_blk_row,
110  * first_blk_col) in blocks relative the upper-left corner of the image.
111  */
calculate_overlaps_mb(B_OVERLAP * b_overlaps,union b_mode_info * bmi,int new_row,int new_col,int mb_row,int mb_col,int first_blk_row,int first_blk_col)112 static void calculate_overlaps_mb(B_OVERLAP *b_overlaps, union b_mode_info *bmi,
113                                   int new_row, int new_col,
114                                   int mb_row, int mb_col,
115                                   int first_blk_row, int first_blk_col)
116 {
117     /* Find the blocks within this MB (defined by mb_row, mb_col) which are
118      * overlapped by bmi and calculate and assign overlap for each of those
119      * blocks. */
120 
121     /* Block coordinates relative the upper-left block */
122     const int rel_ol_blk_row = first_blk_row - mb_row * 4;
123     const int rel_ol_blk_col = first_blk_col - mb_col * 4;
124     /* If the block partly overlaps any previous MB, these coordinates
125      * can be < 0. We don't want to access blocks in previous MBs.
126      */
127     const int blk_idx = MAX(rel_ol_blk_row,0) * 4 + MAX(rel_ol_blk_col,0);
128     /* Upper left overlapping block */
129     B_OVERLAP *b_ol_ul = &(b_overlaps[blk_idx]);
130 
131     /* Calculate and assign overlaps for all blocks in this MB
132      * which the motion compensated block overlaps
133      */
134     /* Avoid calculating overlaps for blocks in later MBs */
135     int end_row = MIN(4 + mb_row * 4 - first_blk_row, 2);
136     int end_col = MIN(4 + mb_col * 4 - first_blk_col, 2);
137     int row, col;
138 
139     /* Check if new_row and new_col are evenly divisible by 4 (Q3),
140      * and if so we shouldn't check neighboring blocks
141      */
142     if (new_row >= 0 && (new_row & 0x1F) == 0)
143         end_row = 1;
144     if (new_col >= 0 && (new_col & 0x1F) == 0)
145         end_col = 1;
146 
147     /* Check if the overlapping block partly overlaps a previous MB
148      * and if so, we're overlapping fewer blocks in this MB.
149      */
150     if (new_row < (mb_row*16)<<3)
151         end_row = 1;
152     if (new_col < (mb_col*16)<<3)
153         end_col = 1;
154 
155     for (row = 0; row < end_row; ++row)
156     {
157         for (col = 0; col < end_col; ++col)
158         {
159             /* input in Q3, result in Q6 */
160             const int overlap = block_overlap(new_row, new_col,
161                                                   (((first_blk_row + row) *
162                                                       4) << 3),
163                                                   (((first_blk_col + col) *
164                                                       4) << 3));
165             assign_overlap(b_ol_ul[row * 4 + col].overlaps, bmi, overlap);
166         }
167     }
168 }
169 
vp8_calculate_overlaps(MB_OVERLAP * overlap_ul,int mb_rows,int mb_cols,union b_mode_info * bmi,int b_row,int b_col)170 void vp8_calculate_overlaps(MB_OVERLAP *overlap_ul,
171                             int mb_rows, int mb_cols,
172                             union b_mode_info *bmi,
173                             int b_row, int b_col)
174 {
175     MB_OVERLAP *mb_overlap;
176     int row, col, rel_row, rel_col;
177     int new_row, new_col;
178     int end_row, end_col;
179     int overlap_b_row, overlap_b_col;
180     int overlap_mb_row, overlap_mb_col;
181 
182     /* mb subpixel position */
183     row = (4 * b_row) << 3; /* Q3 */
184     col = (4 * b_col) << 3; /* Q3 */
185 
186     /* reverse compensate for motion */
187     new_row = row - bmi->mv.as_mv.row;
188     new_col = col - bmi->mv.as_mv.col;
189 
190     if (new_row >= ((16*mb_rows) << 3) || new_col >= ((16*mb_cols) << 3))
191     {
192         /* the new block ended up outside the frame */
193         return;
194     }
195 
196     if (new_row <= (-4 << 3) || new_col <= (-4 << 3))
197     {
198         /* outside the frame */
199         return;
200     }
201     /* overlapping block's position in blocks */
202     overlap_b_row = FLOOR(new_row / 4, 3) >> 3;
203     overlap_b_col = FLOOR(new_col / 4, 3) >> 3;
204 
205     /* overlapping block's MB position in MBs
206      * operations are done in Q3
207      */
208     overlap_mb_row = FLOOR((overlap_b_row << 3) / 4, 3) >> 3;
209     overlap_mb_col = FLOOR((overlap_b_col << 3) / 4, 3) >> 3;
210 
211     end_row = MIN(mb_rows - overlap_mb_row, 2);
212     end_col = MIN(mb_cols - overlap_mb_col, 2);
213 
214     /* Don't calculate overlap for MBs we don't overlap */
215     /* Check if the new block row starts at the last block row of the MB */
216     if (abs(new_row - ((16*overlap_mb_row) << 3)) < ((3*4) << 3))
217         end_row = 1;
218     /* Check if the new block col starts at the last block col of the MB */
219     if (abs(new_col - ((16*overlap_mb_col) << 3)) < ((3*4) << 3))
220         end_col = 1;
221 
222     /* find the MB(s) this block is overlapping */
223     for (rel_row = 0; rel_row < end_row; ++rel_row)
224     {
225         for (rel_col = 0; rel_col < end_col; ++rel_col)
226         {
227             if (overlap_mb_row + rel_row < 0 ||
228                 overlap_mb_col + rel_col < 0)
229                 continue;
230             mb_overlap = overlap_ul + (overlap_mb_row + rel_row) * mb_cols +
231                  overlap_mb_col + rel_col;
232 
233             calculate_overlaps_mb(mb_overlap->overlaps, bmi,
234                                   new_row, new_col,
235                                   overlap_mb_row + rel_row,
236                                   overlap_mb_col + rel_col,
237                                   overlap_b_row + rel_row,
238                                   overlap_b_col + rel_col);
239         }
240     }
241 }
242 
243 /* Estimates a motion vector given the overlapping blocks' motion vectors.
244  * Filters out all overlapping blocks which do not refer to the correct
245  * reference frame type.
246  */
estimate_mv(const OVERLAP_NODE * overlaps,union b_mode_info * bmi)247 static void estimate_mv(const OVERLAP_NODE *overlaps, union b_mode_info *bmi)
248 {
249     int i;
250     int overlap_sum = 0;
251     int row_acc = 0;
252     int col_acc = 0;
253 
254     bmi->mv.as_int = 0;
255     for (i=0; i < MAX_OVERLAPS; ++i)
256     {
257         if (overlaps[i].bmi == NULL)
258             break;
259         col_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.col;
260         row_acc += overlaps[i].overlap * overlaps[i].bmi->mv.as_mv.row;
261         overlap_sum += overlaps[i].overlap;
262     }
263     if (overlap_sum > 0)
264     {
265         /* Q9 / Q6 = Q3 */
266         bmi->mv.as_mv.col = col_acc / overlap_sum;
267         bmi->mv.as_mv.row = row_acc / overlap_sum;
268     }
269     else
270     {
271         bmi->mv.as_mv.col = 0;
272         bmi->mv.as_mv.row = 0;
273     }
274 }
275 
276 /* Estimates all motion vectors for a macroblock given the lists of
277  * overlaps for each block. Decides whether or not the MVs must be clamped.
278  */
estimate_mb_mvs(const B_OVERLAP * block_overlaps,MODE_INFO * mi,int mb_to_left_edge,int mb_to_right_edge,int mb_to_top_edge,int mb_to_bottom_edge)279 static void estimate_mb_mvs(const B_OVERLAP *block_overlaps,
280                             MODE_INFO *mi,
281                             int mb_to_left_edge,
282                             int mb_to_right_edge,
283                             int mb_to_top_edge,
284                             int mb_to_bottom_edge)
285 {
286     int row, col;
287     int non_zero_count = 0;
288     MV * const filtered_mv = &(mi->mbmi.mv.as_mv);
289     union b_mode_info * const bmi = mi->bmi;
290     filtered_mv->col = 0;
291     filtered_mv->row = 0;
292     mi->mbmi.need_to_clamp_mvs = 0;
293     for (row = 0; row < 4; ++row)
294     {
295         int this_b_to_top_edge = mb_to_top_edge + ((row*4)<<3);
296         int this_b_to_bottom_edge = mb_to_bottom_edge - ((row*4)<<3);
297         for (col = 0; col < 4; ++col)
298         {
299             int i = row * 4 + col;
300             int this_b_to_left_edge = mb_to_left_edge + ((col*4)<<3);
301             int this_b_to_right_edge = mb_to_right_edge - ((col*4)<<3);
302             /* Estimate vectors for all blocks which are overlapped by this */
303             /* type. Interpolate/extrapolate the rest of the block's MVs */
304             estimate_mv(block_overlaps[i].overlaps, &(bmi[i]));
305             mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
306                                                          &bmi[i].mv,
307                                                          this_b_to_left_edge,
308                                                          this_b_to_right_edge,
309                                                          this_b_to_top_edge,
310                                                          this_b_to_bottom_edge);
311             if (bmi[i].mv.as_int != 0)
312             {
313                 ++non_zero_count;
314                 filtered_mv->col += bmi[i].mv.as_mv.col;
315                 filtered_mv->row += bmi[i].mv.as_mv.row;
316             }
317         }
318     }
319     if (non_zero_count > 0)
320     {
321         filtered_mv->col /= non_zero_count;
322         filtered_mv->row /= non_zero_count;
323     }
324 }
325 
calc_prev_mb_overlaps(MB_OVERLAP * overlaps,MODE_INFO * prev_mi,int mb_row,int mb_col,int mb_rows,int mb_cols)326 static void calc_prev_mb_overlaps(MB_OVERLAP *overlaps, MODE_INFO *prev_mi,
327                                     int mb_row, int mb_col,
328                                     int mb_rows, int mb_cols)
329 {
330     int sub_row;
331     int sub_col;
332     for (sub_row = 0; sub_row < 4; ++sub_row)
333     {
334         for (sub_col = 0; sub_col < 4; ++sub_col)
335         {
336             vp8_calculate_overlaps(
337                                 overlaps, mb_rows, mb_cols,
338                                 &(prev_mi->bmi[sub_row * 4 + sub_col]),
339                                 4 * mb_row + sub_row,
340                                 4 * mb_col + sub_col);
341         }
342     }
343 }
344 
345 /* Estimate all missing motion vectors. This function does the same as the one
346  * above, but has different input arguments. */
estimate_missing_mvs(MB_OVERLAP * overlaps,MODE_INFO * mi,MODE_INFO * prev_mi,int mb_rows,int mb_cols,unsigned int first_corrupt)347 static void estimate_missing_mvs(MB_OVERLAP *overlaps,
348                                  MODE_INFO *mi, MODE_INFO *prev_mi,
349                                  int mb_rows, int mb_cols,
350                                  unsigned int first_corrupt)
351 {
352     int mb_row, mb_col;
353     vpx_memset(overlaps, 0, sizeof(MB_OVERLAP) * mb_rows * mb_cols);
354     /* First calculate the overlaps for all blocks */
355     for (mb_row = 0; mb_row < mb_rows; ++mb_row)
356     {
357         for (mb_col = 0; mb_col < mb_cols; ++mb_col)
358         {
359             /* We're only able to use blocks referring to the last frame
360              * when extrapolating new vectors.
361              */
362             if (prev_mi->mbmi.ref_frame == LAST_FRAME)
363             {
364                 calc_prev_mb_overlaps(overlaps, prev_mi,
365                                       mb_row, mb_col,
366                                       mb_rows, mb_cols);
367             }
368             ++prev_mi;
369         }
370         ++prev_mi;
371     }
372 
373     mb_row = first_corrupt / mb_cols;
374     mb_col = first_corrupt - mb_row * mb_cols;
375     mi += mb_row*(mb_cols + 1) + mb_col;
376     /* Go through all macroblocks in the current image with missing MVs
377      * and calculate new MVs using the overlaps.
378      */
379     for (; mb_row < mb_rows; ++mb_row)
380     {
381         int mb_to_top_edge = -((mb_row * 16)) << 3;
382         int mb_to_bottom_edge = ((mb_rows - 1 - mb_row) * 16) << 3;
383         for (; mb_col < mb_cols; ++mb_col)
384         {
385             int mb_to_left_edge = -((mb_col * 16) << 3);
386             int mb_to_right_edge = ((mb_cols - 1 - mb_col) * 16) << 3;
387             const B_OVERLAP *block_overlaps =
388                     overlaps[mb_row*mb_cols + mb_col].overlaps;
389             mi->mbmi.ref_frame = LAST_FRAME;
390             mi->mbmi.mode = SPLITMV;
391             mi->mbmi.uv_mode = DC_PRED;
392             mi->mbmi.partitioning = 3;
393             mi->mbmi.segment_id = 0;
394             estimate_mb_mvs(block_overlaps,
395                             mi,
396                             mb_to_left_edge,
397                             mb_to_right_edge,
398                             mb_to_top_edge,
399                             mb_to_bottom_edge);
400             ++mi;
401         }
402         mb_col = 0;
403         ++mi;
404     }
405 }
406 
vp8_estimate_missing_mvs(VP8D_COMP * pbi)407 void vp8_estimate_missing_mvs(VP8D_COMP *pbi)
408 {
409     VP8_COMMON * const pc = &pbi->common;
410     estimate_missing_mvs(pbi->overlaps,
411                          pc->mi, pc->prev_mi,
412                          pc->mb_rows, pc->mb_cols,
413                          pbi->mvs_corrupt_from_mb);
414 }
415 
assign_neighbor(EC_BLOCK * neighbor,MODE_INFO * mi,int block_idx)416 static void assign_neighbor(EC_BLOCK *neighbor, MODE_INFO *mi, int block_idx)
417 {
418     assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
419     neighbor->ref_frame = mi->mbmi.ref_frame;
420     neighbor->mv = mi->bmi[block_idx].mv.as_mv;
421 }
422 
423 /* Finds the neighboring blocks of a macroblocks. In the general case
424  * 20 blocks are found. If a fewer number of blocks are found due to
425  * image boundaries, those positions in the EC_BLOCK array are left "empty".
426  * The neighbors are enumerated with the upper-left neighbor as the first
427  * element, the second element refers to the neighbor to right of the previous
428  * neighbor, and so on. The last element refers to the neighbor below the first
429  * neighbor.
430  */
find_neighboring_blocks(MODE_INFO * mi,EC_BLOCK * neighbors,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)431 static void find_neighboring_blocks(MODE_INFO *mi,
432                                     EC_BLOCK *neighbors,
433                                     int mb_row, int mb_col,
434                                     int mb_rows, int mb_cols,
435                                     int mi_stride)
436 {
437     int i = 0;
438     int j;
439     if (mb_row > 0)
440     {
441         /* upper left */
442         if (mb_col > 0)
443             assign_neighbor(&neighbors[i], mi - mi_stride - 1, 15);
444         ++i;
445         /* above */
446         for (j = 12; j < 16; ++j, ++i)
447             assign_neighbor(&neighbors[i], mi - mi_stride, j);
448     }
449     else
450         i += 5;
451     if (mb_col < mb_cols - 1)
452     {
453         /* upper right */
454         if (mb_row > 0)
455             assign_neighbor(&neighbors[i], mi - mi_stride + 1, 12);
456         ++i;
457         /* right */
458         for (j = 0; j <= 12; j += 4, ++i)
459             assign_neighbor(&neighbors[i], mi + 1, j);
460     }
461     else
462         i += 5;
463     if (mb_row < mb_rows - 1)
464     {
465         /* lower right */
466         if (mb_col < mb_cols - 1)
467             assign_neighbor(&neighbors[i], mi + mi_stride + 1, 0);
468         ++i;
469         /* below */
470         for (j = 0; j < 4; ++j, ++i)
471             assign_neighbor(&neighbors[i], mi + mi_stride, j);
472     }
473     else
474         i += 5;
475     if (mb_col > 0)
476     {
477         /* lower left */
478         if (mb_row < mb_rows - 1)
479             assign_neighbor(&neighbors[i], mi + mi_stride - 1, 4);
480         ++i;
481         /* left */
482         for (j = 3; j < 16; j += 4, ++i)
483         {
484             assign_neighbor(&neighbors[i], mi - 1, j);
485         }
486     }
487     else
488         i += 5;
489     assert(i == 20);
490 }
491 
492 /* Interpolates all motion vectors for a macroblock from the neighboring blocks'
493  * motion vectors.
494  */
interpolate_mvs(MACROBLOCKD * mb,EC_BLOCK * neighbors,MV_REFERENCE_FRAME dom_ref_frame)495 static void interpolate_mvs(MACROBLOCKD *mb,
496                          EC_BLOCK *neighbors,
497                          MV_REFERENCE_FRAME dom_ref_frame)
498 {
499     int row, col, i;
500     MODE_INFO * const mi = mb->mode_info_context;
501     /* Table with the position of the neighboring blocks relative the position
502      * of the upper left block of the current MB. Starting with the upper left
503      * neighbor and going to the right.
504      */
505     const EC_POS neigh_pos[NUM_NEIGHBORS] = {
506                                         {-1,-1}, {-1,0}, {-1,1}, {-1,2}, {-1,3},
507                                         {-1,4}, {0,4}, {1,4}, {2,4}, {3,4},
508                                         {4,4}, {4,3}, {4,2}, {4,1}, {4,0},
509                                         {4,-1}, {3,-1}, {2,-1}, {1,-1}, {0,-1}
510                                       };
511     mi->mbmi.need_to_clamp_mvs = 0;
512     for (row = 0; row < 4; ++row)
513     {
514         int mb_to_top_edge = mb->mb_to_top_edge + ((row*4)<<3);
515         int mb_to_bottom_edge = mb->mb_to_bottom_edge - ((row*4)<<3);
516         for (col = 0; col < 4; ++col)
517         {
518             int mb_to_left_edge = mb->mb_to_left_edge + ((col*4)<<3);
519             int mb_to_right_edge = mb->mb_to_right_edge - ((col*4)<<3);
520             int w_sum = 0;
521             int mv_row_sum = 0;
522             int mv_col_sum = 0;
523             int_mv * const mv = &(mi->bmi[row*4 + col].mv);
524             mv->as_int = 0;
525             for (i = 0; i < NUM_NEIGHBORS; ++i)
526             {
527                 /* Calculate the weighted sum of neighboring MVs referring
528                  * to the dominant frame type.
529                  */
530                 const int w = weights_q7[abs(row - neigh_pos[i].row)]
531                                         [abs(col - neigh_pos[i].col)];
532                 if (neighbors[i].ref_frame != dom_ref_frame)
533                     continue;
534                 w_sum += w;
535                 /* Q7 * Q3 = Q10 */
536                 mv_row_sum += w*neighbors[i].mv.row;
537                 mv_col_sum += w*neighbors[i].mv.col;
538             }
539             if (w_sum > 0)
540             {
541                 /* Avoid division by zero.
542                  * Normalize with the sum of the coefficients
543                  * Q3 = Q10 / Q7
544                  */
545                 mv->as_mv.row = mv_row_sum / w_sum;
546                 mv->as_mv.col = mv_col_sum / w_sum;
547                 mi->mbmi.need_to_clamp_mvs |= vp8_check_mv_bounds(
548                                                             mv,
549                                                             mb_to_left_edge,
550                                                             mb_to_right_edge,
551                                                             mb_to_top_edge,
552                                                             mb_to_bottom_edge);
553             }
554         }
555     }
556 }
557 
vp8_interpolate_motion(MACROBLOCKD * mb,int mb_row,int mb_col,int mb_rows,int mb_cols,int mi_stride)558 void vp8_interpolate_motion(MACROBLOCKD *mb,
559                         int mb_row, int mb_col,
560                         int mb_rows, int mb_cols,
561                         int mi_stride)
562 {
563     /* Find relevant neighboring blocks */
564     EC_BLOCK neighbors[NUM_NEIGHBORS];
565     int i;
566     /* Initialize the array. MAX_REF_FRAMES is interpreted as "doesn't exist" */
567     for (i = 0; i < NUM_NEIGHBORS; ++i)
568     {
569         neighbors[i].ref_frame = MAX_REF_FRAMES;
570         neighbors[i].mv.row = neighbors[i].mv.col = 0;
571     }
572     find_neighboring_blocks(mb->mode_info_context,
573                                 neighbors,
574                                 mb_row, mb_col,
575                                 mb_rows, mb_cols,
576                                 mb->mode_info_stride);
577     /* Interpolate MVs for the missing blocks from the surrounding
578      * blocks which refer to the last frame. */
579     interpolate_mvs(mb, neighbors, LAST_FRAME);
580 
581     mb->mode_info_context->mbmi.ref_frame = LAST_FRAME;
582     mb->mode_info_context->mbmi.mode = SPLITMV;
583     mb->mode_info_context->mbmi.uv_mode = DC_PRED;
584     mb->mode_info_context->mbmi.partitioning = 3;
585     mb->mode_info_context->mbmi.segment_id = 0;
586 }
587 
vp8_conceal_corrupt_mb(MACROBLOCKD * xd)588 void vp8_conceal_corrupt_mb(MACROBLOCKD *xd)
589 {
590     /* This macroblock has corrupt residual, use the motion compensated
591        image (predictor) for concealment */
592 
593     /* The build predictor functions now output directly into the dst buffer,
594      * so the copies are no longer necessary */
595 
596 }
597