1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14 
15 #include "./vp9_rtcd.h"
16 #include "./vpx_config.h"
17 
18 #include "vpx_ports/vpx_timer.h"
19 
20 #include "vp9/common/vp9_common.h"
21 #include "vp9/common/vp9_entropy.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_idct.h"
24 #include "vp9/common/vp9_mvref_common.h"
25 #include "vp9/common/vp9_pred_common.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconintra.h"
28 #include "vp9/common/vp9_reconinter.h"
29 #include "vp9/common/vp9_seg_common.h"
30 #include "vp9/common/vp9_systemdependent.h"
31 #include "vp9/common/vp9_tile_common.h"
32 
33 #include "vp9/encoder/vp9_aq_complexity.h"
34 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
35 #include "vp9/encoder/vp9_aq_variance.h"
36 #include "vp9/encoder/vp9_encodeframe.h"
37 #include "vp9/encoder/vp9_encodemb.h"
38 #include "vp9/encoder/vp9_encodemv.h"
39 #include "vp9/encoder/vp9_extend.h"
40 #include "vp9/encoder/vp9_pickmode.h"
41 #include "vp9/encoder/vp9_rd.h"
42 #include "vp9/encoder/vp9_rdopt.h"
43 #include "vp9/encoder/vp9_segmentation.h"
44 #include "vp9/encoder/vp9_tokenize.h"
45 
46 #define GF_ZEROMV_ZBIN_BOOST 0
47 #define LF_ZEROMV_ZBIN_BOOST 0
48 #define MV_ZBIN_BOOST        0
49 #define SPLIT_MV_ZBIN_BOOST  0
50 #define INTRA_ZBIN_BOOST     0
51 
52 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
53                               int mi_row, int mi_col, BLOCK_SIZE bsize,
54                               PICK_MODE_CONTEXT *ctx);
55 
56 // Motion vector component magnitude threshold for defining fast motion.
57 #define FAST_MOTION_MV_THRESH 24
58 
59 // This is used as a reference when computing the source variance for the
60 //  purposes of activity masking.
61 // Eventually this should be replaced by custom no-reference routines,
62 //  which will be faster.
63 static const uint8_t VP9_VAR_OFFS[64] = {
64   128, 128, 128, 128, 128, 128, 128, 128,
65   128, 128, 128, 128, 128, 128, 128, 128,
66   128, 128, 128, 128, 128, 128, 128, 128,
67   128, 128, 128, 128, 128, 128, 128, 128,
68   128, 128, 128, 128, 128, 128, 128, 128,
69   128, 128, 128, 128, 128, 128, 128, 128,
70   128, 128, 128, 128, 128, 128, 128, 128,
71   128, 128, 128, 128, 128, 128, 128, 128
72 };
73 
get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)74 static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi,
75                                               const struct buf_2d *ref,
76                                               BLOCK_SIZE bs) {
77   unsigned int sse;
78   const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
79                                               VP9_VAR_OFFS, 0, &sse);
80   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
81 }
82 
get_sby_perpixel_diff_variance(VP9_COMP * cpi,const struct buf_2d * ref,int mi_row,int mi_col,BLOCK_SIZE bs)83 static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi,
84                                                    const struct buf_2d *ref,
85                                                    int mi_row, int mi_col,
86                                                    BLOCK_SIZE bs) {
87   const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
88   const uint8_t* last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride +
89                                               mi_col * MI_SIZE];
90   unsigned int sse;
91   const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
92                                               last_y, last->y_stride, &sse);
93   return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
94 }
95 
get_rd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)96 static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi,
97                                                    int mi_row,
98                                                    int mi_col) {
99   unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
100                                                     mi_row, mi_col,
101                                                     BLOCK_64X64);
102   if (var < 8)
103     return BLOCK_64X64;
104   else if (var < 128)
105     return BLOCK_32X32;
106   else if (var < 2048)
107     return BLOCK_16X16;
108   else
109     return BLOCK_8X8;
110 }
111 
get_nonrd_var_based_fixed_partition(VP9_COMP * cpi,int mi_row,int mi_col)112 static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi,
113                                                       int mi_row,
114                                                       int mi_col) {
115   unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
116                                                     mi_row, mi_col,
117                                                     BLOCK_64X64);
118   if (var < 4)
119     return BLOCK_64X64;
120   else if (var < 10)
121     return BLOCK_32X32;
122   else
123     return BLOCK_16X16;
124 }
125 
126 // Lighter version of set_offsets that only sets the mode info
127 // pointers.
set_modeinfo_offsets(VP9_COMMON * const cm,MACROBLOCKD * const xd,int mi_row,int mi_col)128 static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm,
129                                         MACROBLOCKD *const xd,
130                                         int mi_row,
131                                         int mi_col) {
132   const int idx_str = xd->mi_stride * mi_row + mi_col;
133   xd->mi = cm->mi_grid_visible + idx_str;
134   xd->mi[0] = cm->mi + idx_str;
135 }
136 
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE bsize)137 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
138                         int mi_row, int mi_col, BLOCK_SIZE bsize) {
139   MACROBLOCK *const x = &cpi->mb;
140   VP9_COMMON *const cm = &cpi->common;
141   MACROBLOCKD *const xd = &x->e_mbd;
142   MB_MODE_INFO *mbmi;
143   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
144   const int mi_height = num_8x8_blocks_high_lookup[bsize];
145   const struct segmentation *const seg = &cm->seg;
146 
147   set_skip_context(xd, mi_row, mi_col);
148 
149   set_modeinfo_offsets(cm, xd, mi_row, mi_col);
150 
151   mbmi = &xd->mi[0]->mbmi;
152 
153   // Set up destination pointers.
154   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
155 
156   // Set up limit values for MV components.
157   // Mv beyond the range do not produce new/different prediction block.
158   x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
159   x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
160   x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
161   x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
162 
163   // Set up distance of MB to edge of frame in 1/8th pel units.
164   assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
165   set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width,
166                  cm->mi_rows, cm->mi_cols);
167 
168   // Set up source buffers.
169   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
170 
171   // R/D setup.
172   x->rddiv = cpi->rd.RDDIV;
173   x->rdmult = cpi->rd.RDMULT;
174 
175   // Setup segment ID.
176   if (seg->enabled) {
177     if (cpi->oxcf.aq_mode != VARIANCE_AQ) {
178       const uint8_t *const map = seg->update_map ? cpi->segmentation_map
179                                                  : cm->last_frame_seg_map;
180       mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
181     }
182     vp9_init_plane_quantizers(cpi, x);
183 
184     x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id];
185   } else {
186     mbmi->segment_id = 0;
187     x->encode_breakout = cpi->encode_breakout;
188   }
189 }
190 
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)191 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
192                                       int mi_row, int mi_col,
193                                       BLOCK_SIZE bsize) {
194   const int block_width = num_8x8_blocks_wide_lookup[bsize];
195   const int block_height = num_8x8_blocks_high_lookup[bsize];
196   int i, j;
197   for (j = 0; j < block_height; ++j)
198     for (i = 0; i < block_width; ++i) {
199       if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols)
200         xd->mi[j * xd->mi_stride + i] = xd->mi[0];
201     }
202 }
203 
set_block_size(VP9_COMP * const cpi,int mi_row,int mi_col,BLOCK_SIZE bsize)204 static void set_block_size(VP9_COMP * const cpi,
205                            int mi_row, int mi_col,
206                            BLOCK_SIZE bsize) {
207   if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
208     MACROBLOCKD *const xd = &cpi->mb.e_mbd;
209     set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col);
210     xd->mi[0]->mbmi.sb_type = bsize;
211     duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize);
212   }
213 }
214 
215 typedef struct {
216   int64_t sum_square_error;
217   int64_t sum_error;
218   int count;
219   int variance;
220 } var;
221 
222 typedef struct {
223   var none;
224   var horz[2];
225   var vert[2];
226 } partition_variance;
227 
228 typedef struct {
229   partition_variance part_variances;
230   var split[4];
231 } v8x8;
232 
233 typedef struct {
234   partition_variance part_variances;
235   v8x8 split[4];
236 } v16x16;
237 
238 typedef struct {
239   partition_variance part_variances;
240   v16x16 split[4];
241 } v32x32;
242 
243 typedef struct {
244   partition_variance part_variances;
245   v32x32 split[4];
246 } v64x64;
247 
248 typedef struct {
249   partition_variance *part_variances;
250   var *split[4];
251 } variance_node;
252 
253 typedef enum {
254   V16X16,
255   V32X32,
256   V64X64,
257 } TREE_LEVEL;
258 
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)259 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
260   int i;
261   node->part_variances = NULL;
262   vpx_memset(node->split, 0, sizeof(node->split));
263   switch (bsize) {
264     case BLOCK_64X64: {
265       v64x64 *vt = (v64x64 *) data;
266       node->part_variances = &vt->part_variances;
267       for (i = 0; i < 4; i++)
268         node->split[i] = &vt->split[i].part_variances.none;
269       break;
270     }
271     case BLOCK_32X32: {
272       v32x32 *vt = (v32x32 *) data;
273       node->part_variances = &vt->part_variances;
274       for (i = 0; i < 4; i++)
275         node->split[i] = &vt->split[i].part_variances.none;
276       break;
277     }
278     case BLOCK_16X16: {
279       v16x16 *vt = (v16x16 *) data;
280       node->part_variances = &vt->part_variances;
281       for (i = 0; i < 4; i++)
282         node->split[i] = &vt->split[i].part_variances.none;
283       break;
284     }
285     case BLOCK_8X8: {
286       v8x8 *vt = (v8x8 *) data;
287       node->part_variances = &vt->part_variances;
288       for (i = 0; i < 4; i++)
289         node->split[i] = &vt->split[i];
290       break;
291     }
292     default: {
293       assert(0);
294       break;
295     }
296   }
297 }
298 
299 // Set variance values given sum square error, sum error, count.
fill_variance(int64_t s2,int64_t s,int c,var * v)300 static void fill_variance(int64_t s2, int64_t s, int c, var *v) {
301   v->sum_square_error = s2;
302   v->sum_error = s;
303   v->count = c;
304   if (c > 0)
305     v->variance = (int)(256 *
306                         (v->sum_square_error - v->sum_error * v->sum_error /
307                          v->count) / v->count);
308   else
309     v->variance = 0;
310 }
311 
sum_2_variances(const var * a,const var * b,var * r)312 void sum_2_variances(const var *a, const var *b, var *r) {
313   fill_variance(a->sum_square_error + b->sum_square_error,
314                 a->sum_error + b->sum_error, a->count + b->count, r);
315 }
316 
fill_variance_tree(void * data,BLOCK_SIZE bsize)317 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
318   variance_node node;
319   tree_to_node(data, bsize, &node);
320   sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
321   sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
322   sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
323   sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
324   sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
325                   &node.part_variances->none);
326 }
327 
set_vt_partitioning(VP9_COMP * cpi,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col)328 static int set_vt_partitioning(VP9_COMP *cpi,
329                                void *data,
330                                BLOCK_SIZE bsize,
331                                int mi_row,
332                                int mi_col) {
333   VP9_COMMON * const cm = &cpi->common;
334   variance_node vt;
335   const int block_width = num_8x8_blocks_wide_lookup[bsize];
336   const int block_height = num_8x8_blocks_high_lookup[bsize];
337   // TODO(debargha): Choose this more intelligently.
338   const int64_t threshold_multiplier = 25;
339   int64_t threshold = threshold_multiplier * cpi->common.base_qindex;
340   assert(block_height == block_width);
341 
342   tree_to_node(data, bsize, &vt);
343 
344   // Split none is available only if we have more than half a block size
345   // in width and height inside the visible image.
346   if (mi_col + block_width / 2 < cm->mi_cols &&
347       mi_row + block_height / 2 < cm->mi_rows &&
348       vt.part_variances->none.variance < threshold) {
349     set_block_size(cpi, mi_row, mi_col, bsize);
350     return 1;
351   }
352 
353   // Vertical split is available on all but the bottom border.
354   if (mi_row + block_height / 2 < cm->mi_rows &&
355       vt.part_variances->vert[0].variance < threshold &&
356       vt.part_variances->vert[1].variance < threshold) {
357     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
358     set_block_size(cpi, mi_row, mi_col, subsize);
359     set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize);
360     return 1;
361   }
362 
363   // Horizontal split is available on all but the right border.
364   if (mi_col + block_width / 2 < cm->mi_cols &&
365       vt.part_variances->horz[0].variance < threshold &&
366       vt.part_variances->horz[1].variance < threshold) {
367     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
368     set_block_size(cpi, mi_row, mi_col, subsize);
369     set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize);
370     return 1;
371   }
372   return 0;
373 }
374 
375 // TODO(debargha): Fix this function and make it work as expected.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col)376 static void choose_partitioning(VP9_COMP *cpi,
377                                 const TileInfo *const tile,
378                                 int mi_row, int mi_col) {
379   VP9_COMMON * const cm = &cpi->common;
380   MACROBLOCK *x = &cpi->mb;
381   MACROBLOCKD *xd = &cpi->mb.e_mbd;
382 
383   int i, j, k;
384   v64x64 vt;
385   uint8_t *s;
386   const uint8_t *d;
387   int sp;
388   int dp;
389   int pixels_wide = 64, pixels_high = 64;
390   int_mv nearest_mv, near_mv;
391   const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
392   const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf;
393 
394   vp9_zero(vt);
395   set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
396 
397   if (xd->mb_to_right_edge < 0)
398     pixels_wide += (xd->mb_to_right_edge >> 3);
399   if (xd->mb_to_bottom_edge < 0)
400     pixels_high += (xd->mb_to_bottom_edge >> 3);
401 
402   s = x->plane[0].src.buf;
403   sp = x->plane[0].src.stride;
404 
405   if (cm->frame_type != KEY_FRAME) {
406     vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf);
407 
408     xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
409     xd->mi[0]->mbmi.sb_type = BLOCK_64X64;
410     vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv,
411                           xd->mi[0]->mbmi.ref_mvs[LAST_FRAME],
412                           &nearest_mv, &near_mv);
413 
414     xd->mi[0]->mbmi.mv[0] = nearest_mv;
415     vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
416 
417     d = xd->plane[0].dst.buf;
418     dp = xd->plane[0].dst.stride;
419   } else {
420     d = VP9_VAR_OFFS;
421     dp = 0;
422   }
423 
424   // Fill in the entire tree of 8x8 variances for splits.
425   for (i = 0; i < 4; i++) {
426     const int x32_idx = ((i & 1) << 5);
427     const int y32_idx = ((i >> 1) << 5);
428     for (j = 0; j < 4; j++) {
429       const int x16_idx = x32_idx + ((j & 1) << 4);
430       const int y16_idx = y32_idx + ((j >> 1) << 4);
431       v16x16 *vst = &vt.split[i].split[j];
432       for (k = 0; k < 4; k++) {
433         int x_idx = x16_idx + ((k & 1) << 3);
434         int y_idx = y16_idx + ((k >> 1) << 3);
435         unsigned int sse = 0;
436         int sum = 0;
437         if (x_idx < pixels_wide && y_idx < pixels_high)
438           vp9_get8x8var(s + y_idx * sp + x_idx, sp,
439                         d + y_idx * dp + x_idx, dp, &sse, &sum);
440         fill_variance(sse, sum, 64, &vst->split[k].part_variances.none);
441       }
442     }
443   }
444   // Fill the rest of the variance tree by summing split partition values.
445   for (i = 0; i < 4; i++) {
446     for (j = 0; j < 4; j++) {
447       fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
448     }
449     fill_variance_tree(&vt.split[i], BLOCK_32X32);
450   }
451   fill_variance_tree(&vt, BLOCK_64X64);
452 
453   // Now go through the entire structure,  splitting every block size until
454   // we get to one that's got a variance lower than our threshold,  or we
455   // hit 8x8.
456   if (!set_vt_partitioning(cpi, &vt, BLOCK_64X64,
457                            mi_row, mi_col)) {
458     for (i = 0; i < 4; ++i) {
459       const int x32_idx = ((i & 1) << 2);
460       const int y32_idx = ((i >> 1) << 2);
461       if (!set_vt_partitioning(cpi, &vt.split[i], BLOCK_32X32,
462                                (mi_row + y32_idx), (mi_col + x32_idx))) {
463         for (j = 0; j < 4; ++j) {
464           const int x16_idx = ((j & 1) << 1);
465           const int y16_idx = ((j >> 1) << 1);
466           // NOTE: This is a temporary hack to disable 8x8 partitions,
467           // since it works really bad - possibly due to a bug
468 #define DISABLE_8X8_VAR_BASED_PARTITION
469 #ifdef DISABLE_8X8_VAR_BASED_PARTITION
470           if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows &&
471               mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) {
472             set_block_size(cpi,
473                            (mi_row + y32_idx + y16_idx),
474                            (mi_col + x32_idx + x16_idx),
475                            BLOCK_16X16);
476           } else {
477             for (k = 0; k < 4; ++k) {
478               const int x8_idx = (k & 1);
479               const int y8_idx = (k >> 1);
480               set_block_size(cpi,
481                              (mi_row + y32_idx + y16_idx + y8_idx),
482                              (mi_col + x32_idx + x16_idx + x8_idx),
483                              BLOCK_8X8);
484             }
485           }
486 #else
487           if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile,
488                                    BLOCK_16X16,
489                                    (mi_row + y32_idx + y16_idx),
490                                    (mi_col + x32_idx + x16_idx), 2)) {
491             for (k = 0; k < 4; ++k) {
492               const int x8_idx = (k & 1);
493               const int y8_idx = (k >> 1);
494               set_block_size(cpi,
495                              (mi_row + y32_idx + y16_idx + y8_idx),
496                              (mi_col + x32_idx + x16_idx + x8_idx),
497                              BLOCK_8X8);
498             }
499           }
500 #endif
501         }
502       }
503     }
504   }
505 }
506 
update_state(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)507 static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
508                          int mi_row, int mi_col, BLOCK_SIZE bsize,
509                          int output_enabled) {
510   int i, x_idx, y;
511   VP9_COMMON *const cm = &cpi->common;
512   RD_OPT *const rd_opt = &cpi->rd;
513   MACROBLOCK *const x = &cpi->mb;
514   MACROBLOCKD *const xd = &x->e_mbd;
515   struct macroblock_plane *const p = x->plane;
516   struct macroblockd_plane *const pd = xd->plane;
517   MODE_INFO *mi = &ctx->mic;
518   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
519   MODE_INFO *mi_addr = xd->mi[0];
520   const struct segmentation *const seg = &cm->seg;
521 
522   const int mis = cm->mi_stride;
523   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
524   const int mi_height = num_8x8_blocks_high_lookup[bsize];
525   int max_plane;
526 
527   assert(mi->mbmi.sb_type == bsize);
528 
529   *mi_addr = *mi;
530 
531   // If segmentation in use
532   if (seg->enabled && output_enabled) {
533     // For in frame complexity AQ copy the segment id from the segment map.
534     if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
535       const uint8_t *const map = seg->update_map ? cpi->segmentation_map
536                                                  : cm->last_frame_seg_map;
537       mi_addr->mbmi.segment_id =
538         vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
539     }
540     // Else for cyclic refresh mode update the segment map, set the segment id
541     // and then update the quantizer.
542     else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
543       vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
544                                         mi_row, mi_col, bsize, 1);
545       vp9_init_plane_quantizers(cpi, x);
546     }
547   }
548 
549   max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1;
550   for (i = 0; i < max_plane; ++i) {
551     p[i].coeff = ctx->coeff_pbuf[i][1];
552     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
553     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
554     p[i].eobs = ctx->eobs_pbuf[i][1];
555   }
556 
557   for (i = max_plane; i < MAX_MB_PLANE; ++i) {
558     p[i].coeff = ctx->coeff_pbuf[i][2];
559     p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
560     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
561     p[i].eobs = ctx->eobs_pbuf[i][2];
562   }
563 
564   // Restore the coding context of the MB to that that was in place
565   // when the mode was picked for it
566   for (y = 0; y < mi_height; y++)
567     for (x_idx = 0; x_idx < mi_width; x_idx++)
568       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx
569         && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
570         xd->mi[x_idx + y * mis] = mi_addr;
571       }
572 
573   if (cpi->oxcf.aq_mode)
574     vp9_init_plane_quantizers(cpi, x);
575 
576   // FIXME(rbultje) I'm pretty sure this should go to the end of this block
577   // (i.e. after the output_enabled)
578   if (bsize < BLOCK_32X32) {
579     if (bsize < BLOCK_16X16)
580       ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8];
581     ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16];
582   }
583 
584   if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
585     mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
586     mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
587   }
588 
589   x->skip = ctx->skip;
590   vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk,
591              sizeof(uint8_t) * ctx->num_4x4_blk);
592 
593   if (!output_enabled)
594     return;
595 
596   if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
597     for (i = 0; i < TX_MODES; i++)
598       rd_opt->tx_select_diff[i] += ctx->tx_rd_diff[i];
599   }
600 
601 #if CONFIG_INTERNAL_STATS
602   if (frame_is_intra_only(cm)) {
603     static const int kf_mode_index[] = {
604       THR_DC        /*DC_PRED*/,
605       THR_V_PRED    /*V_PRED*/,
606       THR_H_PRED    /*H_PRED*/,
607       THR_D45_PRED  /*D45_PRED*/,
608       THR_D135_PRED /*D135_PRED*/,
609       THR_D117_PRED /*D117_PRED*/,
610       THR_D153_PRED /*D153_PRED*/,
611       THR_D207_PRED /*D207_PRED*/,
612       THR_D63_PRED  /*D63_PRED*/,
613       THR_TM        /*TM_PRED*/,
614     };
615     ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]];
616   } else {
617     // Note how often each mode chosen as best
618     ++cpi->mode_chosen_counts[ctx->best_mode_index];
619   }
620 #endif
621   if (!frame_is_intra_only(cm)) {
622     if (is_inter_block(mbmi)) {
623       vp9_update_mv_count(cm, xd);
624 
625       if (cm->interp_filter == SWITCHABLE) {
626         const int ctx = vp9_get_pred_context_switchable_interp(xd);
627         ++cm->counts.switchable_interp[ctx][mbmi->interp_filter];
628       }
629     }
630 
631     rd_opt->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
632     rd_opt->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
633     rd_opt->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
634 
635     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
636       rd_opt->filter_diff[i] += ctx->best_filter_diff[i];
637   }
638 }
639 
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)640 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
641                           int mi_row, int mi_col) {
642   uint8_t *const buffers[3] = {src->y_buffer, src->u_buffer, src->v_buffer };
643   const int strides[3] = {src->y_stride, src->uv_stride, src->uv_stride };
644   int i;
645 
646   // Set current frame pointer.
647   x->e_mbd.cur_buf = src;
648 
649   for (i = 0; i < MAX_MB_PLANE; i++)
650     setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
651                      NULL, x->e_mbd.plane[i].subsampling_x,
652                      x->e_mbd.plane[i].subsampling_y);
653 }
654 
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,int * rate,int64_t * dist,BLOCK_SIZE bsize)655 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode, int *rate,
656                                    int64_t *dist, BLOCK_SIZE bsize) {
657   MACROBLOCKD *const xd = &x->e_mbd;
658   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
659   INTERP_FILTER filter_ref;
660 
661   if (xd->up_available)
662     filter_ref = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
663   else if (xd->left_available)
664     filter_ref = xd->mi[-1]->mbmi.interp_filter;
665   else
666     filter_ref = EIGHTTAP;
667 
668   mbmi->sb_type = bsize;
669   mbmi->mode = ZEROMV;
670   mbmi->tx_size = MIN(max_txsize_lookup[bsize],
671                       tx_mode_to_biggest_tx_size[tx_mode]);
672   mbmi->skip = 1;
673   mbmi->uv_mode = DC_PRED;
674   mbmi->ref_frame[0] = LAST_FRAME;
675   mbmi->ref_frame[1] = NONE;
676   mbmi->mv[0].as_int = 0;
677   mbmi->interp_filter = filter_ref;
678 
679   xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
680   x->skip = 1;
681 
682   *rate = 0;
683   *dist = 0;
684 }
685 
rd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * totalrate,int64_t * totaldist,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int64_t best_rd,int block)686 static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
687                              int mi_row, int mi_col,
688                              int *totalrate, int64_t *totaldist,
689                              BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
690                              int64_t best_rd, int block) {
691   VP9_COMMON *const cm = &cpi->common;
692   MACROBLOCK *const x = &cpi->mb;
693   MACROBLOCKD *const xd = &x->e_mbd;
694   MB_MODE_INFO *mbmi;
695   struct macroblock_plane *const p = x->plane;
696   struct macroblockd_plane *const pd = xd->plane;
697   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
698   int i, orig_rdmult;
699   double rdmult_ratio;
700 
701   vp9_clear_system_state();
702   rdmult_ratio = 1.0;  // avoid uninitialized warnings
703 
704   // Use the lower precision, but faster, 32x32 fdct for mode selection.
705   x->use_lp32x32fdct = 1;
706 
707   // TODO(JBB): Most other places in the code instead of calling the function
708   // and then checking if its not the first 8x8 we put the check in the
709   // calling function.  Do that here.
710   if (bsize < BLOCK_8X8) {
711     // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
712     // there is nothing to be done.
713     if (block != 0) {
714       *totalrate = 0;
715       *totaldist = 0;
716       return;
717     }
718   }
719 
720   set_offsets(cpi, tile, mi_row, mi_col, bsize);
721   mbmi = &xd->mi[0]->mbmi;
722   mbmi->sb_type = bsize;
723 
724   for (i = 0; i < MAX_MB_PLANE; ++i) {
725     p[i].coeff = ctx->coeff_pbuf[i][0];
726     p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
727     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
728     p[i].eobs = ctx->eobs_pbuf[i][0];
729   }
730   ctx->is_coded = 0;
731   x->skip_recode = 0;
732 
733   // Set to zero to make sure we do not use the previous encoded frame stats
734   mbmi->skip = 0;
735 
736   x->source_variance = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
737 
738   // Save rdmult before it might be changed, so it can be restored later.
739   orig_rdmult = x->rdmult;
740 
741   if (aq_mode == VARIANCE_AQ) {
742     const int energy = bsize <= BLOCK_16X16 ? x->mb_energy
743                                             : vp9_block_energy(cpi, x, bsize);
744     if (cm->frame_type == KEY_FRAME ||
745         cpi->refresh_alt_ref_frame ||
746         (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
747       mbmi->segment_id = vp9_vaq_segment_id(energy);
748     } else {
749       const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
750                                                     : cm->last_frame_seg_map;
751       mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col);
752     }
753 
754     rdmult_ratio = vp9_vaq_rdmult_ratio(energy);
755     vp9_init_plane_quantizers(cpi, x);
756     vp9_clear_system_state();
757     x->rdmult = (int)round(x->rdmult * rdmult_ratio);
758   } else if (aq_mode == COMPLEXITY_AQ) {
759     const int mi_offset = mi_row * cm->mi_cols + mi_col;
760     unsigned char complexity = cpi->complexity_map[mi_offset];
761     const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
762                         (mi_col <= 1) || (mi_col >= (cm->mi_cols - 2));
763     if (!is_edge && (complexity > 128))
764       x->rdmult += ((x->rdmult * (complexity - 128)) / 256);
765   } else if (aq_mode == CYCLIC_REFRESH_AQ) {
766     const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map
767                                                   : cm->last_frame_seg_map;
768     // If segment 1, use rdmult for that segment.
769     if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col))
770       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
771   }
772 
773   // Find best coding mode & reconstruct the MB so it is available
774   // as a predictor for MBs that follow in the SB
775   if (frame_is_intra_only(cm)) {
776     vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx,
777                               best_rd);
778   } else {
779     if (bsize >= BLOCK_8X8) {
780       if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
781         vp9_rd_pick_inter_mode_sb_seg_skip(cpi, x, totalrate, totaldist, bsize,
782                                            ctx, best_rd);
783       else
784         vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col,
785                                   totalrate, totaldist, bsize, ctx, best_rd);
786     } else {
787       vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate,
788                                     totaldist, bsize, ctx, best_rd);
789     }
790   }
791 
792   x->rdmult = orig_rdmult;
793 
794   if (aq_mode == VARIANCE_AQ && *totalrate != INT_MAX) {
795     vp9_clear_system_state();
796     *totalrate = (int)round(*totalrate * rdmult_ratio);
797   }
798 }
799 
update_stats(VP9_COMMON * cm,const MACROBLOCK * x)800 static void update_stats(VP9_COMMON *cm, const MACROBLOCK *x) {
801   const MACROBLOCKD *const xd = &x->e_mbd;
802   const MODE_INFO *const mi = xd->mi[0];
803   const MB_MODE_INFO *const mbmi = &mi->mbmi;
804 
805   if (!frame_is_intra_only(cm)) {
806     const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
807                                                      SEG_LVL_REF_FRAME);
808     if (!seg_ref_active) {
809       FRAME_COUNTS *const counts = &cm->counts;
810       const int inter_block = is_inter_block(mbmi);
811 
812       counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++;
813 
814       // If the segment reference feature is enabled we have only a single
815       // reference frame allowed for the segment so exclude it from
816       // the reference frame counts used to work out probabilities.
817       if (inter_block) {
818         const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
819 
820         if (cm->reference_mode == REFERENCE_MODE_SELECT)
821           counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
822                             [has_second_ref(mbmi)]++;
823 
824         if (has_second_ref(mbmi)) {
825           counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)]
826                           [ref0 == GOLDEN_FRAME]++;
827         } else {
828           counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
829                             [ref0 != LAST_FRAME]++;
830           if (ref0 != LAST_FRAME)
831             counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
832                               [ref0 != GOLDEN_FRAME]++;
833         }
834       }
835     }
836   }
837 }
838 
restore_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)839 static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col,
840                             ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
841                             ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
842                             PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
843                             BLOCK_SIZE bsize) {
844   MACROBLOCK *const x = &cpi->mb;
845   MACROBLOCKD *const xd = &x->e_mbd;
846   int p;
847   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
848   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
849   int mi_width = num_8x8_blocks_wide_lookup[bsize];
850   int mi_height = num_8x8_blocks_high_lookup[bsize];
851   for (p = 0; p < MAX_MB_PLANE; p++) {
852     vpx_memcpy(
853         xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
854         a + num_4x4_blocks_wide * p,
855         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
856         xd->plane[p].subsampling_x);
857     vpx_memcpy(
858         xd->left_context[p]
859             + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
860         l + num_4x4_blocks_high * p,
861         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
862         xd->plane[p].subsampling_y);
863   }
864   vpx_memcpy(xd->above_seg_context + mi_col, sa,
865              sizeof(*xd->above_seg_context) * mi_width);
866   vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
867              sizeof(xd->left_seg_context[0]) * mi_height);
868 }
869 
save_context(VP9_COMP * cpi,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)870 static void save_context(VP9_COMP *cpi, int mi_row, int mi_col,
871                          ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
872                          ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
873                          PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
874                          BLOCK_SIZE bsize) {
875   const MACROBLOCK *const x = &cpi->mb;
876   const MACROBLOCKD *const xd = &x->e_mbd;
877   int p;
878   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
879   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
880   int mi_width = num_8x8_blocks_wide_lookup[bsize];
881   int mi_height = num_8x8_blocks_high_lookup[bsize];
882 
883   // buffer the above/left context information of the block in search.
884   for (p = 0; p < MAX_MB_PLANE; ++p) {
885     vpx_memcpy(
886         a + num_4x4_blocks_wide * p,
887         xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
888         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
889         xd->plane[p].subsampling_x);
890     vpx_memcpy(
891         l + num_4x4_blocks_high * p,
892         xd->left_context[p]
893             + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
894         (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
895         xd->plane[p].subsampling_y);
896   }
897   vpx_memcpy(sa, xd->above_seg_context + mi_col,
898              sizeof(*xd->above_seg_context) * mi_width);
899   vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
900              sizeof(xd->left_seg_context[0]) * mi_height);
901 }
902 
encode_b(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)903 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile,
904                      TOKENEXTRA **tp, int mi_row, int mi_col,
905                      int output_enabled, BLOCK_SIZE bsize,
906                      PICK_MODE_CONTEXT *ctx) {
907   set_offsets(cpi, tile, mi_row, mi_col, bsize);
908   update_state(cpi, ctx, mi_row, mi_col, bsize, output_enabled);
909   encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
910 
911   if (output_enabled) {
912     update_stats(&cpi->common, &cpi->mb);
913 
914     (*tp)->token = EOSB_TOKEN;
915     (*tp)++;
916   }
917 }
918 
encode_sb(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)919 static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile,
920                       TOKENEXTRA **tp, int mi_row, int mi_col,
921                       int output_enabled, BLOCK_SIZE bsize,
922                       PC_TREE *pc_tree) {
923   VP9_COMMON *const cm = &cpi->common;
924   MACROBLOCK *const x = &cpi->mb;
925   MACROBLOCKD *const xd = &x->e_mbd;
926 
927   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
928   int ctx;
929   PARTITION_TYPE partition;
930   BLOCK_SIZE subsize = bsize;
931 
932   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
933     return;
934 
935   if (bsize >= BLOCK_8X8) {
936     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
937     subsize = get_subsize(bsize, pc_tree->partitioning);
938   } else {
939     ctx = 0;
940     subsize = BLOCK_4X4;
941   }
942 
943   partition = partition_lookup[bsl][subsize];
944   if (output_enabled && bsize != BLOCK_4X4)
945     cm->counts.partition[ctx][partition]++;
946 
947   switch (partition) {
948     case PARTITION_NONE:
949       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
950                &pc_tree->none);
951       break;
952     case PARTITION_VERT:
953       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
954                &pc_tree->vertical[0]);
955       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
956         encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
957                  &pc_tree->vertical[1]);
958       }
959       break;
960     case PARTITION_HORZ:
961       encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
962                &pc_tree->horizontal[0]);
963       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
964         encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
965                  &pc_tree->horizontal[1]);
966       }
967       break;
968     case PARTITION_SPLIT:
969       if (bsize == BLOCK_8X8) {
970         encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
971                  pc_tree->leaf_split[0]);
972       } else {
973         encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
974                   pc_tree->split[0]);
975         encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize,
976                   pc_tree->split[1]);
977         encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize,
978                   pc_tree->split[2]);
979         encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
980                   subsize, pc_tree->split[3]);
981       }
982       break;
983     default:
984       assert("Invalid partition type.");
985       break;
986   }
987 
988   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
989     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
990 }
991 
992 // Check to see if the given partition size is allowed for a specified number
993 // of 8x8 block rows and columns remaining in the image.
994 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)995 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
996                                       int rows_left, int cols_left,
997                                       int *bh, int *bw) {
998   if (rows_left <= 0 || cols_left <= 0) {
999     return MIN(bsize, BLOCK_8X8);
1000   } else {
1001     for (; bsize > 0; bsize -= 3) {
1002       *bh = num_8x8_blocks_high_lookup[bsize];
1003       *bw = num_8x8_blocks_wide_lookup[bsize];
1004       if ((*bh <= rows_left) && (*bw <= cols_left)) {
1005         break;
1006       }
1007     }
1008   }
1009   return bsize;
1010 }
1011 
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO ** mi_8x8)1012 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
1013     int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
1014     BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
1015   int bh = bh_in;
1016   int r, c;
1017   for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
1018     int bw = bw_in;
1019     for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
1020       const int index = r * mis + c;
1021       mi_8x8[index] = mi + index;
1022       mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize,
1023           row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
1024     }
1025   }
1026 }
1027 
1028 // This function attempts to set all mode info entries in a given SB64
1029 // to the same block partition size.
1030 // However, at the bottom and right borders of the image the requested size
1031 // may not be allowed in which case this code attempts to choose the largest
1032 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)1033 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1034                                    MODE_INFO **mi_8x8, int mi_row, int mi_col,
1035                                    BLOCK_SIZE bsize) {
1036   VP9_COMMON *const cm = &cpi->common;
1037   const int mis = cm->mi_stride;
1038   const int row8x8_remaining = tile->mi_row_end - mi_row;
1039   const int col8x8_remaining = tile->mi_col_end - mi_col;
1040   int block_row, block_col;
1041   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
1042   int bh = num_8x8_blocks_high_lookup[bsize];
1043   int bw = num_8x8_blocks_wide_lookup[bsize];
1044 
1045   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1046 
1047   // Apply the requested partition size to the SB64 if it is all "in image"
1048   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1049       (row8x8_remaining >= MI_BLOCK_SIZE)) {
1050     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1051       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1052         int index = block_row * mis + block_col;
1053         mi_8x8[index] = mi_upper_left + index;
1054         mi_8x8[index]->mbmi.sb_type = bsize;
1055       }
1056     }
1057   } else {
1058     // Else this is a partial SB64.
1059     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
1060         col8x8_remaining, bsize, mi_8x8);
1061   }
1062 }
1063 
copy_partitioning(VP9_COMMON * cm,MODE_INFO ** mi_8x8,MODE_INFO ** prev_mi_8x8)1064 static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8,
1065   MODE_INFO **prev_mi_8x8) {
1066   const int mis = cm->mi_stride;
1067   int block_row, block_col;
1068 
1069   for (block_row = 0; block_row < 8; ++block_row) {
1070     for (block_col = 0; block_col < 8; ++block_col) {
1071       MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col];
1072       const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
1073 
1074       if (prev_mi) {
1075         const ptrdiff_t offset = prev_mi - cm->prev_mi;
1076         mi_8x8[block_row * mis + block_col] = cm->mi + offset;
1077         mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
1078       }
1079     }
1080   }
1081 }
1082 
constrain_copy_partitioning(VP9_COMP * const cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,MODE_INFO ** prev_mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)1083 static void constrain_copy_partitioning(VP9_COMP *const cpi,
1084                                         const TileInfo *const tile,
1085                                         MODE_INFO **mi_8x8,
1086                                         MODE_INFO **prev_mi_8x8,
1087                                         int mi_row, int mi_col,
1088                                         BLOCK_SIZE bsize) {
1089   VP9_COMMON *const cm = &cpi->common;
1090   const int mis = cm->mi_stride;
1091   const int row8x8_remaining = tile->mi_row_end - mi_row;
1092   const int col8x8_remaining = tile->mi_col_end - mi_col;
1093   MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col;
1094   const int bh = num_8x8_blocks_high_lookup[bsize];
1095   const int bw = num_8x8_blocks_wide_lookup[bsize];
1096   int block_row, block_col;
1097 
1098   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1099 
1100   // If the SB64 if it is all "in image".
1101   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1102       (row8x8_remaining >= MI_BLOCK_SIZE)) {
1103     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
1104       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
1105         const int index = block_row * mis + block_col;
1106         MODE_INFO *prev_mi = prev_mi_8x8[index];
1107         const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
1108         // Use previous partition if block size is not larger than bsize.
1109         if (prev_mi && sb_type <= bsize) {
1110           int block_row2, block_col2;
1111           for (block_row2 = 0; block_row2 < bh; ++block_row2) {
1112             for (block_col2 = 0; block_col2 < bw; ++block_col2) {
1113               const int index2 = (block_row + block_row2) * mis +
1114                   block_col + block_col2;
1115               prev_mi = prev_mi_8x8[index2];
1116               if (prev_mi) {
1117                 const ptrdiff_t offset = prev_mi - cm->prev_mi;
1118                 mi_8x8[index2] = cm->mi + offset;
1119                 mi_8x8[index2]->mbmi.sb_type = prev_mi->mbmi.sb_type;
1120               }
1121             }
1122           }
1123         } else {
1124           // Otherwise, use fixed partition of size bsize.
1125           mi_8x8[index] = mi_upper_left + index;
1126           mi_8x8[index]->mbmi.sb_type = bsize;
1127         }
1128       }
1129     }
1130   } else {
1131     // Else this is a partial SB64, copy previous partition.
1132     copy_partitioning(cm, mi_8x8, prev_mi_8x8);
1133   }
1134 }
1135 
1136 const struct {
1137   int row;
1138   int col;
1139 } coord_lookup[16] = {
1140     // 32x32 index = 0
1141     {0, 0}, {0, 2}, {2, 0}, {2, 2},
1142     // 32x32 index = 1
1143     {0, 4}, {0, 6}, {2, 4}, {2, 6},
1144     // 32x32 index = 2
1145     {4, 0}, {4, 2}, {6, 0}, {6, 2},
1146     // 32x32 index = 3
1147     {4, 4}, {4, 6}, {6, 4}, {6, 6},
1148 };
1149 
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col)1150 static void set_source_var_based_partition(VP9_COMP *cpi,
1151                                            const TileInfo *const tile,
1152                                            MODE_INFO **mi_8x8,
1153                                            int mi_row, int mi_col) {
1154   VP9_COMMON *const cm = &cpi->common;
1155   MACROBLOCK *const x = &cpi->mb;
1156   const int mis = cm->mi_stride;
1157   const int row8x8_remaining = tile->mi_row_end - mi_row;
1158   const int col8x8_remaining = tile->mi_col_end - mi_col;
1159   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
1160 
1161   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
1162 
1163   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
1164 
1165   // In-image SB64
1166   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
1167       (row8x8_remaining >= MI_BLOCK_SIZE)) {
1168     int i, j;
1169     int index;
1170     diff d32[4];
1171     const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
1172     int is_larger_better = 0;
1173     int use32x32 = 0;
1174     unsigned int thr = cpi->source_var_thresh;
1175 
1176     vpx_memset(d32, 0, 4 * sizeof(diff));
1177 
1178     for (i = 0; i < 4; i++) {
1179       diff *d16[4];
1180 
1181       for (j = 0; j < 4; j++) {
1182         int b_mi_row = coord_lookup[i * 4 + j].row;
1183         int b_mi_col = coord_lookup[i * 4 + j].col;
1184         int boffset = b_mi_row / 2 * cm->mb_cols +
1185                       b_mi_col / 2;
1186 
1187         d16[j] = cpi->source_diff_var + offset + boffset;
1188 
1189         index = b_mi_row * mis + b_mi_col;
1190         mi_8x8[index] = mi_upper_left + index;
1191         mi_8x8[index]->mbmi.sb_type = BLOCK_16X16;
1192 
1193         // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
1194         // size to further improve quality.
1195       }
1196 
1197       is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
1198           (d16[2]->var < thr) && (d16[3]->var < thr);
1199 
1200       // Use 32x32 partition
1201       if (is_larger_better) {
1202         use32x32 += 1;
1203 
1204         for (j = 0; j < 4; j++) {
1205           d32[i].sse += d16[j]->sse;
1206           d32[i].sum += d16[j]->sum;
1207         }
1208 
1209         d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
1210 
1211         index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
1212         mi_8x8[index] = mi_upper_left + index;
1213         mi_8x8[index]->mbmi.sb_type = BLOCK_32X32;
1214       }
1215     }
1216 
1217     if (use32x32 == 4) {
1218       thr <<= 1;
1219       is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
1220           (d32[2].var < thr) && (d32[3].var < thr);
1221 
1222       // Use 64x64 partition
1223       if (is_larger_better) {
1224         mi_8x8[0] = mi_upper_left;
1225         mi_8x8[0]->mbmi.sb_type = BLOCK_64X64;
1226       }
1227     }
1228   } else {   // partial in-image SB64
1229     int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
1230     int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
1231     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
1232         row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
1233   }
1234 }
1235 
is_background(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col)1236 static int is_background(VP9_COMP *cpi, const TileInfo *const tile,
1237                          int mi_row, int mi_col) {
1238   MACROBLOCK *x = &cpi->mb;
1239   uint8_t *src, *pre;
1240   int src_stride, pre_stride;
1241 
1242   const int row8x8_remaining = tile->mi_row_end - mi_row;
1243   const int col8x8_remaining = tile->mi_col_end - mi_col;
1244 
1245   int this_sad = 0;
1246   int threshold = 0;
1247 
1248   // This assumes the input source frames are of the same dimension.
1249   src_stride = cpi->Source->y_stride;
1250   src = cpi->Source->y_buffer + (mi_row * MI_SIZE) * src_stride +
1251             (mi_col * MI_SIZE);
1252   pre_stride = cpi->Last_Source->y_stride;
1253   pre = cpi->Last_Source->y_buffer + (mi_row * MI_SIZE) * pre_stride +
1254           (mi_col * MI_SIZE);
1255 
1256   if (row8x8_remaining >= MI_BLOCK_SIZE &&
1257       col8x8_remaining >= MI_BLOCK_SIZE) {
1258     this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride,
1259                                             pre, pre_stride);
1260     threshold = (1 << 12);
1261   } else {
1262     int r, c;
1263     for (r = 0; r < row8x8_remaining; r += 2)
1264       for (c = 0; c < col8x8_remaining; c += 2)
1265         this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride,
1266                                                  pre, pre_stride);
1267     threshold = (row8x8_remaining * col8x8_remaining) << 6;
1268   }
1269 
1270   x->in_static_area = (this_sad < 2 * threshold);
1271   return x->in_static_area;
1272 }
1273 
sb_has_motion(const VP9_COMMON * cm,MODE_INFO ** prev_mi_8x8,const int motion_thresh)1274 static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8,
1275                          const int motion_thresh) {
1276   const int mis = cm->mi_stride;
1277   int block_row, block_col;
1278 
1279   if (cm->prev_mi) {
1280     for (block_row = 0; block_row < 8; ++block_row) {
1281       for (block_col = 0; block_col < 8; ++block_col) {
1282         const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col];
1283         if (prev_mi) {
1284           if (abs(prev_mi->mbmi.mv[0].as_mv.row) > motion_thresh ||
1285               abs(prev_mi->mbmi.mv[0].as_mv.col) > motion_thresh)
1286             return 1;
1287         }
1288       }
1289     }
1290   }
1291   return 0;
1292 }
1293 
update_state_rt(VP9_COMP * cpi,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)1294 static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
1295                             int mi_row, int mi_col, int bsize) {
1296   VP9_COMMON *const cm = &cpi->common;
1297   MACROBLOCK *const x = &cpi->mb;
1298   MACROBLOCKD *const xd = &x->e_mbd;
1299   MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
1300   const struct segmentation *const seg = &cm->seg;
1301 
1302   *(xd->mi[0]) = ctx->mic;
1303 
1304   // For in frame adaptive Q, check for reseting the segment_id and updating
1305   // the cyclic refresh map.
1306   if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) {
1307     vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
1308                                       mi_row, mi_col, bsize, 1);
1309     vp9_init_plane_quantizers(cpi, x);
1310   }
1311 
1312   if (is_inter_block(mbmi)) {
1313     vp9_update_mv_count(cm, xd);
1314 
1315     if (cm->interp_filter == SWITCHABLE) {
1316       const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
1317       ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
1318     }
1319   }
1320 
1321   x->skip = ctx->skip;
1322   x->skip_txfm[0] = mbmi->segment_id ? 0 : ctx->skip_txfm[0];
1323 }
1324 
encode_b_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)1325 static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
1326                         TOKENEXTRA **tp, int mi_row, int mi_col,
1327                      int output_enabled, BLOCK_SIZE bsize,
1328                      PICK_MODE_CONTEXT *ctx) {
1329   set_offsets(cpi, tile, mi_row, mi_col, bsize);
1330   update_state_rt(cpi, ctx, mi_row, mi_col, bsize);
1331 
1332 #if CONFIG_VP9_TEMPORAL_DENOISING
1333   if (cpi->oxcf.noise_sensitivity > 0 && output_enabled) {
1334     vp9_denoiser_denoise(&cpi->denoiser, &cpi->mb, mi_row, mi_col,
1335                          MAX(BLOCK_8X8, bsize), ctx);
1336   }
1337 #endif
1338 
1339   encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
1340   update_stats(&cpi->common, &cpi->mb);
1341 
1342   (*tp)->token = EOSB_TOKEN;
1343   (*tp)++;
1344 }
1345 
encode_sb_rt(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)1346 static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
1347                          TOKENEXTRA **tp, int mi_row, int mi_col,
1348                          int output_enabled, BLOCK_SIZE bsize,
1349                          PC_TREE *pc_tree) {
1350   VP9_COMMON *const cm = &cpi->common;
1351   MACROBLOCK *const x = &cpi->mb;
1352   MACROBLOCKD *const xd = &x->e_mbd;
1353 
1354   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
1355   int ctx;
1356   PARTITION_TYPE partition;
1357   BLOCK_SIZE subsize;
1358 
1359   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1360     return;
1361 
1362   if (bsize >= BLOCK_8X8) {
1363     const int idx_str = xd->mi_stride * mi_row + mi_col;
1364     MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
1365     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
1366     subsize = mi_8x8[0]->mbmi.sb_type;
1367   } else {
1368     ctx = 0;
1369     subsize = BLOCK_4X4;
1370   }
1371 
1372   partition = partition_lookup[bsl][subsize];
1373   if (output_enabled && bsize != BLOCK_4X4)
1374     cm->counts.partition[ctx][partition]++;
1375 
1376   switch (partition) {
1377     case PARTITION_NONE:
1378       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1379                   &pc_tree->none);
1380       break;
1381     case PARTITION_VERT:
1382       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1383                   &pc_tree->vertical[0]);
1384       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
1385         encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1386                     subsize, &pc_tree->vertical[1]);
1387       }
1388       break;
1389     case PARTITION_HORZ:
1390       encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1391                   &pc_tree->horizontal[0]);
1392       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
1393         encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1394                     subsize, &pc_tree->horizontal[1]);
1395       }
1396       break;
1397     case PARTITION_SPLIT:
1398       subsize = get_subsize(bsize, PARTITION_SPLIT);
1399       encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
1400                    pc_tree->split[0]);
1401       encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
1402                    subsize, pc_tree->split[1]);
1403       encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
1404                    subsize, pc_tree->split[2]);
1405       encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
1406                    subsize, pc_tree->split[3]);
1407       break;
1408     default:
1409       assert("Invalid partition type.");
1410       break;
1411   }
1412 
1413   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
1414     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1415 }
1416 
rd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)1417 static void rd_use_partition(VP9_COMP *cpi,
1418                              const TileInfo *const tile,
1419                              MODE_INFO **mi_8x8,
1420                              TOKENEXTRA **tp, int mi_row, int mi_col,
1421                              BLOCK_SIZE bsize, int *rate, int64_t *dist,
1422                              int do_recon, PC_TREE *pc_tree) {
1423   VP9_COMMON *const cm = &cpi->common;
1424   MACROBLOCK *const x = &cpi->mb;
1425   MACROBLOCKD *const xd = &x->e_mbd;
1426   const int mis = cm->mi_stride;
1427   const int bsl = b_width_log2(bsize);
1428   const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
1429   const int bss = (1 << bsl) / 4;
1430   int i, pl;
1431   PARTITION_TYPE partition = PARTITION_NONE;
1432   BLOCK_SIZE subsize;
1433   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1434   PARTITION_CONTEXT sl[8], sa[8];
1435   int last_part_rate = INT_MAX;
1436   int64_t last_part_dist = INT64_MAX;
1437   int64_t last_part_rd = INT64_MAX;
1438   int none_rate = INT_MAX;
1439   int64_t none_dist = INT64_MAX;
1440   int64_t none_rd = INT64_MAX;
1441   int chosen_rate = INT_MAX;
1442   int64_t chosen_dist = INT64_MAX;
1443   int64_t chosen_rd = INT64_MAX;
1444   BLOCK_SIZE sub_subsize = BLOCK_4X4;
1445   int splits_below = 0;
1446   BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
1447   int do_partition_search = 1;
1448   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
1449 
1450   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1451     return;
1452 
1453   assert(num_4x4_blocks_wide_lookup[bsize] ==
1454          num_4x4_blocks_high_lookup[bsize]);
1455 
1456   partition = partition_lookup[bsl][bs_type];
1457   subsize = get_subsize(bsize, partition);
1458 
1459   pc_tree->partitioning = partition;
1460   save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1461 
1462   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode) {
1463     set_offsets(cpi, tile, mi_row, mi_col, bsize);
1464     x->mb_energy = vp9_block_energy(cpi, x, bsize);
1465   }
1466 
1467   if (do_partition_search &&
1468       cpi->sf.partition_search_type == SEARCH_PARTITION &&
1469       cpi->sf.adjust_partitioning_from_last_frame) {
1470     // Check if any of the sub blocks are further split.
1471     if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
1472       sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
1473       splits_below = 1;
1474       for (i = 0; i < 4; i++) {
1475         int jj = i >> 1, ii = i & 0x01;
1476         MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
1477         if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
1478           splits_below = 0;
1479         }
1480       }
1481     }
1482 
1483     // If partition is not none try none unless each of the 4 splits are split
1484     // even further..
1485     if (partition != PARTITION_NONE && !splits_below &&
1486         mi_row + (mi_step >> 1) < cm->mi_rows &&
1487         mi_col + (mi_step >> 1) < cm->mi_cols) {
1488       pc_tree->partitioning = PARTITION_NONE;
1489       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
1490                        ctx, INT64_MAX, 0);
1491 
1492       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1493 
1494       if (none_rate < INT_MAX) {
1495         none_rate += cpi->partition_cost[pl][PARTITION_NONE];
1496         none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist);
1497       }
1498 
1499       restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1500       mi_8x8[0]->mbmi.sb_type = bs_type;
1501       pc_tree->partitioning = partition;
1502     }
1503   }
1504 
1505   switch (partition) {
1506     case PARTITION_NONE:
1507       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1508                        &last_part_dist, bsize, ctx, INT64_MAX, 0);
1509       break;
1510     case PARTITION_HORZ:
1511       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1512                        &last_part_dist, subsize, &pc_tree->horizontal[0],
1513                        INT64_MAX, 0);
1514       if (last_part_rate != INT_MAX &&
1515           bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
1516         int rt = 0;
1517         int64_t dt = 0;
1518         PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
1519         update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
1520         encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
1521         rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt,
1522                          subsize, &pc_tree->horizontal[1], INT64_MAX, 1);
1523         if (rt == INT_MAX || dt == INT64_MAX) {
1524           last_part_rate = INT_MAX;
1525           last_part_dist = INT64_MAX;
1526           break;
1527         }
1528 
1529         last_part_rate += rt;
1530         last_part_dist += dt;
1531       }
1532       break;
1533     case PARTITION_VERT:
1534       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1535                        &last_part_dist, subsize, &pc_tree->vertical[0],
1536                        INT64_MAX, 0);
1537       if (last_part_rate != INT_MAX &&
1538           bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
1539         int rt = 0;
1540         int64_t dt = 0;
1541         PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
1542         update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
1543         encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
1544         rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt,
1545                          subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
1546                          INT64_MAX, 1);
1547         if (rt == INT_MAX || dt == INT64_MAX) {
1548           last_part_rate = INT_MAX;
1549           last_part_dist = INT64_MAX;
1550           break;
1551         }
1552         last_part_rate += rt;
1553         last_part_dist += dt;
1554       }
1555       break;
1556     case PARTITION_SPLIT:
1557       if (bsize == BLOCK_8X8) {
1558         rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
1559                          &last_part_dist, subsize, pc_tree->leaf_split[0],
1560                          INT64_MAX, 0);
1561         break;
1562       }
1563       last_part_rate = 0;
1564       last_part_dist = 0;
1565       for (i = 0; i < 4; i++) {
1566         int x_idx = (i & 1) * (mi_step >> 1);
1567         int y_idx = (i >> 1) * (mi_step >> 1);
1568         int jj = i >> 1, ii = i & 0x01;
1569         int rt;
1570         int64_t dt;
1571 
1572         if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1573           continue;
1574 
1575         rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
1576                          mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
1577                          i != 3, pc_tree->split[i]);
1578         if (rt == INT_MAX || dt == INT64_MAX) {
1579           last_part_rate = INT_MAX;
1580           last_part_dist = INT64_MAX;
1581           break;
1582         }
1583         last_part_rate += rt;
1584         last_part_dist += dt;
1585       }
1586       break;
1587     default:
1588       assert(0);
1589       break;
1590   }
1591 
1592   pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1593   if (last_part_rate < INT_MAX) {
1594     last_part_rate += cpi->partition_cost[pl][partition];
1595     last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist);
1596   }
1597 
1598   if (do_partition_search
1599       && cpi->sf.adjust_partitioning_from_last_frame
1600       && cpi->sf.partition_search_type == SEARCH_PARTITION
1601       && partition != PARTITION_SPLIT && bsize > BLOCK_8X8
1602       && (mi_row + mi_step < cm->mi_rows ||
1603           mi_row + (mi_step >> 1) == cm->mi_rows)
1604       && (mi_col + mi_step < cm->mi_cols ||
1605           mi_col + (mi_step >> 1) == cm->mi_cols)) {
1606     BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
1607     chosen_rate = 0;
1608     chosen_dist = 0;
1609     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1610     pc_tree->partitioning = PARTITION_SPLIT;
1611 
1612     // Split partition.
1613     for (i = 0; i < 4; i++) {
1614       int x_idx = (i & 1) * (mi_step >> 1);
1615       int y_idx = (i >> 1) * (mi_step >> 1);
1616       int rt = 0;
1617       int64_t dt = 0;
1618       ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1619       PARTITION_CONTEXT sl[8], sa[8];
1620 
1621       if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
1622         continue;
1623 
1624       save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1625       pc_tree->split[i]->partitioning = PARTITION_NONE;
1626       rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
1627                        split_subsize, &pc_tree->split[i]->none,
1628                        INT64_MAX, i);
1629 
1630       restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1631 
1632       if (rt == INT_MAX || dt == INT64_MAX) {
1633         chosen_rate = INT_MAX;
1634         chosen_dist = INT64_MAX;
1635         break;
1636       }
1637 
1638       chosen_rate += rt;
1639       chosen_dist += dt;
1640 
1641       if (i != 3)
1642         encode_sb(cpi, tile, tp,  mi_row + y_idx, mi_col + x_idx, 0,
1643                   split_subsize, pc_tree->split[i]);
1644 
1645       pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
1646                                    split_subsize);
1647       chosen_rate += cpi->partition_cost[pl][PARTITION_NONE];
1648     }
1649     pl = partition_plane_context(xd, mi_row, mi_col, bsize);
1650     if (chosen_rate < INT_MAX) {
1651       chosen_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
1652       chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist);
1653     }
1654   }
1655 
1656   // If last_part is better set the partitioning to that.
1657   if (last_part_rd < chosen_rd) {
1658     mi_8x8[0]->mbmi.sb_type = bsize;
1659     if (bsize >= BLOCK_8X8)
1660       pc_tree->partitioning = partition;
1661     chosen_rate = last_part_rate;
1662     chosen_dist = last_part_dist;
1663     chosen_rd = last_part_rd;
1664   }
1665   // If none was better set the partitioning to that.
1666   if (none_rd < chosen_rd) {
1667     if (bsize >= BLOCK_8X8)
1668       pc_tree->partitioning = PARTITION_NONE;
1669     chosen_rate = none_rate;
1670     chosen_dist = none_dist;
1671   }
1672 
1673   restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1674 
1675   // We must have chosen a partitioning and encoding or we'll fail later on.
1676   // No other opportunities for success.
1677   if ( bsize == BLOCK_64X64)
1678     assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX);
1679 
1680   if (do_recon) {
1681     int output_enabled = (bsize == BLOCK_64X64);
1682 
1683     // Check the projected output rate for this SB against it's target
1684     // and and if necessary apply a Q delta using segmentation to get
1685     // closer to the target.
1686     if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
1687       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
1688                                     output_enabled, chosen_rate);
1689     }
1690 
1691     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
1692       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
1693                                               chosen_rate, chosen_dist);
1694     encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize,
1695               pc_tree);
1696   }
1697 
1698   *rate = chosen_rate;
1699   *dist = chosen_dist;
1700 }
1701 
1702 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
1703   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,
1704   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,
1705   BLOCK_8X8,   BLOCK_8X8,   BLOCK_8X8,
1706   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1707   BLOCK_16X16
1708 };
1709 
1710 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
1711   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16,
1712   BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
1713   BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
1714   BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
1715   BLOCK_64X64
1716 };
1717 
1718 // Look at all the mode_info entries for blocks that are part of this
1719 // partition and find the min and max values for sb_type.
1720 // At the moment this is designed to work on a 64x64 SB but could be
1721 // adjusted to use a size parameter.
1722 //
1723 // The min and max are assumed to have been initialized prior to calling this
1724 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1725 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
1726                                         BLOCK_SIZE *min_block_size,
1727                                         BLOCK_SIZE *max_block_size ) {
1728   int sb_width_in_blocks = MI_BLOCK_SIZE;
1729   int sb_height_in_blocks  = MI_BLOCK_SIZE;
1730   int i, j;
1731   int index = 0;
1732 
1733   // Check the sb_type for each block that belongs to this region.
1734   for (i = 0; i < sb_height_in_blocks; ++i) {
1735     for (j = 0; j < sb_width_in_blocks; ++j) {
1736       MODE_INFO * mi = mi_8x8[index+j];
1737       BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
1738       *min_block_size = MIN(*min_block_size, sb_type);
1739       *max_block_size = MAX(*max_block_size, sb_type);
1740     }
1741     index += xd->mi_stride;
1742   }
1743 }
1744 
1745 // Next square block size less or equal than current block size.
1746 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
1747   BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
1748   BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
1749   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
1750   BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
1751   BLOCK_64X64
1752 };
1753 
1754 // Look at neighboring blocks and set a min and max partition size based on
1755 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1756 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
1757                                     int mi_row, int mi_col,
1758                                     BLOCK_SIZE *min_block_size,
1759                                     BLOCK_SIZE *max_block_size) {
1760   VP9_COMMON *const cm = &cpi->common;
1761   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1762   MODE_INFO **mi = xd->mi;
1763   const int left_in_image = xd->left_available && mi[-1];
1764   const int above_in_image = xd->up_available && mi[-xd->mi_stride];
1765   const int row8x8_remaining = tile->mi_row_end - mi_row;
1766   const int col8x8_remaining = tile->mi_col_end - mi_col;
1767   int bh, bw;
1768   BLOCK_SIZE min_size = BLOCK_4X4;
1769   BLOCK_SIZE max_size = BLOCK_64X64;
1770   // Trap case where we do not have a prediction.
1771   if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
1772     // Default "min to max" and "max to min"
1773     min_size = BLOCK_64X64;
1774     max_size = BLOCK_4X4;
1775 
1776     // NOTE: each call to get_sb_partition_size_range() uses the previous
1777     // passed in values for min and max as a starting point.
1778     // Find the min and max partition used in previous frame at this location
1779     if (cm->frame_type != KEY_FRAME) {
1780       MODE_INFO **const prev_mi =
1781           &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
1782       get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size);
1783     }
1784     // Find the min and max partition sizes used in the left SB64
1785     if (left_in_image) {
1786       MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
1787       get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size);
1788     }
1789     // Find the min and max partition sizes used in the above SB64.
1790     if (above_in_image) {
1791       MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
1792       get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size);
1793     }
1794     // adjust observed min and max
1795     if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
1796       min_size = min_partition_size[min_size];
1797       max_size = max_partition_size[max_size];
1798     }
1799   }
1800 
1801   // Check border cases where max and min from neighbors may not be legal.
1802   max_size = find_partition_size(max_size,
1803                                  row8x8_remaining, col8x8_remaining,
1804                                  &bh, &bw);
1805   min_size = MIN(min_size, max_size);
1806 
1807   // When use_square_partition_only is true, make sure at least one square
1808   // partition is allowed by selecting the next smaller square size as
1809   // *min_block_size.
1810   if (cpi->sf.use_square_partition_only &&
1811       next_square_size[max_size] < min_size) {
1812      min_size = next_square_size[max_size];
1813   }
1814   *min_block_size = min_size;
1815   *max_block_size = max_size;
1816 }
1817 
auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)1818 static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
1819                                  int mi_row, int mi_col,
1820                                  BLOCK_SIZE *min_block_size,
1821                                  BLOCK_SIZE *max_block_size) {
1822   VP9_COMMON *const cm = &cpi->common;
1823   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1824   MODE_INFO **mi_8x8 = xd->mi;
1825   const int left_in_image = xd->left_available && mi_8x8[-1];
1826   const int above_in_image = xd->up_available &&
1827                              mi_8x8[-xd->mi_stride];
1828   int row8x8_remaining = tile->mi_row_end - mi_row;
1829   int col8x8_remaining = tile->mi_col_end - mi_col;
1830   int bh, bw;
1831   BLOCK_SIZE min_size = BLOCK_32X32;
1832   BLOCK_SIZE max_size = BLOCK_8X8;
1833   int bsl = mi_width_log2(BLOCK_64X64);
1834   const int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
1835                        get_chessboard_index(cm->current_video_frame)) & 0x1;
1836   // Trap case where we do not have a prediction.
1837   if (search_range_ctrl &&
1838       (left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
1839     int block;
1840     MODE_INFO **mi;
1841     BLOCK_SIZE sb_type;
1842 
1843     // Find the min and max partition sizes used in the left SB64.
1844     if (left_in_image) {
1845       MODE_INFO *cur_mi;
1846       mi = &mi_8x8[-1];
1847       for (block = 0; block < MI_BLOCK_SIZE; ++block) {
1848         cur_mi = mi[block * xd->mi_stride];
1849         sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
1850         min_size = MIN(min_size, sb_type);
1851         max_size = MAX(max_size, sb_type);
1852       }
1853     }
1854     // Find the min and max partition sizes used in the above SB64.
1855     if (above_in_image) {
1856       mi = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE];
1857       for (block = 0; block < MI_BLOCK_SIZE; ++block) {
1858         sb_type = mi[block] ? mi[block]->mbmi.sb_type : 0;
1859         min_size = MIN(min_size, sb_type);
1860         max_size = MAX(max_size, sb_type);
1861       }
1862     }
1863 
1864     min_size = min_partition_size[min_size];
1865     max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
1866                                    &bh, &bw);
1867     min_size = MIN(min_size, max_size);
1868     min_size = MAX(min_size, BLOCK_8X8);
1869     max_size = MIN(max_size, BLOCK_32X32);
1870   } else {
1871     min_size = BLOCK_8X8;
1872     max_size = BLOCK_32X32;
1873   }
1874 
1875   *min_block_size = min_size;
1876   *max_block_size = max_size;
1877 }
1878 
1879 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)1880 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd,
1881                                 int mi_row, int mi_col, BLOCK_SIZE bsize,
1882                                 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
1883   int mi_width  = num_8x8_blocks_wide_lookup[bsize];
1884   int mi_height = num_8x8_blocks_high_lookup[bsize];
1885   int idx, idy;
1886 
1887   MODE_INFO *mi;
1888   MODE_INFO **prev_mi =
1889       &cm->prev_mi_grid_visible[mi_row * cm->mi_stride + mi_col];
1890   BLOCK_SIZE bs, min_size, max_size;
1891 
1892   min_size = BLOCK_64X64;
1893   max_size = BLOCK_4X4;
1894 
1895   if (prev_mi) {
1896     for (idy = 0; idy < mi_height; ++idy) {
1897       for (idx = 0; idx < mi_width; ++idx) {
1898         mi = prev_mi[idy * cm->mi_stride + idx];
1899         bs = mi ? mi->mbmi.sb_type : bsize;
1900         min_size = MIN(min_size, bs);
1901         max_size = MAX(max_size, bs);
1902       }
1903     }
1904   }
1905 
1906   if (xd->left_available) {
1907     for (idy = 0; idy < mi_height; ++idy) {
1908       mi = xd->mi[idy * cm->mi_stride - 1];
1909       bs = mi ? mi->mbmi.sb_type : bsize;
1910       min_size = MIN(min_size, bs);
1911       max_size = MAX(max_size, bs);
1912     }
1913   }
1914 
1915   if (xd->up_available) {
1916     for (idx = 0; idx < mi_width; ++idx) {
1917       mi = xd->mi[idx - cm->mi_stride];
1918       bs = mi ? mi->mbmi.sb_type : bsize;
1919       min_size = MIN(min_size, bs);
1920       max_size = MAX(max_size, bs);
1921     }
1922   }
1923 
1924   if (min_size == max_size) {
1925     min_size = min_partition_size[min_size];
1926     max_size = max_partition_size[max_size];
1927   }
1928 
1929   *min_bs = min_size;
1930   *max_bs = max_size;
1931 }
1932 
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1933 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1934   vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
1935 }
1936 
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)1937 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
1938   vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
1939 }
1940 
1941 #if CONFIG_FP_MB_STATS
1942 const int num_16x16_blocks_wide_lookup[BLOCK_SIZES] =
1943   {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4};
1944 const int num_16x16_blocks_high_lookup[BLOCK_SIZES] =
1945   {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4};
1946 const int qindex_skip_threshold_lookup[BLOCK_SIZES] =
1947   {0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120};
1948 const int qindex_split_threshold_lookup[BLOCK_SIZES] =
1949   {0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120};
1950 const int complexity_16x16_blocks_threshold[BLOCK_SIZES] =
1951   {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6};
1952 
1953 typedef enum {
1954   MV_ZERO = 0,
1955   MV_LEFT = 1,
1956   MV_UP = 2,
1957   MV_RIGHT = 3,
1958   MV_DOWN = 4,
1959   MV_INVALID
1960 } MOTION_DIRECTION;
1961 
get_motion_direction_fp(uint8_t fp_byte)1962 static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
1963   if (fp_byte & FPMB_MOTION_ZERO_MASK) {
1964     return MV_ZERO;
1965   } else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
1966     return MV_LEFT;
1967   } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
1968     return MV_RIGHT;
1969   } else if (fp_byte & FPMB_MOTION_UP_MASK) {
1970     return MV_UP;
1971   } else {
1972     return MV_DOWN;
1973   }
1974 }
1975 
get_motion_inconsistency(MOTION_DIRECTION this_mv,MOTION_DIRECTION that_mv)1976 static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
1977                                            MOTION_DIRECTION that_mv) {
1978   if (this_mv == that_mv) {
1979     return 0;
1980   } else {
1981     return abs(this_mv - that_mv) == 2 ? 2 : 1;
1982   }
1983 }
1984 #endif
1985 
1986 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
1987 // unlikely to be selected depending on previous rate-distortion optimization
1988 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int64_t best_rd,PC_TREE * pc_tree)1989 static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
1990                               TOKENEXTRA **tp, int mi_row,
1991                               int mi_col, BLOCK_SIZE bsize, int *rate,
1992                               int64_t *dist, int64_t best_rd,
1993                               PC_TREE *pc_tree) {
1994   VP9_COMMON *const cm = &cpi->common;
1995   MACROBLOCK *const x = &cpi->mb;
1996   MACROBLOCKD *const xd = &x->e_mbd;
1997   const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
1998   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
1999   PARTITION_CONTEXT sl[8], sa[8];
2000   TOKENEXTRA *tp_orig = *tp;
2001   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2002   int i, pl;
2003   BLOCK_SIZE subsize;
2004   int this_rate, sum_rate = 0, best_rate = INT_MAX;
2005   int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2006   int64_t sum_rd = 0;
2007   int do_split = bsize >= BLOCK_8X8;
2008   int do_rect = 1;
2009 
2010   // Override skipping rectangular partition operations for edge blocks
2011   const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
2012   const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
2013   const int xss = x->e_mbd.plane[1].subsampling_x;
2014   const int yss = x->e_mbd.plane[1].subsampling_y;
2015 
2016   BLOCK_SIZE min_size = cpi->sf.min_partition_size;
2017   BLOCK_SIZE max_size = cpi->sf.max_partition_size;
2018 
2019 #if CONFIG_FP_MB_STATS
2020   unsigned int src_diff_var = UINT_MAX;
2021   int none_complexity = 0;
2022 #endif
2023 
2024   int partition_none_allowed = !force_horz_split && !force_vert_split;
2025   int partition_horz_allowed = !force_vert_split && yss <= xss &&
2026                                bsize >= BLOCK_8X8;
2027   int partition_vert_allowed = !force_horz_split && xss <= yss &&
2028                                bsize >= BLOCK_8X8;
2029   (void) *tp_orig;
2030 
2031   assert(num_8x8_blocks_wide_lookup[bsize] ==
2032              num_8x8_blocks_high_lookup[bsize]);
2033 
2034   set_offsets(cpi, tile, mi_row, mi_col, bsize);
2035 
2036   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode)
2037     x->mb_energy = vp9_block_energy(cpi, x, bsize);
2038 
2039   if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
2040     int cb_partition_search_ctrl = ((pc_tree->index == 0 || pc_tree->index == 3)
2041         + get_chessboard_index(cm->current_video_frame)) & 0x1;
2042 
2043     if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
2044       set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
2045   }
2046 
2047   // Determine partition types in search according to the speed features.
2048   // The threshold set here has to be of square block size.
2049   if (cpi->sf.auto_min_max_partition_size) {
2050     partition_none_allowed &= (bsize <= max_size && bsize >= min_size);
2051     partition_horz_allowed &= ((bsize <= max_size && bsize > min_size) ||
2052                                 force_horz_split);
2053     partition_vert_allowed &= ((bsize <= max_size && bsize > min_size) ||
2054                                 force_vert_split);
2055     do_split &= bsize > min_size;
2056   }
2057   if (cpi->sf.use_square_partition_only) {
2058     partition_horz_allowed &= force_horz_split;
2059     partition_vert_allowed &= force_vert_split;
2060   }
2061 
2062   save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2063 
2064   if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
2065     unsigned int source_variancey;
2066     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2067     source_variancey = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2068     if (source_variancey < cpi->sf.disable_split_var_thresh) {
2069       do_split = 0;
2070       if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
2071         do_rect = 0;
2072     }
2073   }
2074 
2075 #if CONFIG_FP_MB_STATS
2076   if (cpi->use_fp_mb_stats) {
2077     set_offsets(cpi, tile, mi_row, mi_col, bsize);
2078     src_diff_var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src,
2079                                                   mi_row, mi_col, bsize);
2080   }
2081 #endif
2082 
2083 #if CONFIG_FP_MB_STATS
2084   // Decide whether we shall split directly and skip searching NONE by using
2085   // the first pass block statistics
2086   if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_split &&
2087       partition_none_allowed && src_diff_var > 4 &&
2088       cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
2089     int mb_row = mi_row >> 1;
2090     int mb_col = mi_col >> 1;
2091     int mb_row_end =
2092         MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
2093     int mb_col_end =
2094         MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
2095     int r, c;
2096 
2097     // compute a complexity measure, basically measure inconsistency of motion
2098     // vectors obtained from the first pass in the current block
2099     for (r = mb_row; r < mb_row_end ; r++) {
2100       for (c = mb_col; c < mb_col_end; c++) {
2101         const int mb_index = r * cm->mb_cols + c;
2102 
2103         MOTION_DIRECTION this_mv;
2104         MOTION_DIRECTION right_mv;
2105         MOTION_DIRECTION bottom_mv;
2106 
2107         this_mv =
2108             get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
2109 
2110         // to its right
2111         if (c != mb_col_end - 1) {
2112           right_mv = get_motion_direction_fp(
2113               cpi->twopass.this_frame_mb_stats[mb_index + 1]);
2114           none_complexity += get_motion_inconsistency(this_mv, right_mv);
2115         }
2116 
2117         // to its bottom
2118         if (r != mb_row_end - 1) {
2119           bottom_mv = get_motion_direction_fp(
2120               cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
2121           none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
2122         }
2123 
2124         // do not count its left and top neighbors to avoid double counting
2125       }
2126     }
2127 
2128     if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
2129       partition_none_allowed = 0;
2130     }
2131   }
2132 #endif
2133 
2134   // PARTITION_NONE
2135   if (partition_none_allowed) {
2136     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
2137                      ctx, best_rd, 0);
2138     if (this_rate != INT_MAX) {
2139       if (bsize >= BLOCK_8X8) {
2140         pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2141         this_rate += cpi->partition_cost[pl][PARTITION_NONE];
2142       }
2143       sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2144 
2145       if (sum_rd < best_rd) {
2146         int64_t stop_thresh = 4096;
2147         int64_t stop_thresh_rd;
2148 
2149         best_rate = this_rate;
2150         best_dist = this_dist;
2151         best_rd = sum_rd;
2152         if (bsize >= BLOCK_8X8)
2153           pc_tree->partitioning = PARTITION_NONE;
2154 
2155         // Adjust threshold according to partition size.
2156         stop_thresh >>= 8 - (b_width_log2(bsize) +
2157             b_height_log2(bsize));
2158 
2159         stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
2160         // If obtained distortion is very small, choose current partition
2161         // and stop splitting.
2162         if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
2163           do_split = 0;
2164           do_rect = 0;
2165         }
2166 
2167 #if CONFIG_FP_MB_STATS
2168         // Check if every 16x16 first pass block statistics has zero
2169         // motion and the corresponding first pass residue is small enough.
2170         // If that is the case, check the difference variance between the
2171         // current frame and the last frame. If the variance is small enough,
2172         // stop further splitting in RD optimization
2173         if (cpi->use_fp_mb_stats && do_split != 0 &&
2174             cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
2175           int mb_row = mi_row >> 1;
2176           int mb_col = mi_col >> 1;
2177           int mb_row_end =
2178               MIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
2179           int mb_col_end =
2180               MIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
2181           int r, c;
2182 
2183           int skip = 1;
2184           for (r = mb_row; r < mb_row_end; r++) {
2185             for (c = mb_col; c < mb_col_end; c++) {
2186               const int mb_index = r * cm->mb_cols + c;
2187               if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
2188                     FPMB_MOTION_ZERO_MASK) ||
2189                   !(cpi->twopass.this_frame_mb_stats[mb_index] &
2190                     FPMB_ERROR_SMALL_MASK)) {
2191                 skip = 0;
2192                 break;
2193               }
2194             }
2195             if (skip == 0) {
2196               break;
2197             }
2198           }
2199           if (skip) {
2200             if (src_diff_var == UINT_MAX) {
2201               set_offsets(cpi, tile, mi_row, mi_col, bsize);
2202               src_diff_var = get_sby_perpixel_diff_variance(
2203                   cpi, &cpi->mb.plane[0].src, mi_row, mi_col, bsize);
2204             }
2205             if (src_diff_var < 8) {
2206               do_split = 0;
2207               do_rect = 0;
2208             }
2209           }
2210         }
2211 #endif
2212       }
2213     }
2214     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2215   }
2216 
2217   // store estimated motion vector
2218   if (cpi->sf.adaptive_motion_search)
2219     store_pred_mv(x, ctx);
2220 
2221   // PARTITION_SPLIT
2222   sum_rd = 0;
2223   // TODO(jingning): use the motion vectors given by the above search as
2224   // the starting point of motion search in the following partition type check.
2225   if (do_split) {
2226     subsize = get_subsize(bsize, PARTITION_SPLIT);
2227     if (bsize == BLOCK_8X8) {
2228       i = 4;
2229       if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
2230         pc_tree->leaf_split[0]->pred_interp_filter =
2231             ctx->mic.mbmi.interp_filter;
2232       rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2233                        pc_tree->leaf_split[0], best_rd, 0);
2234       if (sum_rate == INT_MAX)
2235         sum_rd = INT64_MAX;
2236       else
2237         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2238     } else {
2239       for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2240       const int x_idx = (i & 1) * mi_step;
2241       const int y_idx = (i >> 1) * mi_step;
2242 
2243         if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2244           continue;
2245 
2246         if (cpi->sf.adaptive_motion_search)
2247           load_pred_mv(x, ctx);
2248 
2249         pc_tree->split[i]->index = i;
2250         rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
2251                           subsize, &this_rate, &this_dist,
2252                           best_rd - sum_rd, pc_tree->split[i]);
2253 
2254         if (this_rate == INT_MAX) {
2255           sum_rd = INT64_MAX;
2256         } else {
2257           sum_rate += this_rate;
2258           sum_dist += this_dist;
2259           sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2260         }
2261       }
2262     }
2263 
2264     if (sum_rd < best_rd && i == 4) {
2265       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2266       sum_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2267       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2268 
2269       if (sum_rd < best_rd) {
2270         best_rate = sum_rate;
2271         best_dist = sum_dist;
2272         best_rd = sum_rd;
2273         pc_tree->partitioning = PARTITION_SPLIT;
2274       }
2275     } else {
2276       // skip rectangular partition test when larger block size
2277       // gives better rd cost
2278       if (cpi->sf.less_rectangular_check)
2279         do_rect &= !partition_none_allowed;
2280     }
2281     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2282   }
2283 
2284   // PARTITION_HORZ
2285   if (partition_horz_allowed && do_rect) {
2286     subsize = get_subsize(bsize, PARTITION_HORZ);
2287     if (cpi->sf.adaptive_motion_search)
2288       load_pred_mv(x, ctx);
2289     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2290         partition_none_allowed)
2291       pc_tree->horizontal[0].pred_interp_filter =
2292           ctx->mic.mbmi.interp_filter;
2293     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2294                      &pc_tree->horizontal[0], best_rd, 0);
2295     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2296 
2297     if (sum_rd < best_rd && mi_row + mi_step < cm->mi_rows) {
2298       PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
2299       update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
2300       encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
2301 
2302       if (cpi->sf.adaptive_motion_search)
2303         load_pred_mv(x, ctx);
2304       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2305           partition_none_allowed)
2306         pc_tree->horizontal[1].pred_interp_filter =
2307             ctx->mic.mbmi.interp_filter;
2308       rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rate,
2309                        &this_dist, subsize, &pc_tree->horizontal[1],
2310                        best_rd - sum_rd, 1);
2311       if (this_rate == INT_MAX) {
2312         sum_rd = INT64_MAX;
2313       } else {
2314         sum_rate += this_rate;
2315         sum_dist += this_dist;
2316         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2317       }
2318     }
2319     if (sum_rd < best_rd) {
2320       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2321       sum_rate += cpi->partition_cost[pl][PARTITION_HORZ];
2322       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2323       if (sum_rd < best_rd) {
2324         best_rd = sum_rd;
2325         best_rate = sum_rate;
2326         best_dist = sum_dist;
2327         pc_tree->partitioning = PARTITION_HORZ;
2328       }
2329     }
2330     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2331   }
2332   // PARTITION_VERT
2333   if (partition_vert_allowed && do_rect) {
2334     subsize = get_subsize(bsize, PARTITION_VERT);
2335 
2336     if (cpi->sf.adaptive_motion_search)
2337       load_pred_mv(x, ctx);
2338     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2339         partition_none_allowed)
2340       pc_tree->vertical[0].pred_interp_filter =
2341           ctx->mic.mbmi.interp_filter;
2342     rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
2343                      &pc_tree->vertical[0], best_rd, 0);
2344     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2345     if (sum_rd < best_rd && mi_col + mi_step < cm->mi_cols) {
2346       update_state(cpi, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
2347       encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize,
2348                         &pc_tree->vertical[0]);
2349 
2350       if (cpi->sf.adaptive_motion_search)
2351         load_pred_mv(x, ctx);
2352       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
2353           partition_none_allowed)
2354         pc_tree->vertical[1].pred_interp_filter =
2355             ctx->mic.mbmi.interp_filter;
2356       rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rate,
2357                        &this_dist, subsize,
2358                        &pc_tree->vertical[1], best_rd - sum_rd,
2359                        1);
2360       if (this_rate == INT_MAX) {
2361         sum_rd = INT64_MAX;
2362       } else {
2363         sum_rate += this_rate;
2364         sum_dist += this_dist;
2365         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2366       }
2367     }
2368     if (sum_rd < best_rd) {
2369       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2370       sum_rate += cpi->partition_cost[pl][PARTITION_VERT];
2371       sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2372       if (sum_rd < best_rd) {
2373         best_rate = sum_rate;
2374         best_dist = sum_dist;
2375         best_rd = sum_rd;
2376         pc_tree->partitioning = PARTITION_VERT;
2377       }
2378     }
2379     restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
2380   }
2381 
2382   // TODO(jbb): This code added so that we avoid static analysis
2383   // warning related to the fact that best_rd isn't used after this
2384   // point.  This code should be refactored so that the duplicate
2385   // checks occur in some sub function and thus are used...
2386   (void) best_rd;
2387   *rate = best_rate;
2388   *dist = best_dist;
2389 
2390   if (best_rate < INT_MAX && best_dist < INT64_MAX && pc_tree->index != 3) {
2391     int output_enabled = (bsize == BLOCK_64X64);
2392 
2393     // Check the projected output rate for this SB against it's target
2394     // and and if necessary apply a Q delta using segmentation to get
2395     // closer to the target.
2396     if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map)
2397       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2398                                     best_rate);
2399     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
2400       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2401                                               best_rate, best_dist);
2402 
2403     encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
2404   }
2405 
2406   if (bsize == BLOCK_64X64) {
2407     assert(tp_orig < *tp);
2408     assert(best_rate < INT_MAX);
2409     assert(best_dist < INT64_MAX);
2410   } else {
2411     assert(tp_orig == *tp);
2412   }
2413 }
2414 
encode_rd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)2415 static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
2416                              int mi_row, TOKENEXTRA **tp) {
2417   VP9_COMMON *const cm = &cpi->common;
2418   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
2419   SPEED_FEATURES *const sf = &cpi->sf;
2420   int mi_col;
2421 
2422   // Initialize the left context for the new SB row
2423   vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
2424   vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
2425 
2426   // Code each SB in the row
2427   for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
2428        mi_col += MI_BLOCK_SIZE) {
2429     int dummy_rate;
2430     int64_t dummy_dist;
2431 
2432     int i;
2433 
2434     if (sf->adaptive_pred_interp_filter) {
2435       for (i = 0; i < 64; ++i)
2436         cpi->leaf_tree[i].pred_interp_filter = SWITCHABLE;
2437 
2438       for (i = 0; i < 64; ++i) {
2439         cpi->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
2440         cpi->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
2441         cpi->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
2442         cpi->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
2443       }
2444     }
2445 
2446     vp9_zero(cpi->mb.pred_mv);
2447     cpi->pc_root->index = 0;
2448 
2449     if ((sf->partition_search_type == SEARCH_PARTITION &&
2450          sf->use_lastframe_partitioning) ||
2451          sf->partition_search_type == FIXED_PARTITION ||
2452          sf->partition_search_type == VAR_BASED_PARTITION ||
2453          sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
2454       const int idx_str = cm->mi_stride * mi_row + mi_col;
2455       MODE_INFO **mi = cm->mi_grid_visible + idx_str;
2456       MODE_INFO **prev_mi = cm->prev_mi_grid_visible + idx_str;
2457       cpi->mb.source_variance = UINT_MAX;
2458       if (sf->partition_search_type == FIXED_PARTITION) {
2459         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2460         set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col,
2461                                sf->always_this_block_size);
2462         rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2463                          &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2464       } else if (cpi->skippable_frame ||
2465                  sf->partition_search_type == VAR_BASED_FIXED_PARTITION) {
2466         BLOCK_SIZE bsize;
2467         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2468         bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col);
2469         set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
2470         rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2471                          &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2472       } else if (sf->partition_search_type == VAR_BASED_PARTITION) {
2473         choose_partitioning(cpi, tile, mi_row, mi_col);
2474         rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2475                          &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2476       } else {
2477         GF_GROUP * gf_grp = &cpi->twopass.gf_group;
2478         int last_was_mid_sequence_overlay = 0;
2479         if ((cpi->oxcf.pass == 2) && (gf_grp->index)) {
2480           if (gf_grp->update_type[gf_grp->index - 1] == OVERLAY_UPDATE)
2481             last_was_mid_sequence_overlay = 1;
2482         }
2483         if ((cpi->rc.frames_since_key
2484             % sf->last_partitioning_redo_frequency) == 0
2485             || last_was_mid_sequence_overlay
2486             || cm->prev_mi == 0
2487             || cm->show_frame == 0
2488             || cm->frame_type == KEY_FRAME
2489             || cpi->rc.is_src_frame_alt_ref
2490             || ((sf->use_lastframe_partitioning ==
2491                  LAST_FRAME_PARTITION_LOW_MOTION) &&
2492                  sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))) {
2493           // If required set upper and lower partition size limits
2494           if (sf->auto_min_max_partition_size) {
2495             set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2496             rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2497                                     &sf->min_partition_size,
2498                                     &sf->max_partition_size);
2499           }
2500           rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2501                             &dummy_rate, &dummy_dist, INT64_MAX,
2502                             cpi->pc_root);
2503         } else {
2504           if (sf->constrain_copy_partition &&
2505               sb_has_motion(cm, prev_mi, sf->lf_motion_threshold))
2506             constrain_copy_partitioning(cpi, tile, mi, prev_mi,
2507                                         mi_row, mi_col, BLOCK_16X16);
2508           else
2509             copy_partitioning(cm, mi, prev_mi);
2510           rd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
2511                            &dummy_rate, &dummy_dist, 1, cpi->pc_root);
2512         }
2513       }
2514     } else {
2515       // If required set upper and lower partition size limits
2516       if (sf->auto_min_max_partition_size) {
2517         set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64);
2518         rd_auto_partition_range(cpi, tile, mi_row, mi_col,
2519                                 &sf->min_partition_size,
2520                                 &sf->max_partition_size);
2521       }
2522       rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
2523                         &dummy_rate, &dummy_dist, INT64_MAX, cpi->pc_root);
2524     }
2525   }
2526 }
2527 
init_encode_frame_mb_context(VP9_COMP * cpi)2528 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
2529   MACROBLOCK *const x = &cpi->mb;
2530   VP9_COMMON *const cm = &cpi->common;
2531   MACROBLOCKD *const xd = &x->e_mbd;
2532   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
2533 
2534   // Copy data over into macro block data structures.
2535   vp9_setup_src_planes(x, cpi->Source, 0, 0);
2536 
2537   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
2538 
2539   // Note: this memset assumes above_context[0], [1] and [2]
2540   // are allocated as part of the same buffer.
2541   vpx_memset(xd->above_context[0], 0,
2542              sizeof(*xd->above_context[0]) *
2543              2 * aligned_mi_cols * MAX_MB_PLANE);
2544   vpx_memset(xd->above_seg_context, 0,
2545              sizeof(*xd->above_seg_context) * aligned_mi_cols);
2546 }
2547 
check_dual_ref_flags(VP9_COMP * cpi)2548 static int check_dual_ref_flags(VP9_COMP *cpi) {
2549   const int ref_flags = cpi->ref_frame_flags;
2550 
2551   if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
2552     return 0;
2553   } else {
2554     return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG)
2555         + !!(ref_flags & VP9_ALT_FLAG)) >= 2;
2556   }
2557 }
2558 
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)2559 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
2560   int mi_row, mi_col;
2561   const int mis = cm->mi_stride;
2562   MODE_INFO **mi_ptr = cm->mi_grid_visible;
2563 
2564   for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
2565     for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
2566       if (mi_ptr[mi_col]->mbmi.tx_size > max_tx_size)
2567         mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
2568     }
2569   }
2570 }
2571 
get_frame_type(const VP9_COMP * cpi)2572 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
2573   if (frame_is_intra_only(&cpi->common))
2574     return INTRA_FRAME;
2575   else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
2576     return ALTREF_FRAME;
2577   else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
2578     return GOLDEN_FRAME;
2579   else
2580     return LAST_FRAME;
2581 }
2582 
select_tx_mode(const VP9_COMP * cpi)2583 static TX_MODE select_tx_mode(const VP9_COMP *cpi) {
2584   if (cpi->mb.e_mbd.lossless)
2585     return ONLY_4X4;
2586   if (cpi->common.frame_type == KEY_FRAME)
2587     return TX_MODE_SELECT;
2588   if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
2589     return ALLOW_32X32;
2590   else if (cpi->sf.tx_size_search_method == USE_FULL_RD||
2591            cpi->sf.tx_size_search_method == USE_TX_8X8)
2592     return TX_MODE_SELECT;
2593   else
2594     return cpi->common.tx_mode;
2595 }
2596 
nonrd_pick_sb_modes(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,int mi_col,int * rate,int64_t * dist,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2597 static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
2598                                 int mi_row, int mi_col,
2599                                 int *rate, int64_t *dist,
2600                                 BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
2601   VP9_COMMON *const cm = &cpi->common;
2602   MACROBLOCK *const x = &cpi->mb;
2603   MACROBLOCKD *const xd = &x->e_mbd;
2604   MB_MODE_INFO *mbmi;
2605   set_offsets(cpi, tile, mi_row, mi_col, bsize);
2606   mbmi = &xd->mi[0]->mbmi;
2607   mbmi->sb_type = bsize;
2608 
2609   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
2610     if (mbmi->segment_id && x->in_static_area)
2611       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
2612 
2613   if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP))
2614     set_mode_info_seg_skip(x, cm->tx_mode, rate, dist, bsize);
2615   else
2616     vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col, rate, dist, bsize, ctx);
2617 
2618   duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2619 }
2620 
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE subsize,PC_TREE * pc_tree)2621 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x,
2622                               int mi_row, int mi_col,
2623                               BLOCK_SIZE bsize, BLOCK_SIZE subsize,
2624                               PC_TREE *pc_tree) {
2625   MACROBLOCKD *xd = &x->e_mbd;
2626   int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2627   PARTITION_TYPE partition = pc_tree->partitioning;
2628 
2629   assert(bsize >= BLOCK_8X8);
2630 
2631   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2632     return;
2633 
2634   switch (partition) {
2635     case PARTITION_NONE:
2636       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2637       *(xd->mi[0]) = pc_tree->none.mic;
2638       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2639       break;
2640     case PARTITION_VERT:
2641       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2642       *(xd->mi[0]) = pc_tree->vertical[0].mic;
2643       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2644 
2645       if (mi_col + hbs < cm->mi_cols) {
2646         set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs);
2647         *(xd->mi[0]) = pc_tree->vertical[1].mic;
2648         duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize);
2649       }
2650       break;
2651     case PARTITION_HORZ:
2652       set_modeinfo_offsets(cm, xd, mi_row, mi_col);
2653       *(xd->mi[0]) = pc_tree->horizontal[0].mic;
2654       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
2655       if (mi_row + hbs < cm->mi_rows) {
2656         set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col);
2657         *(xd->mi[0]) = pc_tree->horizontal[1].mic;
2658         duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize);
2659       }
2660       break;
2661     case PARTITION_SPLIT: {
2662       BLOCK_SIZE subsubsize = get_subsize(subsize, PARTITION_SPLIT);
2663       fill_mode_info_sb(cm, x, mi_row, mi_col, subsize,
2664                         subsubsize, pc_tree->split[0]);
2665       fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
2666                         subsubsize, pc_tree->split[1]);
2667       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
2668                         subsubsize, pc_tree->split[2]);
2669       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
2670                         subsubsize, pc_tree->split[3]);
2671       break;
2672     }
2673     default:
2674       break;
2675   }
2676 }
2677 
nonrd_pick_partition(VP9_COMP * cpi,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,int64_t best_rd,PC_TREE * pc_tree)2678 static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
2679                                  TOKENEXTRA **tp, int mi_row,
2680                                  int mi_col, BLOCK_SIZE bsize, int *rate,
2681                                  int64_t *dist, int do_recon, int64_t best_rd,
2682                                  PC_TREE *pc_tree) {
2683   const SPEED_FEATURES *const sf = &cpi->sf;
2684   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2685   VP9_COMMON *const cm = &cpi->common;
2686   MACROBLOCK *const x = &cpi->mb;
2687   MACROBLOCKD *const xd = &x->e_mbd;
2688   const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
2689   TOKENEXTRA *tp_orig = *tp;
2690   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2691   int i;
2692   BLOCK_SIZE subsize = bsize;
2693   int this_rate, sum_rate = 0, best_rate = INT_MAX;
2694   int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
2695   int64_t sum_rd = 0;
2696   int do_split = bsize >= BLOCK_8X8;
2697   int do_rect = 1;
2698   // Override skipping rectangular partition operations for edge blocks
2699   const int force_horz_split = (mi_row + ms >= cm->mi_rows);
2700   const int force_vert_split = (mi_col + ms >= cm->mi_cols);
2701   const int xss = x->e_mbd.plane[1].subsampling_x;
2702   const int yss = x->e_mbd.plane[1].subsampling_y;
2703 
2704   int partition_none_allowed = !force_horz_split && !force_vert_split;
2705   int partition_horz_allowed = !force_vert_split && yss <= xss &&
2706                                bsize >= BLOCK_8X8;
2707   int partition_vert_allowed = !force_horz_split && xss <= yss &&
2708                                bsize >= BLOCK_8X8;
2709   (void) *tp_orig;
2710 
2711   assert(num_8x8_blocks_wide_lookup[bsize] ==
2712              num_8x8_blocks_high_lookup[bsize]);
2713 
2714   // Determine partition types in search according to the speed features.
2715   // The threshold set here has to be of square block size.
2716   if (sf->auto_min_max_partition_size) {
2717     partition_none_allowed &= (bsize <= sf->max_partition_size &&
2718                                bsize >= sf->min_partition_size);
2719     partition_horz_allowed &= ((bsize <= sf->max_partition_size &&
2720                                 bsize > sf->min_partition_size) ||
2721                                 force_horz_split);
2722     partition_vert_allowed &= ((bsize <= sf->max_partition_size &&
2723                                 bsize > sf->min_partition_size) ||
2724                                 force_vert_split);
2725     do_split &= bsize > sf->min_partition_size;
2726   }
2727   if (sf->use_square_partition_only) {
2728     partition_horz_allowed &= force_horz_split;
2729     partition_vert_allowed &= force_vert_split;
2730   }
2731 
2732   // PARTITION_NONE
2733   if (partition_none_allowed) {
2734     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2735                         &this_rate, &this_dist, bsize, ctx);
2736     ctx->mic.mbmi = xd->mi[0]->mbmi;
2737     ctx->skip_txfm[0] = x->skip_txfm[0];
2738     ctx->skip = x->skip;
2739 
2740     if (this_rate != INT_MAX) {
2741       int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2742       this_rate += cpi->partition_cost[pl][PARTITION_NONE];
2743       sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
2744       if (sum_rd < best_rd) {
2745         int64_t stop_thresh = 4096;
2746         int64_t stop_thresh_rd;
2747 
2748         best_rate = this_rate;
2749         best_dist = this_dist;
2750         best_rd = sum_rd;
2751         if (bsize >= BLOCK_8X8)
2752           pc_tree->partitioning = PARTITION_NONE;
2753 
2754         // Adjust threshold according to partition size.
2755         stop_thresh >>= 8 - (b_width_log2(bsize) +
2756             b_height_log2(bsize));
2757 
2758         stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh);
2759         // If obtained distortion is very small, choose current partition
2760         // and stop splitting.
2761         if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) {
2762           do_split = 0;
2763           do_rect = 0;
2764         }
2765       }
2766     }
2767   }
2768 
2769   // store estimated motion vector
2770   store_pred_mv(x, ctx);
2771 
2772   // PARTITION_SPLIT
2773   sum_rd = 0;
2774   if (do_split) {
2775     int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2776     sum_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2777     subsize = get_subsize(bsize, PARTITION_SPLIT);
2778     for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
2779       const int x_idx = (i & 1) * ms;
2780       const int y_idx = (i >> 1) * ms;
2781 
2782       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
2783         continue;
2784       load_pred_mv(x, ctx);
2785       nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx,
2786                            subsize, &this_rate, &this_dist, 0,
2787                            best_rd - sum_rd, pc_tree->split[i]);
2788 
2789       if (this_rate == INT_MAX) {
2790         sum_rd = INT64_MAX;
2791       } else {
2792         sum_rate += this_rate;
2793         sum_dist += this_dist;
2794         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2795       }
2796     }
2797 
2798     if (sum_rd < best_rd) {
2799       best_rate = sum_rate;
2800       best_dist = sum_dist;
2801       best_rd = sum_rd;
2802       pc_tree->partitioning = PARTITION_SPLIT;
2803     } else {
2804       // skip rectangular partition test when larger block size
2805       // gives better rd cost
2806       if (sf->less_rectangular_check)
2807         do_rect &= !partition_none_allowed;
2808     }
2809   }
2810 
2811   // PARTITION_HORZ
2812   if (partition_horz_allowed && do_rect) {
2813     subsize = get_subsize(bsize, PARTITION_HORZ);
2814     if (sf->adaptive_motion_search)
2815       load_pred_mv(x, ctx);
2816 
2817     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2818                         &this_rate, &this_dist, subsize,
2819                         &pc_tree->horizontal[0]);
2820 
2821     pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
2822     pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
2823     pc_tree->horizontal[0].skip = x->skip;
2824 
2825     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2826 
2827     if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
2828       load_pred_mv(x, ctx);
2829       nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col,
2830                           &this_rate, &this_dist, subsize,
2831                           &pc_tree->horizontal[1]);
2832 
2833       pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
2834       pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
2835       pc_tree->horizontal[1].skip = x->skip;
2836 
2837       if (this_rate == INT_MAX) {
2838         sum_rd = INT64_MAX;
2839       } else {
2840         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2841         this_rate += cpi->partition_cost[pl][PARTITION_HORZ];
2842         sum_rate += this_rate;
2843         sum_dist += this_dist;
2844         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2845       }
2846     }
2847     if (sum_rd < best_rd) {
2848       best_rd = sum_rd;
2849       best_rate = sum_rate;
2850       best_dist = sum_dist;
2851       pc_tree->partitioning = PARTITION_HORZ;
2852     }
2853   }
2854 
2855   // PARTITION_VERT
2856   if (partition_vert_allowed && do_rect) {
2857     subsize = get_subsize(bsize, PARTITION_VERT);
2858 
2859     if (sf->adaptive_motion_search)
2860       load_pred_mv(x, ctx);
2861 
2862     nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col,
2863                         &this_rate, &this_dist, subsize,
2864                         &pc_tree->vertical[0]);
2865     pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
2866     pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
2867     pc_tree->vertical[0].skip = x->skip;
2868     sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2869     if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
2870       load_pred_mv(x, ctx);
2871       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms,
2872                           &this_rate, &this_dist, subsize,
2873                           &pc_tree->vertical[1]);
2874       pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
2875       pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
2876       pc_tree->vertical[1].skip = x->skip;
2877       if (this_rate == INT_MAX) {
2878         sum_rd = INT64_MAX;
2879       } else {
2880         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2881         this_rate += cpi->partition_cost[pl][PARTITION_VERT];
2882         sum_rate += this_rate;
2883         sum_dist += this_dist;
2884         sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
2885       }
2886     }
2887     if (sum_rd < best_rd) {
2888       best_rate = sum_rate;
2889       best_dist = sum_dist;
2890       best_rd = sum_rd;
2891       pc_tree->partitioning = PARTITION_VERT;
2892     }
2893   }
2894   // TODO(JBB): The following line is here just to avoid a static warning
2895   // that occurs because at this point we never again reuse best_rd
2896   // despite setting it here.  The code should be refactored to avoid this.
2897   (void) best_rd;
2898 
2899   *rate = best_rate;
2900   *dist = best_dist;
2901 
2902   if (best_rate == INT_MAX)
2903     return;
2904 
2905   // update mode info array
2906   subsize = get_subsize(bsize, pc_tree->partitioning);
2907   fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, subsize,
2908                     pc_tree);
2909 
2910   if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
2911     int output_enabled = (bsize == BLOCK_64X64);
2912 
2913     // Check the projected output rate for this SB against it's target
2914     // and and if necessary apply a Q delta using segmentation to get
2915     // closer to the target.
2916     if ((oxcf->aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
2917       vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled,
2918                                     best_rate);
2919     }
2920 
2921     if (oxcf->aq_mode == CYCLIC_REFRESH_AQ)
2922       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
2923                                               best_rate, best_dist);
2924 
2925     encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree);
2926   }
2927 
2928   if (bsize == BLOCK_64X64) {
2929     assert(tp_orig < *tp);
2930     assert(best_rate < INT_MAX);
2931     assert(best_dist < INT64_MAX);
2932   } else {
2933     assert(tp_orig == *tp);
2934   }
2935 }
2936 
nonrd_use_partition(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,int * totrate,int64_t * totdist,PC_TREE * pc_tree)2937 static void nonrd_use_partition(VP9_COMP *cpi,
2938                                 const TileInfo *const tile,
2939                                 MODE_INFO **mi,
2940                                 TOKENEXTRA **tp,
2941                                 int mi_row, int mi_col,
2942                                 BLOCK_SIZE bsize, int output_enabled,
2943                                 int *totrate, int64_t *totdist,
2944                                 PC_TREE *pc_tree) {
2945   VP9_COMMON *const cm = &cpi->common;
2946   MACROBLOCK *const x = &cpi->mb;
2947   MACROBLOCKD *const xd = &x->e_mbd;
2948   const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
2949   const int mis = cm->mi_stride;
2950   PARTITION_TYPE partition;
2951   BLOCK_SIZE subsize;
2952   int rate = INT_MAX;
2953   int64_t dist = INT64_MAX;
2954 
2955   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
2956     return;
2957 
2958   subsize = (bsize >= BLOCK_8X8) ? mi[0]->mbmi.sb_type : BLOCK_4X4;
2959   partition = partition_lookup[bsl][subsize];
2960 
2961   switch (partition) {
2962     case PARTITION_NONE:
2963       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
2964                           subsize, &pc_tree->none);
2965       pc_tree->none.mic.mbmi = xd->mi[0]->mbmi;
2966       pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
2967       pc_tree->none.skip = x->skip;
2968       break;
2969     case PARTITION_VERT:
2970       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
2971                           subsize, &pc_tree->vertical[0]);
2972       pc_tree->vertical[0].mic.mbmi = xd->mi[0]->mbmi;
2973       pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
2974       pc_tree->vertical[0].skip = x->skip;
2975       if (mi_col + hbs < cm->mi_cols) {
2976         nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
2977                             &rate, &dist, subsize, &pc_tree->vertical[1]);
2978         pc_tree->vertical[1].mic.mbmi = xd->mi[0]->mbmi;
2979         pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
2980         pc_tree->vertical[1].skip = x->skip;
2981         if (rate != INT_MAX && dist != INT64_MAX &&
2982             *totrate != INT_MAX && *totdist != INT64_MAX) {
2983           *totrate += rate;
2984           *totdist += dist;
2985         }
2986       }
2987       break;
2988     case PARTITION_HORZ:
2989       nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist,
2990                           subsize, &pc_tree->horizontal[0]);
2991       pc_tree->horizontal[0].mic.mbmi = xd->mi[0]->mbmi;
2992       pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
2993       pc_tree->horizontal[0].skip = x->skip;
2994       if (mi_row + hbs < cm->mi_rows) {
2995         nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
2996                             &rate, &dist, subsize, &pc_tree->horizontal[0]);
2997         pc_tree->horizontal[1].mic.mbmi = xd->mi[0]->mbmi;
2998         pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
2999         pc_tree->horizontal[1].skip = x->skip;
3000         if (rate != INT_MAX && dist != INT64_MAX &&
3001             *totrate != INT_MAX && *totdist != INT64_MAX) {
3002           *totrate += rate;
3003           *totdist += dist;
3004         }
3005       }
3006       break;
3007     case PARTITION_SPLIT:
3008       subsize = get_subsize(bsize, PARTITION_SPLIT);
3009       nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
3010                           subsize, output_enabled, totrate, totdist,
3011                           pc_tree->split[0]);
3012       nonrd_use_partition(cpi, tile, mi + hbs, tp,
3013                           mi_row, mi_col + hbs, subsize, output_enabled,
3014                           &rate, &dist, pc_tree->split[1]);
3015       if (rate != INT_MAX && dist != INT64_MAX &&
3016           *totrate != INT_MAX && *totdist != INT64_MAX) {
3017         *totrate += rate;
3018         *totdist += dist;
3019       }
3020       nonrd_use_partition(cpi, tile, mi + hbs * mis, tp,
3021                           mi_row + hbs, mi_col, subsize, output_enabled,
3022                           &rate, &dist, pc_tree->split[2]);
3023       if (rate != INT_MAX && dist != INT64_MAX &&
3024           *totrate != INT_MAX && *totdist != INT64_MAX) {
3025         *totrate += rate;
3026         *totdist += dist;
3027       }
3028       nonrd_use_partition(cpi, tile, mi + hbs * mis + hbs, tp,
3029                           mi_row + hbs, mi_col + hbs, subsize, output_enabled,
3030                           &rate, &dist, pc_tree->split[3]);
3031       if (rate != INT_MAX && dist != INT64_MAX &&
3032           *totrate != INT_MAX && *totdist != INT64_MAX) {
3033         *totrate += rate;
3034         *totdist += dist;
3035       }
3036       break;
3037     default:
3038       assert("Invalid partition type.");
3039       break;
3040   }
3041 
3042   if (bsize == BLOCK_64X64 && output_enabled) {
3043     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
3044       vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
3045                                               *totrate, *totdist);
3046     encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize, pc_tree);
3047   }
3048 }
3049 
encode_nonrd_sb_row(VP9_COMP * cpi,const TileInfo * const tile,int mi_row,TOKENEXTRA ** tp)3050 static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
3051                                 int mi_row, TOKENEXTRA **tp) {
3052   SPEED_FEATURES *const sf = &cpi->sf;
3053   VP9_COMMON *const cm = &cpi->common;
3054   MACROBLOCK *const x = &cpi->mb;
3055   MACROBLOCKD *const xd = &x->e_mbd;
3056   int mi_col;
3057 
3058   // Initialize the left context for the new SB row
3059   vpx_memset(&xd->left_context, 0, sizeof(xd->left_context));
3060   vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
3061 
3062   // Code each SB in the row
3063   for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
3064        mi_col += MI_BLOCK_SIZE) {
3065     int dummy_rate = 0;
3066     int64_t dummy_dist = 0;
3067     const int idx_str = cm->mi_stride * mi_row + mi_col;
3068     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
3069     MODE_INFO **prev_mi = cm->prev_mi_grid_visible + idx_str;
3070     BLOCK_SIZE bsize;
3071 
3072     x->in_static_area = 0;
3073     x->source_variance = UINT_MAX;
3074     vp9_zero(x->pred_mv);
3075 
3076     // Set the partition type of the 64X64 block
3077     switch (sf->partition_search_type) {
3078       case VAR_BASED_PARTITION:
3079         choose_partitioning(cpi, tile, mi_row, mi_col);
3080         nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3081                             1, &dummy_rate, &dummy_dist, cpi->pc_root);
3082         break;
3083       case SOURCE_VAR_BASED_PARTITION:
3084         set_source_var_based_partition(cpi, tile, mi, mi_row, mi_col);
3085         nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3086                             1, &dummy_rate, &dummy_dist, cpi->pc_root);
3087         break;
3088       case VAR_BASED_FIXED_PARTITION:
3089       case FIXED_PARTITION:
3090         bsize = sf->partition_search_type == FIXED_PARTITION ?
3091                 sf->always_this_block_size :
3092                 get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
3093         set_fixed_partitioning(cpi, tile, mi, mi_row, mi_col, bsize);
3094         nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col, BLOCK_64X64,
3095                             1, &dummy_rate, &dummy_dist, cpi->pc_root);
3096         break;
3097       case REFERENCE_PARTITION:
3098         if (sf->partition_check ||
3099             !is_background(cpi, tile, mi_row, mi_col)) {
3100           set_modeinfo_offsets(cm, xd, mi_row, mi_col);
3101           auto_partition_range(cpi, tile, mi_row, mi_col,
3102                                &sf->min_partition_size,
3103                                &sf->max_partition_size);
3104           nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
3105                                &dummy_rate, &dummy_dist, 1, INT64_MAX,
3106                                cpi->pc_root);
3107         } else {
3108           copy_partitioning(cm, mi, prev_mi);
3109           nonrd_use_partition(cpi, tile, mi, tp, mi_row, mi_col,
3110                               BLOCK_64X64, 1, &dummy_rate, &dummy_dist,
3111                               cpi->pc_root);
3112         }
3113         break;
3114       default:
3115         assert(0);
3116         break;
3117     }
3118   }
3119 }
3120 // end RTC play code
3121 
set_var_thresh_from_histogram(VP9_COMP * cpi)3122 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
3123   const SPEED_FEATURES *const sf = &cpi->sf;
3124   const VP9_COMMON *const cm = &cpi->common;
3125 
3126   const uint8_t *src = cpi->Source->y_buffer;
3127   const uint8_t *last_src = cpi->Last_Source->y_buffer;
3128   const int src_stride = cpi->Source->y_stride;
3129   const int last_stride = cpi->Last_Source->y_stride;
3130 
3131   // Pick cutoff threshold
3132   const int cutoff = (MIN(cm->width, cm->height) >= 720) ?
3133       (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100) :
3134       (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
3135   DECLARE_ALIGNED_ARRAY(16, int, hist, VAR_HIST_BINS);
3136   diff *var16 = cpi->source_diff_var;
3137 
3138   int sum = 0;
3139   int i, j;
3140 
3141   vpx_memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
3142 
3143   for (i = 0; i < cm->mb_rows; i++) {
3144     for (j = 0; j < cm->mb_cols; j++) {
3145       vp9_get16x16var(src, src_stride, last_src, last_stride,
3146                       &var16->sse, &var16->sum);
3147 
3148       var16->var = var16->sse -
3149           (((uint32_t)var16->sum * var16->sum) >> 8);
3150 
3151       if (var16->var >= VAR_HIST_MAX_BG_VAR)
3152         hist[VAR_HIST_BINS - 1]++;
3153       else
3154         hist[var16->var / VAR_HIST_FACTOR]++;
3155 
3156       src += 16;
3157       last_src += 16;
3158       var16++;
3159     }
3160 
3161     src = src - cm->mb_cols * 16 + 16 * src_stride;
3162     last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
3163   }
3164 
3165   cpi->source_var_thresh = 0;
3166 
3167   if (hist[VAR_HIST_BINS - 1] < cutoff) {
3168     for (i = 0; i < VAR_HIST_BINS - 1; i++) {
3169       sum += hist[i];
3170 
3171       if (sum > cutoff) {
3172         cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
3173         return 0;
3174       }
3175     }
3176   }
3177 
3178   return sf->search_type_check_frequency;
3179 }
3180 
source_var_based_partition_search_method(VP9_COMP * cpi)3181 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
3182   VP9_COMMON *const cm = &cpi->common;
3183   SPEED_FEATURES *const sf = &cpi->sf;
3184 
3185   if (cm->frame_type == KEY_FRAME) {
3186     // For key frame, use SEARCH_PARTITION.
3187     sf->partition_search_type = SEARCH_PARTITION;
3188   } else if (cm->intra_only) {
3189     sf->partition_search_type = FIXED_PARTITION;
3190   } else {
3191     if (cm->last_width != cm->width || cm->last_height != cm->height) {
3192       if (cpi->source_diff_var)
3193         vpx_free(cpi->source_diff_var);
3194 
3195         CHECK_MEM_ERROR(cm, cpi->source_diff_var,
3196                         vpx_calloc(cm->MBs, sizeof(diff)));
3197       }
3198 
3199     if (!cpi->frames_till_next_var_check)
3200       cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
3201 
3202     if (cpi->frames_till_next_var_check > 0) {
3203       sf->partition_search_type = FIXED_PARTITION;
3204       cpi->frames_till_next_var_check--;
3205     }
3206   }
3207 }
3208 
get_skip_encode_frame(const VP9_COMMON * cm)3209 static int get_skip_encode_frame(const VP9_COMMON *cm) {
3210   unsigned int intra_count = 0, inter_count = 0;
3211   int j;
3212 
3213   for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
3214     intra_count += cm->counts.intra_inter[j][0];
3215     inter_count += cm->counts.intra_inter[j][1];
3216   }
3217 
3218   return (intra_count << 2) < inter_count &&
3219          cm->frame_type != KEY_FRAME &&
3220          cm->show_frame;
3221 }
3222 
encode_tiles(VP9_COMP * cpi)3223 static void encode_tiles(VP9_COMP *cpi) {
3224   const VP9_COMMON *const cm = &cpi->common;
3225   const int tile_cols = 1 << cm->log2_tile_cols;
3226   const int tile_rows = 1 << cm->log2_tile_rows;
3227   int tile_col, tile_row;
3228   TOKENEXTRA *tok = cpi->tok;
3229 
3230   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
3231     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
3232       TileInfo tile;
3233       TOKENEXTRA *old_tok = tok;
3234       int mi_row;
3235 
3236       vp9_tile_init(&tile, cm, tile_row, tile_col);
3237       for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end;
3238            mi_row += MI_BLOCK_SIZE) {
3239         if (cpi->sf.use_nonrd_pick_mode && !frame_is_intra_only(cm))
3240           encode_nonrd_sb_row(cpi, &tile, mi_row, &tok);
3241         else
3242           encode_rd_sb_row(cpi, &tile, mi_row, &tok);
3243       }
3244       cpi->tok_count[tile_row][tile_col] = (unsigned int)(tok - old_tok);
3245       assert(tok - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
3246     }
3247   }
3248 }
3249 
3250 #if CONFIG_FP_MB_STATS
input_fpmb_stats(FIRSTPASS_MB_STATS * firstpass_mb_stats,VP9_COMMON * cm,uint8_t ** this_frame_mb_stats)3251 static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
3252                             VP9_COMMON *cm, uint8_t **this_frame_mb_stats) {
3253   uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
3254       cm->current_video_frame * cm->MBs * sizeof(uint8_t);
3255 
3256   if (mb_stats_in > firstpass_mb_stats->mb_stats_end)
3257     return EOF;
3258 
3259   *this_frame_mb_stats = mb_stats_in;
3260 
3261   return 1;
3262 }
3263 #endif
3264 
encode_frame_internal(VP9_COMP * cpi)3265 static void encode_frame_internal(VP9_COMP *cpi) {
3266   SPEED_FEATURES *const sf = &cpi->sf;
3267   RD_OPT *const rd_opt = &cpi->rd;
3268   MACROBLOCK *const x = &cpi->mb;
3269   VP9_COMMON *const cm = &cpi->common;
3270   MACROBLOCKD *const xd = &x->e_mbd;
3271 
3272   xd->mi = cm->mi_grid_visible;
3273   xd->mi[0] = cm->mi;
3274 
3275   vp9_zero(cm->counts);
3276   vp9_zero(cpi->coef_counts);
3277   vp9_zero(cpi->tx_stepdown_count);
3278   vp9_zero(rd_opt->comp_pred_diff);
3279   vp9_zero(rd_opt->filter_diff);
3280   vp9_zero(rd_opt->tx_select_diff);
3281   vp9_zero(rd_opt->tx_select_threshes);
3282 
3283   xd->lossless = cm->base_qindex == 0 &&
3284                  cm->y_dc_delta_q == 0 &&
3285                  cm->uv_dc_delta_q == 0 &&
3286                  cm->uv_ac_delta_q == 0;
3287 
3288   cm->tx_mode = select_tx_mode(cpi);
3289 
3290   x->fwd_txm4x4 = xd->lossless ? vp9_fwht4x4 : vp9_fdct4x4;
3291   x->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
3292 
3293   if (xd->lossless) {
3294     x->optimize = 0;
3295     cm->lf.filter_level = 0;
3296     cpi->zbin_mode_boost_enabled = 0;
3297   }
3298 
3299   vp9_frame_init_quantizer(cpi);
3300 
3301   vp9_initialize_rd_consts(cpi);
3302   vp9_initialize_me_consts(cpi, cm->base_qindex);
3303   init_encode_frame_mb_context(cpi);
3304   set_prev_mi(cm);
3305 
3306   x->quant_fp = cpi->sf.use_quant_fp;
3307   vp9_zero(x->skip_txfm);
3308   if (sf->use_nonrd_pick_mode) {
3309     // Initialize internal buffer pointers for rtc coding, where non-RD
3310     // mode decision is used and hence no buffer pointer swap needed.
3311     int i;
3312     struct macroblock_plane *const p = x->plane;
3313     struct macroblockd_plane *const pd = xd->plane;
3314     PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
3315 
3316     for (i = 0; i < MAX_MB_PLANE; ++i) {
3317       p[i].coeff = ctx->coeff_pbuf[i][0];
3318       p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
3319       pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
3320       p[i].eobs = ctx->eobs_pbuf[i][0];
3321     }
3322     vp9_zero(x->zcoeff_blk);
3323 
3324     if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
3325       source_var_based_partition_search_method(cpi);
3326   }
3327 
3328   {
3329     struct vpx_usec_timer emr_timer;
3330     vpx_usec_timer_start(&emr_timer);
3331 
3332 #if CONFIG_FP_MB_STATS
3333   if (cpi->use_fp_mb_stats) {
3334     input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
3335                      &cpi->twopass.this_frame_mb_stats);
3336   }
3337 #endif
3338 
3339     encode_tiles(cpi);
3340 
3341     vpx_usec_timer_mark(&emr_timer);
3342     cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
3343   }
3344 
3345   sf->skip_encode_frame = sf->skip_encode_sb ? get_skip_encode_frame(cm) : 0;
3346 
3347 #if 0
3348   // Keep record of the total distortion this time around for future use
3349   cpi->last_frame_distortion = cpi->frame_distortion;
3350 #endif
3351 }
3352 
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)3353 static INTERP_FILTER get_interp_filter(
3354     const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
3355   if (!is_alt_ref &&
3356       threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
3357       threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
3358       threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
3359     return EIGHTTAP_SMOOTH;
3360   } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
3361              threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
3362     return EIGHTTAP_SHARP;
3363   } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
3364     return EIGHTTAP;
3365   } else {
3366     return SWITCHABLE;
3367   }
3368 }
3369 
vp9_encode_frame(VP9_COMP * cpi)3370 void vp9_encode_frame(VP9_COMP *cpi) {
3371   VP9_COMMON *const cm = &cpi->common;
3372   RD_OPT *const rd_opt = &cpi->rd;
3373 
3374   // In the longer term the encoder should be generalized to match the
3375   // decoder such that we allow compound where one of the 3 buffers has a
3376   // different sign bias and that buffer is then the fixed ref. However, this
3377   // requires further work in the rd loop. For now the only supported encoder
3378   // side behavior is where the ALT ref buffer has opposite sign bias to
3379   // the other two.
3380   if (!frame_is_intra_only(cm)) {
3381     if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3382              cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
3383         (cm->ref_frame_sign_bias[ALTREF_FRAME] ==
3384              cm->ref_frame_sign_bias[LAST_FRAME])) {
3385       cm->allow_comp_inter_inter = 0;
3386     } else {
3387       cm->allow_comp_inter_inter = 1;
3388       cm->comp_fixed_ref = ALTREF_FRAME;
3389       cm->comp_var_ref[0] = LAST_FRAME;
3390       cm->comp_var_ref[1] = GOLDEN_FRAME;
3391     }
3392   }
3393 
3394   if (cpi->sf.frame_parameter_update) {
3395     int i;
3396 
3397     // This code does a single RD pass over the whole frame assuming
3398     // either compound, single or hybrid prediction as per whatever has
3399     // worked best for that type of frame in the past.
3400     // It also predicts whether another coding mode would have worked
3401     // better that this coding mode. If that is the case, it remembers
3402     // that for subsequent frames.
3403     // It does the same analysis for transform size selection also.
3404     const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
3405     int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
3406     int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
3407     int *const tx_thrs = rd_opt->tx_select_threshes[frame_type];
3408     const int is_alt_ref = frame_type == ALTREF_FRAME;
3409 
3410     /* prediction (compound, single or hybrid) mode selection */
3411     if (is_alt_ref || !cm->allow_comp_inter_inter)
3412       cm->reference_mode = SINGLE_REFERENCE;
3413     else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
3414              mode_thrs[COMPOUND_REFERENCE] >
3415                  mode_thrs[REFERENCE_MODE_SELECT] &&
3416              check_dual_ref_flags(cpi) &&
3417              cpi->static_mb_pct == 100)
3418       cm->reference_mode = COMPOUND_REFERENCE;
3419     else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
3420       cm->reference_mode = SINGLE_REFERENCE;
3421     else
3422       cm->reference_mode = REFERENCE_MODE_SELECT;
3423 
3424     if (cm->interp_filter == SWITCHABLE)
3425       cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
3426 
3427     encode_frame_internal(cpi);
3428 
3429     for (i = 0; i < REFERENCE_MODES; ++i)
3430       mode_thrs[i] = (mode_thrs[i] + rd_opt->comp_pred_diff[i] / cm->MBs) / 2;
3431 
3432     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
3433       filter_thrs[i] = (filter_thrs[i] + rd_opt->filter_diff[i] / cm->MBs) / 2;
3434 
3435     for (i = 0; i < TX_MODES; ++i) {
3436       int64_t pd = rd_opt->tx_select_diff[i];
3437       if (i == TX_MODE_SELECT)
3438         pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
3439       tx_thrs[i] = (tx_thrs[i] + (int)(pd / cm->MBs)) / 2;
3440     }
3441 
3442     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
3443       int single_count_zero = 0;
3444       int comp_count_zero = 0;
3445 
3446       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
3447         single_count_zero += cm->counts.comp_inter[i][0];
3448         comp_count_zero += cm->counts.comp_inter[i][1];
3449       }
3450 
3451       if (comp_count_zero == 0) {
3452         cm->reference_mode = SINGLE_REFERENCE;
3453         vp9_zero(cm->counts.comp_inter);
3454       } else if (single_count_zero == 0) {
3455         cm->reference_mode = COMPOUND_REFERENCE;
3456         vp9_zero(cm->counts.comp_inter);
3457       }
3458     }
3459 
3460     if (cm->tx_mode == TX_MODE_SELECT) {
3461       int count4x4 = 0;
3462       int count8x8_lp = 0, count8x8_8x8p = 0;
3463       int count16x16_16x16p = 0, count16x16_lp = 0;
3464       int count32x32 = 0;
3465 
3466       for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
3467         count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
3468         count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
3469         count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
3470 
3471         count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
3472         count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
3473         count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
3474 
3475         count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
3476         count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
3477         count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
3478       }
3479 
3480       if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
3481           count32x32 == 0) {
3482         cm->tx_mode = ALLOW_8X8;
3483         reset_skip_tx_size(cm, TX_8X8);
3484       } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
3485                  count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
3486         cm->tx_mode = ONLY_4X4;
3487         reset_skip_tx_size(cm, TX_4X4);
3488       } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
3489         cm->tx_mode = ALLOW_32X32;
3490       } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
3491         cm->tx_mode = ALLOW_16X16;
3492         reset_skip_tx_size(cm, TX_16X16);
3493       }
3494     }
3495   } else {
3496     cm->reference_mode = SINGLE_REFERENCE;
3497     encode_frame_internal(cpi);
3498   }
3499 }
3500 
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)3501 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
3502   const PREDICTION_MODE y_mode = mi->mbmi.mode;
3503   const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
3504   const BLOCK_SIZE bsize = mi->mbmi.sb_type;
3505 
3506   if (bsize < BLOCK_8X8) {
3507     int idx, idy;
3508     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
3509     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
3510     for (idy = 0; idy < 2; idy += num_4x4_h)
3511       for (idx = 0; idx < 2; idx += num_4x4_w)
3512         ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
3513   } else {
3514     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
3515   }
3516 
3517   ++counts->uv_mode[y_mode][uv_mode];
3518 }
3519 
get_zbin_mode_boost(const MB_MODE_INFO * mbmi,int enabled)3520 static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
3521   if (enabled) {
3522     if (is_inter_block(mbmi)) {
3523       if (mbmi->mode == ZEROMV) {
3524         return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
3525                                                 : LF_ZEROMV_ZBIN_BOOST;
3526       } else {
3527         return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
3528                                          : MV_ZBIN_BOOST;
3529       }
3530     } else {
3531       return INTRA_ZBIN_BOOST;
3532     }
3533   } else {
3534     return 0;
3535   }
3536 }
3537 
encode_superblock(VP9_COMP * cpi,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)3538 static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
3539                               int mi_row, int mi_col, BLOCK_SIZE bsize,
3540                               PICK_MODE_CONTEXT *ctx) {
3541   VP9_COMMON *const cm = &cpi->common;
3542   MACROBLOCK *const x = &cpi->mb;
3543   MACROBLOCKD *const xd = &x->e_mbd;
3544   MODE_INFO **mi_8x8 = xd->mi;
3545   MODE_INFO *mi = mi_8x8[0];
3546   MB_MODE_INFO *mbmi = &mi->mbmi;
3547   const int seg_skip = vp9_segfeature_active(&cm->seg, mbmi->segment_id,
3548                                              SEG_LVL_SKIP);
3549   const int mis = cm->mi_stride;
3550   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
3551   const int mi_height = num_8x8_blocks_high_lookup[bsize];
3552 
3553   x->skip_recode = !x->select_tx_size && mbmi->sb_type >= BLOCK_8X8 &&
3554                    cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
3555                    cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
3556                    cpi->sf.allow_skip_recode;
3557 
3558   if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
3559     vpx_memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
3560 
3561   x->skip_optimize = ctx->is_coded;
3562   ctx->is_coded = 1;
3563   x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
3564   x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
3565                     x->q_index < QIDX_SKIP_THRESH);
3566 
3567   if (x->skip_encode)
3568     return;
3569 
3570   set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
3571 
3572   // Experimental code. Special case for gf and arf zeromv modes.
3573   // Increase zbin size to suppress noise
3574   cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
3575                                              cpi->zbin_mode_boost_enabled);
3576   vp9_update_zbin_extra(cpi, x);
3577 
3578   if (!is_inter_block(mbmi)) {
3579     int plane;
3580     mbmi->skip = 1;
3581     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
3582       vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
3583     if (output_enabled)
3584       sum_intra_stats(&cm->counts, mi);
3585     vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3586   } else {
3587     int ref;
3588     const int is_compound = has_second_ref(mbmi);
3589     for (ref = 0; ref < 1 + is_compound; ++ref) {
3590       YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
3591                                                      mbmi->ref_frame[ref]);
3592       vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
3593                            &xd->block_refs[ref]->sf);
3594     }
3595     if (!cpi->sf.reuse_inter_pred_sby || seg_skip)
3596       vp9_build_inter_predictors_sby(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
3597 
3598     vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
3599 
3600     if (!x->skip) {
3601       mbmi->skip = 1;
3602       vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
3603       vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
3604     } else {
3605       mbmi->skip = 1;
3606       if (output_enabled && !seg_skip)
3607         cm->counts.skip[vp9_get_skip_context(xd)][1]++;
3608       reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
3609     }
3610   }
3611 
3612   if (output_enabled) {
3613     if (cm->tx_mode == TX_MODE_SELECT &&
3614         mbmi->sb_type >= BLOCK_8X8  &&
3615         !(is_inter_block(mbmi) && (mbmi->skip || seg_skip))) {
3616       ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
3617                       &cm->counts.tx)[mbmi->tx_size];
3618     } else {
3619       int x, y;
3620       TX_SIZE tx_size;
3621       // The new intra coding scheme requires no change of transform size
3622       if (is_inter_block(&mi->mbmi)) {
3623         tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
3624                       max_txsize_lookup[bsize]);
3625       } else {
3626         tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
3627       }
3628 
3629       for (y = 0; y < mi_height; y++)
3630         for (x = 0; x < mi_width; x++)
3631           if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
3632             mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;
3633     }
3634   }
3635 }
3636