1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <assert.h>
12 #include <stdio.h>
13 #include <limits.h>
14 
15 #include "vpx/vpx_encoder.h"
16 #include "vpx_mem/vpx_mem.h"
17 #include "vpx_ports/mem_ops.h"
18 
19 #include "vp9/common/vp9_entropy.h"
20 #include "vp9/common/vp9_entropymode.h"
21 #include "vp9/common/vp9_entropymv.h"
22 #include "vp9/common/vp9_mvref_common.h"
23 #include "vp9/common/vp9_pred_common.h"
24 #include "vp9/common/vp9_seg_common.h"
25 #include "vp9/common/vp9_systemdependent.h"
26 #include "vp9/common/vp9_tile_common.h"
27 
28 #include "vp9/encoder/vp9_cost.h"
29 #include "vp9/encoder/vp9_bitstream.h"
30 #include "vp9/encoder/vp9_encodemv.h"
31 #include "vp9/encoder/vp9_mcomp.h"
32 #include "vp9/encoder/vp9_segmentation.h"
33 #include "vp9/encoder/vp9_subexp.h"
34 #include "vp9/encoder/vp9_tokenize.h"
35 #include "vp9/encoder/vp9_write_bit_buffer.h"
36 
37 static struct vp9_token intra_mode_encodings[INTRA_MODES];
38 static struct vp9_token switchable_interp_encodings[SWITCHABLE_FILTERS];
39 static struct vp9_token partition_encodings[PARTITION_TYPES];
40 static struct vp9_token inter_mode_encodings[INTER_MODES];
41 
vp9_entropy_mode_init()42 void vp9_entropy_mode_init() {
43   vp9_tokens_from_tree(intra_mode_encodings, vp9_intra_mode_tree);
44   vp9_tokens_from_tree(switchable_interp_encodings, vp9_switchable_interp_tree);
45   vp9_tokens_from_tree(partition_encodings, vp9_partition_tree);
46   vp9_tokens_from_tree(inter_mode_encodings, vp9_inter_mode_tree);
47 }
48 
write_intra_mode(vp9_writer * w,PREDICTION_MODE mode,const vp9_prob * probs)49 static void write_intra_mode(vp9_writer *w, PREDICTION_MODE mode,
50                              const vp9_prob *probs) {
51   vp9_write_token(w, vp9_intra_mode_tree, probs, &intra_mode_encodings[mode]);
52 }
53 
write_inter_mode(vp9_writer * w,PREDICTION_MODE mode,const vp9_prob * probs)54 static void write_inter_mode(vp9_writer *w, PREDICTION_MODE mode,
55                              const vp9_prob *probs) {
56   assert(is_inter_mode(mode));
57   vp9_write_token(w, vp9_inter_mode_tree, probs,
58                   &inter_mode_encodings[INTER_OFFSET(mode)]);
59 }
60 
encode_unsigned_max(struct vp9_write_bit_buffer * wb,int data,int max)61 static void encode_unsigned_max(struct vp9_write_bit_buffer *wb,
62                                 int data, int max) {
63   vp9_wb_write_literal(wb, data, get_unsigned_bits(max));
64 }
65 
prob_diff_update(const vp9_tree_index * tree,vp9_prob probs[],const unsigned int counts[],int n,vp9_writer * w)66 static void prob_diff_update(const vp9_tree_index *tree,
67                              vp9_prob probs[/*n - 1*/],
68                              const unsigned int counts[/*n - 1*/],
69                              int n, vp9_writer *w) {
70   int i;
71   unsigned int branch_ct[32][2];
72 
73   // Assuming max number of probabilities <= 32
74   assert(n <= 32);
75 
76   vp9_tree_probs_from_distribution(tree, branch_ct, counts);
77   for (i = 0; i < n - 1; ++i)
78     vp9_cond_prob_diff_update(w, &probs[i], branch_ct[i]);
79 }
80 
write_selected_tx_size(const VP9_COMMON * cm,const MACROBLOCKD * xd,TX_SIZE tx_size,BLOCK_SIZE bsize,vp9_writer * w)81 static void write_selected_tx_size(const VP9_COMMON *cm,
82                                    const MACROBLOCKD *xd,
83                                    TX_SIZE tx_size, BLOCK_SIZE bsize,
84                                    vp9_writer *w) {
85   const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
86   const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd,
87                                                  &cm->fc.tx_probs);
88   vp9_write(w, tx_size != TX_4X4, tx_probs[0]);
89   if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) {
90     vp9_write(w, tx_size != TX_8X8, tx_probs[1]);
91     if (tx_size != TX_8X8 && max_tx_size >= TX_32X32)
92       vp9_write(w, tx_size != TX_16X16, tx_probs[2]);
93   }
94 }
95 
write_skip(const VP9_COMMON * cm,const MACROBLOCKD * xd,int segment_id,const MODE_INFO * mi,vp9_writer * w)96 static int write_skip(const VP9_COMMON *cm, const MACROBLOCKD *xd,
97                       int segment_id, const MODE_INFO *mi, vp9_writer *w) {
98   if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
99     return 1;
100   } else {
101     const int skip = mi->mbmi.skip;
102     vp9_write(w, skip, vp9_get_skip_prob(cm, xd));
103     return skip;
104   }
105 }
106 
update_skip_probs(VP9_COMMON * cm,vp9_writer * w)107 static void update_skip_probs(VP9_COMMON *cm, vp9_writer *w) {
108   int k;
109 
110   for (k = 0; k < SKIP_CONTEXTS; ++k)
111     vp9_cond_prob_diff_update(w, &cm->fc.skip_probs[k], cm->counts.skip[k]);
112 }
113 
update_switchable_interp_probs(VP9_COMMON * cm,vp9_writer * w)114 static void update_switchable_interp_probs(VP9_COMMON *cm, vp9_writer *w) {
115   int j;
116   for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
117     prob_diff_update(vp9_switchable_interp_tree,
118                      cm->fc.switchable_interp_prob[j],
119                      cm->counts.switchable_interp[j], SWITCHABLE_FILTERS, w);
120 }
121 
pack_mb_tokens(vp9_writer * w,TOKENEXTRA ** tp,const TOKENEXTRA * const stop)122 static void pack_mb_tokens(vp9_writer *w,
123                            TOKENEXTRA **tp, const TOKENEXTRA *const stop) {
124   TOKENEXTRA *p = *tp;
125 
126   while (p < stop && p->token != EOSB_TOKEN) {
127     const int t = p->token;
128     const struct vp9_token *const a = &vp9_coef_encodings[t];
129     const vp9_extra_bit *const b = &vp9_extra_bits[t];
130     int i = 0;
131     int v = a->value;
132     int n = a->len;
133 
134     /* skip one or two nodes */
135     if (p->skip_eob_node) {
136       n -= p->skip_eob_node;
137       i = 2 * p->skip_eob_node;
138     }
139 
140     // TODO(jbb): expanding this can lead to big gains.  It allows
141     // much better branch prediction and would enable us to avoid numerous
142     // lookups and compares.
143 
144     // If we have a token that's in the constrained set, the coefficient tree
145     // is split into two treed writes.  The first treed write takes care of the
146     // unconstrained nodes.  The second treed write takes care of the
147     // constrained nodes.
148     if (t >= TWO_TOKEN && t < EOB_TOKEN) {
149       int len = UNCONSTRAINED_NODES - p->skip_eob_node;
150       int bits = v >> (n - len);
151       vp9_write_tree(w, vp9_coef_tree, p->context_tree, bits, len, i);
152       vp9_write_tree(w, vp9_coef_con_tree,
153                      vp9_pareto8_full[p->context_tree[PIVOT_NODE] - 1],
154                      v, n - len, 0);
155     } else {
156       vp9_write_tree(w, vp9_coef_tree, p->context_tree, v, n, i);
157     }
158 
159     if (b->base_val) {
160       const int e = p->extra, l = b->len;
161 
162       if (l) {
163         const unsigned char *pb = b->prob;
164         int v = e >> 1;
165         int n = l;              /* number of bits in v, assumed nonzero */
166         int i = 0;
167 
168         do {
169           const int bb = (v >> --n) & 1;
170           vp9_write(w, bb, pb[i >> 1]);
171           i = b->tree[i + bb];
172         } while (n);
173       }
174 
175       vp9_write_bit(w, e & 1);
176     }
177     ++p;
178   }
179 
180   *tp = p + (p->token == EOSB_TOKEN);
181 }
182 
write_segment_id(vp9_writer * w,const struct segmentation * seg,int segment_id)183 static void write_segment_id(vp9_writer *w, const struct segmentation *seg,
184                              int segment_id) {
185   if (seg->enabled && seg->update_map)
186     vp9_write_tree(w, vp9_segment_tree, seg->tree_probs, segment_id, 3, 0);
187 }
188 
189 // This function encodes the reference frame
write_ref_frames(const VP9_COMMON * cm,const MACROBLOCKD * xd,vp9_writer * w)190 static void write_ref_frames(const VP9_COMMON *cm, const MACROBLOCKD *xd,
191                              vp9_writer *w) {
192   const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
193   const int is_compound = has_second_ref(mbmi);
194   const int segment_id = mbmi->segment_id;
195 
196   // If segment level coding of this signal is disabled...
197   // or the segment allows multiple reference frame options
198   if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
199     assert(!is_compound);
200     assert(mbmi->ref_frame[0] ==
201                vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
202   } else {
203     // does the feature use compound prediction or not
204     // (if not specified at the frame/segment level)
205     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
206       vp9_write(w, is_compound, vp9_get_reference_mode_prob(cm, xd));
207     } else {
208       assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE));
209     }
210 
211     if (is_compound) {
212       vp9_write(w, mbmi->ref_frame[0] == GOLDEN_FRAME,
213                 vp9_get_pred_prob_comp_ref_p(cm, xd));
214     } else {
215       const int bit0 = mbmi->ref_frame[0] != LAST_FRAME;
216       vp9_write(w, bit0, vp9_get_pred_prob_single_ref_p1(cm, xd));
217       if (bit0) {
218         const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME;
219         vp9_write(w, bit1, vp9_get_pred_prob_single_ref_p2(cm, xd));
220       }
221     }
222   }
223 }
224 
pack_inter_mode_mvs(VP9_COMP * cpi,const MODE_INFO * mi,vp9_writer * w)225 static void pack_inter_mode_mvs(VP9_COMP *cpi, const MODE_INFO *mi,
226                                 vp9_writer *w) {
227   VP9_COMMON *const cm = &cpi->common;
228   const nmv_context *nmvc = &cm->fc.nmvc;
229   const MACROBLOCK *const x = &cpi->mb;
230   const MACROBLOCKD *const xd = &x->e_mbd;
231   const struct segmentation *const seg = &cm->seg;
232   const MB_MODE_INFO *const mbmi = &mi->mbmi;
233   const PREDICTION_MODE mode = mbmi->mode;
234   const int segment_id = mbmi->segment_id;
235   const BLOCK_SIZE bsize = mbmi->sb_type;
236   const int allow_hp = cm->allow_high_precision_mv;
237   const int is_inter = is_inter_block(mbmi);
238   const int is_compound = has_second_ref(mbmi);
239   int skip, ref;
240 
241   if (seg->update_map) {
242     if (seg->temporal_update) {
243       const int pred_flag = mbmi->seg_id_predicted;
244       vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd);
245       vp9_write(w, pred_flag, pred_prob);
246       if (!pred_flag)
247         write_segment_id(w, seg, segment_id);
248     } else {
249       write_segment_id(w, seg, segment_id);
250     }
251   }
252 
253   skip = write_skip(cm, xd, segment_id, mi, w);
254 
255   if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME))
256     vp9_write(w, is_inter, vp9_get_intra_inter_prob(cm, xd));
257 
258   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT &&
259       !(is_inter &&
260         (skip || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) {
261     write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
262   }
263 
264   if (!is_inter) {
265     if (bsize >= BLOCK_8X8) {
266       write_intra_mode(w, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]);
267     } else {
268       int idx, idy;
269       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
270       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
271       for (idy = 0; idy < 2; idy += num_4x4_h) {
272         for (idx = 0; idx < 2; idx += num_4x4_w) {
273           const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode;
274           write_intra_mode(w, b_mode, cm->fc.y_mode_prob[0]);
275         }
276       }
277     }
278     write_intra_mode(w, mbmi->uv_mode, cm->fc.uv_mode_prob[mode]);
279   } else {
280     const int mode_ctx = mbmi->mode_context[mbmi->ref_frame[0]];
281     const vp9_prob *const inter_probs = cm->fc.inter_mode_probs[mode_ctx];
282     write_ref_frames(cm, xd, w);
283 
284     // If segment skip is not enabled code the mode.
285     if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
286       if (bsize >= BLOCK_8X8) {
287         write_inter_mode(w, mode, inter_probs);
288         ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(mode)];
289       }
290     }
291 
292     if (cm->interp_filter == SWITCHABLE) {
293       const int ctx = vp9_get_pred_context_switchable_interp(xd);
294       vp9_write_token(w, vp9_switchable_interp_tree,
295                       cm->fc.switchable_interp_prob[ctx],
296                       &switchable_interp_encodings[mbmi->interp_filter]);
297     } else {
298       assert(mbmi->interp_filter == cm->interp_filter);
299     }
300 
301     if (bsize < BLOCK_8X8) {
302       const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
303       const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
304       int idx, idy;
305       for (idy = 0; idy < 2; idy += num_4x4_h) {
306         for (idx = 0; idx < 2; idx += num_4x4_w) {
307           const int j = idy * 2 + idx;
308           const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
309           write_inter_mode(w, b_mode, inter_probs);
310           ++cm->counts.inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
311           if (b_mode == NEWMV) {
312             for (ref = 0; ref < 1 + is_compound; ++ref)
313               vp9_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv,
314                             &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv,
315                             nmvc, allow_hp);
316           }
317         }
318       }
319     } else {
320       if (mode == NEWMV) {
321         for (ref = 0; ref < 1 + is_compound; ++ref)
322           vp9_encode_mv(cpi, w, &mbmi->mv[ref].as_mv,
323                         &mbmi->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, nmvc,
324                         allow_hp);
325       }
326     }
327   }
328 }
329 
write_mb_modes_kf(const VP9_COMMON * cm,const MACROBLOCKD * xd,MODE_INFO ** mi_8x8,vp9_writer * w)330 static void write_mb_modes_kf(const VP9_COMMON *cm, const MACROBLOCKD *xd,
331                               MODE_INFO **mi_8x8, vp9_writer *w) {
332   const struct segmentation *const seg = &cm->seg;
333   const MODE_INFO *const mi = mi_8x8[0];
334   const MODE_INFO *const above_mi = mi_8x8[-xd->mi_stride];
335   const MODE_INFO *const left_mi = xd->left_available ? mi_8x8[-1] : NULL;
336   const MB_MODE_INFO *const mbmi = &mi->mbmi;
337   const BLOCK_SIZE bsize = mbmi->sb_type;
338 
339   if (seg->update_map)
340     write_segment_id(w, seg, mbmi->segment_id);
341 
342   write_skip(cm, xd, mbmi->segment_id, mi, w);
343 
344   if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT)
345     write_selected_tx_size(cm, xd, mbmi->tx_size, bsize, w);
346 
347   if (bsize >= BLOCK_8X8) {
348     write_intra_mode(w, mbmi->mode, get_y_mode_probs(mi, above_mi, left_mi, 0));
349   } else {
350     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
351     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
352     int idx, idy;
353 
354     for (idy = 0; idy < 2; idy += num_4x4_h) {
355       for (idx = 0; idx < 2; idx += num_4x4_w) {
356         const int block = idy * 2 + idx;
357         write_intra_mode(w, mi->bmi[block].as_mode,
358                          get_y_mode_probs(mi, above_mi, left_mi, block));
359       }
360     }
361   }
362 
363   write_intra_mode(w, mbmi->uv_mode, vp9_kf_uv_mode_prob[mbmi->mode]);
364 }
365 
write_modes_b(VP9_COMP * cpi,const TileInfo * const tile,vp9_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col)366 static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile,
367                           vp9_writer *w, TOKENEXTRA **tok,
368                           const TOKENEXTRA *const tok_end,
369                           int mi_row, int mi_col) {
370   const VP9_COMMON *const cm = &cpi->common;
371   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
372   MODE_INFO *m;
373 
374   xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
375   m = xd->mi[0];
376 
377   set_mi_row_col(xd, tile,
378                  mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type],
379                  mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type],
380                  cm->mi_rows, cm->mi_cols);
381   if (frame_is_intra_only(cm)) {
382     write_mb_modes_kf(cm, xd, xd->mi, w);
383   } else {
384     pack_inter_mode_mvs(cpi, m, w);
385   }
386 
387   assert(*tok < tok_end);
388   pack_mb_tokens(w, tok, tok_end);
389 }
390 
write_partition(const VP9_COMMON * const cm,const MACROBLOCKD * const xd,int hbs,int mi_row,int mi_col,PARTITION_TYPE p,BLOCK_SIZE bsize,vp9_writer * w)391 static void write_partition(const VP9_COMMON *const cm,
392                             const MACROBLOCKD *const xd,
393                             int hbs, int mi_row, int mi_col,
394                             PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) {
395   const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
396   const vp9_prob *const probs = get_partition_probs(cm, ctx);
397   const int has_rows = (mi_row + hbs) < cm->mi_rows;
398   const int has_cols = (mi_col + hbs) < cm->mi_cols;
399 
400   if (has_rows && has_cols) {
401     vp9_write_token(w, vp9_partition_tree, probs, &partition_encodings[p]);
402   } else if (!has_rows && has_cols) {
403     assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
404     vp9_write(w, p == PARTITION_SPLIT, probs[1]);
405   } else if (has_rows && !has_cols) {
406     assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
407     vp9_write(w, p == PARTITION_SPLIT, probs[2]);
408   } else {
409     assert(p == PARTITION_SPLIT);
410   }
411 }
412 
write_modes_sb(VP9_COMP * cpi,const TileInfo * const tile,vp9_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end,int mi_row,int mi_col,BLOCK_SIZE bsize)413 static void write_modes_sb(VP9_COMP *cpi,
414                            const TileInfo *const tile, vp9_writer *w,
415                            TOKENEXTRA **tok, const TOKENEXTRA *const tok_end,
416                            int mi_row, int mi_col, BLOCK_SIZE bsize) {
417   const VP9_COMMON *const cm = &cpi->common;
418   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
419 
420   const int bsl = b_width_log2(bsize);
421   const int bs = (1 << bsl) / 4;
422   PARTITION_TYPE partition;
423   BLOCK_SIZE subsize;
424   const MODE_INFO *m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col];
425 
426   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
427     return;
428 
429   partition = partition_lookup[bsl][m->mbmi.sb_type];
430   write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w);
431   subsize = get_subsize(bsize, partition);
432   if (subsize < BLOCK_8X8) {
433     write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
434   } else {
435     switch (partition) {
436       case PARTITION_NONE:
437         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
438         break;
439       case PARTITION_HORZ:
440         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
441         if (mi_row + bs < cm->mi_rows)
442           write_modes_b(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col);
443         break;
444       case PARTITION_VERT:
445         write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
446         if (mi_col + bs < cm->mi_cols)
447           write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs);
448         break;
449       case PARTITION_SPLIT:
450         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
451         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + bs,
452                        subsize);
453         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col,
454                        subsize);
455         write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + bs, mi_col + bs,
456                        subsize);
457         break;
458       default:
459         assert(0);
460     }
461   }
462 
463   // update partition context
464   if (bsize >= BLOCK_8X8 &&
465       (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT))
466     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
467 }
468 
write_modes(VP9_COMP * cpi,const TileInfo * const tile,vp9_writer * w,TOKENEXTRA ** tok,const TOKENEXTRA * const tok_end)469 static void write_modes(VP9_COMP *cpi,
470                         const TileInfo *const tile, vp9_writer *w,
471                         TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) {
472   int mi_row, mi_col;
473 
474   for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end;
475        mi_row += MI_BLOCK_SIZE) {
476     vp9_zero(cpi->mb.e_mbd.left_seg_context);
477     for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
478          mi_col += MI_BLOCK_SIZE)
479       write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
480                      BLOCK_64X64);
481   }
482 }
483 
build_tree_distribution(VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * coef_branch_ct,vp9_coeff_probs_model * coef_probs)484 static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size,
485                                     vp9_coeff_stats *coef_branch_ct,
486                                     vp9_coeff_probs_model *coef_probs) {
487   vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size];
488   unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] =
489       cpi->common.counts.eob_branch[tx_size];
490   int i, j, k, l, m;
491 
492   for (i = 0; i < PLANE_TYPES; ++i) {
493     for (j = 0; j < REF_TYPES; ++j) {
494       for (k = 0; k < COEF_BANDS; ++k) {
495         for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
496           vp9_tree_probs_from_distribution(vp9_coef_tree,
497                                            coef_branch_ct[i][j][k][l],
498                                            coef_counts[i][j][k][l]);
499           coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] -
500                                              coef_branch_ct[i][j][k][l][0][0];
501           for (m = 0; m < UNCONSTRAINED_NODES; ++m)
502             coef_probs[i][j][k][l][m] = get_binary_prob(
503                                             coef_branch_ct[i][j][k][l][m][0],
504                                             coef_branch_ct[i][j][k][l][m][1]);
505         }
506       }
507     }
508   }
509 }
510 
update_coef_probs_common(vp9_writer * const bc,VP9_COMP * cpi,TX_SIZE tx_size,vp9_coeff_stats * frame_branch_ct,vp9_coeff_probs_model * new_coef_probs)511 static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi,
512                                      TX_SIZE tx_size,
513                                      vp9_coeff_stats *frame_branch_ct,
514                                      vp9_coeff_probs_model *new_coef_probs) {
515   vp9_coeff_probs_model *old_coef_probs = cpi->common.fc.coef_probs[tx_size];
516   const vp9_prob upd = DIFF_UPDATE_PROB;
517   const int entropy_nodes_update = UNCONSTRAINED_NODES;
518   int i, j, k, l, t;
519   switch (cpi->sf.use_fast_coef_updates) {
520     case TWO_LOOP: {
521       /* dry run to see if there is any update at all needed */
522       int savings = 0;
523       int update[2] = {0, 0};
524       for (i = 0; i < PLANE_TYPES; ++i) {
525         for (j = 0; j < REF_TYPES; ++j) {
526           for (k = 0; k < COEF_BANDS; ++k) {
527             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
528               for (t = 0; t < entropy_nodes_update; ++t) {
529                 vp9_prob newp = new_coef_probs[i][j][k][l][t];
530                 const vp9_prob oldp = old_coef_probs[i][j][k][l][t];
531                 int s;
532                 int u = 0;
533                 if (t == PIVOT_NODE)
534                   s = vp9_prob_diff_update_savings_search_model(
535                       frame_branch_ct[i][j][k][l][0],
536                       old_coef_probs[i][j][k][l], &newp, upd);
537                 else
538                   s = vp9_prob_diff_update_savings_search(
539                       frame_branch_ct[i][j][k][l][t], oldp, &newp, upd);
540                 if (s > 0 && newp != oldp)
541                   u = 1;
542                 if (u)
543                   savings += s - (int)(vp9_cost_zero(upd));
544                 else
545                   savings -= (int)(vp9_cost_zero(upd));
546                 update[u]++;
547               }
548             }
549           }
550         }
551       }
552 
553       // printf("Update %d %d, savings %d\n", update[0], update[1], savings);
554       /* Is coef updated at all */
555       if (update[1] == 0 || savings < 0) {
556         vp9_write_bit(bc, 0);
557         return;
558       }
559       vp9_write_bit(bc, 1);
560       for (i = 0; i < PLANE_TYPES; ++i) {
561         for (j = 0; j < REF_TYPES; ++j) {
562           for (k = 0; k < COEF_BANDS; ++k) {
563             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
564               // calc probs and branch cts for this frame only
565               for (t = 0; t < entropy_nodes_update; ++t) {
566                 vp9_prob newp = new_coef_probs[i][j][k][l][t];
567                 vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
568                 const vp9_prob upd = DIFF_UPDATE_PROB;
569                 int s;
570                 int u = 0;
571                 if (t == PIVOT_NODE)
572                   s = vp9_prob_diff_update_savings_search_model(
573                       frame_branch_ct[i][j][k][l][0],
574                       old_coef_probs[i][j][k][l], &newp, upd);
575                 else
576                   s = vp9_prob_diff_update_savings_search(
577                       frame_branch_ct[i][j][k][l][t],
578                       *oldp, &newp, upd);
579                 if (s > 0 && newp != *oldp)
580                   u = 1;
581                 vp9_write(bc, u, upd);
582                 if (u) {
583                   /* send/use new probability */
584                   vp9_write_prob_diff_update(bc, newp, *oldp);
585                   *oldp = newp;
586                 }
587               }
588             }
589           }
590         }
591       }
592       return;
593     }
594 
595     case ONE_LOOP:
596     case ONE_LOOP_REDUCED: {
597       const int prev_coef_contexts_to_update =
598           cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
599               COEFF_CONTEXTS >> 1 : COEFF_CONTEXTS;
600       const int coef_band_to_update =
601           cpi->sf.use_fast_coef_updates == ONE_LOOP_REDUCED ?
602               COEF_BANDS >> 1 : COEF_BANDS;
603       int updates = 0;
604       int noupdates_before_first = 0;
605       for (i = 0; i < PLANE_TYPES; ++i) {
606         for (j = 0; j < REF_TYPES; ++j) {
607           for (k = 0; k < COEF_BANDS; ++k) {
608             for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) {
609               // calc probs and branch cts for this frame only
610               for (t = 0; t < entropy_nodes_update; ++t) {
611                 vp9_prob newp = new_coef_probs[i][j][k][l][t];
612                 vp9_prob *oldp = old_coef_probs[i][j][k][l] + t;
613                 int s;
614                 int u = 0;
615                 if (l >= prev_coef_contexts_to_update ||
616                     k >= coef_band_to_update) {
617                   u = 0;
618                 } else {
619                   if (t == PIVOT_NODE)
620                     s = vp9_prob_diff_update_savings_search_model(
621                         frame_branch_ct[i][j][k][l][0],
622                         old_coef_probs[i][j][k][l], &newp, upd);
623                   else
624                     s = vp9_prob_diff_update_savings_search(
625                         frame_branch_ct[i][j][k][l][t],
626                         *oldp, &newp, upd);
627                   if (s > 0 && newp != *oldp)
628                     u = 1;
629                 }
630                 updates += u;
631                 if (u == 0 && updates == 0) {
632                   noupdates_before_first++;
633                   continue;
634                 }
635                 if (u == 1 && updates == 1) {
636                   int v;
637                   // first update
638                   vp9_write_bit(bc, 1);
639                   for (v = 0; v < noupdates_before_first; ++v)
640                     vp9_write(bc, 0, upd);
641                 }
642                 vp9_write(bc, u, upd);
643                 if (u) {
644                   /* send/use new probability */
645                   vp9_write_prob_diff_update(bc, newp, *oldp);
646                   *oldp = newp;
647                 }
648               }
649             }
650           }
651         }
652       }
653       if (updates == 0) {
654         vp9_write_bit(bc, 0);  // no updates
655       }
656       return;
657     }
658 
659     default:
660       assert(0);
661   }
662 }
663 
update_coef_probs(VP9_COMP * cpi,vp9_writer * w)664 static void update_coef_probs(VP9_COMP *cpi, vp9_writer* w) {
665   const TX_MODE tx_mode = cpi->common.tx_mode;
666   const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
667   TX_SIZE tx_size;
668   vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES];
669   vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES];
670 
671   vp9_clear_system_state();
672 
673   for (tx_size = TX_4X4; tx_size <= TX_32X32; ++tx_size)
674     build_tree_distribution(cpi, tx_size, frame_branch_ct[tx_size],
675                             frame_coef_probs[tx_size]);
676 
677   for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size)
678     update_coef_probs_common(w, cpi, tx_size, frame_branch_ct[tx_size],
679                              frame_coef_probs[tx_size]);
680 }
681 
encode_loopfilter(struct loopfilter * lf,struct vp9_write_bit_buffer * wb)682 static void encode_loopfilter(struct loopfilter *lf,
683                               struct vp9_write_bit_buffer *wb) {
684   int i;
685 
686   // Encode the loop filter level and type
687   vp9_wb_write_literal(wb, lf->filter_level, 6);
688   vp9_wb_write_literal(wb, lf->sharpness_level, 3);
689 
690   // Write out loop filter deltas applied at the MB level based on mode or
691   // ref frame (if they are enabled).
692   vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled);
693 
694   if (lf->mode_ref_delta_enabled) {
695     vp9_wb_write_bit(wb, lf->mode_ref_delta_update);
696     if (lf->mode_ref_delta_update) {
697       for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
698         const int delta = lf->ref_deltas[i];
699         const int changed = delta != lf->last_ref_deltas[i];
700         vp9_wb_write_bit(wb, changed);
701         if (changed) {
702           lf->last_ref_deltas[i] = delta;
703           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
704           vp9_wb_write_bit(wb, delta < 0);
705         }
706       }
707 
708       for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
709         const int delta = lf->mode_deltas[i];
710         const int changed = delta != lf->last_mode_deltas[i];
711         vp9_wb_write_bit(wb, changed);
712         if (changed) {
713           lf->last_mode_deltas[i] = delta;
714           vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6);
715           vp9_wb_write_bit(wb, delta < 0);
716         }
717       }
718     }
719   }
720 }
721 
write_delta_q(struct vp9_write_bit_buffer * wb,int delta_q)722 static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) {
723   if (delta_q != 0) {
724     vp9_wb_write_bit(wb, 1);
725     vp9_wb_write_literal(wb, abs(delta_q), 4);
726     vp9_wb_write_bit(wb, delta_q < 0);
727   } else {
728     vp9_wb_write_bit(wb, 0);
729   }
730 }
731 
encode_quantization(const VP9_COMMON * const cm,struct vp9_write_bit_buffer * wb)732 static void encode_quantization(const VP9_COMMON *const cm,
733                                 struct vp9_write_bit_buffer *wb) {
734   vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
735   write_delta_q(wb, cm->y_dc_delta_q);
736   write_delta_q(wb, cm->uv_dc_delta_q);
737   write_delta_q(wb, cm->uv_ac_delta_q);
738 }
739 
encode_segmentation(VP9_COMMON * cm,MACROBLOCKD * xd,struct vp9_write_bit_buffer * wb)740 static void encode_segmentation(VP9_COMMON *cm, MACROBLOCKD *xd,
741                                 struct vp9_write_bit_buffer *wb) {
742   int i, j;
743 
744   const struct segmentation *seg = &cm->seg;
745 
746   vp9_wb_write_bit(wb, seg->enabled);
747   if (!seg->enabled)
748     return;
749 
750   // Segmentation map
751   vp9_wb_write_bit(wb, seg->update_map);
752   if (seg->update_map) {
753     // Select the coding strategy (temporal or spatial)
754     vp9_choose_segmap_coding_method(cm, xd);
755     // Write out probabilities used to decode unpredicted  macro-block segments
756     for (i = 0; i < SEG_TREE_PROBS; i++) {
757       const int prob = seg->tree_probs[i];
758       const int update = prob != MAX_PROB;
759       vp9_wb_write_bit(wb, update);
760       if (update)
761         vp9_wb_write_literal(wb, prob, 8);
762     }
763 
764     // Write out the chosen coding method.
765     vp9_wb_write_bit(wb, seg->temporal_update);
766     if (seg->temporal_update) {
767       for (i = 0; i < PREDICTION_PROBS; i++) {
768         const int prob = seg->pred_probs[i];
769         const int update = prob != MAX_PROB;
770         vp9_wb_write_bit(wb, update);
771         if (update)
772           vp9_wb_write_literal(wb, prob, 8);
773       }
774     }
775   }
776 
777   // Segmentation data
778   vp9_wb_write_bit(wb, seg->update_data);
779   if (seg->update_data) {
780     vp9_wb_write_bit(wb, seg->abs_delta);
781 
782     for (i = 0; i < MAX_SEGMENTS; i++) {
783       for (j = 0; j < SEG_LVL_MAX; j++) {
784         const int active = vp9_segfeature_active(seg, i, j);
785         vp9_wb_write_bit(wb, active);
786         if (active) {
787           const int data = vp9_get_segdata(seg, i, j);
788           const int data_max = vp9_seg_feature_data_max(j);
789 
790           if (vp9_is_segfeature_signed(j)) {
791             encode_unsigned_max(wb, abs(data), data_max);
792             vp9_wb_write_bit(wb, data < 0);
793           } else {
794             encode_unsigned_max(wb, data, data_max);
795           }
796         }
797       }
798     }
799   }
800 }
801 
encode_txfm_probs(VP9_COMMON * cm,vp9_writer * w)802 static void encode_txfm_probs(VP9_COMMON *cm, vp9_writer *w) {
803   // Mode
804   vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2);
805   if (cm->tx_mode >= ALLOW_32X32)
806     vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT);
807 
808   // Probabilities
809   if (cm->tx_mode == TX_MODE_SELECT) {
810     int i, j;
811     unsigned int ct_8x8p[TX_SIZES - 3][2];
812     unsigned int ct_16x16p[TX_SIZES - 2][2];
813     unsigned int ct_32x32p[TX_SIZES - 1][2];
814 
815 
816     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
817       tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p);
818       for (j = 0; j < TX_SIZES - 3; j++)
819         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]);
820     }
821 
822     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
823       tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p);
824       for (j = 0; j < TX_SIZES - 2; j++)
825         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j],
826                                   ct_16x16p[j]);
827     }
828 
829     for (i = 0; i < TX_SIZE_CONTEXTS; i++) {
830       tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p);
831       for (j = 0; j < TX_SIZES - 1; j++)
832         vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j],
833                                   ct_32x32p[j]);
834     }
835   }
836 }
837 
write_interp_filter(INTERP_FILTER filter,struct vp9_write_bit_buffer * wb)838 static void write_interp_filter(INTERP_FILTER filter,
839                                 struct vp9_write_bit_buffer *wb) {
840   const int filter_to_literal[] = { 1, 0, 2, 3 };
841 
842   vp9_wb_write_bit(wb, filter == SWITCHABLE);
843   if (filter != SWITCHABLE)
844     vp9_wb_write_literal(wb, filter_to_literal[filter], 2);
845 }
846 
fix_interp_filter(VP9_COMMON * cm)847 static void fix_interp_filter(VP9_COMMON *cm) {
848   if (cm->interp_filter == SWITCHABLE) {
849     // Check to see if only one of the filters is actually used
850     int count[SWITCHABLE_FILTERS];
851     int i, j, c = 0;
852     for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
853       count[i] = 0;
854       for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
855         count[i] += cm->counts.switchable_interp[j][i];
856       c += (count[i] > 0);
857     }
858     if (c == 1) {
859       // Only one filter is used. So set the filter at frame level
860       for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
861         if (count[i]) {
862           cm->interp_filter = i;
863           break;
864         }
865       }
866     }
867   }
868 }
869 
write_tile_info(const VP9_COMMON * const cm,struct vp9_write_bit_buffer * wb)870 static void write_tile_info(const VP9_COMMON *const cm,
871                             struct vp9_write_bit_buffer *wb) {
872   int min_log2_tile_cols, max_log2_tile_cols, ones;
873   vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols);
874 
875   // columns
876   ones = cm->log2_tile_cols - min_log2_tile_cols;
877   while (ones--)
878     vp9_wb_write_bit(wb, 1);
879 
880   if (cm->log2_tile_cols < max_log2_tile_cols)
881     vp9_wb_write_bit(wb, 0);
882 
883   // rows
884   vp9_wb_write_bit(wb, cm->log2_tile_rows != 0);
885   if (cm->log2_tile_rows != 0)
886     vp9_wb_write_bit(wb, cm->log2_tile_rows != 1);
887 }
888 
get_refresh_mask(VP9_COMP * cpi)889 static int get_refresh_mask(VP9_COMP *cpi) {
890   if (vp9_preserve_existing_gf(cpi)) {
891     // We have decided to preserve the previously existing golden frame as our
892     // new ARF frame. However, in the short term we leave it in the GF slot and,
893     // if we're updating the GF with the current decoded frame, we save it
894     // instead to the ARF slot.
895     // Later, in the function vp9_encoder.c:vp9_update_reference_frames() we
896     // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
897     // there so that it can be done outside of the recode loop.
898     // Note: This is highly specific to the use of ARF as a forward reference,
899     // and this needs to be generalized as other uses are implemented
900     // (like RTC/temporal scalability).
901     return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
902            (cpi->refresh_golden_frame << cpi->alt_fb_idx);
903   } else {
904     int arf_idx = cpi->alt_fb_idx;
905     if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) {
906       const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
907       arf_idx = gf_group->arf_update_idx[gf_group->index];
908     }
909     return (cpi->refresh_last_frame << cpi->lst_fb_idx) |
910            (cpi->refresh_golden_frame << cpi->gld_fb_idx) |
911            (cpi->refresh_alt_ref_frame << arf_idx);
912   }
913 }
914 
encode_tiles(VP9_COMP * cpi,uint8_t * data_ptr)915 static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) {
916   VP9_COMMON *const cm = &cpi->common;
917   vp9_writer residual_bc;
918 
919   int tile_row, tile_col;
920   TOKENEXTRA *tok[4][1 << 6], *tok_end;
921   size_t total_size = 0;
922   const int tile_cols = 1 << cm->log2_tile_cols;
923   const int tile_rows = 1 << cm->log2_tile_rows;
924 
925   vpx_memset(cm->above_seg_context, 0, sizeof(*cm->above_seg_context) *
926              mi_cols_aligned_to_sb(cm->mi_cols));
927 
928   tok[0][0] = cpi->tok;
929   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
930     if (tile_row)
931       tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] +
932                          cpi->tok_count[tile_row - 1][tile_cols - 1];
933 
934     for (tile_col = 1; tile_col < tile_cols; tile_col++)
935       tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] +
936                                 cpi->tok_count[tile_row][tile_col - 1];
937   }
938 
939   for (tile_row = 0; tile_row < tile_rows; tile_row++) {
940     for (tile_col = 0; tile_col < tile_cols; tile_col++) {
941       TileInfo tile;
942 
943       vp9_tile_init(&tile, cm, tile_row, tile_col);
944       tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col];
945 
946       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1)
947         vp9_start_encode(&residual_bc, data_ptr + total_size + 4);
948       else
949         vp9_start_encode(&residual_bc, data_ptr + total_size);
950 
951       write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end);
952       assert(tok[tile_row][tile_col] == tok_end);
953       vp9_stop_encode(&residual_bc);
954       if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) {
955         // size of this tile
956         mem_put_be32(data_ptr + total_size, residual_bc.pos);
957         total_size += 4;
958       }
959 
960       total_size += residual_bc.pos;
961     }
962   }
963 
964   return total_size;
965 }
966 
write_display_size(const VP9_COMMON * cm,struct vp9_write_bit_buffer * wb)967 static void write_display_size(const VP9_COMMON *cm,
968                                struct vp9_write_bit_buffer *wb) {
969   const int scaling_active = cm->width != cm->display_width ||
970                              cm->height != cm->display_height;
971   vp9_wb_write_bit(wb, scaling_active);
972   if (scaling_active) {
973     vp9_wb_write_literal(wb, cm->display_width - 1, 16);
974     vp9_wb_write_literal(wb, cm->display_height - 1, 16);
975   }
976 }
977 
write_frame_size(const VP9_COMMON * cm,struct vp9_write_bit_buffer * wb)978 static void write_frame_size(const VP9_COMMON *cm,
979                              struct vp9_write_bit_buffer *wb) {
980   vp9_wb_write_literal(wb, cm->width - 1, 16);
981   vp9_wb_write_literal(wb, cm->height - 1, 16);
982 
983   write_display_size(cm, wb);
984 }
985 
write_frame_size_with_refs(VP9_COMP * cpi,struct vp9_write_bit_buffer * wb)986 static void write_frame_size_with_refs(VP9_COMP *cpi,
987                                        struct vp9_write_bit_buffer *wb) {
988   VP9_COMMON *const cm = &cpi->common;
989   int found = 0;
990 
991   MV_REFERENCE_FRAME ref_frame;
992   for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
993     YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
994     found = cm->width == cfg->y_crop_width &&
995             cm->height == cfg->y_crop_height;
996 
997     // Set "found" to 0 for temporal svc and for spatial svc key frame
998     if (cpi->use_svc &&
999         (cpi->svc.number_spatial_layers == 1 ||
1000          cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame)) {
1001       found = 0;
1002     }
1003     vp9_wb_write_bit(wb, found);
1004     if (found) {
1005       break;
1006     }
1007   }
1008 
1009   if (!found) {
1010     vp9_wb_write_literal(wb, cm->width - 1, 16);
1011     vp9_wb_write_literal(wb, cm->height - 1, 16);
1012   }
1013 
1014   write_display_size(cm, wb);
1015 }
1016 
write_sync_code(struct vp9_write_bit_buffer * wb)1017 static void write_sync_code(struct vp9_write_bit_buffer *wb) {
1018   vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8);
1019   vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8);
1020   vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8);
1021 }
1022 
write_profile(BITSTREAM_PROFILE profile,struct vp9_write_bit_buffer * wb)1023 static void write_profile(BITSTREAM_PROFILE profile,
1024                           struct vp9_write_bit_buffer *wb) {
1025   switch (profile) {
1026     case PROFILE_0:
1027       vp9_wb_write_literal(wb, 0, 2);
1028       break;
1029     case PROFILE_1:
1030       vp9_wb_write_literal(wb, 2, 2);
1031       break;
1032     case PROFILE_2:
1033       vp9_wb_write_literal(wb, 1, 2);
1034       break;
1035     case PROFILE_3:
1036       vp9_wb_write_literal(wb, 6, 3);
1037       break;
1038     default:
1039       assert(0);
1040   }
1041 }
1042 
write_bitdepth_colorspace_sampling(VP9_COMMON * const cm,struct vp9_write_bit_buffer * wb)1043 static void write_bitdepth_colorspace_sampling(
1044     VP9_COMMON *const cm, struct vp9_write_bit_buffer *wb) {
1045   if (cm->profile >= PROFILE_2) {
1046     assert(cm->bit_depth > BITS_8);
1047     vp9_wb_write_bit(wb, cm->bit_depth - BITS_10);
1048   }
1049   vp9_wb_write_literal(wb, cm->color_space, 3);
1050   if (cm->color_space != SRGB) {
1051     vp9_wb_write_bit(wb, 0);  // 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
1052     if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) {
1053       assert(cm->subsampling_x != 1 || cm->subsampling_y != 1);
1054       vp9_wb_write_bit(wb, cm->subsampling_x);
1055       vp9_wb_write_bit(wb, cm->subsampling_y);
1056       vp9_wb_write_bit(wb, 0);  // unused
1057     } else {
1058       assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
1059     }
1060   } else {
1061     assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3);
1062     vp9_wb_write_bit(wb, 0);  // unused
1063   }
1064 }
1065 
write_uncompressed_header(VP9_COMP * cpi,struct vp9_write_bit_buffer * wb)1066 static void write_uncompressed_header(VP9_COMP *cpi,
1067                                       struct vp9_write_bit_buffer *wb) {
1068   VP9_COMMON *const cm = &cpi->common;
1069 
1070   vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2);
1071 
1072   write_profile(cm->profile, wb);
1073 
1074   vp9_wb_write_bit(wb, 0);  // show_existing_frame
1075   vp9_wb_write_bit(wb, cm->frame_type);
1076   vp9_wb_write_bit(wb, cm->show_frame);
1077   vp9_wb_write_bit(wb, cm->error_resilient_mode);
1078 
1079   if (cm->frame_type == KEY_FRAME) {
1080     write_sync_code(wb);
1081     write_bitdepth_colorspace_sampling(cm, wb);
1082     write_frame_size(cm, wb);
1083   } else {
1084     if (!cm->show_frame)
1085       vp9_wb_write_bit(wb, cm->intra_only);
1086 
1087     if (!cm->error_resilient_mode)
1088       vp9_wb_write_literal(wb, cm->reset_frame_context, 2);
1089 
1090     if (cm->intra_only) {
1091       write_sync_code(wb);
1092 
1093       // Note for profile 0, 420 8bpp is assumed.
1094       if (cm->profile > PROFILE_0) {
1095         write_bitdepth_colorspace_sampling(cm, wb);
1096       }
1097 
1098       vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1099       write_frame_size(cm, wb);
1100     } else {
1101       MV_REFERENCE_FRAME ref_frame;
1102       vp9_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES);
1103       for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
1104         vp9_wb_write_literal(wb, get_ref_frame_idx(cpi, ref_frame),
1105                              REF_FRAMES_LOG2);
1106         vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]);
1107       }
1108 
1109       write_frame_size_with_refs(cpi, wb);
1110 
1111       vp9_wb_write_bit(wb, cm->allow_high_precision_mv);
1112 
1113       fix_interp_filter(cm);
1114       write_interp_filter(cm->interp_filter, wb);
1115     }
1116   }
1117 
1118   if (!cm->error_resilient_mode) {
1119     vp9_wb_write_bit(wb, cm->refresh_frame_context);
1120     vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode);
1121   }
1122 
1123   vp9_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2);
1124 
1125   encode_loopfilter(&cm->lf, wb);
1126   encode_quantization(cm, wb);
1127   encode_segmentation(cm, &cpi->mb.e_mbd, wb);
1128 
1129   write_tile_info(cm, wb);
1130 }
1131 
write_compressed_header(VP9_COMP * cpi,uint8_t * data)1132 static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) {
1133   VP9_COMMON *const cm = &cpi->common;
1134   MACROBLOCKD *const xd = &cpi->mb.e_mbd;
1135   FRAME_CONTEXT *const fc = &cm->fc;
1136   vp9_writer header_bc;
1137 
1138   vp9_start_encode(&header_bc, data);
1139 
1140   if (xd->lossless)
1141     cm->tx_mode = ONLY_4X4;
1142   else
1143     encode_txfm_probs(cm, &header_bc);
1144 
1145   update_coef_probs(cpi, &header_bc);
1146   update_skip_probs(cm, &header_bc);
1147 
1148   if (!frame_is_intra_only(cm)) {
1149     int i;
1150 
1151     for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
1152       prob_diff_update(vp9_inter_mode_tree, cm->fc.inter_mode_probs[i],
1153                        cm->counts.inter_mode[i], INTER_MODES, &header_bc);
1154 
1155     vp9_zero(cm->counts.inter_mode);
1156 
1157     if (cm->interp_filter == SWITCHABLE)
1158       update_switchable_interp_probs(cm, &header_bc);
1159 
1160     for (i = 0; i < INTRA_INTER_CONTEXTS; i++)
1161       vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i],
1162                                 cm->counts.intra_inter[i]);
1163 
1164     if (cm->allow_comp_inter_inter) {
1165       const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE;
1166       const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
1167 
1168       vp9_write_bit(&header_bc, use_compound_pred);
1169       if (use_compound_pred) {
1170         vp9_write_bit(&header_bc, use_hybrid_pred);
1171         if (use_hybrid_pred)
1172           for (i = 0; i < COMP_INTER_CONTEXTS; i++)
1173             vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i],
1174                                       cm->counts.comp_inter[i]);
1175       }
1176     }
1177 
1178     if (cm->reference_mode != COMPOUND_REFERENCE) {
1179       for (i = 0; i < REF_CONTEXTS; i++) {
1180         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0],
1181                                   cm->counts.single_ref[i][0]);
1182         vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1],
1183                                   cm->counts.single_ref[i][1]);
1184       }
1185     }
1186 
1187     if (cm->reference_mode != SINGLE_REFERENCE)
1188       for (i = 0; i < REF_CONTEXTS; i++)
1189         vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i],
1190                                   cm->counts.comp_ref[i]);
1191 
1192     for (i = 0; i < BLOCK_SIZE_GROUPS; ++i)
1193       prob_diff_update(vp9_intra_mode_tree, cm->fc.y_mode_prob[i],
1194                        cm->counts.y_mode[i], INTRA_MODES, &header_bc);
1195 
1196     for (i = 0; i < PARTITION_CONTEXTS; ++i)
1197       prob_diff_update(vp9_partition_tree, fc->partition_prob[i],
1198                        cm->counts.partition[i], PARTITION_TYPES, &header_bc);
1199 
1200     vp9_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc);
1201   }
1202 
1203   vp9_stop_encode(&header_bc);
1204   assert(header_bc.pos <= 0xffff);
1205 
1206   return header_bc.pos;
1207 }
1208 
vp9_pack_bitstream(VP9_COMP * cpi,uint8_t * dest,size_t * size)1209 void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, size_t *size) {
1210   uint8_t *data = dest;
1211   size_t first_part_size, uncompressed_hdr_size;
1212   struct vp9_write_bit_buffer wb = {data, 0};
1213   struct vp9_write_bit_buffer saved_wb;
1214 
1215   write_uncompressed_header(cpi, &wb);
1216   saved_wb = wb;
1217   vp9_wb_write_literal(&wb, 0, 16);  // don't know in advance first part. size
1218 
1219   uncompressed_hdr_size = vp9_wb_bytes_written(&wb);
1220   data += uncompressed_hdr_size;
1221 
1222   vp9_clear_system_state();
1223 
1224   first_part_size = write_compressed_header(cpi, data);
1225   data += first_part_size;
1226   // TODO(jbb): Figure out what to do if first_part_size > 16 bits.
1227   vp9_wb_write_literal(&saved_wb, (int)first_part_size, 16);
1228 
1229   data += encode_tiles(cpi, data);
1230 
1231   *size = data - dest;
1232 }
1233