1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14
15 #include "./vpx_scale_rtcd.h"
16
17 #include "vpx_mem/vpx_mem.h"
18 #include "vpx_scale/vpx_scale.h"
19 #include "vpx_scale/yv12config.h"
20
21 #include "vp9/common/vp9_entropymv.h"
22 #include "vp9/common/vp9_quant_common.h"
23 #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
24 #include "vp9/common/vp9_systemdependent.h"
25 #include "vp9/encoder/vp9_aq_variance.h"
26 #include "vp9/encoder/vp9_block.h"
27 #include "vp9/encoder/vp9_encodeframe.h"
28 #include "vp9/encoder/vp9_encodemb.h"
29 #include "vp9/encoder/vp9_encodemv.h"
30 #include "vp9/encoder/vp9_encoder.h"
31 #include "vp9/encoder/vp9_extend.h"
32 #include "vp9/encoder/vp9_firstpass.h"
33 #include "vp9/encoder/vp9_mcomp.h"
34 #include "vp9/encoder/vp9_quantize.h"
35 #include "vp9/encoder/vp9_rd.h"
36 #include "vp9/encoder/vp9_variance.h"
37
38 #define OUTPUT_FPF 0
39
40 #define IIFACTOR 12.5
41 #define IIKFACTOR1 12.5
42 #define IIKFACTOR2 15.0
43 #define RMAX 512.0
44 #define GF_RMAX 96.0
45 #define ERR_DIVISOR 150.0
46 #define MIN_DECAY_FACTOR 0.1
47 #define SVC_FACTOR_PT_LOW 0.45
48 #define FACTOR_PT_LOW 0.5
49 #define FACTOR_PT_HIGH 0.9
50
51 #define KF_MB_INTRA_MIN 150
52 #define GF_MB_INTRA_MIN 100
53
54 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
55
56 #define MIN_KF_BOOST 300
57 #define MIN_GF_INTERVAL 4
58
swap_yv12(YV12_BUFFER_CONFIG * a,YV12_BUFFER_CONFIG * b)59 static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
60 YV12_BUFFER_CONFIG temp = *a;
61 *a = *b;
62 *b = temp;
63 }
64
gfboost_qadjust(int qindex)65 static int gfboost_qadjust(int qindex) {
66 const double q = vp9_convert_qindex_to_q(qindex);
67 return (int)((0.00000828 * q * q * q) +
68 (-0.0055 * q * q) +
69 (1.32 * q) + 79.3);
70 }
71
72 // Resets the first pass file to the given position using a relative seek from
73 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)74 static void reset_fpf_position(TWO_PASS *p,
75 const FIRSTPASS_STATS *position) {
76 p->stats_in = position;
77 }
78
lookup_next_frame_stats(const TWO_PASS * p,FIRSTPASS_STATS * next_frame)79 static int lookup_next_frame_stats(const TWO_PASS *p,
80 FIRSTPASS_STATS *next_frame) {
81 if (p->stats_in >= p->stats_in_end)
82 return EOF;
83
84 *next_frame = *p->stats_in;
85 return 1;
86 }
87
88
89 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)90 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
91 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
92 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
93 return NULL;
94 }
95
96 return &p->stats_in[offset];
97 }
98
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)99 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
100 if (p->stats_in >= p->stats_in_end)
101 return EOF;
102
103 *fps = *p->stats_in;
104 ++p->stats_in;
105 return 1;
106 }
107
output_stats(FIRSTPASS_STATS * stats,struct vpx_codec_pkt_list * pktlist)108 static void output_stats(FIRSTPASS_STATS *stats,
109 struct vpx_codec_pkt_list *pktlist) {
110 struct vpx_codec_cx_pkt pkt;
111 pkt.kind = VPX_CODEC_STATS_PKT;
112 pkt.data.twopass_stats.buf = stats;
113 pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
114 vpx_codec_pkt_list_add(pktlist, &pkt);
115
116 // TEMP debug code
117 #if OUTPUT_FPF
118 {
119 FILE *fpfile;
120 fpfile = fopen("firstpass.stt", "a");
121
122 fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
123 "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
124 "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
125 stats->frame,
126 stats->intra_error,
127 stats->coded_error,
128 stats->sr_coded_error,
129 stats->pcnt_inter,
130 stats->pcnt_motion,
131 stats->pcnt_second_ref,
132 stats->pcnt_neutral,
133 stats->MVr,
134 stats->mvr_abs,
135 stats->MVc,
136 stats->mvc_abs,
137 stats->MVrv,
138 stats->MVcv,
139 stats->mv_in_out_count,
140 stats->new_mv_count,
141 stats->count,
142 stats->duration);
143 fclose(fpfile);
144 }
145 #endif
146 }
147
148 #if CONFIG_FP_MB_STATS
output_fpmb_stats(uint8_t * this_frame_mb_stats,VP9_COMMON * cm,struct vpx_codec_pkt_list * pktlist)149 static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
150 struct vpx_codec_pkt_list *pktlist) {
151 struct vpx_codec_cx_pkt pkt;
152 pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
153 pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
154 pkt.data.firstpass_mb_stats.sz = cm->MBs * sizeof(uint8_t);
155 vpx_codec_pkt_list_add(pktlist, &pkt);
156 }
157 #endif
158
zero_stats(FIRSTPASS_STATS * section)159 static void zero_stats(FIRSTPASS_STATS *section) {
160 section->frame = 0.0;
161 section->intra_error = 0.0;
162 section->coded_error = 0.0;
163 section->sr_coded_error = 0.0;
164 section->pcnt_inter = 0.0;
165 section->pcnt_motion = 0.0;
166 section->pcnt_second_ref = 0.0;
167 section->pcnt_neutral = 0.0;
168 section->MVr = 0.0;
169 section->mvr_abs = 0.0;
170 section->MVc = 0.0;
171 section->mvc_abs = 0.0;
172 section->MVrv = 0.0;
173 section->MVcv = 0.0;
174 section->mv_in_out_count = 0.0;
175 section->new_mv_count = 0.0;
176 section->count = 0.0;
177 section->duration = 1.0;
178 section->spatial_layer_id = 0;
179 }
180
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)181 static void accumulate_stats(FIRSTPASS_STATS *section,
182 const FIRSTPASS_STATS *frame) {
183 section->frame += frame->frame;
184 section->spatial_layer_id = frame->spatial_layer_id;
185 section->intra_error += frame->intra_error;
186 section->coded_error += frame->coded_error;
187 section->sr_coded_error += frame->sr_coded_error;
188 section->pcnt_inter += frame->pcnt_inter;
189 section->pcnt_motion += frame->pcnt_motion;
190 section->pcnt_second_ref += frame->pcnt_second_ref;
191 section->pcnt_neutral += frame->pcnt_neutral;
192 section->MVr += frame->MVr;
193 section->mvr_abs += frame->mvr_abs;
194 section->MVc += frame->MVc;
195 section->mvc_abs += frame->mvc_abs;
196 section->MVrv += frame->MVrv;
197 section->MVcv += frame->MVcv;
198 section->mv_in_out_count += frame->mv_in_out_count;
199 section->new_mv_count += frame->new_mv_count;
200 section->count += frame->count;
201 section->duration += frame->duration;
202 }
203
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)204 static void subtract_stats(FIRSTPASS_STATS *section,
205 const FIRSTPASS_STATS *frame) {
206 section->frame -= frame->frame;
207 section->intra_error -= frame->intra_error;
208 section->coded_error -= frame->coded_error;
209 section->sr_coded_error -= frame->sr_coded_error;
210 section->pcnt_inter -= frame->pcnt_inter;
211 section->pcnt_motion -= frame->pcnt_motion;
212 section->pcnt_second_ref -= frame->pcnt_second_ref;
213 section->pcnt_neutral -= frame->pcnt_neutral;
214 section->MVr -= frame->MVr;
215 section->mvr_abs -= frame->mvr_abs;
216 section->MVc -= frame->MVc;
217 section->mvc_abs -= frame->mvc_abs;
218 section->MVrv -= frame->MVrv;
219 section->MVcv -= frame->MVcv;
220 section->mv_in_out_count -= frame->mv_in_out_count;
221 section->new_mv_count -= frame->new_mv_count;
222 section->count -= frame->count;
223 section->duration -= frame->duration;
224 }
225
226
227 // Calculate a modified Error used in distributing bits between easier and
228 // harder frames.
calculate_modified_err(const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)229 static double calculate_modified_err(const TWO_PASS *twopass,
230 const VP9EncoderConfig *oxcf,
231 const FIRSTPASS_STATS *this_frame) {
232 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
233 const double av_err = stats->coded_error / stats->count;
234 const double modified_error = av_err *
235 pow(this_frame->coded_error / DOUBLE_DIVIDE_CHECK(av_err),
236 oxcf->two_pass_vbrbias / 100.0);
237 return fclamp(modified_error,
238 twopass->modified_error_min, twopass->modified_error_max);
239 }
240
241 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)242 static int frame_max_bits(const RATE_CONTROL *rc,
243 const VP9EncoderConfig *oxcf) {
244 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
245 (int64_t)oxcf->two_pass_vbrmax_section) / 100;
246 if (max_bits < 0)
247 max_bits = 0;
248 else if (max_bits > rc->max_frame_bandwidth)
249 max_bits = rc->max_frame_bandwidth;
250
251 return (int)max_bits;
252 }
253
vp9_init_first_pass(VP9_COMP * cpi)254 void vp9_init_first_pass(VP9_COMP *cpi) {
255 zero_stats(&cpi->twopass.total_stats);
256 }
257
vp9_end_first_pass(VP9_COMP * cpi)258 void vp9_end_first_pass(VP9_COMP *cpi) {
259 if (is_spatial_svc(cpi)) {
260 int i;
261 for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
262 output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
263 cpi->output_pkt_list);
264 }
265 } else {
266 output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
267 }
268 }
269
get_block_variance_fn(BLOCK_SIZE bsize)270 static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
271 switch (bsize) {
272 case BLOCK_8X8:
273 return vp9_mse8x8;
274 case BLOCK_16X8:
275 return vp9_mse16x8;
276 case BLOCK_8X16:
277 return vp9_mse8x16;
278 default:
279 return vp9_mse16x16;
280 }
281 }
282
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)283 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
284 const struct buf_2d *src,
285 const struct buf_2d *ref) {
286 unsigned int sse;
287 const vp9_variance_fn_t fn = get_block_variance_fn(bsize);
288 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
289 return sse;
290 }
291
292 // Refine the motion search range according to the frame dimension
293 // for first pass test.
get_search_range(const VP9_COMMON * cm)294 static int get_search_range(const VP9_COMMON *cm) {
295 int sr = 0;
296 const int dim = MIN(cm->width, cm->height);
297
298 while ((dim << sr) < MAX_FULL_PEL_VAL)
299 ++sr;
300 return sr;
301 }
302
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)303 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
304 const MV *ref_mv, MV *best_mv,
305 int *best_motion_err) {
306 MACROBLOCKD *const xd = &x->e_mbd;
307 MV tmp_mv = {0, 0};
308 MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
309 int num00, tmp_err, n;
310 const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
311 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
312 const int new_mv_mode_penalty = 256;
313
314 int step_param = 3;
315 int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
316 const int sr = get_search_range(&cpi->common);
317 step_param += sr;
318 further_steps -= sr;
319
320 // Override the default variance function to use MSE.
321 v_fn_ptr.vf = get_block_variance_fn(bsize);
322
323 // Center the initial step/diamond search on best mv.
324 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
325 step_param,
326 x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
327 if (tmp_err < INT_MAX)
328 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
329 if (tmp_err < INT_MAX - new_mv_mode_penalty)
330 tmp_err += new_mv_mode_penalty;
331
332 if (tmp_err < *best_motion_err) {
333 *best_motion_err = tmp_err;
334 *best_mv = tmp_mv;
335 }
336
337 // Carry out further step/diamond searches as necessary.
338 n = num00;
339 num00 = 0;
340
341 while (n < further_steps) {
342 ++n;
343
344 if (num00) {
345 --num00;
346 } else {
347 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
348 step_param + n, x->sadperbit16,
349 &num00, &v_fn_ptr, ref_mv);
350 if (tmp_err < INT_MAX)
351 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
352 if (tmp_err < INT_MAX - new_mv_mode_penalty)
353 tmp_err += new_mv_mode_penalty;
354
355 if (tmp_err < *best_motion_err) {
356 *best_motion_err = tmp_err;
357 *best_mv = tmp_mv;
358 }
359 }
360 }
361 }
362
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)363 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
364 if (2 * mb_col + 1 < cm->mi_cols) {
365 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
366 : BLOCK_16X8;
367 } else {
368 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
369 : BLOCK_8X8;
370 }
371 }
372
find_fp_qindex()373 static int find_fp_qindex() {
374 int i;
375
376 for (i = 0; i < QINDEX_RANGE; ++i)
377 if (vp9_convert_qindex_to_q(i) >= 30.0)
378 break;
379
380 if (i == QINDEX_RANGE)
381 i--;
382
383 return i;
384 }
385
set_first_pass_params(VP9_COMP * cpi)386 static void set_first_pass_params(VP9_COMP *cpi) {
387 VP9_COMMON *const cm = &cpi->common;
388 if (!cpi->refresh_alt_ref_frame &&
389 (cm->current_video_frame == 0 ||
390 (cpi->frame_flags & FRAMEFLAGS_KEY))) {
391 cm->frame_type = KEY_FRAME;
392 } else {
393 cm->frame_type = INTER_FRAME;
394 }
395 // Do not use periodic key frames.
396 cpi->rc.frames_to_key = INT_MAX;
397 }
398
vp9_first_pass(VP9_COMP * cpi)399 void vp9_first_pass(VP9_COMP *cpi) {
400 int mb_row, mb_col;
401 MACROBLOCK *const x = &cpi->mb;
402 VP9_COMMON *const cm = &cpi->common;
403 MACROBLOCKD *const xd = &x->e_mbd;
404 TileInfo tile;
405 struct macroblock_plane *const p = x->plane;
406 struct macroblockd_plane *const pd = xd->plane;
407 const PICK_MODE_CONTEXT *ctx = &cpi->pc_root->none;
408 int i;
409
410 int recon_yoffset, recon_uvoffset;
411 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
412 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
413 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
414 int recon_y_stride = lst_yv12->y_stride;
415 int recon_uv_stride = lst_yv12->uv_stride;
416 int uv_mb_height = 16 >> (lst_yv12->y_height > lst_yv12->uv_height);
417 int64_t intra_error = 0;
418 int64_t coded_error = 0;
419 int64_t sr_coded_error = 0;
420
421 int sum_mvr = 0, sum_mvc = 0;
422 int sum_mvr_abs = 0, sum_mvc_abs = 0;
423 int64_t sum_mvrs = 0, sum_mvcs = 0;
424 int mvcount = 0;
425 int intercount = 0;
426 int second_ref_count = 0;
427 int intrapenalty = 256;
428 int neutral_count = 0;
429 int new_mv_count = 0;
430 int sum_in_vectors = 0;
431 uint32_t lastmv_as_int = 0;
432 TWO_PASS *twopass = &cpi->twopass;
433 const MV zero_mv = {0, 0};
434 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
435
436 #if CONFIG_FP_MB_STATS
437 if (cpi->use_fp_mb_stats) {
438 vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->MBs);
439 }
440 #endif
441
442 vp9_clear_system_state();
443
444 set_first_pass_params(cpi);
445 vp9_set_quantizer(cm, find_fp_qindex());
446
447 if (is_spatial_svc(cpi)) {
448 MV_REFERENCE_FRAME ref_frame = LAST_FRAME;
449 const YV12_BUFFER_CONFIG *scaled_ref_buf = NULL;
450 twopass = &cpi->svc.layer_context[cpi->svc.spatial_layer_id].twopass;
451
452 if (cpi->common.current_video_frame == 0) {
453 cpi->ref_frame_flags = 0;
454 } else {
455 LAYER_CONTEXT *lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
456 if (lc->current_video_frame_in_layer == 0)
457 cpi->ref_frame_flags = VP9_GOLD_FLAG;
458 else
459 cpi->ref_frame_flags = VP9_LAST_FLAG | VP9_GOLD_FLAG;
460 }
461
462 vp9_scale_references(cpi);
463
464 // Use either last frame or alt frame for motion search.
465 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
466 scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
467 ref_frame = LAST_FRAME;
468 } else if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
469 scaled_ref_buf = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
470 ref_frame = GOLDEN_FRAME;
471 }
472
473 if (scaled_ref_buf != NULL)
474 first_ref_buf = scaled_ref_buf;
475
476 recon_y_stride = new_yv12->y_stride;
477 recon_uv_stride = new_yv12->uv_stride;
478 uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
479
480 // Disable golden frame for svc first pass for now.
481 gld_yv12 = NULL;
482 set_ref_ptrs(cm, xd, ref_frame, NONE);
483
484 cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
485 &cpi->scaled_source);
486 }
487
488 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
489
490 vp9_setup_src_planes(x, cpi->Source, 0, 0);
491 vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
492 vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
493
494 xd->mi = cm->mi_grid_visible;
495 xd->mi[0] = cm->mi;
496
497 vp9_frame_init_quantizer(cpi);
498
499 for (i = 0; i < MAX_MB_PLANE; ++i) {
500 p[i].coeff = ctx->coeff_pbuf[i][1];
501 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
502 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
503 p[i].eobs = ctx->eobs_pbuf[i][1];
504 }
505 x->skip_recode = 0;
506
507 vp9_init_mv_probs(cm);
508 vp9_initialize_rd_consts(cpi);
509
510 // Tiling is ignored in the first pass.
511 vp9_tile_init(&tile, cm, 0, 0);
512
513 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
514 int_mv best_ref_mv;
515
516 best_ref_mv.as_int = 0;
517
518 // Reset above block coeffs.
519 xd->up_available = (mb_row != 0);
520 recon_yoffset = (mb_row * recon_y_stride * 16);
521 recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
522
523 // Set up limit values for motion vectors to prevent them extending
524 // outside the UMV borders.
525 x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
526 x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
527 + BORDER_MV_PIXELS_B16;
528
529 for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
530 int this_error;
531 const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
532 double error_weight = 1.0;
533 const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
534 #if CONFIG_FP_MB_STATS
535 const int mb_index = mb_row * cm->mb_cols + mb_col;
536 #endif
537
538 vp9_clear_system_state();
539
540 xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
541 xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
542 xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
543 xd->left_available = (mb_col != 0);
544 xd->mi[0]->mbmi.sb_type = bsize;
545 xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
546 set_mi_row_col(xd, &tile,
547 mb_row << 1, num_8x8_blocks_high_lookup[bsize],
548 mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
549 cm->mi_rows, cm->mi_cols);
550
551 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
552 const int energy = vp9_block_energy(cpi, x, bsize);
553 error_weight = vp9_vaq_inv_q_ratio(energy);
554 }
555
556 // Do intra 16x16 prediction.
557 x->skip_encode = 0;
558 xd->mi[0]->mbmi.mode = DC_PRED;
559 xd->mi[0]->mbmi.tx_size = use_dc_pred ?
560 (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
561 vp9_encode_intra_block_plane(x, bsize, 0);
562 this_error = vp9_get_mb_ss(x->plane[0].src_diff);
563
564 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
565 vp9_clear_system_state();
566 this_error = (int)(this_error * error_weight);
567 }
568
569 // Intrapenalty below deals with situations where the intra and inter
570 // error scores are very low (e.g. a plain black frame).
571 // We do not have special cases in first pass for 0,0 and nearest etc so
572 // all inter modes carry an overhead cost estimate for the mv.
573 // When the error score is very low this causes us to pick all or lots of
574 // INTRA modes and throw lots of key frames.
575 // This penalty adds a cost matching that of a 0,0 mv to the intra case.
576 this_error += intrapenalty;
577
578 // Accumulate the intra error.
579 intra_error += (int64_t)this_error;
580
581 #if CONFIG_FP_MB_STATS
582 if (cpi->use_fp_mb_stats) {
583 // initialization
584 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
585 }
586 #endif
587
588 // Set up limit values for motion vectors to prevent them extending
589 // outside the UMV borders.
590 x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
591 x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
592
593 // Other than for the first frame do a motion search.
594 if (cm->current_video_frame > 0) {
595 int tmp_err, motion_error, raw_motion_error;
596 int_mv mv, tmp_mv;
597 struct buf_2d unscaled_last_source_buf_2d;
598
599 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
600 motion_error = get_prediction_error(bsize, &x->plane[0].src,
601 &xd->plane[0].pre[0]);
602 // Assume 0,0 motion with no mv overhead.
603 mv.as_int = tmp_mv.as_int = 0;
604
605 // Compute the motion error of the 0,0 motion using the last source
606 // frame as the reference. Skip the further motion search on
607 // reconstructed frame if this error is small.
608 unscaled_last_source_buf_2d.buf =
609 cpi->unscaled_last_source->y_buffer + recon_yoffset;
610 unscaled_last_source_buf_2d.stride =
611 cpi->unscaled_last_source->y_stride;
612 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
613 &unscaled_last_source_buf_2d);
614
615 // TODO(pengchong): Replace the hard-coded threshold
616 if (raw_motion_error > 25 || is_spatial_svc(cpi)) {
617 // Test last reference frame using the previous best mv as the
618 // starting point (best reference) for the search.
619 first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv,
620 &motion_error);
621 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
622 vp9_clear_system_state();
623 motion_error = (int)(motion_error * error_weight);
624 }
625
626 // If the current best reference mv is not centered on 0,0 then do a
627 // 0,0 based search as well.
628 if (best_ref_mv.as_int) {
629 tmp_err = INT_MAX;
630 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv, &tmp_err);
631 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
632 vp9_clear_system_state();
633 tmp_err = (int)(tmp_err * error_weight);
634 }
635
636 if (tmp_err < motion_error) {
637 motion_error = tmp_err;
638 mv.as_int = tmp_mv.as_int;
639 }
640 }
641
642 // Search in an older reference frame.
643 if (cm->current_video_frame > 1 && gld_yv12 != NULL) {
644 // Assume 0,0 motion with no mv overhead.
645 int gf_motion_error;
646
647 xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
648 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
649 &xd->plane[0].pre[0]);
650
651 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv.as_mv,
652 &gf_motion_error);
653 if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
654 vp9_clear_system_state();
655 gf_motion_error = (int)(gf_motion_error * error_weight);
656 }
657
658 if (gf_motion_error < motion_error && gf_motion_error < this_error)
659 ++second_ref_count;
660
661 // Reset to last frame as reference buffer.
662 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
663 xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
664 xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
665
666 // In accumulating a score for the older reference frame take the
667 // best of the motion predicted score and the intra coded error
668 // (just as will be done for) accumulation of "coded_error" for
669 // the last frame.
670 if (gf_motion_error < this_error)
671 sr_coded_error += gf_motion_error;
672 else
673 sr_coded_error += this_error;
674 } else {
675 sr_coded_error += motion_error;
676 }
677 } else {
678 sr_coded_error += motion_error;
679 }
680
681 // Start by assuming that intra mode is best.
682 best_ref_mv.as_int = 0;
683
684 #if CONFIG_FP_MB_STATS
685 if (cpi->use_fp_mb_stats) {
686 // intra predication statistics
687 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
688 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
689 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
690 if (this_error > FPMB_ERROR_LARGE_TH) {
691 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
692 } else if (this_error < FPMB_ERROR_SMALL_TH) {
693 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
694 }
695 }
696 #endif
697
698 if (motion_error <= this_error) {
699 // Keep a count of cases where the inter and intra were very close
700 // and very low. This helps with scene cut detection for example in
701 // cropped clips with black bars at the sides or top and bottom.
702 if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
703 this_error < 2 * intrapenalty)
704 ++neutral_count;
705
706 mv.as_mv.row *= 8;
707 mv.as_mv.col *= 8;
708 this_error = motion_error;
709 xd->mi[0]->mbmi.mode = NEWMV;
710 xd->mi[0]->mbmi.mv[0] = mv;
711 xd->mi[0]->mbmi.tx_size = TX_4X4;
712 xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
713 xd->mi[0]->mbmi.ref_frame[1] = NONE;
714 vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
715 vp9_encode_sby_pass1(x, bsize);
716 sum_mvr += mv.as_mv.row;
717 sum_mvr_abs += abs(mv.as_mv.row);
718 sum_mvc += mv.as_mv.col;
719 sum_mvc_abs += abs(mv.as_mv.col);
720 sum_mvrs += mv.as_mv.row * mv.as_mv.row;
721 sum_mvcs += mv.as_mv.col * mv.as_mv.col;
722 ++intercount;
723
724 best_ref_mv.as_int = mv.as_int;
725
726 #if CONFIG_FP_MB_STATS
727 if (cpi->use_fp_mb_stats) {
728 // inter predication statistics
729 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
730 cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
731 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
732 if (this_error > FPMB_ERROR_LARGE_TH) {
733 cpi->twopass.frame_mb_stats_buf[mb_index] |=
734 FPMB_ERROR_LARGE_MASK;
735 } else if (this_error < FPMB_ERROR_SMALL_TH) {
736 cpi->twopass.frame_mb_stats_buf[mb_index] |=
737 FPMB_ERROR_SMALL_MASK;
738 }
739 }
740 #endif
741
742 if (mv.as_int) {
743 ++mvcount;
744
745 #if CONFIG_FP_MB_STATS
746 if (cpi->use_fp_mb_stats) {
747 cpi->twopass.frame_mb_stats_buf[mb_index] &=
748 ~FPMB_MOTION_ZERO_MASK;
749 // check estimated motion direction
750 if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
751 // right direction
752 cpi->twopass.frame_mb_stats_buf[mb_index] |=
753 FPMB_MOTION_RIGHT_MASK;
754 } else if (mv.as_mv.row < 0 &&
755 abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
756 // up direction
757 cpi->twopass.frame_mb_stats_buf[mb_index] |=
758 FPMB_MOTION_UP_MASK;
759 } else if (mv.as_mv.col < 0 &&
760 abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
761 // left direction
762 cpi->twopass.frame_mb_stats_buf[mb_index] |=
763 FPMB_MOTION_LEFT_MASK;
764 } else {
765 // down direction
766 cpi->twopass.frame_mb_stats_buf[mb_index] |=
767 FPMB_MOTION_DOWN_MASK;
768 }
769 }
770 #endif
771
772 // Non-zero vector, was it different from the last non zero vector?
773 if (mv.as_int != lastmv_as_int)
774 ++new_mv_count;
775 lastmv_as_int = mv.as_int;
776
777 // Does the row vector point inwards or outwards?
778 if (mb_row < cm->mb_rows / 2) {
779 if (mv.as_mv.row > 0)
780 --sum_in_vectors;
781 else if (mv.as_mv.row < 0)
782 ++sum_in_vectors;
783 } else if (mb_row > cm->mb_rows / 2) {
784 if (mv.as_mv.row > 0)
785 ++sum_in_vectors;
786 else if (mv.as_mv.row < 0)
787 --sum_in_vectors;
788 }
789
790 // Does the col vector point inwards or outwards?
791 if (mb_col < cm->mb_cols / 2) {
792 if (mv.as_mv.col > 0)
793 --sum_in_vectors;
794 else if (mv.as_mv.col < 0)
795 ++sum_in_vectors;
796 } else if (mb_col > cm->mb_cols / 2) {
797 if (mv.as_mv.col > 0)
798 ++sum_in_vectors;
799 else if (mv.as_mv.col < 0)
800 --sum_in_vectors;
801 }
802 }
803 }
804 } else {
805 sr_coded_error += (int64_t)this_error;
806 }
807 coded_error += (int64_t)this_error;
808
809 // Adjust to the next column of MBs.
810 x->plane[0].src.buf += 16;
811 x->plane[1].src.buf += uv_mb_height;
812 x->plane[2].src.buf += uv_mb_height;
813
814 recon_yoffset += 16;
815 recon_uvoffset += uv_mb_height;
816 }
817
818 // Adjust to the next row of MBs.
819 x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
820 x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
821 uv_mb_height * cm->mb_cols;
822 x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
823 uv_mb_height * cm->mb_cols;
824
825 vp9_clear_system_state();
826 }
827
828 vp9_clear_system_state();
829 {
830 FIRSTPASS_STATS fps;
831
832 fps.frame = cm->current_video_frame;
833 fps.spatial_layer_id = cpi->svc.spatial_layer_id;
834 fps.intra_error = (double)(intra_error >> 8);
835 fps.coded_error = (double)(coded_error >> 8);
836 fps.sr_coded_error = (double)(sr_coded_error >> 8);
837 fps.count = 1.0;
838 fps.pcnt_inter = (double)intercount / cm->MBs;
839 fps.pcnt_second_ref = (double)second_ref_count / cm->MBs;
840 fps.pcnt_neutral = (double)neutral_count / cm->MBs;
841
842 if (mvcount > 0) {
843 fps.MVr = (double)sum_mvr / mvcount;
844 fps.mvr_abs = (double)sum_mvr_abs / mvcount;
845 fps.MVc = (double)sum_mvc / mvcount;
846 fps.mvc_abs = (double)sum_mvc_abs / mvcount;
847 fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / mvcount)) / mvcount;
848 fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / mvcount)) / mvcount;
849 fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
850 fps.new_mv_count = new_mv_count;
851 fps.pcnt_motion = (double)mvcount / cm->MBs;
852 } else {
853 fps.MVr = 0.0;
854 fps.mvr_abs = 0.0;
855 fps.MVc = 0.0;
856 fps.mvc_abs = 0.0;
857 fps.MVrv = 0.0;
858 fps.MVcv = 0.0;
859 fps.mv_in_out_count = 0.0;
860 fps.new_mv_count = 0.0;
861 fps.pcnt_motion = 0.0;
862 }
863
864 // TODO(paulwilkins): Handle the case when duration is set to 0, or
865 // something less than the full time between subsequent values of
866 // cpi->source_time_stamp.
867 fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start);
868
869 // Don't want to do output stats with a stack variable!
870 twopass->this_frame_stats = fps;
871 output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
872 accumulate_stats(&twopass->total_stats, &fps);
873
874 #if CONFIG_FP_MB_STATS
875 if (cpi->use_fp_mb_stats) {
876 output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
877 }
878 #endif
879 }
880
881 // Copy the previous Last Frame back into gf and and arf buffers if
882 // the prediction is good enough... but also don't allow it to lag too far.
883 if ((twopass->sr_update_lag > 3) ||
884 ((cm->current_video_frame > 0) &&
885 (twopass->this_frame_stats.pcnt_inter > 0.20) &&
886 ((twopass->this_frame_stats.intra_error /
887 DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
888 if (gld_yv12 != NULL) {
889 vp8_yv12_copy_frame(lst_yv12, gld_yv12);
890 }
891 twopass->sr_update_lag = 1;
892 } else {
893 ++twopass->sr_update_lag;
894 }
895
896 vp9_extend_frame_borders(new_yv12);
897
898 if (is_spatial_svc(cpi)) {
899 vp9_update_reference_frames(cpi);
900 } else {
901 // Swap frame pointers so last frame refers to the frame we just compressed.
902 swap_yv12(lst_yv12, new_yv12);
903 }
904
905 // Special case for the first frame. Copy into the GF buffer as a second
906 // reference.
907 if (cm->current_video_frame == 0 && gld_yv12 != NULL) {
908 vp8_yv12_copy_frame(lst_yv12, gld_yv12);
909 }
910
911 // Use this to see what the first pass reconstruction looks like.
912 if (0) {
913 char filename[512];
914 FILE *recon_file;
915 snprintf(filename, sizeof(filename), "enc%04d.yuv",
916 (int)cm->current_video_frame);
917
918 if (cm->current_video_frame == 0)
919 recon_file = fopen(filename, "wb");
920 else
921 recon_file = fopen(filename, "ab");
922
923 (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
924 fclose(recon_file);
925 }
926
927 ++cm->current_video_frame;
928 if (cpi->use_svc)
929 vp9_inc_frame_in_layer(&cpi->svc);
930 }
931
calc_correction_factor(double err_per_mb,double err_divisor,double pt_low,double pt_high,int q)932 static double calc_correction_factor(double err_per_mb,
933 double err_divisor,
934 double pt_low,
935 double pt_high,
936 int q) {
937 const double error_term = err_per_mb / err_divisor;
938
939 // Adjustment based on actual quantizer to power term.
940 const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.0125 + pt_low,
941 pt_high);
942
943 // Calculate correction factor.
944 if (power_term < 1.0)
945 assert(error_term >= 0.0);
946
947 return fclamp(pow(error_term, power_term), 0.05, 5.0);
948 }
949
get_twopass_worst_quality(const VP9_COMP * cpi,const FIRSTPASS_STATS * stats,int section_target_bandwidth)950 static int get_twopass_worst_quality(const VP9_COMP *cpi,
951 const FIRSTPASS_STATS *stats,
952 int section_target_bandwidth) {
953 const RATE_CONTROL *const rc = &cpi->rc;
954 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
955
956 if (section_target_bandwidth <= 0) {
957 return rc->worst_quality; // Highest value allowed
958 } else {
959 const int num_mbs = cpi->common.MBs;
960 const double section_err = stats->coded_error / stats->count;
961 const double err_per_mb = section_err / num_mbs;
962 const double speed_term = 1.0 + 0.04 * oxcf->speed;
963 const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth <<
964 BPER_MB_NORMBITS) / num_mbs;
965 int q;
966 int is_svc_upper_layer = 0;
967 if (is_spatial_svc(cpi) && cpi->svc.spatial_layer_id > 0)
968 is_svc_upper_layer = 1;
969
970 // Try and pick a max Q that will be high enough to encode the
971 // content at the given rate.
972 for (q = rc->best_quality; q < rc->worst_quality; ++q) {
973 const double factor =
974 calc_correction_factor(err_per_mb, ERR_DIVISOR,
975 is_svc_upper_layer ? SVC_FACTOR_PT_LOW :
976 FACTOR_PT_LOW, FACTOR_PT_HIGH, q);
977 const int bits_per_mb = vp9_rc_bits_per_mb(INTER_FRAME, q,
978 factor * speed_term);
979 if (bits_per_mb <= target_norm_bits_per_mb)
980 break;
981 }
982
983 // Restriction on active max q for constrained quality mode.
984 if (cpi->oxcf.rc_mode == VPX_CQ)
985 q = MAX(q, oxcf->cq_level);
986 return q;
987 }
988 }
989
990 extern void vp9_new_framerate(VP9_COMP *cpi, double framerate);
991
vp9_init_second_pass(VP9_COMP * cpi)992 void vp9_init_second_pass(VP9_COMP *cpi) {
993 SVC *const svc = &cpi->svc;
994 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
995 const int is_spatial_svc = (svc->number_spatial_layers > 1) &&
996 (svc->number_temporal_layers == 1);
997 TWO_PASS *const twopass = is_spatial_svc ?
998 &svc->layer_context[svc->spatial_layer_id].twopass : &cpi->twopass;
999 double frame_rate;
1000 FIRSTPASS_STATS *stats;
1001
1002 zero_stats(&twopass->total_stats);
1003 zero_stats(&twopass->total_left_stats);
1004
1005 if (!twopass->stats_in_end)
1006 return;
1007
1008 stats = &twopass->total_stats;
1009
1010 *stats = *twopass->stats_in_end;
1011 twopass->total_left_stats = *stats;
1012
1013 frame_rate = 10000000.0 * stats->count / stats->duration;
1014 // Each frame can have a different duration, as the frame rate in the source
1015 // isn't guaranteed to be constant. The frame rate prior to the first frame
1016 // encoded in the second pass is a guess. However, the sum duration is not.
1017 // It is calculated based on the actual durations of all frames from the
1018 // first pass.
1019
1020 if (is_spatial_svc) {
1021 vp9_update_spatial_layer_framerate(cpi, frame_rate);
1022 twopass->bits_left = (int64_t)(stats->duration *
1023 svc->layer_context[svc->spatial_layer_id].target_bandwidth /
1024 10000000.0);
1025 } else {
1026 vp9_new_framerate(cpi, frame_rate);
1027 twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
1028 10000000.0);
1029 }
1030
1031 // Calculate a minimum intra value to be used in determining the IIratio
1032 // scores used in the second pass. We have this minimum to make sure
1033 // that clips that are static but "low complexity" in the intra domain
1034 // are still boosted appropriately for KF/GF/ARF.
1035 if (!is_spatial_svc) {
1036 // We don't know the number of MBs for each layer at this point.
1037 // So we will do it later.
1038 twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
1039 twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
1040 }
1041
1042 // This variable monitors how far behind the second ref update is lagging.
1043 twopass->sr_update_lag = 1;
1044
1045 // Scan the first pass file and calculate a modified total error based upon
1046 // the bias/power function used to allocate bits.
1047 {
1048 const double avg_error = stats->coded_error /
1049 DOUBLE_DIVIDE_CHECK(stats->count);
1050 const FIRSTPASS_STATS *s = twopass->stats_in;
1051 double modified_error_total = 0.0;
1052 twopass->modified_error_min = (avg_error *
1053 oxcf->two_pass_vbrmin_section) / 100;
1054 twopass->modified_error_max = (avg_error *
1055 oxcf->two_pass_vbrmax_section) / 100;
1056 while (s < twopass->stats_in_end) {
1057 modified_error_total += calculate_modified_err(twopass, oxcf, s);
1058 ++s;
1059 }
1060 twopass->modified_error_left = modified_error_total;
1061 }
1062
1063 // Reset the vbr bits off target counter
1064 cpi->rc.vbr_bits_off_target = 0;
1065 }
1066
1067 // This function gives an estimate of how badly we believe the prediction
1068 // quality is decaying from frame to frame.
get_prediction_decay_rate(const VP9_COMMON * cm,const FIRSTPASS_STATS * next_frame)1069 static double get_prediction_decay_rate(const VP9_COMMON *cm,
1070 const FIRSTPASS_STATS *next_frame) {
1071 // Look at the observed drop in prediction quality between the last frame
1072 // and the GF buffer (which contains an older frame).
1073 const double mb_sr_err_diff = (next_frame->sr_coded_error -
1074 next_frame->coded_error) / cm->MBs;
1075 const double second_ref_decay = mb_sr_err_diff <= 512.0
1076 ? fclamp(pow(1.0 - (mb_sr_err_diff / 512.0), 0.5), 0.85, 1.0)
1077 : 0.85;
1078
1079 return MIN(second_ref_decay, next_frame->pcnt_inter);
1080 }
1081
1082 // This function gives an estimate of how badly we believe the prediction
1083 // quality is decaying from frame to frame.
get_zero_motion_factor(const VP9_COMMON * cm,const FIRSTPASS_STATS * frame)1084 static double get_zero_motion_factor(const VP9_COMMON *cm,
1085 const FIRSTPASS_STATS *frame) {
1086 const double sr_ratio = frame->coded_error /
1087 DOUBLE_DIVIDE_CHECK(frame->sr_coded_error);
1088 const double zero_motion_pct = frame->pcnt_inter -
1089 frame->pcnt_motion;
1090
1091 return MIN(sr_ratio, zero_motion_pct);
1092 }
1093
1094
1095 // Function to test for a condition where a complex transition is followed
1096 // by a static section. For example in slide shows where there is a fade
1097 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(TWO_PASS * twopass,int frame_interval,int still_interval,double loop_decay_rate,double last_decay_rate)1098 static int detect_transition_to_still(TWO_PASS *twopass,
1099 int frame_interval, int still_interval,
1100 double loop_decay_rate,
1101 double last_decay_rate) {
1102 int trans_to_still = 0;
1103
1104 // Break clause to detect very still sections after motion
1105 // For example a static image after a fade or other transition
1106 // instead of a clean scene cut.
1107 if (frame_interval > MIN_GF_INTERVAL &&
1108 loop_decay_rate >= 0.999 &&
1109 last_decay_rate < 0.9) {
1110 int j;
1111 const FIRSTPASS_STATS *position = twopass->stats_in;
1112 FIRSTPASS_STATS tmp_next_frame;
1113
1114 // Look ahead a few frames to see if static condition persists...
1115 for (j = 0; j < still_interval; ++j) {
1116 if (EOF == input_stats(twopass, &tmp_next_frame))
1117 break;
1118
1119 if (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion < 0.999)
1120 break;
1121 }
1122
1123 reset_fpf_position(twopass, position);
1124
1125 // Only if it does do we signal a transition to still.
1126 if (j == still_interval)
1127 trans_to_still = 1;
1128 }
1129
1130 return trans_to_still;
1131 }
1132
1133 // This function detects a flash through the high relative pcnt_second_ref
1134 // score in the frame following a flash frame. The offset passed in should
1135 // reflect this.
detect_flash(const TWO_PASS * twopass,int offset)1136 static int detect_flash(const TWO_PASS *twopass, int offset) {
1137 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1138
1139 // What we are looking for here is a situation where there is a
1140 // brief break in prediction (such as a flash) but subsequent frames
1141 // are reasonably well predicted by an earlier (pre flash) frame.
1142 // The recovery after a flash is indicated by a high pcnt_second_ref
1143 // compared to pcnt_inter.
1144 return next_frame != NULL &&
1145 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
1146 next_frame->pcnt_second_ref >= 0.5;
1147 }
1148
1149 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1150 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1151 double *mv_in_out,
1152 double *mv_in_out_accumulator,
1153 double *abs_mv_in_out_accumulator,
1154 double *mv_ratio_accumulator) {
1155 const double pct = stats->pcnt_motion;
1156
1157 // Accumulate Motion In/Out of frame stats.
1158 *mv_in_out = stats->mv_in_out_count * pct;
1159 *mv_in_out_accumulator += *mv_in_out;
1160 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1161
1162 // Accumulate a measure of how uniform (or conversely how random) the motion
1163 // field is (a ratio of abs(mv) / mv).
1164 if (pct > 0.05) {
1165 const double mvr_ratio = fabs(stats->mvr_abs) /
1166 DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1167 const double mvc_ratio = fabs(stats->mvc_abs) /
1168 DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1169
1170 *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
1171 mvr_ratio : stats->mvr_abs);
1172 *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
1173 mvc_ratio : stats->mvc_abs);
1174 }
1175 }
1176
1177 // Calculate a baseline boost number for the current frame.
calc_frame_boost(const TWO_PASS * twopass,const FIRSTPASS_STATS * this_frame,double this_frame_mv_in_out)1178 static double calc_frame_boost(const TWO_PASS *twopass,
1179 const FIRSTPASS_STATS *this_frame,
1180 double this_frame_mv_in_out) {
1181 double frame_boost;
1182
1183 // Underlying boost factor is based on inter intra error ratio.
1184 if (this_frame->intra_error > twopass->gf_intra_err_min)
1185 frame_boost = (IIFACTOR * this_frame->intra_error /
1186 DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
1187 else
1188 frame_boost = (IIFACTOR * twopass->gf_intra_err_min /
1189 DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
1190
1191 // Increase boost for frames where new data coming into frame (e.g. zoom out).
1192 // Slightly reduce boost if there is a net balance of motion out of the frame
1193 // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
1194 if (this_frame_mv_in_out > 0.0)
1195 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1196 // In the extreme case the boost is halved.
1197 else
1198 frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
1199
1200 return MIN(frame_boost, GF_RMAX);
1201 }
1202
calc_arf_boost(VP9_COMP * cpi,int offset,int f_frames,int b_frames,int * f_boost,int * b_boost)1203 static int calc_arf_boost(VP9_COMP *cpi, int offset,
1204 int f_frames, int b_frames,
1205 int *f_boost, int *b_boost) {
1206 TWO_PASS *const twopass = &cpi->twopass;
1207 int i;
1208 double boost_score = 0.0;
1209 double mv_ratio_accumulator = 0.0;
1210 double decay_accumulator = 1.0;
1211 double this_frame_mv_in_out = 0.0;
1212 double mv_in_out_accumulator = 0.0;
1213 double abs_mv_in_out_accumulator = 0.0;
1214 int arf_boost;
1215 int flash_detected = 0;
1216
1217 // Search forward from the proposed arf/next gf position.
1218 for (i = 0; i < f_frames; ++i) {
1219 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1220 if (this_frame == NULL)
1221 break;
1222
1223 // Update the motion related elements to the boost calculation.
1224 accumulate_frame_motion_stats(this_frame,
1225 &this_frame_mv_in_out, &mv_in_out_accumulator,
1226 &abs_mv_in_out_accumulator,
1227 &mv_ratio_accumulator);
1228
1229 // We want to discount the flash frame itself and the recovery
1230 // frame that follows as both will have poor scores.
1231 flash_detected = detect_flash(twopass, i + offset) ||
1232 detect_flash(twopass, i + offset + 1);
1233
1234 // Accumulate the effect of prediction quality decay.
1235 if (!flash_detected) {
1236 decay_accumulator *= get_prediction_decay_rate(&cpi->common, this_frame);
1237 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1238 ? MIN_DECAY_FACTOR : decay_accumulator;
1239 }
1240
1241 boost_score += decay_accumulator * calc_frame_boost(twopass, this_frame,
1242 this_frame_mv_in_out);
1243 }
1244
1245 *f_boost = (int)boost_score;
1246
1247 // Reset for backward looking loop.
1248 boost_score = 0.0;
1249 mv_ratio_accumulator = 0.0;
1250 decay_accumulator = 1.0;
1251 this_frame_mv_in_out = 0.0;
1252 mv_in_out_accumulator = 0.0;
1253 abs_mv_in_out_accumulator = 0.0;
1254
1255 // Search backward towards last gf position.
1256 for (i = -1; i >= -b_frames; --i) {
1257 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1258 if (this_frame == NULL)
1259 break;
1260
1261 // Update the motion related elements to the boost calculation.
1262 accumulate_frame_motion_stats(this_frame,
1263 &this_frame_mv_in_out, &mv_in_out_accumulator,
1264 &abs_mv_in_out_accumulator,
1265 &mv_ratio_accumulator);
1266
1267 // We want to discount the the flash frame itself and the recovery
1268 // frame that follows as both will have poor scores.
1269 flash_detected = detect_flash(twopass, i + offset) ||
1270 detect_flash(twopass, i + offset + 1);
1271
1272 // Cumulative effect of prediction quality decay.
1273 if (!flash_detected) {
1274 decay_accumulator *= get_prediction_decay_rate(&cpi->common, this_frame);
1275 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1276 ? MIN_DECAY_FACTOR : decay_accumulator;
1277 }
1278
1279 boost_score += decay_accumulator * calc_frame_boost(twopass, this_frame,
1280 this_frame_mv_in_out);
1281 }
1282 *b_boost = (int)boost_score;
1283
1284 arf_boost = (*f_boost + *b_boost);
1285 if (arf_boost < ((b_frames + f_frames) * 20))
1286 arf_boost = ((b_frames + f_frames) * 20);
1287
1288 return arf_boost;
1289 }
1290
1291 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)1292 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
1293 const FIRSTPASS_STATS *end,
1294 int section_length) {
1295 const FIRSTPASS_STATS *s = begin;
1296 double intra_error = 0.0;
1297 double coded_error = 0.0;
1298 int i = 0;
1299
1300 while (s < end && i < section_length) {
1301 intra_error += s->intra_error;
1302 coded_error += s->coded_error;
1303 ++s;
1304 ++i;
1305 }
1306
1307 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
1308 }
1309
1310 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)1311 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
1312 double gf_group_err) {
1313 const RATE_CONTROL *const rc = &cpi->rc;
1314 const TWO_PASS *const twopass = &cpi->twopass;
1315 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
1316 int64_t total_group_bits;
1317
1318 // Calculate the bits to be allocated to the group as a whole.
1319 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
1320 total_group_bits = (int64_t)(twopass->kf_group_bits *
1321 (gf_group_err / twopass->kf_group_error_left));
1322 } else {
1323 total_group_bits = 0;
1324 }
1325
1326 // Clamp odd edge cases.
1327 total_group_bits = (total_group_bits < 0) ?
1328 0 : (total_group_bits > twopass->kf_group_bits) ?
1329 twopass->kf_group_bits : total_group_bits;
1330
1331 // Clip based on user supplied data rate variability limit.
1332 if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
1333 total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
1334
1335 return total_group_bits;
1336 }
1337
1338 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)1339 static int calculate_boost_bits(int frame_count,
1340 int boost, int64_t total_group_bits) {
1341 int allocation_chunks;
1342
1343 // return 0 for invalid inputs (could arise e.g. through rounding errors)
1344 if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
1345 return 0;
1346
1347 allocation_chunks = (frame_count * 100) + boost;
1348
1349 // Prevent overflow.
1350 if (boost > 1023) {
1351 int divisor = boost >> 10;
1352 boost /= divisor;
1353 allocation_chunks /= divisor;
1354 }
1355
1356 // Calculate the number of extra bits for use in the boosted frame or frames.
1357 return MAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), 0);
1358 }
1359
1360 // Current limit on maximum number of active arfs in a GF/ARF group.
1361 #define MAX_ACTIVE_ARFS 2
1362 #define ARF_SLOT1 2
1363 #define ARF_SLOT2 3
1364 // This function indirects the choice of buffers for arfs.
1365 // At the moment the values are fixed but this may change as part of
1366 // the integration process with other codec features that swap buffers around.
get_arf_buffer_indices(unsigned char * arf_buffer_indices)1367 static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
1368 arf_buffer_indices[0] = ARF_SLOT1;
1369 arf_buffer_indices[1] = ARF_SLOT2;
1370 }
1371
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,double group_error,int gf_arf_bits)1372 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
1373 double group_error, int gf_arf_bits) {
1374 RATE_CONTROL *const rc = &cpi->rc;
1375 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1376 TWO_PASS *twopass = &cpi->twopass;
1377 FIRSTPASS_STATS frame_stats;
1378 int i;
1379 int frame_index = 1;
1380 int target_frame_size;
1381 int key_frame;
1382 const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
1383 int64_t total_group_bits = gf_group_bits;
1384 double modified_err = 0.0;
1385 double err_fraction;
1386 int mid_boost_bits = 0;
1387 int mid_frame_idx;
1388 unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
1389
1390 key_frame = cpi->common.frame_type == KEY_FRAME ||
1391 vp9_is_upper_layer_key_frame(cpi);
1392
1393 get_arf_buffer_indices(arf_buffer_indices);
1394
1395 // For key frames the frame target rate is already set and it
1396 // is also the golden frame.
1397 if (!key_frame) {
1398 if (rc->source_alt_ref_active) {
1399 twopass->gf_group.update_type[0] = OVERLAY_UPDATE;
1400 twopass->gf_group.rf_level[0] = INTER_NORMAL;
1401 twopass->gf_group.bit_allocation[0] = 0;
1402 twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
1403 twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
1404 } else {
1405 twopass->gf_group.update_type[0] = GF_UPDATE;
1406 twopass->gf_group.rf_level[0] = GF_ARF_STD;
1407 twopass->gf_group.bit_allocation[0] = gf_arf_bits;
1408 twopass->gf_group.arf_update_idx[0] = arf_buffer_indices[0];
1409 twopass->gf_group.arf_ref_idx[0] = arf_buffer_indices[0];
1410 }
1411
1412 // Step over the golden frame / overlay frame
1413 if (EOF == input_stats(twopass, &frame_stats))
1414 return;
1415 }
1416
1417 // Deduct the boost bits for arf (or gf if it is not a key frame)
1418 // from the group total.
1419 if (rc->source_alt_ref_pending || !key_frame)
1420 total_group_bits -= gf_arf_bits;
1421
1422 // Store the bits to spend on the ARF if there is one.
1423 if (rc->source_alt_ref_pending) {
1424 twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
1425 twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
1426 twopass->gf_group.bit_allocation[frame_index] = gf_arf_bits;
1427 twopass->gf_group.arf_src_offset[frame_index] =
1428 (unsigned char)(rc->baseline_gf_interval - 1);
1429 twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
1430 twopass->gf_group.arf_ref_idx[frame_index] =
1431 arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
1432 rc->source_alt_ref_active];
1433 ++frame_index;
1434
1435 if (cpi->multi_arf_enabled) {
1436 // Set aside a slot for a level 1 arf.
1437 twopass->gf_group.update_type[frame_index] = ARF_UPDATE;
1438 twopass->gf_group.rf_level[frame_index] = GF_ARF_LOW;
1439 twopass->gf_group.arf_src_offset[frame_index] =
1440 (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
1441 twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[1];
1442 twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
1443 ++frame_index;
1444 }
1445 }
1446
1447 // Define middle frame
1448 mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
1449
1450 // Allocate bits to the other frames in the group.
1451 for (i = 0; i < rc->baseline_gf_interval - 1; ++i) {
1452 int arf_idx = 0;
1453 if (EOF == input_stats(twopass, &frame_stats))
1454 break;
1455
1456 modified_err = calculate_modified_err(twopass, oxcf, &frame_stats);
1457
1458 if (group_error > 0)
1459 err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
1460 else
1461 err_fraction = 0.0;
1462
1463 target_frame_size = (int)((double)total_group_bits * err_fraction);
1464
1465 if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
1466 mid_boost_bits += (target_frame_size >> 4);
1467 target_frame_size -= (target_frame_size >> 4);
1468
1469 if (frame_index <= mid_frame_idx)
1470 arf_idx = 1;
1471 }
1472 twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
1473 twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
1474
1475 target_frame_size = clamp(target_frame_size, 0,
1476 MIN(max_bits, (int)total_group_bits));
1477
1478 twopass->gf_group.update_type[frame_index] = LF_UPDATE;
1479 twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
1480
1481 twopass->gf_group.bit_allocation[frame_index] = target_frame_size;
1482 ++frame_index;
1483 }
1484
1485 // Note:
1486 // We need to configure the frame at the end of the sequence + 1 that will be
1487 // the start frame for the next group. Otherwise prior to the call to
1488 // vp9_rc_get_second_pass_params() the data will be undefined.
1489 twopass->gf_group.arf_update_idx[frame_index] = arf_buffer_indices[0];
1490 twopass->gf_group.arf_ref_idx[frame_index] = arf_buffer_indices[0];
1491
1492 if (rc->source_alt_ref_pending) {
1493 twopass->gf_group.update_type[frame_index] = OVERLAY_UPDATE;
1494 twopass->gf_group.rf_level[frame_index] = INTER_NORMAL;
1495
1496 // Final setup for second arf and its overlay.
1497 if (cpi->multi_arf_enabled) {
1498 twopass->gf_group.bit_allocation[2] =
1499 twopass->gf_group.bit_allocation[mid_frame_idx] + mid_boost_bits;
1500 twopass->gf_group.update_type[mid_frame_idx] = OVERLAY_UPDATE;
1501 twopass->gf_group.bit_allocation[mid_frame_idx] = 0;
1502 }
1503 } else {
1504 twopass->gf_group.update_type[frame_index] = GF_UPDATE;
1505 twopass->gf_group.rf_level[frame_index] = GF_ARF_STD;
1506 }
1507
1508 // Note whether multi-arf was enabled this group for next time.
1509 cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
1510 }
1511
1512 // Analyse and define a gf/arf group.
define_gf_group(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)1513 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1514 RATE_CONTROL *const rc = &cpi->rc;
1515 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1516 TWO_PASS *const twopass = &cpi->twopass;
1517 FIRSTPASS_STATS next_frame;
1518 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
1519 int i;
1520
1521 double boost_score = 0.0;
1522 double old_boost_score = 0.0;
1523 double gf_group_err = 0.0;
1524 double gf_first_frame_err = 0.0;
1525 double mod_frame_err = 0.0;
1526
1527 double mv_ratio_accumulator = 0.0;
1528 double decay_accumulator = 1.0;
1529 double zero_motion_accumulator = 1.0;
1530
1531 double loop_decay_rate = 1.00;
1532 double last_loop_decay_rate = 1.00;
1533
1534 double this_frame_mv_in_out = 0.0;
1535 double mv_in_out_accumulator = 0.0;
1536 double abs_mv_in_out_accumulator = 0.0;
1537 double mv_ratio_accumulator_thresh;
1538 unsigned int allow_alt_ref = is_altref_enabled(cpi);
1539
1540 int f_boost = 0;
1541 int b_boost = 0;
1542 int flash_detected;
1543 int active_max_gf_interval;
1544 int64_t gf_group_bits;
1545 double gf_group_error_left;
1546 int gf_arf_bits;
1547
1548 // Reset the GF group data structures unless this is a key
1549 // frame in which case it will already have been done.
1550 if (cpi->common.frame_type != KEY_FRAME) {
1551 vp9_zero(twopass->gf_group);
1552 }
1553
1554 vp9_clear_system_state();
1555 vp9_zero(next_frame);
1556
1557 gf_group_bits = 0;
1558
1559 // Load stats for the current frame.
1560 mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
1561
1562 // Note the error of the frame at the start of the group. This will be
1563 // the GF frame error if we code a normal gf.
1564 gf_first_frame_err = mod_frame_err;
1565
1566 // If this is a key frame or the overlay from a previous arf then
1567 // the error score / cost of this frame has already been accounted for.
1568 if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
1569 gf_group_err -= gf_first_frame_err;
1570
1571 // Motion breakout threshold for loop below depends on image size.
1572 mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0;
1573
1574 // Work out a maximum interval for the GF group.
1575 // If the image appears almost completely static we can extend beyond this.
1576 if (cpi->multi_arf_allowed) {
1577 active_max_gf_interval = rc->max_gf_interval;
1578 } else {
1579 // The value chosen depends on the active Q range. At low Q we have
1580 // bits to spare and are better with a smaller interval and smaller boost.
1581 // At high Q when there are few bits to spare we are better with a longer
1582 // interval to spread the cost of the GF.
1583 active_max_gf_interval =
1584 12 + ((int)vp9_convert_qindex_to_q(rc->last_q[INTER_FRAME]) >> 5);
1585
1586 if (active_max_gf_interval > rc->max_gf_interval)
1587 active_max_gf_interval = rc->max_gf_interval;
1588 }
1589
1590 i = 0;
1591 while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
1592 ++i;
1593
1594 // Accumulate error score of frames in this gf group.
1595 mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
1596 gf_group_err += mod_frame_err;
1597
1598 if (EOF == input_stats(twopass, &next_frame))
1599 break;
1600
1601 // Test for the case where there is a brief flash but the prediction
1602 // quality back to an earlier frame is then restored.
1603 flash_detected = detect_flash(twopass, 0);
1604
1605 // Update the motion related elements to the boost calculation.
1606 accumulate_frame_motion_stats(&next_frame,
1607 &this_frame_mv_in_out, &mv_in_out_accumulator,
1608 &abs_mv_in_out_accumulator,
1609 &mv_ratio_accumulator);
1610
1611 // Accumulate the effect of prediction quality decay.
1612 if (!flash_detected) {
1613 last_loop_decay_rate = loop_decay_rate;
1614 loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
1615 decay_accumulator = decay_accumulator * loop_decay_rate;
1616
1617 // Monitor for static sections.
1618 zero_motion_accumulator =
1619 MIN(zero_motion_accumulator,
1620 get_zero_motion_factor(&cpi->common, &next_frame));
1621
1622 // Break clause to detect very still sections after motion. For example,
1623 // a static image after a fade or other transition.
1624 if (detect_transition_to_still(twopass, i, 5, loop_decay_rate,
1625 last_loop_decay_rate)) {
1626 allow_alt_ref = 0;
1627 break;
1628 }
1629 }
1630
1631 // Calculate a boost number for this frame.
1632 boost_score += decay_accumulator * calc_frame_boost(twopass, &next_frame,
1633 this_frame_mv_in_out);
1634
1635 // Break out conditions.
1636 if (
1637 // Break at active_max_gf_interval unless almost totally static.
1638 (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) ||
1639 (
1640 // Don't break out with a very short interval.
1641 (i > MIN_GF_INTERVAL) &&
1642 ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
1643 (!flash_detected) &&
1644 ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
1645 (abs_mv_in_out_accumulator > 3.0) ||
1646 (mv_in_out_accumulator < -2.0) ||
1647 ((boost_score - old_boost_score) < IIFACTOR)))) {
1648 boost_score = old_boost_score;
1649 break;
1650 }
1651
1652 *this_frame = next_frame;
1653
1654 old_boost_score = boost_score;
1655 }
1656
1657 twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
1658
1659 // Don't allow a gf too near the next kf.
1660 if ((rc->frames_to_key - i) < MIN_GF_INTERVAL) {
1661 while (i < (rc->frames_to_key + !rc->next_key_frame_forced)) {
1662 ++i;
1663
1664 if (EOF == input_stats(twopass, this_frame))
1665 break;
1666
1667 if (i < rc->frames_to_key) {
1668 mod_frame_err = calculate_modified_err(twopass, oxcf, this_frame);
1669 gf_group_err += mod_frame_err;
1670 }
1671 }
1672 }
1673
1674 // Set the interval until the next gf.
1675 if (cpi->common.frame_type == KEY_FRAME || rc->source_alt_ref_active)
1676 rc->baseline_gf_interval = i - 1;
1677 else
1678 rc->baseline_gf_interval = i;
1679
1680 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1681
1682 // Should we use the alternate reference frame.
1683 if (allow_alt_ref &&
1684 (i < cpi->oxcf.lag_in_frames) &&
1685 (i >= MIN_GF_INTERVAL) &&
1686 // For real scene cuts (not forced kfs) don't allow arf very near kf.
1687 (rc->next_key_frame_forced ||
1688 (i <= (rc->frames_to_key - MIN_GF_INTERVAL)))) {
1689 // Calculate the boost for alt ref.
1690 rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
1691 &b_boost);
1692 rc->source_alt_ref_pending = 1;
1693
1694 // Test to see if multi arf is appropriate.
1695 cpi->multi_arf_enabled =
1696 (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
1697 (zero_motion_accumulator < 0.995)) ? 1 : 0;
1698 } else {
1699 rc->gfu_boost = (int)boost_score;
1700 rc->source_alt_ref_pending = 0;
1701 }
1702
1703 // Reset the file position.
1704 reset_fpf_position(twopass, start_pos);
1705
1706 // Calculate the bits to be allocated to the gf/arf group as a whole
1707 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
1708
1709 // Calculate the extra bits to be used for boosted frame(s)
1710 {
1711 int q = rc->last_q[INTER_FRAME];
1712 int boost = (rc->gfu_boost * gfboost_qadjust(q)) / 100;
1713
1714 // Set max and minimum boost and hence minimum allocation.
1715 boost = clamp(boost, 125, (rc->baseline_gf_interval + 1) * 200);
1716
1717 // Calculate the extra bits to be used for boosted frame(s)
1718 gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval,
1719 boost, gf_group_bits);
1720 }
1721
1722 // Adjust KF group bits and error remaining.
1723 twopass->kf_group_error_left -= (int64_t)gf_group_err;
1724
1725 // If this is an arf update we want to remove the score for the overlay
1726 // frame at the end which will usually be very cheap to code.
1727 // The overlay frame has already, in effect, been coded so we want to spread
1728 // the remaining bits among the other frames.
1729 // For normal GFs remove the score for the GF itself unless this is
1730 // also a key frame in which case it has already been accounted for.
1731 if (rc->source_alt_ref_pending) {
1732 gf_group_error_left = gf_group_err - mod_frame_err;
1733 } else if (cpi->common.frame_type != KEY_FRAME) {
1734 gf_group_error_left = gf_group_err - gf_first_frame_err;
1735 } else {
1736 gf_group_error_left = gf_group_err;
1737 }
1738
1739 // Allocate bits to each of the frames in the GF group.
1740 allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
1741
1742 // Reset the file position.
1743 reset_fpf_position(twopass, start_pos);
1744
1745 // Calculate a section intra ratio used in setting max loop filter.
1746 if (cpi->common.frame_type != KEY_FRAME) {
1747 twopass->section_intra_rating =
1748 calculate_section_intra_ratio(start_pos, twopass->stats_in_end,
1749 rc->baseline_gf_interval);
1750 }
1751 }
1752
test_candidate_kf(TWO_PASS * twopass,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * next_frame)1753 static int test_candidate_kf(TWO_PASS *twopass,
1754 const FIRSTPASS_STATS *last_frame,
1755 const FIRSTPASS_STATS *this_frame,
1756 const FIRSTPASS_STATS *next_frame) {
1757 int is_viable_kf = 0;
1758
1759 // Does the frame satisfy the primary criteria of a key frame?
1760 // If so, then examine how well it predicts subsequent frames.
1761 if ((this_frame->pcnt_second_ref < 0.10) &&
1762 (next_frame->pcnt_second_ref < 0.10) &&
1763 ((this_frame->pcnt_inter < 0.05) ||
1764 (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < 0.35) &&
1765 ((this_frame->intra_error /
1766 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
1767 ((fabs(last_frame->coded_error - this_frame->coded_error) /
1768 DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > 0.40) ||
1769 (fabs(last_frame->intra_error - this_frame->intra_error) /
1770 DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > 0.40) ||
1771 ((next_frame->intra_error /
1772 DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
1773 int i;
1774 const FIRSTPASS_STATS *start_pos = twopass->stats_in;
1775 FIRSTPASS_STATS local_next_frame = *next_frame;
1776 double boost_score = 0.0;
1777 double old_boost_score = 0.0;
1778 double decay_accumulator = 1.0;
1779
1780 // Examine how well the key frame predicts subsequent frames.
1781 for (i = 0; i < 16; ++i) {
1782 double next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
1783 DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
1784
1785 if (next_iiratio > RMAX)
1786 next_iiratio = RMAX;
1787
1788 // Cumulative effect of decay in prediction quality.
1789 if (local_next_frame.pcnt_inter > 0.85)
1790 decay_accumulator *= local_next_frame.pcnt_inter;
1791 else
1792 decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
1793
1794 // Keep a running total.
1795 boost_score += (decay_accumulator * next_iiratio);
1796
1797 // Test various breakout clauses.
1798 if ((local_next_frame.pcnt_inter < 0.05) ||
1799 (next_iiratio < 1.5) ||
1800 (((local_next_frame.pcnt_inter -
1801 local_next_frame.pcnt_neutral) < 0.20) &&
1802 (next_iiratio < 3.0)) ||
1803 ((boost_score - old_boost_score) < 3.0) ||
1804 (local_next_frame.intra_error < 200)) {
1805 break;
1806 }
1807
1808 old_boost_score = boost_score;
1809
1810 // Get the next frame details
1811 if (EOF == input_stats(twopass, &local_next_frame))
1812 break;
1813 }
1814
1815 // If there is tolerable prediction for at least the next 3 frames then
1816 // break out else discard this potential key frame and move on
1817 if (boost_score > 30.0 && (i > 3)) {
1818 is_viable_kf = 1;
1819 } else {
1820 // Reset the file position
1821 reset_fpf_position(twopass, start_pos);
1822
1823 is_viable_kf = 0;
1824 }
1825 }
1826
1827 return is_viable_kf;
1828 }
1829
find_next_key_frame(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)1830 static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
1831 int i, j;
1832 RATE_CONTROL *const rc = &cpi->rc;
1833 TWO_PASS *const twopass = &cpi->twopass;
1834 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1835 const FIRSTPASS_STATS first_frame = *this_frame;
1836 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
1837 FIRSTPASS_STATS next_frame;
1838 FIRSTPASS_STATS last_frame;
1839 int kf_bits = 0;
1840 double decay_accumulator = 1.0;
1841 double zero_motion_accumulator = 1.0;
1842 double boost_score = 0.0;
1843 double kf_mod_err = 0.0;
1844 double kf_group_err = 0.0;
1845 double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
1846
1847 vp9_zero(next_frame);
1848
1849 cpi->common.frame_type = KEY_FRAME;
1850
1851 // Reset the GF group data structures.
1852 vp9_zero(twopass->gf_group);
1853
1854 // Is this a forced key frame by interval.
1855 rc->this_key_frame_forced = rc->next_key_frame_forced;
1856
1857 // Clear the alt ref active flag and last group multi arf flags as they
1858 // can never be set for a key frame.
1859 rc->source_alt_ref_active = 0;
1860 cpi->multi_arf_last_grp_enabled = 0;
1861
1862 // KF is always a GF so clear frames till next gf counter.
1863 rc->frames_till_gf_update_due = 0;
1864
1865 rc->frames_to_key = 1;
1866
1867 twopass->kf_group_bits = 0; // Total bits available to kf group
1868 twopass->kf_group_error_left = 0; // Group modified error score.
1869
1870 kf_mod_err = calculate_modified_err(twopass, oxcf, this_frame);
1871
1872 // Find the next keyframe.
1873 i = 0;
1874 while (twopass->stats_in < twopass->stats_in_end &&
1875 rc->frames_to_key < cpi->oxcf.key_freq) {
1876 // Accumulate kf group error.
1877 kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
1878
1879 // Load the next frame's stats.
1880 last_frame = *this_frame;
1881 input_stats(twopass, this_frame);
1882
1883 // Provided that we are not at the end of the file...
1884 if (cpi->oxcf.auto_key &&
1885 lookup_next_frame_stats(twopass, &next_frame) != EOF) {
1886 double loop_decay_rate;
1887
1888 // Check for a scene cut.
1889 if (test_candidate_kf(twopass, &last_frame, this_frame, &next_frame))
1890 break;
1891
1892 // How fast is the prediction quality decaying?
1893 loop_decay_rate = get_prediction_decay_rate(&cpi->common, &next_frame);
1894
1895 // We want to know something about the recent past... rather than
1896 // as used elsewhere where we are concerned with decay in prediction
1897 // quality since the last GF or KF.
1898 recent_loop_decay[i % 8] = loop_decay_rate;
1899 decay_accumulator = 1.0;
1900 for (j = 0; j < 8; ++j)
1901 decay_accumulator *= recent_loop_decay[j];
1902
1903 // Special check for transition or high motion followed by a
1904 // static scene.
1905 if (detect_transition_to_still(twopass, i, cpi->oxcf.key_freq - i,
1906 loop_decay_rate, decay_accumulator))
1907 break;
1908
1909 // Step on to the next frame.
1910 ++rc->frames_to_key;
1911
1912 // If we don't have a real key frame within the next two
1913 // key_freq intervals then break out of the loop.
1914 if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
1915 break;
1916 } else {
1917 ++rc->frames_to_key;
1918 }
1919 ++i;
1920 }
1921
1922 // If there is a max kf interval set by the user we must obey it.
1923 // We already breakout of the loop above at 2x max.
1924 // This code centers the extra kf if the actual natural interval
1925 // is between 1x and 2x.
1926 if (cpi->oxcf.auto_key &&
1927 rc->frames_to_key > cpi->oxcf.key_freq) {
1928 FIRSTPASS_STATS tmp_frame = first_frame;
1929
1930 rc->frames_to_key /= 2;
1931
1932 // Reset to the start of the group.
1933 reset_fpf_position(twopass, start_position);
1934
1935 kf_group_err = 0;
1936
1937 // Rescan to get the correct error data for the forced kf group.
1938 for (i = 0; i < rc->frames_to_key; ++i) {
1939 kf_group_err += calculate_modified_err(twopass, oxcf, &tmp_frame);
1940 input_stats(twopass, &tmp_frame);
1941 }
1942 rc->next_key_frame_forced = 1;
1943 } else if (twopass->stats_in == twopass->stats_in_end ||
1944 rc->frames_to_key >= cpi->oxcf.key_freq) {
1945 rc->next_key_frame_forced = 1;
1946 } else {
1947 rc->next_key_frame_forced = 0;
1948 }
1949
1950 // Special case for the last key frame of the file.
1951 if (twopass->stats_in >= twopass->stats_in_end) {
1952 // Accumulate kf group error.
1953 kf_group_err += calculate_modified_err(twopass, oxcf, this_frame);
1954 }
1955
1956 // Calculate the number of bits that should be assigned to the kf group.
1957 if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
1958 // Maximum number of bits for a single normal frame (not key frame).
1959 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
1960
1961 // Maximum number of bits allocated to the key frame group.
1962 int64_t max_grp_bits;
1963
1964 // Default allocation based on bits left and relative
1965 // complexity of the section.
1966 twopass->kf_group_bits = (int64_t)(twopass->bits_left *
1967 (kf_group_err / twopass->modified_error_left));
1968
1969 // Clip based on maximum per frame rate defined by the user.
1970 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
1971 if (twopass->kf_group_bits > max_grp_bits)
1972 twopass->kf_group_bits = max_grp_bits;
1973 } else {
1974 twopass->kf_group_bits = 0;
1975 }
1976 twopass->kf_group_bits = MAX(0, twopass->kf_group_bits);
1977
1978 // Reset the first pass file position.
1979 reset_fpf_position(twopass, start_position);
1980
1981 // Scan through the kf group collating various stats used to deteermine
1982 // how many bits to spend on it.
1983 decay_accumulator = 1.0;
1984 boost_score = 0.0;
1985 for (i = 0; i < rc->frames_to_key; ++i) {
1986 if (EOF == input_stats(twopass, &next_frame))
1987 break;
1988
1989 // Monitor for static sections.
1990 zero_motion_accumulator =
1991 MIN(zero_motion_accumulator,
1992 get_zero_motion_factor(&cpi->common, &next_frame));
1993
1994 // For the first few frames collect data to decide kf boost.
1995 if (i <= (rc->max_gf_interval * 2)) {
1996 double r;
1997 if (next_frame.intra_error > twopass->kf_intra_err_min)
1998 r = (IIKFACTOR2 * next_frame.intra_error /
1999 DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2000 else
2001 r = (IIKFACTOR2 * twopass->kf_intra_err_min /
2002 DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2003
2004 if (r > RMAX)
2005 r = RMAX;
2006
2007 // How fast is prediction quality decaying.
2008 if (!detect_flash(twopass, 0)) {
2009 const double loop_decay_rate = get_prediction_decay_rate(&cpi->common,
2010 &next_frame);
2011 decay_accumulator *= loop_decay_rate;
2012 decay_accumulator = MAX(decay_accumulator, MIN_DECAY_FACTOR);
2013 }
2014
2015 boost_score += (decay_accumulator * r);
2016 }
2017 }
2018
2019 reset_fpf_position(twopass, start_position);
2020
2021 // Store the zero motion percentage
2022 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
2023
2024 // Calculate a section intra ratio used in setting max loop filter.
2025 twopass->section_intra_rating =
2026 calculate_section_intra_ratio(start_position, twopass->stats_in_end,
2027 rc->frames_to_key);
2028
2029 // Work out how many bits to allocate for the key frame itself.
2030 rc->kf_boost = (int)boost_score;
2031
2032 if (rc->kf_boost < (rc->frames_to_key * 3))
2033 rc->kf_boost = (rc->frames_to_key * 3);
2034 if (rc->kf_boost < MIN_KF_BOOST)
2035 rc->kf_boost = MIN_KF_BOOST;
2036
2037 kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
2038 rc->kf_boost, twopass->kf_group_bits);
2039
2040 twopass->kf_group_bits -= kf_bits;
2041
2042 // Save the bits to spend on the key frame.
2043 twopass->gf_group.bit_allocation[0] = kf_bits;
2044 twopass->gf_group.update_type[0] = KF_UPDATE;
2045 twopass->gf_group.rf_level[0] = KF_STD;
2046
2047 // Note the total error score of the kf group minus the key frame itself.
2048 twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
2049
2050 // Adjust the count of total modified error left.
2051 // The count of bits left is adjusted elsewhere based on real coded frame
2052 // sizes.
2053 twopass->modified_error_left -= kf_group_err;
2054 }
2055
2056 // For VBR...adjustment to the frame target based on error from previous frames
vbr_rate_correction(int * this_frame_target,const int64_t vbr_bits_off_target)2057 void vbr_rate_correction(int * this_frame_target,
2058 const int64_t vbr_bits_off_target) {
2059 int max_delta = (*this_frame_target * 15) / 100;
2060
2061 // vbr_bits_off_target > 0 means we have extra bits to spend
2062 if (vbr_bits_off_target > 0) {
2063 *this_frame_target +=
2064 (vbr_bits_off_target > max_delta) ? max_delta
2065 : (int)vbr_bits_off_target;
2066 } else {
2067 *this_frame_target -=
2068 (vbr_bits_off_target < -max_delta) ? max_delta
2069 : (int)-vbr_bits_off_target;
2070 }
2071 }
2072
2073 // Define the reference buffers that will be updated post encode.
configure_buffer_updates(VP9_COMP * cpi)2074 void configure_buffer_updates(VP9_COMP *cpi) {
2075 TWO_PASS *const twopass = &cpi->twopass;
2076
2077 cpi->rc.is_src_frame_alt_ref = 0;
2078 switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
2079 case KF_UPDATE:
2080 cpi->refresh_last_frame = 1;
2081 cpi->refresh_golden_frame = 1;
2082 cpi->refresh_alt_ref_frame = 1;
2083 break;
2084 case LF_UPDATE:
2085 cpi->refresh_last_frame = 1;
2086 cpi->refresh_golden_frame = 0;
2087 cpi->refresh_alt_ref_frame = 0;
2088 break;
2089 case GF_UPDATE:
2090 cpi->refresh_last_frame = 1;
2091 cpi->refresh_golden_frame = 1;
2092 cpi->refresh_alt_ref_frame = 0;
2093 break;
2094 case OVERLAY_UPDATE:
2095 cpi->refresh_last_frame = 0;
2096 cpi->refresh_golden_frame = 1;
2097 cpi->refresh_alt_ref_frame = 0;
2098 cpi->rc.is_src_frame_alt_ref = 1;
2099 break;
2100 case ARF_UPDATE:
2101 cpi->refresh_last_frame = 0;
2102 cpi->refresh_golden_frame = 0;
2103 cpi->refresh_alt_ref_frame = 1;
2104 break;
2105 default:
2106 assert(0);
2107 break;
2108 }
2109 if (is_spatial_svc(cpi)) {
2110 if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
2111 cpi->refresh_golden_frame = 0;
2112 if (cpi->alt_ref_source == NULL)
2113 cpi->refresh_alt_ref_frame = 0;
2114 }
2115 }
2116
2117
vp9_rc_get_second_pass_params(VP9_COMP * cpi)2118 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
2119 VP9_COMMON *const cm = &cpi->common;
2120 RATE_CONTROL *const rc = &cpi->rc;
2121 TWO_PASS *const twopass = &cpi->twopass;
2122 int frames_left;
2123 FIRSTPASS_STATS this_frame;
2124 FIRSTPASS_STATS this_frame_copy;
2125
2126 int target_rate;
2127 LAYER_CONTEXT *lc = NULL;
2128
2129 if (is_spatial_svc(cpi)) {
2130 lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
2131 frames_left = (int)(twopass->total_stats.count -
2132 lc->current_video_frame_in_layer);
2133 } else {
2134 frames_left = (int)(twopass->total_stats.count -
2135 cm->current_video_frame);
2136 }
2137
2138 if (!twopass->stats_in)
2139 return;
2140
2141 // If this is an arf frame then we dont want to read the stats file or
2142 // advance the input pointer as we already have what we need.
2143 if (twopass->gf_group.update_type[twopass->gf_group.index] == ARF_UPDATE) {
2144 int target_rate;
2145 configure_buffer_updates(cpi);
2146 target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
2147 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2148 rc->base_frame_target = target_rate;
2149
2150 // Correction to rate target based on prior over or under shoot.
2151 if (cpi->oxcf.rc_mode == VPX_VBR)
2152 vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
2153
2154 vp9_rc_set_frame_target(cpi, target_rate);
2155 cm->frame_type = INTER_FRAME;
2156
2157 if (is_spatial_svc(cpi)) {
2158 if (cpi->svc.spatial_layer_id == 0) {
2159 lc->is_key_frame = 0;
2160 } else {
2161 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2162
2163 if (lc->is_key_frame)
2164 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2165 }
2166 }
2167
2168 return;
2169 }
2170
2171 vp9_clear_system_state();
2172
2173 if (is_spatial_svc(cpi) && twopass->kf_intra_err_min == 0) {
2174 twopass->kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
2175 twopass->gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
2176 }
2177
2178 if (cpi->oxcf.rc_mode == VPX_Q) {
2179 twopass->active_worst_quality = cpi->oxcf.cq_level;
2180 } else if (cm->current_video_frame == 0 ||
2181 (is_spatial_svc(cpi) &&
2182 lc->current_video_frame_in_layer == 0)) {
2183 // Special case code for first frame.
2184 const int section_target_bandwidth = (int)(twopass->bits_left /
2185 frames_left);
2186 const int tmp_q = get_twopass_worst_quality(cpi, &twopass->total_left_stats,
2187 section_target_bandwidth);
2188 twopass->active_worst_quality = tmp_q;
2189 rc->ni_av_qi = tmp_q;
2190 rc->avg_q = vp9_convert_qindex_to_q(tmp_q);
2191 }
2192 vp9_zero(this_frame);
2193 if (EOF == input_stats(twopass, &this_frame))
2194 return;
2195
2196 // Local copy of the current frame's first pass stats.
2197 this_frame_copy = this_frame;
2198
2199 // Keyframe and section processing.
2200 if (rc->frames_to_key == 0 ||
2201 (cpi->frame_flags & FRAMEFLAGS_KEY)) {
2202 // Define next KF group and assign bits to it.
2203 find_next_key_frame(cpi, &this_frame_copy);
2204 } else {
2205 cm->frame_type = INTER_FRAME;
2206 }
2207
2208 if (is_spatial_svc(cpi)) {
2209 if (cpi->svc.spatial_layer_id == 0) {
2210 lc->is_key_frame = (cm->frame_type == KEY_FRAME);
2211 if (lc->is_key_frame)
2212 cpi->ref_frame_flags &=
2213 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
2214 } else {
2215 cm->frame_type = INTER_FRAME;
2216 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
2217
2218 if (lc->is_key_frame) {
2219 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
2220 }
2221 }
2222 }
2223
2224 // Define a new GF/ARF group. (Should always enter here for key frames).
2225 if (rc->frames_till_gf_update_due == 0) {
2226 define_gf_group(cpi, &this_frame_copy);
2227
2228 if (twopass->gf_zeromotion_pct > 995) {
2229 // As long as max_thresh for encode breakout is small enough, it is ok
2230 // to enable it for show frame, i.e. set allow_encode_breakout to
2231 // ENCODE_BREAKOUT_LIMITED.
2232 if (!cm->show_frame)
2233 cpi->allow_encode_breakout = ENCODE_BREAKOUT_DISABLED;
2234 else
2235 cpi->allow_encode_breakout = ENCODE_BREAKOUT_LIMITED;
2236 }
2237
2238 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2239 if (!is_spatial_svc(cpi))
2240 cpi->refresh_golden_frame = 1;
2241 }
2242
2243 configure_buffer_updates(cpi);
2244
2245 target_rate = twopass->gf_group.bit_allocation[twopass->gf_group.index];
2246 if (cpi->common.frame_type == KEY_FRAME)
2247 target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate);
2248 else
2249 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
2250
2251 rc->base_frame_target = target_rate;
2252
2253 // Correction to rate target based on prior over or under shoot.
2254 if (cpi->oxcf.rc_mode == VPX_VBR)
2255 vbr_rate_correction(&target_rate, rc->vbr_bits_off_target);
2256
2257 vp9_rc_set_frame_target(cpi, target_rate);
2258
2259 // Update the total stats remaining structure.
2260 subtract_stats(&twopass->total_left_stats, &this_frame);
2261 }
2262
vp9_twopass_postencode_update(VP9_COMP * cpi)2263 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
2264 TWO_PASS *const twopass = &cpi->twopass;
2265 RATE_CONTROL *const rc = &cpi->rc;
2266
2267 // VBR correction is done through rc->vbr_bits_off_target. Based on the
2268 // sign of this value, a limited % adjustment is made to the target rate
2269 // of subsequent frames, to try and push it back towards 0. This method
2270 // is designed to prevent extreme behaviour at the end of a clip
2271 // or group of frames.
2272 const int bits_used = rc->base_frame_target;
2273 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
2274
2275 twopass->bits_left = MAX(twopass->bits_left - bits_used, 0);
2276
2277 if (cpi->common.frame_type != KEY_FRAME &&
2278 !vp9_is_upper_layer_key_frame(cpi)) {
2279 twopass->kf_group_bits -= bits_used;
2280 }
2281 twopass->kf_group_bits = MAX(twopass->kf_group_bits, 0);
2282
2283 // Increment the gf group index ready for the next frame.
2284 ++twopass->gf_group.index;
2285 }
2286