1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "./vpx_config.h"
12 #include "vp9/common/vp9_loopfilter.h"
13 #include "vp9/common/vp9_onyxc_int.h"
14 #include "vp9/common/vp9_reconinter.h"
15 #include "vpx_mem/vpx_mem.h"
16
17 #include "vp9/common/vp9_seg_common.h"
18
19 // 64 bit masks for left transform size. Each 1 represents a position where
20 // we should apply a loop filter across the left border of an 8x8 block
21 // boundary.
22 //
23 // In the case of TX_16X16-> ( in low order byte first we end up with
24 // a mask that looks like this
25 //
26 // 10101010
27 // 10101010
28 // 10101010
29 // 10101010
30 // 10101010
31 // 10101010
32 // 10101010
33 // 10101010
34 //
35 // A loopfilter should be applied to every other 8x8 horizontally.
36 static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
37 0xffffffffffffffff, // TX_4X4
38 0xffffffffffffffff, // TX_8x8
39 0x5555555555555555, // TX_16x16
40 0x1111111111111111, // TX_32x32
41 };
42
43 // 64 bit masks for above transform size. Each 1 represents a position where
44 // we should apply a loop filter across the top border of an 8x8 block
45 // boundary.
46 //
47 // In the case of TX_32x32 -> ( in low order byte first we end up with
48 // a mask that looks like this
49 //
50 // 11111111
51 // 00000000
52 // 00000000
53 // 00000000
54 // 11111111
55 // 00000000
56 // 00000000
57 // 00000000
58 //
59 // A loopfilter should be applied to every other 4 the row vertically.
60 static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
61 0xffffffffffffffff, // TX_4X4
62 0xffffffffffffffff, // TX_8x8
63 0x00ff00ff00ff00ff, // TX_16x16
64 0x000000ff000000ff, // TX_32x32
65 };
66
67 // 64 bit masks for prediction sizes (left). Each 1 represents a position
68 // where left border of an 8x8 block. These are aligned to the right most
69 // appropriate bit, and then shifted into place.
70 //
71 // In the case of TX_16x32 -> ( low order byte first ) we end up with
72 // a mask that looks like this :
73 //
74 // 10000000
75 // 10000000
76 // 10000000
77 // 10000000
78 // 00000000
79 // 00000000
80 // 00000000
81 // 00000000
82 static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
83 0x0000000000000001, // BLOCK_4X4,
84 0x0000000000000001, // BLOCK_4X8,
85 0x0000000000000001, // BLOCK_8X4,
86 0x0000000000000001, // BLOCK_8X8,
87 0x0000000000000101, // BLOCK_8X16,
88 0x0000000000000001, // BLOCK_16X8,
89 0x0000000000000101, // BLOCK_16X16,
90 0x0000000001010101, // BLOCK_16X32,
91 0x0000000000000101, // BLOCK_32X16,
92 0x0000000001010101, // BLOCK_32X32,
93 0x0101010101010101, // BLOCK_32X64,
94 0x0000000001010101, // BLOCK_64X32,
95 0x0101010101010101, // BLOCK_64X64
96 };
97
98 // 64 bit mask to shift and set for each prediction size.
99 static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
100 0x0000000000000001, // BLOCK_4X4
101 0x0000000000000001, // BLOCK_4X8
102 0x0000000000000001, // BLOCK_8X4
103 0x0000000000000001, // BLOCK_8X8
104 0x0000000000000001, // BLOCK_8X16,
105 0x0000000000000003, // BLOCK_16X8
106 0x0000000000000003, // BLOCK_16X16
107 0x0000000000000003, // BLOCK_16X32,
108 0x000000000000000f, // BLOCK_32X16,
109 0x000000000000000f, // BLOCK_32X32,
110 0x000000000000000f, // BLOCK_32X64,
111 0x00000000000000ff, // BLOCK_64X32,
112 0x00000000000000ff, // BLOCK_64X64
113 };
114 // 64 bit mask to shift and set for each prediction size. A bit is set for
115 // each 8x8 block that would be in the left most block of the given block
116 // size in the 64x64 block.
117 static const uint64_t size_mask[BLOCK_SIZES] = {
118 0x0000000000000001, // BLOCK_4X4
119 0x0000000000000001, // BLOCK_4X8
120 0x0000000000000001, // BLOCK_8X4
121 0x0000000000000001, // BLOCK_8X8
122 0x0000000000000101, // BLOCK_8X16,
123 0x0000000000000003, // BLOCK_16X8
124 0x0000000000000303, // BLOCK_16X16
125 0x0000000003030303, // BLOCK_16X32,
126 0x0000000000000f0f, // BLOCK_32X16,
127 0x000000000f0f0f0f, // BLOCK_32X32,
128 0x0f0f0f0f0f0f0f0f, // BLOCK_32X64,
129 0x00000000ffffffff, // BLOCK_64X32,
130 0xffffffffffffffff, // BLOCK_64X64
131 };
132
133 // These are used for masking the left and above borders.
134 static const uint64_t left_border = 0x1111111111111111;
135 static const uint64_t above_border = 0x000000ff000000ff;
136
137 // 16 bit masks for uv transform sizes.
138 static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
139 0xffff, // TX_4X4
140 0xffff, // TX_8x8
141 0x5555, // TX_16x16
142 0x1111, // TX_32x32
143 };
144
145 static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
146 0xffff, // TX_4X4
147 0xffff, // TX_8x8
148 0x0f0f, // TX_16x16
149 0x000f, // TX_32x32
150 };
151
152 // 16 bit left mask to shift and set for each uv prediction size.
153 static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
154 0x0001, // BLOCK_4X4,
155 0x0001, // BLOCK_4X8,
156 0x0001, // BLOCK_8X4,
157 0x0001, // BLOCK_8X8,
158 0x0001, // BLOCK_8X16,
159 0x0001, // BLOCK_16X8,
160 0x0001, // BLOCK_16X16,
161 0x0011, // BLOCK_16X32,
162 0x0001, // BLOCK_32X16,
163 0x0011, // BLOCK_32X32,
164 0x1111, // BLOCK_32X64
165 0x0011, // BLOCK_64X32,
166 0x1111, // BLOCK_64X64
167 };
168 // 16 bit above mask to shift and set for uv each prediction size.
169 static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
170 0x0001, // BLOCK_4X4
171 0x0001, // BLOCK_4X8
172 0x0001, // BLOCK_8X4
173 0x0001, // BLOCK_8X8
174 0x0001, // BLOCK_8X16,
175 0x0001, // BLOCK_16X8
176 0x0001, // BLOCK_16X16
177 0x0001, // BLOCK_16X32,
178 0x0003, // BLOCK_32X16,
179 0x0003, // BLOCK_32X32,
180 0x0003, // BLOCK_32X64,
181 0x000f, // BLOCK_64X32,
182 0x000f, // BLOCK_64X64
183 };
184
185 // 64 bit mask to shift and set for each uv prediction size
186 static const uint16_t size_mask_uv[BLOCK_SIZES] = {
187 0x0001, // BLOCK_4X4
188 0x0001, // BLOCK_4X8
189 0x0001, // BLOCK_8X4
190 0x0001, // BLOCK_8X8
191 0x0001, // BLOCK_8X16,
192 0x0001, // BLOCK_16X8
193 0x0001, // BLOCK_16X16
194 0x0011, // BLOCK_16X32,
195 0x0003, // BLOCK_32X16,
196 0x0033, // BLOCK_32X32,
197 0x3333, // BLOCK_32X64,
198 0x00ff, // BLOCK_64X32,
199 0xffff, // BLOCK_64X64
200 };
201 static const uint16_t left_border_uv = 0x1111;
202 static const uint16_t above_border_uv = 0x000f;
203
204 static const int mode_lf_lut[MB_MODE_COUNT] = {
205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
206 1, 1, 0, 1 // INTER_MODES (ZEROMV == 0)
207 };
208
update_sharpness(loop_filter_info_n * lfi,int sharpness_lvl)209 static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
210 int lvl;
211
212 // For each possible value for the loop filter fill out limits
213 for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
214 // Set loop filter parameters that control sharpness.
215 int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
216
217 if (sharpness_lvl > 0) {
218 if (block_inside_limit > (9 - sharpness_lvl))
219 block_inside_limit = (9 - sharpness_lvl);
220 }
221
222 if (block_inside_limit < 1)
223 block_inside_limit = 1;
224
225 vpx_memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
226 vpx_memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
227 SIMD_WIDTH);
228 }
229 }
230
get_filter_level(const loop_filter_info_n * lfi_n,const MB_MODE_INFO * mbmi)231 static uint8_t get_filter_level(const loop_filter_info_n *lfi_n,
232 const MB_MODE_INFO *mbmi) {
233 return lfi_n->lvl[mbmi->segment_id][mbmi->ref_frame[0]]
234 [mode_lf_lut[mbmi->mode]];
235 }
236
vp9_loop_filter_init(VP9_COMMON * cm)237 void vp9_loop_filter_init(VP9_COMMON *cm) {
238 loop_filter_info_n *lfi = &cm->lf_info;
239 struct loopfilter *lf = &cm->lf;
240 int lvl;
241
242 // init limits for given sharpness
243 update_sharpness(lfi, lf->sharpness_level);
244 lf->last_sharpness_level = lf->sharpness_level;
245
246 // init hev threshold const vectors
247 for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
248 vpx_memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
249 }
250
vp9_loop_filter_frame_init(VP9_COMMON * cm,int default_filt_lvl)251 void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
252 int seg_id;
253 // n_shift is the multiplier for lf_deltas
254 // the multiplier is 1 for when filter_lvl is between 0 and 31;
255 // 2 when filter_lvl is between 32 and 63
256 const int scale = 1 << (default_filt_lvl >> 5);
257 loop_filter_info_n *const lfi = &cm->lf_info;
258 struct loopfilter *const lf = &cm->lf;
259 const struct segmentation *const seg = &cm->seg;
260
261 // update limits if sharpness has changed
262 if (lf->last_sharpness_level != lf->sharpness_level) {
263 update_sharpness(lfi, lf->sharpness_level);
264 lf->last_sharpness_level = lf->sharpness_level;
265 }
266
267 for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
268 int lvl_seg = default_filt_lvl;
269 if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
270 const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
271 lvl_seg = clamp(seg->abs_delta == SEGMENT_ABSDATA ?
272 data : default_filt_lvl + data,
273 0, MAX_LOOP_FILTER);
274 }
275
276 if (!lf->mode_ref_delta_enabled) {
277 // we could get rid of this if we assume that deltas are set to
278 // zero when not in use; encoder always uses deltas
279 vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
280 } else {
281 int ref, mode;
282 const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
283 lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
284
285 for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
286 for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
287 const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale
288 + lf->mode_deltas[mode] * scale;
289 lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
290 }
291 }
292 }
293 }
294 }
295
filter_selectively_vert_row2(PLANE_TYPE plane_type,uint8_t * s,int pitch,unsigned int mask_16x16_l,unsigned int mask_8x8_l,unsigned int mask_4x4_l,unsigned int mask_4x4_int_l,const loop_filter_info_n * lfi_n,const uint8_t * lfl)296 static void filter_selectively_vert_row2(PLANE_TYPE plane_type,
297 uint8_t *s, int pitch,
298 unsigned int mask_16x16_l,
299 unsigned int mask_8x8_l,
300 unsigned int mask_4x4_l,
301 unsigned int mask_4x4_int_l,
302 const loop_filter_info_n *lfi_n,
303 const uint8_t *lfl) {
304 const int mask_shift = plane_type ? 4 : 8;
305 const int mask_cutoff = plane_type ? 0xf : 0xff;
306 const int lfl_forward = plane_type ? 4 : 8;
307
308 unsigned int mask_16x16_0 = mask_16x16_l & mask_cutoff;
309 unsigned int mask_8x8_0 = mask_8x8_l & mask_cutoff;
310 unsigned int mask_4x4_0 = mask_4x4_l & mask_cutoff;
311 unsigned int mask_4x4_int_0 = mask_4x4_int_l & mask_cutoff;
312 unsigned int mask_16x16_1 = (mask_16x16_l >> mask_shift) & mask_cutoff;
313 unsigned int mask_8x8_1 = (mask_8x8_l >> mask_shift) & mask_cutoff;
314 unsigned int mask_4x4_1 = (mask_4x4_l >> mask_shift) & mask_cutoff;
315 unsigned int mask_4x4_int_1 = (mask_4x4_int_l >> mask_shift) & mask_cutoff;
316 unsigned int mask;
317
318 for (mask = mask_16x16_0 | mask_8x8_0 | mask_4x4_0 | mask_4x4_int_0 |
319 mask_16x16_1 | mask_8x8_1 | mask_4x4_1 | mask_4x4_int_1;
320 mask; mask >>= 1) {
321 const loop_filter_thresh *lfi0 = lfi_n->lfthr + *lfl;
322 const loop_filter_thresh *lfi1 = lfi_n->lfthr + *(lfl + lfl_forward);
323
324 // TODO(yunqingwang): count in loopfilter functions should be removed.
325 if (mask & 1) {
326 if ((mask_16x16_0 | mask_16x16_1) & 1) {
327 if ((mask_16x16_0 & mask_16x16_1) & 1) {
328 vp9_lpf_vertical_16_dual(s, pitch, lfi0->mblim, lfi0->lim,
329 lfi0->hev_thr);
330 } else if (mask_16x16_0 & 1) {
331 vp9_lpf_vertical_16(s, pitch, lfi0->mblim, lfi0->lim,
332 lfi0->hev_thr);
333 } else {
334 vp9_lpf_vertical_16(s + 8 *pitch, pitch, lfi1->mblim,
335 lfi1->lim, lfi1->hev_thr);
336 }
337 }
338
339 if ((mask_8x8_0 | mask_8x8_1) & 1) {
340 if ((mask_8x8_0 & mask_8x8_1) & 1) {
341 vp9_lpf_vertical_8_dual(s, pitch, lfi0->mblim, lfi0->lim,
342 lfi0->hev_thr, lfi1->mblim, lfi1->lim,
343 lfi1->hev_thr);
344 } else if (mask_8x8_0 & 1) {
345 vp9_lpf_vertical_8(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
346 1);
347 } else {
348 vp9_lpf_vertical_8(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
349 lfi1->hev_thr, 1);
350 }
351 }
352
353 if ((mask_4x4_0 | mask_4x4_1) & 1) {
354 if ((mask_4x4_0 & mask_4x4_1) & 1) {
355 vp9_lpf_vertical_4_dual(s, pitch, lfi0->mblim, lfi0->lim,
356 lfi0->hev_thr, lfi1->mblim, lfi1->lim,
357 lfi1->hev_thr);
358 } else if (mask_4x4_0 & 1) {
359 vp9_lpf_vertical_4(s, pitch, lfi0->mblim, lfi0->lim, lfi0->hev_thr,
360 1);
361 } else {
362 vp9_lpf_vertical_4(s + 8 * pitch, pitch, lfi1->mblim, lfi1->lim,
363 lfi1->hev_thr, 1);
364 }
365 }
366
367 if ((mask_4x4_int_0 | mask_4x4_int_1) & 1) {
368 if ((mask_4x4_int_0 & mask_4x4_int_1) & 1) {
369 vp9_lpf_vertical_4_dual(s + 4, pitch, lfi0->mblim, lfi0->lim,
370 lfi0->hev_thr, lfi1->mblim, lfi1->lim,
371 lfi1->hev_thr);
372 } else if (mask_4x4_int_0 & 1) {
373 vp9_lpf_vertical_4(s + 4, pitch, lfi0->mblim, lfi0->lim,
374 lfi0->hev_thr, 1);
375 } else {
376 vp9_lpf_vertical_4(s + 8 * pitch + 4, pitch, lfi1->mblim, lfi1->lim,
377 lfi1->hev_thr, 1);
378 }
379 }
380 }
381
382 s += 8;
383 lfl += 1;
384 mask_16x16_0 >>= 1;
385 mask_8x8_0 >>= 1;
386 mask_4x4_0 >>= 1;
387 mask_4x4_int_0 >>= 1;
388 mask_16x16_1 >>= 1;
389 mask_8x8_1 >>= 1;
390 mask_4x4_1 >>= 1;
391 mask_4x4_int_1 >>= 1;
392 }
393 }
394
filter_selectively_horiz(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl)395 static void filter_selectively_horiz(uint8_t *s, int pitch,
396 unsigned int mask_16x16,
397 unsigned int mask_8x8,
398 unsigned int mask_4x4,
399 unsigned int mask_4x4_int,
400 const loop_filter_info_n *lfi_n,
401 const uint8_t *lfl) {
402 unsigned int mask;
403 int count;
404
405 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
406 mask; mask >>= count) {
407 const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
408
409 count = 1;
410 if (mask & 1) {
411 if (mask_16x16 & 1) {
412 if ((mask_16x16 & 3) == 3) {
413 vp9_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
414 lfi->hev_thr, 2);
415 count = 2;
416 } else {
417 vp9_lpf_horizontal_16(s, pitch, lfi->mblim, lfi->lim,
418 lfi->hev_thr, 1);
419 }
420 } else if (mask_8x8 & 1) {
421 if ((mask_8x8 & 3) == 3) {
422 // Next block's thresholds
423 const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
424
425 vp9_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim,
426 lfi->hev_thr, lfin->mblim, lfin->lim,
427 lfin->hev_thr);
428
429 if ((mask_4x4_int & 3) == 3) {
430 vp9_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
431 lfi->lim, lfi->hev_thr, lfin->mblim,
432 lfin->lim, lfin->hev_thr);
433 } else {
434 if (mask_4x4_int & 1)
435 vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
436 lfi->hev_thr, 1);
437 else if (mask_4x4_int & 2)
438 vp9_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
439 lfin->lim, lfin->hev_thr, 1);
440 }
441 count = 2;
442 } else {
443 vp9_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
444
445 if (mask_4x4_int & 1)
446 vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
447 lfi->hev_thr, 1);
448 }
449 } else if (mask_4x4 & 1) {
450 if ((mask_4x4 & 3) == 3) {
451 // Next block's thresholds
452 const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
453
454 vp9_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim,
455 lfi->hev_thr, lfin->mblim, lfin->lim,
456 lfin->hev_thr);
457 if ((mask_4x4_int & 3) == 3) {
458 vp9_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim,
459 lfi->lim, lfi->hev_thr, lfin->mblim,
460 lfin->lim, lfin->hev_thr);
461 } else {
462 if (mask_4x4_int & 1)
463 vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
464 lfi->hev_thr, 1);
465 else if (mask_4x4_int & 2)
466 vp9_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim,
467 lfin->lim, lfin->hev_thr, 1);
468 }
469 count = 2;
470 } else {
471 vp9_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
472
473 if (mask_4x4_int & 1)
474 vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
475 lfi->hev_thr, 1);
476 }
477 } else if (mask_4x4_int & 1) {
478 vp9_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim,
479 lfi->hev_thr, 1);
480 }
481 }
482 s += 8 * count;
483 lfl += count;
484 mask_16x16 >>= count;
485 mask_8x8 >>= count;
486 mask_4x4 >>= count;
487 mask_4x4_int >>= count;
488 }
489 }
490
491 // This function ors into the current lfm structure, where to do loop
492 // filters for the specific mi we are looking at. It uses information
493 // including the block_size_type (32x16, 32x32, etc.), the transform size,
494 // whether there were any coefficients encoded, and the loop filter strength
495 // block we are currently looking at. Shift is used to position the
496 // 1's we produce.
497 // TODO(JBB) Need another function for different resolution color..
build_masks(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,const int shift_uv,LOOP_FILTER_MASK * lfm)498 static void build_masks(const loop_filter_info_n *const lfi_n,
499 const MODE_INFO *mi, const int shift_y,
500 const int shift_uv,
501 LOOP_FILTER_MASK *lfm) {
502 const MB_MODE_INFO *mbmi = &mi->mbmi;
503 const BLOCK_SIZE block_size = mbmi->sb_type;
504 const TX_SIZE tx_size_y = mbmi->tx_size;
505 const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1);
506 const int filter_level = get_filter_level(lfi_n, mbmi);
507 uint64_t *const left_y = &lfm->left_y[tx_size_y];
508 uint64_t *const above_y = &lfm->above_y[tx_size_y];
509 uint64_t *const int_4x4_y = &lfm->int_4x4_y;
510 uint16_t *const left_uv = &lfm->left_uv[tx_size_uv];
511 uint16_t *const above_uv = &lfm->above_uv[tx_size_uv];
512 uint16_t *const int_4x4_uv = &lfm->int_4x4_uv;
513 int i;
514
515 // If filter level is 0 we don't loop filter.
516 if (!filter_level) {
517 return;
518 } else {
519 const int w = num_8x8_blocks_wide_lookup[block_size];
520 const int h = num_8x8_blocks_high_lookup[block_size];
521 int index = shift_y;
522 for (i = 0; i < h; i++) {
523 vpx_memset(&lfm->lfl_y[index], filter_level, w);
524 index += 8;
525 }
526 }
527
528 // These set 1 in the current block size for the block size edges.
529 // For instance if the block size is 32x16, we'll set:
530 // above = 1111
531 // 0000
532 // and
533 // left = 1000
534 // = 1000
535 // NOTE : In this example the low bit is left most ( 1000 ) is stored as
536 // 1, not 8...
537 //
538 // U and V set things on a 16 bit scale.
539 //
540 *above_y |= above_prediction_mask[block_size] << shift_y;
541 *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
542 *left_y |= left_prediction_mask[block_size] << shift_y;
543 *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
544
545 // If the block has no coefficients and is not intra we skip applying
546 // the loop filter on block edges.
547 if (mbmi->skip && is_inter_block(mbmi))
548 return;
549
550 // Here we are adding a mask for the transform size. The transform
551 // size mask is set to be correct for a 64x64 prediction block size. We
552 // mask to match the size of the block we are working on and then shift it
553 // into place..
554 *above_y |= (size_mask[block_size] &
555 above_64x64_txform_mask[tx_size_y]) << shift_y;
556 *above_uv |= (size_mask_uv[block_size] &
557 above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
558
559 *left_y |= (size_mask[block_size] &
560 left_64x64_txform_mask[tx_size_y]) << shift_y;
561 *left_uv |= (size_mask_uv[block_size] &
562 left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
563
564 // Here we are trying to determine what to do with the internal 4x4 block
565 // boundaries. These differ from the 4x4 boundaries on the outside edge of
566 // an 8x8 in that the internal ones can be skipped and don't depend on
567 // the prediction block size.
568 if (tx_size_y == TX_4X4)
569 *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
570
571 if (tx_size_uv == TX_4X4)
572 *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
573 }
574
575 // This function does the same thing as the one above with the exception that
576 // it only affects the y masks. It exists because for blocks < 16x16 in size,
577 // we only update u and v masks on the first block.
build_y_mask(const loop_filter_info_n * const lfi_n,const MODE_INFO * mi,const int shift_y,LOOP_FILTER_MASK * lfm)578 static void build_y_mask(const loop_filter_info_n *const lfi_n,
579 const MODE_INFO *mi, const int shift_y,
580 LOOP_FILTER_MASK *lfm) {
581 const MB_MODE_INFO *mbmi = &mi->mbmi;
582 const BLOCK_SIZE block_size = mbmi->sb_type;
583 const TX_SIZE tx_size_y = mbmi->tx_size;
584 const int filter_level = get_filter_level(lfi_n, mbmi);
585 uint64_t *const left_y = &lfm->left_y[tx_size_y];
586 uint64_t *const above_y = &lfm->above_y[tx_size_y];
587 uint64_t *const int_4x4_y = &lfm->int_4x4_y;
588 int i;
589
590 if (!filter_level) {
591 return;
592 } else {
593 const int w = num_8x8_blocks_wide_lookup[block_size];
594 const int h = num_8x8_blocks_high_lookup[block_size];
595 int index = shift_y;
596 for (i = 0; i < h; i++) {
597 vpx_memset(&lfm->lfl_y[index], filter_level, w);
598 index += 8;
599 }
600 }
601
602 *above_y |= above_prediction_mask[block_size] << shift_y;
603 *left_y |= left_prediction_mask[block_size] << shift_y;
604
605 if (mbmi->skip && is_inter_block(mbmi))
606 return;
607
608 *above_y |= (size_mask[block_size] &
609 above_64x64_txform_mask[tx_size_y]) << shift_y;
610
611 *left_y |= (size_mask[block_size] &
612 left_64x64_txform_mask[tx_size_y]) << shift_y;
613
614 if (tx_size_y == TX_4X4)
615 *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
616 }
617
618 // This function sets up the bit masks for the entire 64x64 region represented
619 // by mi_row, mi_col.
620 // TODO(JBB): This function only works for yv12.
vp9_setup_mask(VP9_COMMON * const cm,const int mi_row,const int mi_col,MODE_INFO ** mi,const int mode_info_stride,LOOP_FILTER_MASK * lfm)621 void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
622 MODE_INFO **mi, const int mode_info_stride,
623 LOOP_FILTER_MASK *lfm) {
624 int idx_32, idx_16, idx_8;
625 const loop_filter_info_n *const lfi_n = &cm->lf_info;
626 MODE_INFO **mip = mi;
627 MODE_INFO **mip2 = mi;
628
629 // These are offsets to the next mi in the 64x64 block. It is what gets
630 // added to the mi ptr as we go through each loop. It helps us to avoid
631 // setting up special row and column counters for each index. The last step
632 // brings us out back to the starting position.
633 const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
634 -(mode_info_stride << 2) - 4};
635 const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
636 -(mode_info_stride << 1) - 2};
637 const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
638
639 // Following variables represent shifts to position the current block
640 // mask over the appropriate block. A shift of 36 to the left will move
641 // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
642 // 4 rows to the appropriate spot.
643 const int shift_32_y[] = {0, 4, 32, 36};
644 const int shift_16_y[] = {0, 2, 16, 18};
645 const int shift_8_y[] = {0, 1, 8, 9};
646 const int shift_32_uv[] = {0, 2, 8, 10};
647 const int shift_16_uv[] = {0, 1, 4, 5};
648 int i;
649 const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
650 cm->mi_rows - mi_row : MI_BLOCK_SIZE);
651 const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
652 cm->mi_cols - mi_col : MI_BLOCK_SIZE);
653
654 vp9_zero(*lfm);
655 assert(mip[0] != NULL);
656
657 // TODO(jimbankoski): Try moving most of the following code into decode
658 // loop and storing lfm in the mbmi structure so that we don't have to go
659 // through the recursive loop structure multiple times.
660 switch (mip[0]->mbmi.sb_type) {
661 case BLOCK_64X64:
662 build_masks(lfi_n, mip[0] , 0, 0, lfm);
663 break;
664 case BLOCK_64X32:
665 build_masks(lfi_n, mip[0], 0, 0, lfm);
666 mip2 = mip + mode_info_stride * 4;
667 if (4 >= max_rows)
668 break;
669 build_masks(lfi_n, mip2[0], 32, 8, lfm);
670 break;
671 case BLOCK_32X64:
672 build_masks(lfi_n, mip[0], 0, 0, lfm);
673 mip2 = mip + 4;
674 if (4 >= max_cols)
675 break;
676 build_masks(lfi_n, mip2[0], 4, 2, lfm);
677 break;
678 default:
679 for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
680 const int shift_y = shift_32_y[idx_32];
681 const int shift_uv = shift_32_uv[idx_32];
682 const int mi_32_col_offset = ((idx_32 & 1) << 2);
683 const int mi_32_row_offset = ((idx_32 >> 1) << 2);
684 if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
685 continue;
686 switch (mip[0]->mbmi.sb_type) {
687 case BLOCK_32X32:
688 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
689 break;
690 case BLOCK_32X16:
691 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
692 if (mi_32_row_offset + 2 >= max_rows)
693 continue;
694 mip2 = mip + mode_info_stride * 2;
695 build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
696 break;
697 case BLOCK_16X32:
698 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
699 if (mi_32_col_offset + 2 >= max_cols)
700 continue;
701 mip2 = mip + 2;
702 build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
703 break;
704 default:
705 for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
706 const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
707 const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
708 const int mi_16_col_offset = mi_32_col_offset +
709 ((idx_16 & 1) << 1);
710 const int mi_16_row_offset = mi_32_row_offset +
711 ((idx_16 >> 1) << 1);
712
713 if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
714 continue;
715
716 switch (mip[0]->mbmi.sb_type) {
717 case BLOCK_16X16:
718 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
719 break;
720 case BLOCK_16X8:
721 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
722 if (mi_16_row_offset + 1 >= max_rows)
723 continue;
724 mip2 = mip + mode_info_stride;
725 build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
726 break;
727 case BLOCK_8X16:
728 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
729 if (mi_16_col_offset +1 >= max_cols)
730 continue;
731 mip2 = mip + 1;
732 build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
733 break;
734 default: {
735 const int shift_y = shift_32_y[idx_32] +
736 shift_16_y[idx_16] +
737 shift_8_y[0];
738 build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
739 mip += offset[0];
740 for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
741 const int shift_y = shift_32_y[idx_32] +
742 shift_16_y[idx_16] +
743 shift_8_y[idx_8];
744 const int mi_8_col_offset = mi_16_col_offset +
745 ((idx_8 & 1));
746 const int mi_8_row_offset = mi_16_row_offset +
747 ((idx_8 >> 1));
748
749 if (mi_8_col_offset >= max_cols ||
750 mi_8_row_offset >= max_rows)
751 continue;
752 build_y_mask(lfi_n, mip[0], shift_y, lfm);
753 }
754 break;
755 }
756 }
757 }
758 break;
759 }
760 }
761 break;
762 }
763 // The largest loopfilter we have is 16x16 so we use the 16x16 mask
764 // for 32x32 transforms also also.
765 lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
766 lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
767 lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
768 lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
769
770 // We do at least 8 tap filter on every 32x32 even if the transform size
771 // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and
772 // remove it from the 4x4.
773 lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
774 lfm->left_y[TX_4X4] &= ~left_border;
775 lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
776 lfm->above_y[TX_4X4] &= ~above_border;
777 lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
778 lfm->left_uv[TX_4X4] &= ~left_border_uv;
779 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
780 lfm->above_uv[TX_4X4] &= ~above_border_uv;
781
782 // We do some special edge handling.
783 if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
784 const uint64_t rows = cm->mi_rows - mi_row;
785
786 // Each pixel inside the border gets a 1,
787 const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
788 const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
789
790 // Remove values completely outside our border.
791 for (i = 0; i < TX_32X32; i++) {
792 lfm->left_y[i] &= mask_y;
793 lfm->above_y[i] &= mask_y;
794 lfm->left_uv[i] &= mask_uv;
795 lfm->above_uv[i] &= mask_uv;
796 }
797 lfm->int_4x4_y &= mask_y;
798 lfm->int_4x4_uv &= mask_uv;
799
800 // We don't apply a wide loop filter on the last uv block row. If set
801 // apply the shorter one instead.
802 if (rows == 1) {
803 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
804 lfm->above_uv[TX_16X16] = 0;
805 }
806 if (rows == 5) {
807 lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
808 lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
809 }
810 }
811
812 if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
813 const uint64_t columns = cm->mi_cols - mi_col;
814
815 // Each pixel inside the border gets a 1, the multiply copies the border
816 // to where we need it.
817 const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101;
818 const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
819
820 // Internal edges are not applied on the last column of the image so
821 // we mask 1 more for the internal edges
822 const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
823
824 // Remove the bits outside the image edge.
825 for (i = 0; i < TX_32X32; i++) {
826 lfm->left_y[i] &= mask_y;
827 lfm->above_y[i] &= mask_y;
828 lfm->left_uv[i] &= mask_uv;
829 lfm->above_uv[i] &= mask_uv;
830 }
831 lfm->int_4x4_y &= mask_y;
832 lfm->int_4x4_uv &= mask_uv_int;
833
834 // We don't apply a wide loop filter on the last uv column. If set
835 // apply the shorter one instead.
836 if (columns == 1) {
837 lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
838 lfm->left_uv[TX_16X16] = 0;
839 }
840 if (columns == 5) {
841 lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
842 lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
843 }
844 }
845 // We don't apply a loop filter on the first column in the image, mask that
846 // out.
847 if (mi_col == 0) {
848 for (i = 0; i < TX_32X32; i++) {
849 lfm->left_y[i] &= 0xfefefefefefefefe;
850 lfm->left_uv[i] &= 0xeeee;
851 }
852 }
853
854 // Assert if we try to apply 2 different loop filters at the same position.
855 assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8]));
856 assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4]));
857 assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4]));
858 assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16]));
859 assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8]));
860 assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4]));
861 assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4]));
862 assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16]));
863 assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8]));
864 assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4]));
865 assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4]));
866 assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16]));
867 assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8]));
868 assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4]));
869 assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4]));
870 assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16]));
871 }
872
filter_selectively_vert(uint8_t * s,int pitch,unsigned int mask_16x16,unsigned int mask_8x8,unsigned int mask_4x4,unsigned int mask_4x4_int,const loop_filter_info_n * lfi_n,const uint8_t * lfl)873 static void filter_selectively_vert(uint8_t *s, int pitch,
874 unsigned int mask_16x16,
875 unsigned int mask_8x8,
876 unsigned int mask_4x4,
877 unsigned int mask_4x4_int,
878 const loop_filter_info_n *lfi_n,
879 const uint8_t *lfl) {
880 unsigned int mask;
881
882 for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
883 mask; mask >>= 1) {
884 const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
885
886 if (mask & 1) {
887 if (mask_16x16 & 1) {
888 vp9_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr);
889 } else if (mask_8x8 & 1) {
890 vp9_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
891 } else if (mask_4x4 & 1) {
892 vp9_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
893 }
894 }
895 if (mask_4x4_int & 1)
896 vp9_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr, 1);
897 s += 8;
898 lfl += 1;
899 mask_16x16 >>= 1;
900 mask_8x8 >>= 1;
901 mask_4x4 >>= 1;
902 mask_4x4_int >>= 1;
903 }
904 }
905
filter_block_plane_non420(VP9_COMMON * cm,struct macroblockd_plane * plane,MODE_INFO ** mi_8x8,int mi_row,int mi_col)906 static void filter_block_plane_non420(VP9_COMMON *cm,
907 struct macroblockd_plane *plane,
908 MODE_INFO **mi_8x8,
909 int mi_row, int mi_col) {
910 const int ss_x = plane->subsampling_x;
911 const int ss_y = plane->subsampling_y;
912 const int row_step = 1 << ss_x;
913 const int col_step = 1 << ss_y;
914 const int row_step_stride = cm->mi_stride * row_step;
915 struct buf_2d *const dst = &plane->dst;
916 uint8_t* const dst0 = dst->buf;
917 unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
918 unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
919 unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
920 unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
921 uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
922 int r, c;
923
924 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
925 unsigned int mask_16x16_c = 0;
926 unsigned int mask_8x8_c = 0;
927 unsigned int mask_4x4_c = 0;
928 unsigned int border_mask;
929
930 // Determine the vertical edges that need filtering
931 for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
932 const MODE_INFO *mi = mi_8x8[c];
933 const BLOCK_SIZE sb_type = mi[0].mbmi.sb_type;
934 const int skip_this = mi[0].mbmi.skip && is_inter_block(&mi[0].mbmi);
935 // left edge of current unit is block/partition edge -> no skip
936 const int block_edge_left = (num_4x4_blocks_wide_lookup[sb_type] > 1) ?
937 !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1)) : 1;
938 const int skip_this_c = skip_this && !block_edge_left;
939 // top edge of current unit is block/partition edge -> no skip
940 const int block_edge_above = (num_4x4_blocks_high_lookup[sb_type] > 1) ?
941 !(r & (num_8x8_blocks_high_lookup[sb_type] - 1)) : 1;
942 const int skip_this_r = skip_this && !block_edge_above;
943 const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
944 ? get_uv_tx_size(&mi[0].mbmi, plane)
945 : mi[0].mbmi.tx_size;
946 const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
947 const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
948
949 // Filter level can vary per MI
950 if (!(lfl[(r << 3) + (c >> ss_x)] =
951 get_filter_level(&cm->lf_info, &mi[0].mbmi)))
952 continue;
953
954 // Build masks based on the transform size of each block
955 if (tx_size == TX_32X32) {
956 if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
957 if (!skip_border_4x4_c)
958 mask_16x16_c |= 1 << (c >> ss_x);
959 else
960 mask_8x8_c |= 1 << (c >> ss_x);
961 }
962 if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
963 if (!skip_border_4x4_r)
964 mask_16x16[r] |= 1 << (c >> ss_x);
965 else
966 mask_8x8[r] |= 1 << (c >> ss_x);
967 }
968 } else if (tx_size == TX_16X16) {
969 if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
970 if (!skip_border_4x4_c)
971 mask_16x16_c |= 1 << (c >> ss_x);
972 else
973 mask_8x8_c |= 1 << (c >> ss_x);
974 }
975 if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
976 if (!skip_border_4x4_r)
977 mask_16x16[r] |= 1 << (c >> ss_x);
978 else
979 mask_8x8[r] |= 1 << (c >> ss_x);
980 }
981 } else {
982 // force 8x8 filtering on 32x32 boundaries
983 if (!skip_this_c) {
984 if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
985 mask_8x8_c |= 1 << (c >> ss_x);
986 else
987 mask_4x4_c |= 1 << (c >> ss_x);
988 }
989
990 if (!skip_this_r) {
991 if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
992 mask_8x8[r] |= 1 << (c >> ss_x);
993 else
994 mask_4x4[r] |= 1 << (c >> ss_x);
995 }
996
997 if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
998 mask_4x4_int[r] |= 1 << (c >> ss_x);
999 }
1000 }
1001
1002 // Disable filtering on the leftmost column
1003 border_mask = ~(mi_col == 0);
1004 filter_selectively_vert(dst->buf, dst->stride,
1005 mask_16x16_c & border_mask,
1006 mask_8x8_c & border_mask,
1007 mask_4x4_c & border_mask,
1008 mask_4x4_int[r],
1009 &cm->lf_info, &lfl[r << 3]);
1010 dst->buf += 8 * dst->stride;
1011 mi_8x8 += row_step_stride;
1012 }
1013
1014 // Now do horizontal pass
1015 dst->buf = dst0;
1016 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
1017 const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
1018 const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
1019
1020 unsigned int mask_16x16_r;
1021 unsigned int mask_8x8_r;
1022 unsigned int mask_4x4_r;
1023
1024 if (mi_row + r == 0) {
1025 mask_16x16_r = 0;
1026 mask_8x8_r = 0;
1027 mask_4x4_r = 0;
1028 } else {
1029 mask_16x16_r = mask_16x16[r];
1030 mask_8x8_r = mask_8x8[r];
1031 mask_4x4_r = mask_4x4[r];
1032 }
1033
1034 filter_selectively_horiz(dst->buf, dst->stride,
1035 mask_16x16_r,
1036 mask_8x8_r,
1037 mask_4x4_r,
1038 mask_4x4_int_r,
1039 &cm->lf_info, &lfl[r << 3]);
1040 dst->buf += 8 * dst->stride;
1041 }
1042 }
1043
vp9_filter_block_plane(VP9_COMMON * const cm,struct macroblockd_plane * const plane,int mi_row,LOOP_FILTER_MASK * lfm)1044 void vp9_filter_block_plane(VP9_COMMON *const cm,
1045 struct macroblockd_plane *const plane,
1046 int mi_row,
1047 LOOP_FILTER_MASK *lfm) {
1048 struct buf_2d *const dst = &plane->dst;
1049 uint8_t* const dst0 = dst->buf;
1050 int r, c;
1051
1052 if (!plane->plane_type) {
1053 uint64_t mask_16x16 = lfm->left_y[TX_16X16];
1054 uint64_t mask_8x8 = lfm->left_y[TX_8X8];
1055 uint64_t mask_4x4 = lfm->left_y[TX_4X4];
1056 uint64_t mask_4x4_int = lfm->int_4x4_y;
1057
1058 // Vertical pass: do 2 rows at one time
1059 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1060 unsigned int mask_16x16_l = mask_16x16 & 0xffff;
1061 unsigned int mask_8x8_l = mask_8x8 & 0xffff;
1062 unsigned int mask_4x4_l = mask_4x4 & 0xffff;
1063 unsigned int mask_4x4_int_l = mask_4x4_int & 0xffff;
1064
1065 // Disable filtering on the leftmost column
1066 filter_selectively_vert_row2(plane->plane_type,
1067 dst->buf, dst->stride,
1068 mask_16x16_l,
1069 mask_8x8_l,
1070 mask_4x4_l,
1071 mask_4x4_int_l,
1072 &cm->lf_info, &lfm->lfl_y[r << 3]);
1073
1074 dst->buf += 16 * dst->stride;
1075 mask_16x16 >>= 16;
1076 mask_8x8 >>= 16;
1077 mask_4x4 >>= 16;
1078 mask_4x4_int >>= 16;
1079 }
1080
1081 // Horizontal pass
1082 dst->buf = dst0;
1083 mask_16x16 = lfm->above_y[TX_16X16];
1084 mask_8x8 = lfm->above_y[TX_8X8];
1085 mask_4x4 = lfm->above_y[TX_4X4];
1086 mask_4x4_int = lfm->int_4x4_y;
1087
1088 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
1089 unsigned int mask_16x16_r;
1090 unsigned int mask_8x8_r;
1091 unsigned int mask_4x4_r;
1092
1093 if (mi_row + r == 0) {
1094 mask_16x16_r = 0;
1095 mask_8x8_r = 0;
1096 mask_4x4_r = 0;
1097 } else {
1098 mask_16x16_r = mask_16x16 & 0xff;
1099 mask_8x8_r = mask_8x8 & 0xff;
1100 mask_4x4_r = mask_4x4 & 0xff;
1101 }
1102
1103 filter_selectively_horiz(dst->buf, dst->stride,
1104 mask_16x16_r,
1105 mask_8x8_r,
1106 mask_4x4_r,
1107 mask_4x4_int & 0xff,
1108 &cm->lf_info, &lfm->lfl_y[r << 3]);
1109
1110 dst->buf += 8 * dst->stride;
1111 mask_16x16 >>= 8;
1112 mask_8x8 >>= 8;
1113 mask_4x4 >>= 8;
1114 mask_4x4_int >>= 8;
1115 }
1116 } else {
1117 uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
1118 uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
1119 uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
1120 uint16_t mask_4x4_int = lfm->int_4x4_uv;
1121
1122 // Vertical pass: do 2 rows at one time
1123 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) {
1124 if (plane->plane_type == 1) {
1125 for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) {
1126 lfm->lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
1127 lfm->lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) +
1128 (c << 1)];
1129 }
1130 }
1131
1132 {
1133 unsigned int mask_16x16_l = mask_16x16 & 0xff;
1134 unsigned int mask_8x8_l = mask_8x8 & 0xff;
1135 unsigned int mask_4x4_l = mask_4x4 & 0xff;
1136 unsigned int mask_4x4_int_l = mask_4x4_int & 0xff;
1137
1138 // Disable filtering on the leftmost column
1139 filter_selectively_vert_row2(plane->plane_type,
1140 dst->buf, dst->stride,
1141 mask_16x16_l,
1142 mask_8x8_l,
1143 mask_4x4_l,
1144 mask_4x4_int_l,
1145 &cm->lf_info, &lfm->lfl_uv[r << 1]);
1146
1147 dst->buf += 16 * dst->stride;
1148 mask_16x16 >>= 8;
1149 mask_8x8 >>= 8;
1150 mask_4x4 >>= 8;
1151 mask_4x4_int >>= 8;
1152 }
1153 }
1154
1155 // Horizontal pass
1156 dst->buf = dst0;
1157 mask_16x16 = lfm->above_uv[TX_16X16];
1158 mask_8x8 = lfm->above_uv[TX_8X8];
1159 mask_4x4 = lfm->above_uv[TX_4X4];
1160 mask_4x4_int = lfm->int_4x4_uv;
1161
1162 for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
1163 const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
1164 const unsigned int mask_4x4_int_r = skip_border_4x4_r ?
1165 0 : (mask_4x4_int & 0xf);
1166 unsigned int mask_16x16_r;
1167 unsigned int mask_8x8_r;
1168 unsigned int mask_4x4_r;
1169
1170 if (mi_row + r == 0) {
1171 mask_16x16_r = 0;
1172 mask_8x8_r = 0;
1173 mask_4x4_r = 0;
1174 } else {
1175 mask_16x16_r = mask_16x16 & 0xf;
1176 mask_8x8_r = mask_8x8 & 0xf;
1177 mask_4x4_r = mask_4x4 & 0xf;
1178 }
1179
1180 filter_selectively_horiz(dst->buf, dst->stride,
1181 mask_16x16_r,
1182 mask_8x8_r,
1183 mask_4x4_r,
1184 mask_4x4_int_r,
1185 &cm->lf_info, &lfm->lfl_uv[r << 1]);
1186
1187 dst->buf += 8 * dst->stride;
1188 mask_16x16 >>= 4;
1189 mask_8x8 >>= 4;
1190 mask_4x4 >>= 4;
1191 mask_4x4_int >>= 4;
1192 }
1193 }
1194 }
1195
vp9_loop_filter_rows(const YV12_BUFFER_CONFIG * frame_buffer,VP9_COMMON * cm,struct macroblockd_plane planes[MAX_MB_PLANE],int start,int stop,int y_only)1196 void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
1197 VP9_COMMON *cm,
1198 struct macroblockd_plane planes[MAX_MB_PLANE],
1199 int start, int stop, int y_only) {
1200 const int num_planes = y_only ? 1 : MAX_MB_PLANE;
1201 const int use_420 = y_only || (planes[1].subsampling_y == 1 &&
1202 planes[1].subsampling_x == 1);
1203 LOOP_FILTER_MASK lfm;
1204 int mi_row, mi_col;
1205
1206 for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
1207 MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride;
1208
1209 for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
1210 int plane;
1211
1212 vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col);
1213
1214 // TODO(JBB): Make setup_mask work for non 420.
1215 if (use_420)
1216 vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride,
1217 &lfm);
1218
1219 for (plane = 0; plane < num_planes; ++plane) {
1220 if (use_420)
1221 vp9_filter_block_plane(cm, &planes[plane], mi_row, &lfm);
1222 else
1223 filter_block_plane_non420(cm, &planes[plane], mi + mi_col,
1224 mi_row, mi_col);
1225 }
1226 }
1227 }
1228 }
1229
vp9_loop_filter_frame(YV12_BUFFER_CONFIG * frame,VP9_COMMON * cm,MACROBLOCKD * xd,int frame_filter_level,int y_only,int partial_frame)1230 void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame,
1231 VP9_COMMON *cm, MACROBLOCKD *xd,
1232 int frame_filter_level,
1233 int y_only, int partial_frame) {
1234 int start_mi_row, end_mi_row, mi_rows_to_filter;
1235 if (!frame_filter_level) return;
1236 start_mi_row = 0;
1237 mi_rows_to_filter = cm->mi_rows;
1238 if (partial_frame && cm->mi_rows > 8) {
1239 start_mi_row = cm->mi_rows >> 1;
1240 start_mi_row &= 0xfffffff8;
1241 mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
1242 }
1243 end_mi_row = start_mi_row + mi_rows_to_filter;
1244 vp9_loop_filter_frame_init(cm, frame_filter_level);
1245 vp9_loop_filter_rows(frame, cm, xd->plane,
1246 start_mi_row, end_mi_row,
1247 y_only);
1248 }
1249
vp9_loop_filter_worker(void * arg1,void * arg2)1250 int vp9_loop_filter_worker(void *arg1, void *arg2) {
1251 LFWorkerData *const lf_data = (LFWorkerData*)arg1;
1252 (void)arg2;
1253 vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
1254 lf_data->start, lf_data->stop, lf_data->y_only);
1255 return 1;
1256 }
1257