1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12
13 #include "./vpx_scale_rtcd.h"
14 #include "./vpx_config.h"
15
16 #include "vpx/vpx_integer.h"
17
18 #include "vp9/common/vp9_blockd.h"
19 #include "vp9/common/vp9_filter.h"
20 #include "vp9/common/vp9_reconinter.h"
21 #include "vp9/common/vp9_reconintra.h"
22
build_mc_border(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,int x,int y,int b_w,int b_h,int w,int h)23 static void build_mc_border(const uint8_t *src, int src_stride,
24 uint8_t *dst, int dst_stride,
25 int x, int y, int b_w, int b_h, int w, int h) {
26 // Get a pointer to the start of the real data for this row.
27 const uint8_t *ref_row = src - x - y * src_stride;
28
29 if (y >= h)
30 ref_row += (h - 1) * src_stride;
31 else if (y > 0)
32 ref_row += y * src_stride;
33
34 do {
35 int right = 0, copy;
36 int left = x < 0 ? -x : 0;
37
38 if (left > b_w)
39 left = b_w;
40
41 if (x + b_w > w)
42 right = x + b_w - w;
43
44 if (right > b_w)
45 right = b_w;
46
47 copy = b_w - left - right;
48
49 if (left)
50 memset(dst, ref_row[0], left);
51
52 if (copy)
53 memcpy(dst + left, ref_row + x + left, copy);
54
55 if (right)
56 memset(dst + left + copy, ref_row[w - 1], right);
57
58 dst += dst_stride;
59 ++y;
60
61 if (y > 0 && y < h)
62 ref_row += src_stride;
63 } while (--b_h);
64 }
65
inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const int subpel_x,const int subpel_y,const struct scale_factors * sf,int w,int h,int ref,const InterpKernel * kernel,int xs,int ys)66 static void inter_predictor(const uint8_t *src, int src_stride,
67 uint8_t *dst, int dst_stride,
68 const int subpel_x,
69 const int subpel_y,
70 const struct scale_factors *sf,
71 int w, int h, int ref,
72 const InterpKernel *kernel,
73 int xs, int ys) {
74 sf->predict[subpel_x != 0][subpel_y != 0][ref](
75 src, src_stride, dst, dst_stride,
76 kernel[subpel_x], xs, kernel[subpel_y], ys, w, h);
77 }
78
vp9_build_inter_predictor(const uint8_t * src,int src_stride,uint8_t * dst,int dst_stride,const MV * src_mv,const struct scale_factors * sf,int w,int h,int ref,const InterpKernel * kernel,enum mv_precision precision,int x,int y)79 void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
80 uint8_t *dst, int dst_stride,
81 const MV *src_mv,
82 const struct scale_factors *sf,
83 int w, int h, int ref,
84 const InterpKernel *kernel,
85 enum mv_precision precision,
86 int x, int y) {
87 const int is_q4 = precision == MV_PRECISION_Q4;
88 const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
89 is_q4 ? src_mv->col : src_mv->col * 2 };
90 MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf);
91 const int subpel_x = mv.col & SUBPEL_MASK;
92 const int subpel_y = mv.row & SUBPEL_MASK;
93
94 src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
95
96 inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
97 sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4);
98 }
99
round_mv_comp_q4(int value)100 static INLINE int round_mv_comp_q4(int value) {
101 return (value < 0 ? value - 2 : value + 2) / 4;
102 }
103
mi_mv_pred_q4(const MODE_INFO * mi,int idx)104 static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
105 MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
106 mi->bmi[1].as_mv[idx].as_mv.row +
107 mi->bmi[2].as_mv[idx].as_mv.row +
108 mi->bmi[3].as_mv[idx].as_mv.row),
109 round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
110 mi->bmi[1].as_mv[idx].as_mv.col +
111 mi->bmi[2].as_mv[idx].as_mv.col +
112 mi->bmi[3].as_mv[idx].as_mv.col) };
113 return res;
114 }
115
round_mv_comp_q2(int value)116 static INLINE int round_mv_comp_q2(int value) {
117 return (value < 0 ? value - 1 : value + 1) / 2;
118 }
119
mi_mv_pred_q2(const MODE_INFO * mi,int idx,int block0,int block1)120 static MV mi_mv_pred_q2(const MODE_INFO *mi, int idx, int block0, int block1) {
121 MV res = { round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.row +
122 mi->bmi[block1].as_mv[idx].as_mv.row),
123 round_mv_comp_q2(mi->bmi[block0].as_mv[idx].as_mv.col +
124 mi->bmi[block1].as_mv[idx].as_mv.col) };
125 return res;
126 }
127
128 // TODO(jkoleszar): yet another mv clamping function :-(
clamp_mv_to_umv_border_sb(const MACROBLOCKD * xd,const MV * src_mv,int bw,int bh,int ss_x,int ss_y)129 MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
130 int bw, int bh, int ss_x, int ss_y) {
131 // If the MV points so far into the UMV border that no visible pixels
132 // are used for reconstruction, the subpel part of the MV can be
133 // discarded and the MV limited to 16 pixels with equivalent results.
134 const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
135 const int spel_right = spel_left - SUBPEL_SHIFTS;
136 const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
137 const int spel_bottom = spel_top - SUBPEL_SHIFTS;
138 MV clamped_mv = {
139 src_mv->row * (1 << (1 - ss_y)),
140 src_mv->col * (1 << (1 - ss_x))
141 };
142 assert(ss_x <= 1);
143 assert(ss_y <= 1);
144
145 clamp_mv(&clamped_mv,
146 xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
147 xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
148 xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
149 xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
150
151 return clamped_mv;
152 }
153
average_split_mvs(const struct macroblockd_plane * pd,const MODE_INFO * mi,int ref,int block)154 static MV average_split_mvs(const struct macroblockd_plane *pd,
155 const MODE_INFO *mi, int ref, int block) {
156 const int ss_idx = ((pd->subsampling_x > 0) << 1) | (pd->subsampling_y > 0);
157 MV res = {0, 0};
158 switch (ss_idx) {
159 case 0:
160 res = mi->bmi[block].as_mv[ref].as_mv;
161 break;
162 case 1:
163 res = mi_mv_pred_q2(mi, ref, block, block + 2);
164 break;
165 case 2:
166 res = mi_mv_pred_q2(mi, ref, block, block + 1);
167 break;
168 case 3:
169 res = mi_mv_pred_q4(mi, ref);
170 break;
171 default:
172 assert(ss_idx <= 3 || ss_idx >= 0);
173 }
174 return res;
175 }
176
build_inter_predictors(MACROBLOCKD * xd,int plane,int block,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y)177 static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
178 int bw, int bh,
179 int x, int y, int w, int h,
180 int mi_x, int mi_y) {
181 struct macroblockd_plane *const pd = &xd->plane[plane];
182 const MODE_INFO *mi = xd->mi[0];
183 const int is_compound = has_second_ref(&mi->mbmi);
184 const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
185 int ref;
186
187 for (ref = 0; ref < 1 + is_compound; ++ref) {
188 const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
189 struct buf_2d *const pre_buf = &pd->pre[ref];
190 struct buf_2d *const dst_buf = &pd->dst;
191 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
192 const MV mv = mi->mbmi.sb_type < BLOCK_8X8
193 ? average_split_mvs(pd, mi, ref, block)
194 : mi->mbmi.mv[ref].as_mv;
195
196 // TODO(jkoleszar): This clamping is done in the incorrect place for the
197 // scaling case. It needs to be done on the scaled MV, not the pre-scaling
198 // MV. Note however that it performs the subsampling aware scaling so
199 // that the result is always q4.
200 // mv_precision precision is MV_PRECISION_Q4.
201 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
202 pd->subsampling_x,
203 pd->subsampling_y);
204
205 uint8_t *pre;
206 MV32 scaled_mv;
207 int xs, ys, subpel_x, subpel_y;
208
209 if (vp9_is_scaled(sf)) {
210 pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
211 scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
212 xs = sf->x_step_q4;
213 ys = sf->y_step_q4;
214 } else {
215 pre = pre_buf->buf + (y * pre_buf->stride + x);
216 scaled_mv.row = mv_q4.row;
217 scaled_mv.col = mv_q4.col;
218 xs = ys = 16;
219 }
220 subpel_x = scaled_mv.col & SUBPEL_MASK;
221 subpel_y = scaled_mv.row & SUBPEL_MASK;
222 pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
223 + (scaled_mv.col >> SUBPEL_BITS);
224
225 inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
226 subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
227 }
228 }
229
build_inter_predictors_for_planes(MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int plane_from,int plane_to)230 static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
231 int mi_row, int mi_col,
232 int plane_from, int plane_to) {
233 int plane;
234 const int mi_x = mi_col * MI_SIZE;
235 const int mi_y = mi_row * MI_SIZE;
236 for (plane = plane_from; plane <= plane_to; ++plane) {
237 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
238 &xd->plane[plane]);
239 const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
240 const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
241 const int bw = 4 * num_4x4_w;
242 const int bh = 4 * num_4x4_h;
243
244 if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
245 int i = 0, x, y;
246 assert(bsize == BLOCK_8X8);
247 for (y = 0; y < num_4x4_h; ++y)
248 for (x = 0; x < num_4x4_w; ++x)
249 build_inter_predictors(xd, plane, i++, bw, bh,
250 4 * x, 4 * y, 4, 4, mi_x, mi_y);
251 } else {
252 build_inter_predictors(xd, plane, 0, bw, bh,
253 0, 0, bw, bh, mi_x, mi_y);
254 }
255 }
256 }
257
vp9_build_inter_predictors_sby(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)258 void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
259 BLOCK_SIZE bsize) {
260 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
261 }
vp9_build_inter_predictors_sbuv(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)262 void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
263 BLOCK_SIZE bsize) {
264 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
265 MAX_MB_PLANE - 1);
266 }
vp9_build_inter_predictors_sb(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)267 void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
268 BLOCK_SIZE bsize) {
269 build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
270 MAX_MB_PLANE - 1);
271 }
272
273 // TODO(jingning): This function serves as a placeholder for decoder prediction
274 // using on demand border extension. It should be moved to /decoder/ directory.
dec_build_inter_predictors(MACROBLOCKD * xd,int plane,int block,int bw,int bh,int x,int y,int w,int h,int mi_x,int mi_y)275 static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
276 int bw, int bh,
277 int x, int y, int w, int h,
278 int mi_x, int mi_y) {
279 struct macroblockd_plane *const pd = &xd->plane[plane];
280 const MODE_INFO *mi = xd->mi[0];
281 const int is_compound = has_second_ref(&mi->mbmi);
282 const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
283 int ref;
284
285 for (ref = 0; ref < 1 + is_compound; ++ref) {
286 const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
287 struct buf_2d *const pre_buf = &pd->pre[ref];
288 struct buf_2d *const dst_buf = &pd->dst;
289 uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
290 const MV mv = mi->mbmi.sb_type < BLOCK_8X8
291 ? average_split_mvs(pd, mi, ref, block)
292 : mi->mbmi.mv[ref].as_mv;
293
294
295 // TODO(jkoleszar): This clamping is done in the incorrect place for the
296 // scaling case. It needs to be done on the scaled MV, not the pre-scaling
297 // MV. Note however that it performs the subsampling aware scaling so
298 // that the result is always q4.
299 // mv_precision precision is MV_PRECISION_Q4.
300 const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
301 pd->subsampling_x,
302 pd->subsampling_y);
303
304 MV32 scaled_mv;
305 int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
306 subpel_x, subpel_y;
307 uint8_t *ref_frame, *buf_ptr;
308 const YV12_BUFFER_CONFIG *ref_buf = xd->block_refs[ref]->buf;
309
310 // Get reference frame pointer, width and height.
311 if (plane == 0) {
312 frame_width = ref_buf->y_crop_width;
313 frame_height = ref_buf->y_crop_height;
314 ref_frame = ref_buf->y_buffer;
315 } else {
316 frame_width = ref_buf->uv_crop_width;
317 frame_height = ref_buf->uv_crop_height;
318 ref_frame = plane == 1 ? ref_buf->u_buffer : ref_buf->v_buffer;
319 }
320
321 if (vp9_is_scaled(sf)) {
322 // Co-ordinate of containing block to pixel precision.
323 int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
324 int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
325
326 // Co-ordinate of the block to 1/16th pixel precision.
327 x0_16 = (x_start + x) << SUBPEL_BITS;
328 y0_16 = (y_start + y) << SUBPEL_BITS;
329
330 // Co-ordinate of current block in reference frame
331 // to 1/16th pixel precision.
332 x0_16 = sf->scale_value_x(x0_16, sf);
333 y0_16 = sf->scale_value_y(y0_16, sf);
334
335 // Map the top left corner of the block into the reference frame.
336 x0 = sf->scale_value_x(x_start + x, sf);
337 y0 = sf->scale_value_y(y_start + y, sf);
338
339 // Scale the MV and incorporate the sub-pixel offset of the block
340 // in the reference frame.
341 scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
342 xs = sf->x_step_q4;
343 ys = sf->y_step_q4;
344 } else {
345 // Co-ordinate of containing block to pixel precision.
346 x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
347 y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
348
349 // Co-ordinate of the block to 1/16th pixel precision.
350 x0_16 = x0 << SUBPEL_BITS;
351 y0_16 = y0 << SUBPEL_BITS;
352
353 scaled_mv.row = mv_q4.row;
354 scaled_mv.col = mv_q4.col;
355 xs = ys = 16;
356 }
357 subpel_x = scaled_mv.col & SUBPEL_MASK;
358 subpel_y = scaled_mv.row & SUBPEL_MASK;
359
360 // Calculate the top left corner of the best matching block in the reference frame.
361 x0 += scaled_mv.col >> SUBPEL_BITS;
362 y0 += scaled_mv.row >> SUBPEL_BITS;
363 x0_16 += scaled_mv.col;
364 y0_16 += scaled_mv.row;
365
366 // Get reference block pointer.
367 buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
368 buf_stride = pre_buf->stride;
369
370 // Do border extension if there is motion or the
371 // width/height is not a multiple of 8 pixels.
372 if (scaled_mv.col || scaled_mv.row ||
373 (frame_width & 0x7) || (frame_height & 0x7)) {
374 // Get reference block bottom right coordinate.
375 int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
376 int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
377 int x_pad = 0, y_pad = 0;
378
379 if (subpel_x || (sf->x_step_q4 & SUBPEL_MASK)) {
380 x0 -= VP9_INTERP_EXTEND - 1;
381 x1 += VP9_INTERP_EXTEND;
382 x_pad = 1;
383 }
384
385 if (subpel_y || (sf->y_step_q4 & SUBPEL_MASK)) {
386 y0 -= VP9_INTERP_EXTEND - 1;
387 y1 += VP9_INTERP_EXTEND;
388 y_pad = 1;
389 }
390
391 // Skip border extension if block is inside the frame.
392 if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width - 1 ||
393 y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
394 uint8_t *buf_ptr1 = ref_frame + y0 * pre_buf->stride + x0;
395 // Extend the border.
396 build_mc_border(buf_ptr1, pre_buf->stride, xd->mc_buf, x1 - x0 + 1,
397 x0, y0, x1 - x0 + 1, y1 - y0 + 1, frame_width,
398 frame_height);
399 buf_stride = x1 - x0 + 1;
400 buf_ptr = xd->mc_buf + y_pad * 3 * buf_stride + x_pad * 3;
401 }
402 }
403
404 inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
405 subpel_y, sf, w, h, ref, kernel, xs, ys);
406 }
407 }
408
vp9_dec_build_inter_predictors_sb(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)409 void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
410 BLOCK_SIZE bsize) {
411 int plane;
412 const int mi_x = mi_col * MI_SIZE;
413 const int mi_y = mi_row * MI_SIZE;
414 for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
415 const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
416 &xd->plane[plane]);
417 const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
418 const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
419 const int bw = 4 * num_4x4_w;
420 const int bh = 4 * num_4x4_h;
421
422 if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
423 int i = 0, x, y;
424 assert(bsize == BLOCK_8X8);
425 for (y = 0; y < num_4x4_h; ++y)
426 for (x = 0; x < num_4x4_w; ++x)
427 dec_build_inter_predictors(xd, plane, i++, bw, bh,
428 4 * x, 4 * y, 4, 4, mi_x, mi_y);
429 } else {
430 dec_build_inter_predictors(xd, plane, 0, bw, bh,
431 0, 0, bw, bh, mi_x, mi_y);
432 }
433 }
434 }
435
vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)436 void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
437 const YV12_BUFFER_CONFIG *src,
438 int mi_row, int mi_col) {
439 uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
440 src->alpha_buffer};
441 const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
442 src->alpha_stride};
443 int i;
444
445 for (i = 0; i < MAX_MB_PLANE; ++i) {
446 struct macroblockd_plane *const pd = &planes[i];
447 setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL,
448 pd->subsampling_x, pd->subsampling_y);
449 }
450 }
451
vp9_setup_pre_planes(MACROBLOCKD * xd,int idx,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col,const struct scale_factors * sf)452 void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
453 const YV12_BUFFER_CONFIG *src,
454 int mi_row, int mi_col,
455 const struct scale_factors *sf) {
456 if (src != NULL) {
457 int i;
458 uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
459 src->alpha_buffer};
460 const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
461 src->alpha_stride};
462
463 for (i = 0; i < MAX_MB_PLANE; ++i) {
464 struct macroblockd_plane *const pd = &xd->plane[i];
465 setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col,
466 sf, pd->subsampling_x, pd->subsampling_y);
467 }
468 }
469 }
470