1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 package com.example.android.rs.vr.engine;
17 
18 /**
19  * Generic Quaternion
20  * Written for maximum portability between desktop and Android
21  * Not in performance critical sections
22  */
23 public class Quaternion {
24     private final double[] x = new double[4]; // w,x,y,z,
25 
set(double w, double x, double y, double z)26     public void set(double w, double x, double y, double z) {
27         this.x[0] = w;
28         this.x[1] = x;
29         this.x[2] = y;
30         this.x[3] = z;
31     }
32 
clone(Quaternion src)33     public void clone(Quaternion src) {
34         System.arraycopy(src.x, 0, x, 0, x.length);
35     }
36 
cross(double[] a, double[] b)37     private static double[] cross(double[] a, double[] b) {
38         double out0 = a[1] * b[2] - b[1] * a[2];
39         double out1 = a[2] * b[0] - b[2] * a[0];
40         double out2 = a[0] * b[1] - b[0] * a[1];
41         return new double[]{out0, out1, out2};
42     }
43 
dot(double[] a, double[] b)44     private static double dot(double[] a, double[] b) {
45         return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
46     }
47 
normal(double[] a)48     private static double[] normal(double[] a) {
49         double norm = Math.sqrt(dot(a, a));
50         return new double[]{a[0] / norm, a[1] / norm, a[2] / norm};
51     }
52 
set(double[] v1, double[] v2)53     public void set(double[] v1, double[] v2) {
54         double[] vec1 = normal(v1);
55         double[] vec2 = normal(v2);
56         double[] axis = normal(cross(vec1, vec2));
57         double angle = Math.acos(dot(vec1, vec2));
58         set(angle, axis);
59     }
60 
calcAngle(double[] v1, double[] v2)61     public static double calcAngle(double[] v1, double[] v2) {
62         double[] vec1 = normal(v1);
63         double[] vec2 = normal(v2);
64         return Math.acos(Math.min(dot(vec1, vec2), 1));
65     }
66 
calcAxis(double[] v1, double[] v2)67     public static double[] calcAxis(double[] v1, double[] v2) {
68         double[] vec1 = normal(v1);
69         double[] vec2 = normal(v2);
70         return normal(cross(vec1, vec2));
71     }
72 
set(double angle, double[] axis)73     public void set(double angle, double[] axis) {
74         x[0] = Math.cos(angle / 2);
75         double sin = Math.sin(angle / 2);
76         x[1] = axis[0] * sin;
77         x[2] = axis[1] * sin;
78         x[3] = axis[2] * sin;
79     }
80 
Quaternion(double x0, double x1, double x2, double x3)81     public Quaternion(double x0, double x1, double x2, double x3) {
82         x[0] = x0;
83         x[1] = x1;
84         x[2] = x2;
85         x[3] = x3;
86     }
87 
conjugate()88     public Quaternion conjugate() {
89         return new Quaternion(x[0], -x[1], -x[2], -x[3]);
90     }
91 
plus(Quaternion b)92     public Quaternion plus(Quaternion b) {
93         Quaternion a = this;
94         return new Quaternion(a.x[0] + b.x[0], a.x[1] + b.x[1], a.x[2] + b.x[2], a.x[3] + b.x[3]);
95     }
96 
times(Quaternion b)97     public Quaternion times(Quaternion b) {
98         Quaternion a = this;
99         double y0 = a.x[0] * b.x[0] - a.x[1] * b.x[1] - a.x[2] * b.x[2] - a.x[3] * b.x[3];
100         double y1 = a.x[0] * b.x[1] + a.x[1] * b.x[0] + a.x[2] * b.x[3] - a.x[3] * b.x[2];
101         double y2 = a.x[0] * b.x[2] - a.x[1] * b.x[3] + a.x[2] * b.x[0] + a.x[3] * b.x[1];
102         double y3 = a.x[0] * b.x[3] + a.x[1] * b.x[2] - a.x[2] * b.x[1] + a.x[3] * b.x[0];
103         return new Quaternion(y0, y1, y2, y3);
104     }
105 
inverse()106     public Quaternion inverse() {
107         double d = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3];
108         return new Quaternion(x[0] / d, -x[1] / d, -x[2] / d, -x[3] / d);
109     }
110 
divides(Quaternion b)111     public Quaternion divides(Quaternion b) {
112         Quaternion a = this;
113         return a.inverse().times(b);
114     }
115 
116 
rotateVec(double[] v)117     public double[] rotateVec(double[] v) {
118 
119         double v0 = v[0];
120         double v1 = v[1];
121         double v2 = v[2];
122 
123         double s = x[1] * v0 + x[2] * v1 + x[3] * v2;
124 
125         double n0 = 2 * (x[0] * (v0 * x[0] - (x[2] * v2 - x[3] * v1)) + s * x[1]) - v0;
126         double n1 = 2 * (x[0] * (v1 * x[0] - (x[3] * v0 - x[1] * v2)) + s * x[2]) - v1;
127         double n2 = 2 * (x[0] * (v2 * x[0] - (x[1] * v1 - x[2] * v0)) + s * x[3]) - v2;
128 
129         return new double[]{n0, n1, n2};
130 
131     }
132 
matrix()133     void matrix() {
134         double xx = x[1] * x[1];
135         double xy = x[1] * x[2];
136         double xz = x[1] * x[3];
137         double xw = x[1] * x[0];
138 
139         double yy = x[2] * x[2];
140         double yz = x[2] * x[3];
141         double yw = x[2] * x[0];
142 
143         double zz = x[3] * x[3];
144         double zw = x[3] * x[0];
145         double[] m = new double[16];
146         m[0] = 1 - 2 * (yy + zz);
147         m[1] = 2 * (xy - zw);
148         m[2] = 2 * (xz + yw);
149 
150         m[4] = 2 * (xy + zw);
151         m[5] = 1 - 2 * (xx + zz);
152         m[6] = 2 * (yz - xw);
153 
154         m[8] = 2 * (xz - yw);
155         m[9] = 2 * (yz + xw);
156         m[10] = 1 - 2 * (xx + yy);
157 
158         m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0;
159         m[15] = 1;
160     }
161 }
162