/external/ceres-solver/internal/ceres/ |
D | incomplete_lq_factorization_test.cc | 58 CompressedRowSparseMatrix matrix(1, 1, 1); in TEST() local 59 matrix.mutable_rows()[0] = 0; in TEST() 60 matrix.mutable_rows()[1] = 1; in TEST() 61 matrix.mutable_cols()[0] = 0; in TEST() 62 matrix.mutable_values()[0] = 2; in TEST() 65 IncompleteLQFactorization(matrix, 1, 0.0, 1, 0.0)); in TEST() 66 ExpectMatricesAreEqual(matrix, *l, 1e-16); in TEST() 83 CompressedRowSparseMatrix matrix(10, 10, 100); in TEST() local 84 int* rows = matrix.mutable_rows(); in TEST() 85 int* cols = matrix.mutable_cols(); in TEST() [all …]
|
/external/deqp/framework/common/ |
D | tcuMatrix.hpp | 23 * \brief Templatized matrix class. 33 // Templated matrix class. 35 class Matrix class 48 Matrix (void); 49 explicit Matrix (const T& src); 50 explicit Matrix (const T src[Rows*Cols]); 51 Matrix (const Vector<T, Rows>& src); 52 Matrix (const Matrix<T, Rows, Cols>& src); 53 ~Matrix (void); 55 Matrix<T, Rows, Cols>& operator= (const Matrix<T, Rows, Cols>& src); [all …]
|
/external/eigen/test/ |
D | geo_transformations.cpp | 20 typedef Matrix<Scalar,3,1> Vector3; in non_projective_only() 39 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in non_projective_only() 58 VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); in non_projective_only() 61 VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); in non_projective_only() 82 typedef Matrix<Scalar,3,3> Matrix3; in transformations() 83 typedef Matrix<Scalar,4,4> Matrix4; in transformations() 84 typedef Matrix<Scalar,2,1> Vector2; in transformations() 85 typedef Matrix<Scalar,3,1> Vector3; in transformations() 86 typedef Matrix<Scalar,4,1> Vector4; in transformations() 122 // rotation matrix conversion in transformations() [all …]
|
D | corners.cpp | 13 VERIFY_IS_EQUAL(matrix.A, matrix.B); \ 25 MatrixType matrix = MatrixType::Random(rows,cols); in corners() local 48 MatrixType matrix = MatrixType::Random(); in corners_fixedsize() local 60 VERIFY_IS_EQUAL((matrix.template topLeftCorner<r,c>()), (matrix.template block<r,c>(0,0))); in corners_fixedsize() 61 VERIFY_IS_EQUAL((matrix.template topRightCorner<r,c>()), (matrix.template block<r,c>(0,cols-c))); in corners_fixedsize() 62 …VERIFY_IS_EQUAL((matrix.template bottomLeftCorner<r,c>()), (matrix.template block<r,c>(rows-r,0))); in corners_fixedsize() 63 …VERIFY_IS_EQUAL((matrix.template bottomRightCorner<r,c>()), (matrix.template block<r,c>(rows-r,col… in corners_fixedsize() 65 …VERIFY_IS_EQUAL((matrix.template topLeftCorner<r,c>()), (matrix.template topLeftCorner<r,Dynamic>(… in corners_fixedsize() 66 …VERIFY_IS_EQUAL((matrix.template topRightCorner<r,c>()), (matrix.template topRightCorner<r,Dynamic… in corners_fixedsize() 67 …VERIFY_IS_EQUAL((matrix.template bottomLeftCorner<r,c>()), (matrix.template bottomLeftCorner<r,Dyn… in corners_fixedsize() [all …]
|
/external/eigen/Eigen/src/LU/ |
D | Inverse.h | 24 static inline void run(const MatrixType& matrix, ResultType& result) in run() 26 result = matrix.partialPivLu().inverse(); in run() 40 static inline void run(const MatrixType& matrix, ResultType& result) 43 result.coeffRef(0,0) = Scalar(1) / matrix.coeff(0,0); 51 const MatrixType& matrix, 59 determinant = matrix.coeff(0,0); 71 const MatrixType& matrix, const typename ResultType::Scalar& invdet, 74 result.coeffRef(0,0) = matrix.coeff(1,1) * invdet; 75 result.coeffRef(1,0) = -matrix.coeff(1,0) * invdet; 76 result.coeffRef(0,1) = -matrix.coeff(0,1) * invdet; [all …]
|
/external/eigen/unsupported/Eigen/ |
D | MatrixFunctions | 24 * \defgroup MatrixFunctions_Module Matrix functions module 26 * matrix functions. 35 * - \ref matrixbase_cos "MatrixBase::cos()", for computing the matrix cosine 36 * - \ref matrixbase_cosh "MatrixBase::cosh()", for computing the matrix hyperbolic cosine 37 * - \ref matrixbase_exp "MatrixBase::exp()", for computing the matrix exponential 38 * - \ref matrixbase_log "MatrixBase::log()", for computing the matrix logarithm 39 * - \ref matrixbase_pow "MatrixBase::pow()", for computing the matrix power 40 …* - \ref matrixbase_matrixfunction "MatrixBase::matrixFunction()", for computing general matrix f… 41 * - \ref matrixbase_sin "MatrixBase::sin()", for computing the matrix sine 42 * - \ref matrixbase_sinh "MatrixBase::sinh()", for computing the matrix hyperbolic sine [all …]
|
/external/eigen/unsupported/test/ |
D | bdcsvd.cpp | 107 // test of Dynamic defined Matrix (42, 42) of float in test_bdcsvd() 108 CALL_SUBTEST_11(( bdcsvd_verify_assert<Matrix<float,Dynamic,Dynamic> > in test_bdcsvd() 109 (Matrix<float,Dynamic,Dynamic>(42,42)) )); in test_bdcsvd() 110 CALL_SUBTEST_11(( compare_bdc_jacobi<Matrix<float,Dynamic,Dynamic> > in test_bdcsvd() 111 (Matrix<float,Dynamic,Dynamic>(42,42), 0) )); in test_bdcsvd() 112 CALL_SUBTEST_11(( bdcsvd<Matrix<float,Dynamic,Dynamic> > in test_bdcsvd() 113 (Matrix<float,Dynamic,Dynamic>(42,42)) )); in test_bdcsvd() 115 // test of Dynamic defined Matrix (50, 50) of double in test_bdcsvd() 116 CALL_SUBTEST_13(( bdcsvd_verify_assert<Matrix<double,Dynamic,Dynamic> > in test_bdcsvd() 117 (Matrix<double,Dynamic,Dynamic>(50,50)) )); in test_bdcsvd() [all …]
|
/external/eigen/Eigen/src/Eigenvalues/ |
D | HessenbergDecomposition.h | 32 * \brief Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation 34 …* \tparam _MatrixType the type of the matrix of which we are computing the Hessenberg decomposition 36 * This class performs an Hessenberg decomposition of a matrix \f$ A \f$. In 38 * matrix \f$ Q \f$ and a Hessenberg matrix \f$ H \f$ such that \f$ A = Q H 39 * Q^T \f$. An orthogonal matrix is a matrix whose inverse equals its 40 * transpose (\f$ Q^{-1} = Q^T \f$). A Hessenberg matrix has zeros below the 42 * of a complex matrix is \f$ A = Q H Q^* \f$ with \f$ Q \f$ unitary (that is, 46 * given matrix. Alternatively, you can use the 82 … typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; 91 * \param [in] size The size of the matrix whose Hessenberg decomposition will be computed. [all …]
|
D | ComplexSchur.h | 28 * \brief Performs a complex Schur decomposition of a real or complex square matrix 30 * \tparam _MatrixType the type of the matrix of which we are 32 * instantiation of the Matrix class template. 34 * Given a real or complex square matrix A, this class computes the 36 * complex matrix, and T is a complex upper triangular matrix. The 37 * diagonal of the matrix T corresponds to the eigenvalues of the 38 * matrix A. 41 * a given matrix. Alternatively, you can use the 78 * This is a square matrix with entries of type #ComplexScalar. 81 …typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,… [all …]
|
D | Tridiagonalization.h | 34 * \brief Tridiagonal decomposition of a selfadjoint matrix 36 * \tparam _MatrixType the type of the matrix of which we are computing the 38 * Matrix class template. 40 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 41 …* \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 43 * A tridiagonal matrix is a matrix which has nonzero elements only on the 45 * decomposition of a selfadjoint matrix is in fact a tridiagonal 47 * eigenvalues and eigenvectors of a selfadjoint matrix. 50 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) 80 … typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; [all …]
|
D | ComplexEigenSolver.h | 26 * \tparam _MatrixType the type of the matrix of which we are 28 * instantiation of the Matrix class template. 30 * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars 32 * \f$. If \f$ D \f$ is a diagonal matrix with the eigenvalues on 33 * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as 34 * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is 78 …typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> … 80 /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). 82 * This is a square matrix with entries of type #ComplexScalar. 85 …typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime,… [all …]
|
/external/opencv/cxcore/include/ |
D | cxcore.hpp | 213 CvMatrix() : matrix(0) {} in CvMatrix() 215 { matrix = cvCreateMat( rows, cols, type ); } in CvMatrix() 219 { matrix = cvInitMatHeader( hdr, rows, cols, type, data, step ); } in CvMatrix() 224 { matrix = cvCreateMatHeader( rows, cols, type ); in CvMatrix() 225 cvSetData( matrix, data, step ); } in CvMatrix() 228 { matrix = m; } in CvMatrix() 232 matrix = m.matrix; in CvMatrix() 236 CvMatrix( const char* filename, const char* matname=0, int color=-1 ) : matrix(0) in CvMatrix() 239 CvMatrix( CvFileStorage* fs, const char* mapname, const char* matname ) : matrix(0) in CvMatrix() 242 CvMatrix( CvFileStorage* fs, const char* seqname, int idx ) : matrix(0) in CvMatrix() [all …]
|
/external/llvm/include/llvm/CodeGen/PBQP/ |
D | Math.h | 1 //===------ Math.h - PBQP Vector and Matrix classes -------------*- C++ -*-===// 162 /// \brief PBQP Matrix class 163 class Matrix { 165 friend hash_code hash_value(const Matrix &); 168 /// \brief Construct a PBQP Matrix with the given dimensions. 169 Matrix(unsigned Rows, unsigned Cols) : in Matrix() function 173 /// \brief Construct a PBQP Matrix with the given dimensions and initial 175 Matrix(unsigned Rows, unsigned Cols, PBQPNum InitVal) in Matrix() function 180 /// \brief Copy construct a PBQP matrix. 181 Matrix(const Matrix &M) in Matrix() function [all …]
|
/external/jmonkeyengine/engine/src/core/com/jme3/math/ |
D | Matrix3f.java | 42 * <code>Matrix3f</code> defines a 3x3 matrix. Matrix data is maintained 44 * are used for matrix operations as well as generating a matrix from a given 63 * initial values for the matrix is that of the identity matrix. 71 * constructs a matrix with the given values. 74 * 0x0 in the matrix. 76 * 0x1 in the matrix. 78 * 0x2 in the matrix. 80 * 1x0 in the matrix. 82 * 1x1 in the matrix. 84 * 1x2 in the matrix. [all …]
|
D | Matrix4f.java | 42 * <code>Matrix4f</code> defines and maintains a 4x4 matrix in row major order. 43 * This matrix is intended for use in a translation and rotational capacity. 44 * It provides convenience methods for creating the matrix from a multitude 69 * Constructor instantiates a new <code>Matrix</code> that is set to the 70 * identity matrix. 78 * constructs a matrix with the given values. 114 * Constructor instantiates a new <code>Matrix</code> that is set to the 115 * provided matrix. This constructor copies a given Matrix. If the provided 116 * matrix is null, the constructor sets the matrix to the identity. 119 * the matrix to copy. [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/stat/correlation/ |
D | Covariance.java | 27 * Computes covariances for pairs of arrays or columns of a matrix. 48 /** covariance matrix */ 52 * Create an empty covariance matrix. 67 * Create a Covariance matrix from a rectangular array 86 * Create a Covariance matrix from a rectangular array 101 * Create a covariance matrix from a matrix whose columns 107 * <p>The matrix must have at least two columns and two rows</p> 109 * @param matrix matrix with columns representing covariates 111 * @throws IllegalArgumentException if the input matrix does not have 114 public Covariance(RealMatrix matrix, boolean biasCorrected) { in Covariance() argument [all …]
|
D | PearsonsCorrelation.java | 33 * or columns of a matrix. 48 /** correlation matrix */ 79 * @param matrix matrix with columns representing variables to correlate 81 public PearsonsCorrelation(RealMatrix matrix) { in PearsonsCorrelation() argument 82 checkSufficientData(matrix); in PearsonsCorrelation() 83 nObs = matrix.getRowDimension(); in PearsonsCorrelation() 84 correlationMatrix = computeCorrelationMatrix(matrix); in PearsonsCorrelation() 89 * matrix is computed by scaling the Covariance's covariance matrix. 90 * The Covariance instance must have been created from a data matrix with 105 * Create a PearsonsCorrelation from a covariance matrix. The correlation [all …]
|
D | SpearmansCorrelation.java | 52 * Create a SpearmansCorrelation with the given input data matrix 55 * @param dataMatrix matrix of data with columns representing 67 * Create a SpearmansCorrelation from the given data matrix. 69 * @param dataMatrix matrix of data with columns representing 86 * Calculate the Spearman Rank Correlation Matrix. 88 * @return Spearman Rank Correlation Matrix 97 * <code>new SpearmansCorrelation(matrix).getRankCorrelation()</code> 99 * <code>new PearsonsCorrelation(rankTransform(matrix))</code> where 100 * <code>rankTransform(matrix)</code> is the result of applying the 102 * <code>matrix.</code> [all …]
|
/external/eigen/Eigen/src/Core/ |
D | Matrix.h | 16 /** \class Matrix 19 * \brief The matrix class, also used for vectors and row-vectors 21 …* The %Matrix class is the work-horse for all \em dense (\ref dense "note") matrices and vectors w… 24 …* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note… 42 * \li \c Matrix2d is a 2x2 square matrix of doubles (\c Matrix<double, 2, 2>) 43 * \li \c Vector4f is a vector of 4 floats (\c Matrix<float, 4, 1>) 44 * \li \c RowVector3i is a row-vector of 3 ints (\c Matrix<int, 1, 3>) 46 * \li \c MatrixXf is a dynamic-size matrix of floats (\c Matrix<float, Dynamic, Dynamic>) 47 * \li \c VectorXf is a dynamic-size vector of floats (\c Matrix<float, Dynamic, 1>) 49 …* \li \c Matrix2Xf is a partially fixed-size (dynamic-size) matrix of floats (\c Matrix<float, 2, … [all …]
|
/external/eigen/test/eigen2/ |
D | eigen2_geometry.cpp | 21 typedef Matrix<Scalar,2,2> Matrix2; in geometry() 22 typedef Matrix<Scalar,3,3> Matrix3; in geometry() 23 typedef Matrix<Scalar,4,4> Matrix4; in geometry() 24 typedef Matrix<Scalar,2,1> Vector2; in geometry() 25 typedef Matrix<Scalar,3,1> Vector3; in geometry() 26 typedef Matrix<Scalar,4,1> Vector4; in geometry() 90 // rotation matrix conversion in geometry() 141 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in geometry() 142 t0.matrix().setZero(); in geometry() 144 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in geometry() [all …]
|
D | eigen2_geometry_with_eigen2_prefix.cpp | 23 typedef Matrix<Scalar,2,2> Matrix2; in geometry() 24 typedef Matrix<Scalar,3,3> Matrix3; in geometry() 25 typedef Matrix<Scalar,4,4> Matrix4; in geometry() 26 typedef Matrix<Scalar,2,1> Vector2; in geometry() 27 typedef Matrix<Scalar,3,1> Vector3; in geometry() 28 typedef Matrix<Scalar,4,1> Vector4; in geometry() 92 // rotation matrix conversion in geometry() 143 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in geometry() 144 t0.matrix().setZero(); in geometry() 146 VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); in geometry() [all …]
|
/external/eigen/bench/btl/data/ |
D | action_settings.txt | 1 aat ; "{/*1.5 A x A^T}" ; "matrix size" ; 4:3000 2 ata ; "{/*1.5 A^T x A}" ; "matrix size" ; 4:3000 3 atv ; "{/*1.5 matrix^T x vector}" ; "matrix size" ; 4:3000 6 matrix_matrix ; "{/*1.5 matrix matrix product}" ; "matrix size" ; 4:3000 7 matrix_vector ; "{/*1.5 matrix vector product}" ; "matrix size" ; 4:3000 8 trmm ; "{/*1.5 triangular matrix matrix product}" ; "matrix size" ; 4:3000 10 trisolve_matrix ; "{/*1.5 triangular solver - matrix (M = inv(L) M)}" ; "size" ; 4:3000 11 cholesky ; "{/*1.5 Cholesky decomposition}" ; "matrix size" ; 4:3000 12 complete_lu_decomp ; "{/*1.5 Complete LU decomposition}" ; "matrix size" ; 4:3000 13 partial_lu_decomp ; "{/*1.5 Partial LU decomposition}" ; "matrix size" ; 4:3000 [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/linear/ |
D | SingularValueDecomposition.java | 24 * Singular Value Decomposition of a real matrix. 26 * The Singular Value Decomposition of matrix A is a set of three matrices: U, 28 * a m × n matrix, then U is a m × p orthogonal matrix, Σ is a 29 * p × p diagonal matrix with positive or null elements, V is a p × 30 * n orthogonal matrix (hence V<sup>T</sup> is also orthogonal) where 56 * Returns the matrix U of the decomposition. 57 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> 58 * @return the U matrix 64 * Returns the transpose of the matrix U of the decomposition. 65 * <p>U is an orthogonal matrix, i.e. its transpose is also its inverse.</p> [all …]
|
/external/eigen/doc/ |
D | ClassHierarchy.dox | 17 the derived class (for instance, \c Matrix) inherits the base class with the derived class itself a… 18 template argument (in this case, \c Matrix inherits from \c MatrixBase<Matrix>). This allows … 31 …- Matrix means plain dense matrix. If \c m is a \c %Matrix, then, for instance, \c m+m is no longe… 32 \c %Matrix, it is a "matrix expression". 33 …- MatrixBase means dense matrix expression. This means that a \c %MatrixBase is something that can… 34 …added, matrix-multiplied, LU-decomposed, QR-decomposed... All matrix expression classes, including 35 \c %Matrix itself, inherit \c %MatrixBase. 41 …- DenseBase means dense (matrix or array) expression. Both \c %ArrayBase and \c %MatrixBase inherit 43 …whether they are matrix or array expressions. For example, the \link DenseBase::block() block(...)… 51 …- PlainObjectBase means dense (matrix or array) plain object, i.e. something that stores its own d… [all …]
|
/external/eigen/Eigen/src/PaStiXSupport/ |
D | PaStiXSupport.h | 19 * The matrix can be either real or complex, symmetric or not. 87 // Convert the matrix to Fortran-style Numbering 128 typedef Matrix<Scalar,Dynamic,1> Vector; 153 && "PastixBase::solve(): invalid number of rows of the right hand side matrix b"); 213 * \c InvalidInput if the input matrix is invalid 233 && "PastixBase::solve(): invalid number of rows of the right hand side matrix b"); 239 // Initialize the Pastix data structure, check the matrix 267 mutable Matrix<int,IPARM_SIZE,1> m_iparm; // integer vector for the input parameters 268 mutable Matrix<double,DPARM_SIZE,1> m_dparm; // Scalar vector for the input parameters 269 mutable Matrix<Index,Dynamic,1> m_perm; // Permutation vector [all …]
|