1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkCanvas.h"
9 #include "SkClipStack.h"
10 #include "SkPath.h"
11 #include "SkPathOps.h"
12 #include "SkThread.h"
13
14 #include <new>
15
16
17 // 0-2 are reserved for invalid, empty & wide-open
18 static const int32_t kFirstUnreservedGenID = 3;
19 int32_t SkClipStack::gGenID = kFirstUnreservedGenID;
20
Element(const Element & that)21 SkClipStack::Element::Element(const Element& that) {
22 switch (that.getType()) {
23 case kEmpty_Type:
24 fPath.reset();
25 break;
26 case kRect_Type: // Rect uses rrect
27 case kRRect_Type:
28 fPath.reset();
29 fRRect = that.fRRect;
30 break;
31 case kPath_Type:
32 fPath.set(that.getPath());
33 break;
34 }
35
36 fSaveCount = that.fSaveCount;
37 fOp = that.fOp;
38 fType = that.fType;
39 fDoAA = that.fDoAA;
40 fFiniteBoundType = that.fFiniteBoundType;
41 fFiniteBound = that.fFiniteBound;
42 fIsIntersectionOfRects = that.fIsIntersectionOfRects;
43 fGenID = that.fGenID;
44 }
45
operator ==(const Element & element) const46 bool SkClipStack::Element::operator== (const Element& element) const {
47 if (this == &element) {
48 return true;
49 }
50 if (fOp != element.fOp ||
51 fType != element.fType ||
52 fDoAA != element.fDoAA ||
53 fSaveCount != element.fSaveCount) {
54 return false;
55 }
56 switch (fType) {
57 case kPath_Type:
58 return this->getPath() == element.getPath();
59 case kRRect_Type:
60 return fRRect == element.fRRect;
61 case kRect_Type:
62 return this->getRect() == element.getRect();
63 case kEmpty_Type:
64 return true;
65 default:
66 SkDEBUGFAIL("Unexpected type.");
67 return false;
68 }
69 }
70
replay(SkCanvasClipVisitor * visitor) const71 void SkClipStack::Element::replay(SkCanvasClipVisitor* visitor) const {
72 static const SkRect kEmptyRect = { 0, 0, 0, 0 };
73
74 switch (fType) {
75 case kPath_Type:
76 visitor->clipPath(this->getPath(), this->getOp(), this->isAA());
77 break;
78 case kRRect_Type:
79 visitor->clipRRect(this->getRRect(), this->getOp(), this->isAA());
80 break;
81 case kRect_Type:
82 visitor->clipRect(this->getRect(), this->getOp(), this->isAA());
83 break;
84 case kEmpty_Type:
85 visitor->clipRect(kEmptyRect, SkRegion::kIntersect_Op, false);
86 break;
87 }
88 }
89
invertShapeFillType()90 void SkClipStack::Element::invertShapeFillType() {
91 switch (fType) {
92 case kRect_Type:
93 fPath.init();
94 fPath.get()->addRect(this->getRect());
95 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
96 fType = kPath_Type;
97 break;
98 case kRRect_Type:
99 fPath.init();
100 fPath.get()->addRRect(fRRect);
101 fPath.get()->setFillType(SkPath::kInverseEvenOdd_FillType);
102 fType = kPath_Type;
103 break;
104 case kPath_Type:
105 fPath.get()->toggleInverseFillType();
106 break;
107 case kEmpty_Type:
108 // Should this set to an empty, inverse filled path?
109 break;
110 }
111 }
112
initPath(int saveCount,const SkPath & path,SkRegion::Op op,bool doAA)113 void SkClipStack::Element::initPath(int saveCount, const SkPath& path, SkRegion::Op op,
114 bool doAA) {
115 if (!path.isInverseFillType()) {
116 SkRect r;
117 if (path.isRect(&r)) {
118 this->initRect(saveCount, r, op, doAA);
119 return;
120 }
121 SkRect ovalRect;
122 if (path.isOval(&ovalRect)) {
123 SkRRect rrect;
124 rrect.setOval(ovalRect);
125 this->initRRect(saveCount, rrect, op, doAA);
126 return;
127 }
128 }
129 fPath.set(path);
130 fPath.get()->setIsVolatile(true);
131 fType = kPath_Type;
132 this->initCommon(saveCount, op, doAA);
133 }
134
asPath(SkPath * path) const135 void SkClipStack::Element::asPath(SkPath* path) const {
136 switch (fType) {
137 case kEmpty_Type:
138 path->reset();
139 break;
140 case kRect_Type:
141 path->reset();
142 path->addRect(this->getRect());
143 break;
144 case kRRect_Type:
145 path->reset();
146 path->addRRect(fRRect);
147 break;
148 case kPath_Type:
149 *path = *fPath.get();
150 break;
151 }
152 path->setIsVolatile(true);
153 }
154
setEmpty()155 void SkClipStack::Element::setEmpty() {
156 fType = kEmpty_Type;
157 fFiniteBound.setEmpty();
158 fFiniteBoundType = kNormal_BoundsType;
159 fIsIntersectionOfRects = false;
160 fRRect.setEmpty();
161 fPath.reset();
162 fGenID = kEmptyGenID;
163 SkDEBUGCODE(this->checkEmpty();)
164 }
165
checkEmpty() const166 void SkClipStack::Element::checkEmpty() const {
167 SkASSERT(fFiniteBound.isEmpty());
168 SkASSERT(kNormal_BoundsType == fFiniteBoundType);
169 SkASSERT(!fIsIntersectionOfRects);
170 SkASSERT(kEmptyGenID == fGenID);
171 SkASSERT(!fPath.isValid());
172 }
173
canBeIntersectedInPlace(int saveCount,SkRegion::Op op) const174 bool SkClipStack::Element::canBeIntersectedInPlace(int saveCount, SkRegion::Op op) const {
175 if (kEmpty_Type == fType &&
176 (SkRegion::kDifference_Op == op || SkRegion::kIntersect_Op == op)) {
177 return true;
178 }
179 // Only clips within the same save/restore frame (as captured by
180 // the save count) can be merged
181 return fSaveCount == saveCount &&
182 SkRegion::kIntersect_Op == op &&
183 (SkRegion::kIntersect_Op == fOp || SkRegion::kReplace_Op == fOp);
184 }
185
rectRectIntersectAllowed(const SkRect & newR,bool newAA) const186 bool SkClipStack::Element::rectRectIntersectAllowed(const SkRect& newR, bool newAA) const {
187 SkASSERT(kRect_Type == fType);
188
189 if (fDoAA == newAA) {
190 // if the AA setting is the same there is no issue
191 return true;
192 }
193
194 if (!SkRect::Intersects(this->getRect(), newR)) {
195 // The calling code will correctly set the result to the empty clip
196 return true;
197 }
198
199 if (this->getRect().contains(newR)) {
200 // if the new rect carves out a portion of the old one there is no
201 // issue
202 return true;
203 }
204
205 // So either the two overlap in some complex manner or newR contains oldR.
206 // In the first, case the edges will require different AA. In the second,
207 // the AA setting that would be carried forward is incorrect (e.g., oldR
208 // is AA while newR is BW but since newR contains oldR, oldR will be
209 // drawn BW) since the new AA setting will predominate.
210 return false;
211 }
212
213 // a mirror of combineBoundsRevDiff
combineBoundsDiff(FillCombo combination,const SkRect & prevFinite)214 void SkClipStack::Element::combineBoundsDiff(FillCombo combination, const SkRect& prevFinite) {
215 switch (combination) {
216 case kInvPrev_InvCur_FillCombo:
217 // In this case the only pixels that can remain set
218 // are inside the current clip rect since the extensions
219 // to infinity of both clips cancel out and whatever
220 // is outside of the current clip is removed
221 fFiniteBoundType = kNormal_BoundsType;
222 break;
223 case kInvPrev_Cur_FillCombo:
224 // In this case the current op is finite so the only pixels
225 // that aren't set are whatever isn't set in the previous
226 // clip and whatever this clip carves out
227 fFiniteBound.join(prevFinite);
228 fFiniteBoundType = kInsideOut_BoundsType;
229 break;
230 case kPrev_InvCur_FillCombo:
231 // In this case everything outside of this clip's bound
232 // is erased, so the only pixels that can remain set
233 // occur w/in the intersection of the two finite bounds
234 if (!fFiniteBound.intersect(prevFinite)) {
235 this->setEmpty();
236 } else {
237 fFiniteBoundType = kNormal_BoundsType;
238 }
239 break;
240 case kPrev_Cur_FillCombo:
241 // The most conservative result bound is that of the
242 // prior clip. This could be wildly incorrect if the
243 // second clip either exactly matches the first clip
244 // (which should yield the empty set) or reduces the
245 // size of the prior bound (e.g., if the second clip
246 // exactly matched the bottom half of the prior clip).
247 // We ignore these two possibilities.
248 fFiniteBound = prevFinite;
249 break;
250 default:
251 SkDEBUGFAIL("SkClipStack::Element::combineBoundsDiff Invalid fill combination");
252 break;
253 }
254 }
255
combineBoundsXOR(int combination,const SkRect & prevFinite)256 void SkClipStack::Element::combineBoundsXOR(int combination, const SkRect& prevFinite) {
257
258 switch (combination) {
259 case kInvPrev_Cur_FillCombo: // fall through
260 case kPrev_InvCur_FillCombo:
261 // With only one of the clips inverted the result will always
262 // extend to infinity. The only pixels that may be un-writeable
263 // lie within the union of the two finite bounds
264 fFiniteBound.join(prevFinite);
265 fFiniteBoundType = kInsideOut_BoundsType;
266 break;
267 case kInvPrev_InvCur_FillCombo:
268 // The only pixels that can survive are within the
269 // union of the two bounding boxes since the extensions
270 // to infinity of both clips cancel out
271 // fall through!
272 case kPrev_Cur_FillCombo:
273 // The most conservative bound for xor is the
274 // union of the two bounds. If the two clips exactly overlapped
275 // the xor could yield the empty set. Similarly the xor
276 // could reduce the size of the original clip's bound (e.g.,
277 // if the second clip exactly matched the bottom half of the
278 // first clip). We ignore these two cases.
279 fFiniteBound.join(prevFinite);
280 fFiniteBoundType = kNormal_BoundsType;
281 break;
282 default:
283 SkDEBUGFAIL("SkClipStack::Element::combineBoundsXOR Invalid fill combination");
284 break;
285 }
286 }
287
288 // a mirror of combineBoundsIntersection
combineBoundsUnion(int combination,const SkRect & prevFinite)289 void SkClipStack::Element::combineBoundsUnion(int combination, const SkRect& prevFinite) {
290
291 switch (combination) {
292 case kInvPrev_InvCur_FillCombo:
293 if (!fFiniteBound.intersect(prevFinite)) {
294 fFiniteBound.setEmpty();
295 fGenID = kWideOpenGenID;
296 }
297 fFiniteBoundType = kInsideOut_BoundsType;
298 break;
299 case kInvPrev_Cur_FillCombo:
300 // The only pixels that won't be drawable are inside
301 // the prior clip's finite bound
302 fFiniteBound = prevFinite;
303 fFiniteBoundType = kInsideOut_BoundsType;
304 break;
305 case kPrev_InvCur_FillCombo:
306 // The only pixels that won't be drawable are inside
307 // this clip's finite bound
308 break;
309 case kPrev_Cur_FillCombo:
310 fFiniteBound.join(prevFinite);
311 break;
312 default:
313 SkDEBUGFAIL("SkClipStack::Element::combineBoundsUnion Invalid fill combination");
314 break;
315 }
316 }
317
318 // a mirror of combineBoundsUnion
combineBoundsIntersection(int combination,const SkRect & prevFinite)319 void SkClipStack::Element::combineBoundsIntersection(int combination, const SkRect& prevFinite) {
320
321 switch (combination) {
322 case kInvPrev_InvCur_FillCombo:
323 // The only pixels that aren't writable in this case
324 // occur in the union of the two finite bounds
325 fFiniteBound.join(prevFinite);
326 fFiniteBoundType = kInsideOut_BoundsType;
327 break;
328 case kInvPrev_Cur_FillCombo:
329 // In this case the only pixels that will remain writeable
330 // are within the current clip
331 break;
332 case kPrev_InvCur_FillCombo:
333 // In this case the only pixels that will remain writeable
334 // are with the previous clip
335 fFiniteBound = prevFinite;
336 fFiniteBoundType = kNormal_BoundsType;
337 break;
338 case kPrev_Cur_FillCombo:
339 if (!fFiniteBound.intersect(prevFinite)) {
340 this->setEmpty();
341 }
342 break;
343 default:
344 SkDEBUGFAIL("SkClipStack::Element::combineBoundsIntersection Invalid fill combination");
345 break;
346 }
347 }
348
349 // a mirror of combineBoundsDiff
combineBoundsRevDiff(int combination,const SkRect & prevFinite)350 void SkClipStack::Element::combineBoundsRevDiff(int combination, const SkRect& prevFinite) {
351
352 switch (combination) {
353 case kInvPrev_InvCur_FillCombo:
354 // The only pixels that can survive are in the
355 // previous bound since the extensions to infinity in
356 // both clips cancel out
357 fFiniteBound = prevFinite;
358 fFiniteBoundType = kNormal_BoundsType;
359 break;
360 case kInvPrev_Cur_FillCombo:
361 if (!fFiniteBound.intersect(prevFinite)) {
362 this->setEmpty();
363 } else {
364 fFiniteBoundType = kNormal_BoundsType;
365 }
366 break;
367 case kPrev_InvCur_FillCombo:
368 fFiniteBound.join(prevFinite);
369 fFiniteBoundType = kInsideOut_BoundsType;
370 break;
371 case kPrev_Cur_FillCombo:
372 // Fall through - as with the kDifference_Op case, the
373 // most conservative result bound is the bound of the
374 // current clip. The prior clip could reduce the size of this
375 // bound (as in the kDifference_Op case) but we are ignoring
376 // those cases.
377 break;
378 default:
379 SkDEBUGFAIL("SkClipStack::Element::combineBoundsRevDiff Invalid fill combination");
380 break;
381 }
382 }
383
updateBoundAndGenID(const Element * prior)384 void SkClipStack::Element::updateBoundAndGenID(const Element* prior) {
385 // We set this first here but we may overwrite it later if we determine that the clip is
386 // either wide-open or empty.
387 fGenID = GetNextGenID();
388
389 // First, optimistically update the current Element's bound information
390 // with the current clip's bound
391 fIsIntersectionOfRects = false;
392 switch (fType) {
393 case kRect_Type:
394 fFiniteBound = this->getRect();
395 fFiniteBoundType = kNormal_BoundsType;
396
397 if (SkRegion::kReplace_Op == fOp ||
398 (SkRegion::kIntersect_Op == fOp && NULL == prior) ||
399 (SkRegion::kIntersect_Op == fOp && prior->fIsIntersectionOfRects &&
400 prior->rectRectIntersectAllowed(this->getRect(), fDoAA))) {
401 fIsIntersectionOfRects = true;
402 }
403 break;
404 case kRRect_Type:
405 fFiniteBound = fRRect.getBounds();
406 fFiniteBoundType = kNormal_BoundsType;
407 break;
408 case kPath_Type:
409 fFiniteBound = fPath.get()->getBounds();
410
411 if (fPath.get()->isInverseFillType()) {
412 fFiniteBoundType = kInsideOut_BoundsType;
413 } else {
414 fFiniteBoundType = kNormal_BoundsType;
415 }
416 break;
417 case kEmpty_Type:
418 SkDEBUGFAIL("We shouldn't get here with an empty element.");
419 break;
420 }
421
422 if (!fDoAA) {
423 fFiniteBound.set(SkScalarFloorToScalar(fFiniteBound.fLeft+0.45f),
424 SkScalarRoundToScalar(fFiniteBound.fTop),
425 SkScalarRoundToScalar(fFiniteBound.fRight),
426 SkScalarRoundToScalar(fFiniteBound.fBottom));
427 }
428
429 // Now determine the previous Element's bound information taking into
430 // account that there may be no previous clip
431 SkRect prevFinite;
432 SkClipStack::BoundsType prevType;
433
434 if (NULL == prior) {
435 // no prior clip means the entire plane is writable
436 prevFinite.setEmpty(); // there are no pixels that cannot be drawn to
437 prevType = kInsideOut_BoundsType;
438 } else {
439 prevFinite = prior->fFiniteBound;
440 prevType = prior->fFiniteBoundType;
441 }
442
443 FillCombo combination = kPrev_Cur_FillCombo;
444 if (kInsideOut_BoundsType == fFiniteBoundType) {
445 combination = (FillCombo) (combination | 0x01);
446 }
447 if (kInsideOut_BoundsType == prevType) {
448 combination = (FillCombo) (combination | 0x02);
449 }
450
451 SkASSERT(kInvPrev_InvCur_FillCombo == combination ||
452 kInvPrev_Cur_FillCombo == combination ||
453 kPrev_InvCur_FillCombo == combination ||
454 kPrev_Cur_FillCombo == combination);
455
456 // Now integrate with clip with the prior clips
457 switch (fOp) {
458 case SkRegion::kDifference_Op:
459 this->combineBoundsDiff(combination, prevFinite);
460 break;
461 case SkRegion::kXOR_Op:
462 this->combineBoundsXOR(combination, prevFinite);
463 break;
464 case SkRegion::kUnion_Op:
465 this->combineBoundsUnion(combination, prevFinite);
466 break;
467 case SkRegion::kIntersect_Op:
468 this->combineBoundsIntersection(combination, prevFinite);
469 break;
470 case SkRegion::kReverseDifference_Op:
471 this->combineBoundsRevDiff(combination, prevFinite);
472 break;
473 case SkRegion::kReplace_Op:
474 // Replace just ignores everything prior
475 // The current clip's bound information is already filled in
476 // so nothing to do
477 break;
478 default:
479 SkDebugf("SkRegion::Op error\n");
480 SkASSERT(0);
481 break;
482 }
483 }
484
485 // This constant determines how many Element's are allocated together as a block in
486 // the deque. As such it needs to balance allocating too much memory vs.
487 // incurring allocation/deallocation thrashing. It should roughly correspond to
488 // the deepest save/restore stack we expect to see.
489 static const int kDefaultElementAllocCnt = 8;
490
SkClipStack()491 SkClipStack::SkClipStack()
492 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
493 , fSaveCount(0) {
494 }
495
SkClipStack(const SkClipStack & b)496 SkClipStack::SkClipStack(const SkClipStack& b)
497 : fDeque(sizeof(Element), kDefaultElementAllocCnt) {
498 *this = b;
499 }
500
SkClipStack(const SkRect & r)501 SkClipStack::SkClipStack(const SkRect& r)
502 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
503 , fSaveCount(0) {
504 if (!r.isEmpty()) {
505 this->clipDevRect(r, SkRegion::kReplace_Op, false);
506 }
507 }
508
SkClipStack(const SkIRect & r)509 SkClipStack::SkClipStack(const SkIRect& r)
510 : fDeque(sizeof(Element), kDefaultElementAllocCnt)
511 , fSaveCount(0) {
512 if (!r.isEmpty()) {
513 SkRect temp;
514 temp.set(r);
515 this->clipDevRect(temp, SkRegion::kReplace_Op, false);
516 }
517 }
518
~SkClipStack()519 SkClipStack::~SkClipStack() {
520 reset();
521 }
522
operator =(const SkClipStack & b)523 SkClipStack& SkClipStack::operator=(const SkClipStack& b) {
524 if (this == &b) {
525 return *this;
526 }
527 reset();
528
529 fSaveCount = b.fSaveCount;
530 SkDeque::F2BIter recIter(b.fDeque);
531 for (const Element* element = (const Element*)recIter.next();
532 element != NULL;
533 element = (const Element*)recIter.next()) {
534 new (fDeque.push_back()) Element(*element);
535 }
536
537 return *this;
538 }
539
operator ==(const SkClipStack & b) const540 bool SkClipStack::operator==(const SkClipStack& b) const {
541 if (this->getTopmostGenID() == b.getTopmostGenID()) {
542 return true;
543 }
544 if (fSaveCount != b.fSaveCount ||
545 fDeque.count() != b.fDeque.count()) {
546 return false;
547 }
548 SkDeque::F2BIter myIter(fDeque);
549 SkDeque::F2BIter bIter(b.fDeque);
550 const Element* myElement = (const Element*)myIter.next();
551 const Element* bElement = (const Element*)bIter.next();
552
553 while (myElement != NULL && bElement != NULL) {
554 if (*myElement != *bElement) {
555 return false;
556 }
557 myElement = (const Element*)myIter.next();
558 bElement = (const Element*)bIter.next();
559 }
560 return myElement == NULL && bElement == NULL;
561 }
562
reset()563 void SkClipStack::reset() {
564 // We used a placement new for each object in fDeque, so we're responsible
565 // for calling the destructor on each of them as well.
566 while (!fDeque.empty()) {
567 Element* element = (Element*)fDeque.back();
568 element->~Element();
569 fDeque.pop_back();
570 }
571
572 fSaveCount = 0;
573 }
574
save()575 void SkClipStack::save() {
576 fSaveCount += 1;
577 }
578
restore()579 void SkClipStack::restore() {
580 fSaveCount -= 1;
581 restoreTo(fSaveCount);
582 }
583
restoreTo(int saveCount)584 void SkClipStack::restoreTo(int saveCount) {
585 while (!fDeque.empty()) {
586 Element* element = (Element*)fDeque.back();
587 if (element->fSaveCount <= saveCount) {
588 break;
589 }
590 element->~Element();
591 fDeque.pop_back();
592 }
593 }
594
getBounds(SkRect * canvFiniteBound,BoundsType * boundType,bool * isIntersectionOfRects) const595 void SkClipStack::getBounds(SkRect* canvFiniteBound,
596 BoundsType* boundType,
597 bool* isIntersectionOfRects) const {
598 SkASSERT(canvFiniteBound && boundType);
599
600 Element* element = (Element*)fDeque.back();
601
602 if (NULL == element) {
603 // the clip is wide open - the infinite plane w/ no pixels un-writeable
604 canvFiniteBound->setEmpty();
605 *boundType = kInsideOut_BoundsType;
606 if (isIntersectionOfRects) {
607 *isIntersectionOfRects = false;
608 }
609 return;
610 }
611
612 *canvFiniteBound = element->fFiniteBound;
613 *boundType = element->fFiniteBoundType;
614 if (isIntersectionOfRects) {
615 *isIntersectionOfRects = element->fIsIntersectionOfRects;
616 }
617 }
618
quickContains(const SkRect & rect) const619 bool SkClipStack::quickContains(const SkRect& rect) const {
620
621 Iter iter(*this, Iter::kTop_IterStart);
622 const Element* element = iter.prev();
623 while (element != NULL) {
624 if (SkRegion::kIntersect_Op != element->getOp() && SkRegion::kReplace_Op != element->getOp())
625 return false;
626 if (element->isInverseFilled()) {
627 // Part of 'rect' could be trimmed off by the inverse-filled clip element
628 if (SkRect::Intersects(element->getBounds(), rect)) {
629 return false;
630 }
631 } else {
632 if (!element->contains(rect)) {
633 return false;
634 }
635 }
636 if (SkRegion::kReplace_Op == element->getOp()) {
637 break;
638 }
639 element = iter.prev();
640 }
641 return true;
642 }
643
asPath(SkPath * path) const644 bool SkClipStack::asPath(SkPath *path) const {
645 bool isAA = false;
646
647 path->reset();
648 path->setFillType(SkPath::kInverseEvenOdd_FillType);
649
650 SkClipStack::Iter iter(*this, SkClipStack::Iter::kBottom_IterStart);
651 while (const SkClipStack::Element* element = iter.next()) {
652 SkPath operand;
653 if (element->getType() != SkClipStack::Element::kEmpty_Type) {
654 element->asPath(&operand);
655 }
656
657 SkRegion::Op elementOp = element->getOp();
658 if (elementOp == SkRegion::kReplace_Op) {
659 *path = operand;
660 } else {
661 Op(*path, operand, (SkPathOp)elementOp, path);
662 }
663
664 // if the prev and curr clips disagree about aa -vs- not, favor the aa request.
665 // perhaps we need an API change to avoid this sort of mixed-signals about
666 // clipping.
667 isAA = (isAA || element->isAA());
668 }
669
670 return isAA;
671 }
672
pushElement(const Element & element)673 void SkClipStack::pushElement(const Element& element) {
674 // Use reverse iterator instead of back because Rect path may need previous
675 SkDeque::Iter iter(fDeque, SkDeque::Iter::kBack_IterStart);
676 Element* prior = (Element*) iter.prev();
677
678 if (prior) {
679 if (prior->canBeIntersectedInPlace(fSaveCount, element.getOp())) {
680 switch (prior->fType) {
681 case Element::kEmpty_Type:
682 SkDEBUGCODE(prior->checkEmpty();)
683 return;
684 case Element::kRect_Type:
685 if (Element::kRect_Type == element.getType()) {
686 if (prior->rectRectIntersectAllowed(element.getRect(), element.isAA())) {
687 SkRect isectRect;
688 if (!isectRect.intersect(prior->getRect(), element.getRect())) {
689 prior->setEmpty();
690 return;
691 }
692
693 prior->fRRect.setRect(isectRect);
694 prior->fDoAA = element.isAA();
695 Element* priorPrior = (Element*) iter.prev();
696 prior->updateBoundAndGenID(priorPrior);
697 return;
698 }
699 break;
700 }
701 // fallthrough
702 default:
703 if (!SkRect::Intersects(prior->getBounds(), element.getBounds())) {
704 prior->setEmpty();
705 return;
706 }
707 break;
708 }
709 } else if (SkRegion::kReplace_Op == element.getOp()) {
710 this->restoreTo(fSaveCount - 1);
711 prior = (Element*) fDeque.back();
712 }
713 }
714 Element* newElement = SkNEW_PLACEMENT_ARGS(fDeque.push_back(), Element, (element));
715 newElement->updateBoundAndGenID(prior);
716 }
717
clipDevRRect(const SkRRect & rrect,SkRegion::Op op,bool doAA)718 void SkClipStack::clipDevRRect(const SkRRect& rrect, SkRegion::Op op, bool doAA) {
719 Element element(fSaveCount, rrect, op, doAA);
720 this->pushElement(element);
721 }
722
clipDevRect(const SkRect & rect,SkRegion::Op op,bool doAA)723 void SkClipStack::clipDevRect(const SkRect& rect, SkRegion::Op op, bool doAA) {
724 Element element(fSaveCount, rect, op, doAA);
725 this->pushElement(element);
726 }
727
clipDevPath(const SkPath & path,SkRegion::Op op,bool doAA)728 void SkClipStack::clipDevPath(const SkPath& path, SkRegion::Op op, bool doAA) {
729 Element element(fSaveCount, path, op, doAA);
730 this->pushElement(element);
731 }
732
clipEmpty()733 void SkClipStack::clipEmpty() {
734 Element* element = (Element*) fDeque.back();
735
736 if (element && element->canBeIntersectedInPlace(fSaveCount, SkRegion::kIntersect_Op)) {
737 element->setEmpty();
738 }
739 new (fDeque.push_back()) Element(fSaveCount);
740
741 ((Element*)fDeque.back())->fGenID = kEmptyGenID;
742 }
743
isWideOpen() const744 bool SkClipStack::isWideOpen() const {
745 return this->getTopmostGenID() == kWideOpenGenID;
746 }
747
748 ///////////////////////////////////////////////////////////////////////////////
749
Iter()750 SkClipStack::Iter::Iter() : fStack(NULL) {
751 }
752
Iter(const SkClipStack & stack,IterStart startLoc)753 SkClipStack::Iter::Iter(const SkClipStack& stack, IterStart startLoc)
754 : fStack(&stack) {
755 this->reset(stack, startLoc);
756 }
757
next()758 const SkClipStack::Element* SkClipStack::Iter::next() {
759 return (const SkClipStack::Element*)fIter.next();
760 }
761
prev()762 const SkClipStack::Element* SkClipStack::Iter::prev() {
763 return (const SkClipStack::Element*)fIter.prev();
764 }
765
skipToTopmost(SkRegion::Op op)766 const SkClipStack::Element* SkClipStack::Iter::skipToTopmost(SkRegion::Op op) {
767
768 if (NULL == fStack) {
769 return NULL;
770 }
771
772 fIter.reset(fStack->fDeque, SkDeque::Iter::kBack_IterStart);
773
774 const SkClipStack::Element* element = NULL;
775
776 for (element = (const SkClipStack::Element*) fIter.prev();
777 element;
778 element = (const SkClipStack::Element*) fIter.prev()) {
779
780 if (op == element->fOp) {
781 // The Deque's iterator is actually one pace ahead of the
782 // returned value. So while "element" is the element we want to
783 // return, the iterator is actually pointing at (and will
784 // return on the next "next" or "prev" call) the element
785 // in front of it in the deque. Bump the iterator forward a
786 // step so we get the expected result.
787 if (NULL == fIter.next()) {
788 // The reverse iterator has run off the front of the deque
789 // (i.e., the "op" clip is the first clip) and can't
790 // recover. Reset the iterator to start at the front.
791 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
792 }
793 break;
794 }
795 }
796
797 if (NULL == element) {
798 // There were no "op" clips
799 fIter.reset(fStack->fDeque, SkDeque::Iter::kFront_IterStart);
800 }
801
802 return this->next();
803 }
804
reset(const SkClipStack & stack,IterStart startLoc)805 void SkClipStack::Iter::reset(const SkClipStack& stack, IterStart startLoc) {
806 fStack = &stack;
807 fIter.reset(stack.fDeque, static_cast<SkDeque::Iter::IterStart>(startLoc));
808 }
809
810 // helper method
getConservativeBounds(int offsetX,int offsetY,int maxWidth,int maxHeight,SkRect * devBounds,bool * isIntersectionOfRects) const811 void SkClipStack::getConservativeBounds(int offsetX,
812 int offsetY,
813 int maxWidth,
814 int maxHeight,
815 SkRect* devBounds,
816 bool* isIntersectionOfRects) const {
817 SkASSERT(devBounds);
818
819 devBounds->setLTRB(0, 0,
820 SkIntToScalar(maxWidth), SkIntToScalar(maxHeight));
821
822 SkRect temp;
823 SkClipStack::BoundsType boundType;
824
825 // temp starts off in canvas space here
826 this->getBounds(&temp, &boundType, isIntersectionOfRects);
827 if (SkClipStack::kInsideOut_BoundsType == boundType) {
828 return;
829 }
830
831 // but is converted to device space here
832 temp.offset(SkIntToScalar(offsetX), SkIntToScalar(offsetY));
833
834 if (!devBounds->intersect(temp)) {
835 devBounds->setEmpty();
836 }
837 }
838
GetNextGenID()839 int32_t SkClipStack::GetNextGenID() {
840 // TODO: handle overflow.
841 return sk_atomic_inc(&gGenID);
842 }
843
getTopmostGenID() const844 int32_t SkClipStack::getTopmostGenID() const {
845 if (fDeque.empty()) {
846 return kWideOpenGenID;
847 }
848
849 const Element* back = static_cast<const Element*>(fDeque.back());
850 if (kInsideOut_BoundsType == back->fFiniteBoundType && back->fFiniteBound.isEmpty()) {
851 return kWideOpenGenID;
852 }
853
854 return back->getGenID();
855 }
856
857 #ifdef SK_DEVELOPER
dump() const858 void SkClipStack::Element::dump() const {
859 static const char* kTypeStrings[] = {
860 "empty",
861 "rect",
862 "rrect",
863 "path"
864 };
865 SK_COMPILE_ASSERT(0 == kEmpty_Type, type_str);
866 SK_COMPILE_ASSERT(1 == kRect_Type, type_str);
867 SK_COMPILE_ASSERT(2 == kRRect_Type, type_str);
868 SK_COMPILE_ASSERT(3 == kPath_Type, type_str);
869 SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kTypeStrings) == kTypeCnt, type_str);
870
871 static const char* kOpStrings[] = {
872 "difference",
873 "intersect",
874 "union",
875 "xor",
876 "reverse-difference",
877 "replace",
878 };
879 SK_COMPILE_ASSERT(0 == SkRegion::kDifference_Op, op_str);
880 SK_COMPILE_ASSERT(1 == SkRegion::kIntersect_Op, op_str);
881 SK_COMPILE_ASSERT(2 == SkRegion::kUnion_Op, op_str);
882 SK_COMPILE_ASSERT(3 == SkRegion::kXOR_Op, op_str);
883 SK_COMPILE_ASSERT(4 == SkRegion::kReverseDifference_Op, op_str);
884 SK_COMPILE_ASSERT(5 == SkRegion::kReplace_Op, op_str);
885 SK_COMPILE_ASSERT(SK_ARRAY_COUNT(kOpStrings) == SkRegion::kOpCnt, op_str);
886
887 SkDebugf("Type: %s, Op: %s, AA: %s, Save Count: %d\n", kTypeStrings[fType],
888 kOpStrings[fOp], (fDoAA ? "yes" : "no"), fSaveCount);
889 switch (fType) {
890 case kEmpty_Type:
891 SkDebugf("\n");
892 break;
893 case kRect_Type:
894 this->getRect().dump();
895 SkDebugf("\n");
896 break;
897 case kRRect_Type:
898 this->getRRect().dump();
899 SkDebugf("\n");
900 break;
901 case kPath_Type:
902 this->getPath().dump(NULL, true, false);
903 break;
904 }
905 }
906
dump() const907 void SkClipStack::dump() const {
908 B2TIter iter(*this);
909 const Element* e;
910 while ((e = iter.next())) {
911 e->dump();
912 SkDebugf("\n");
913 }
914 }
915 #endif
916