1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTArray_DEFINED
9 #define SkTArray_DEFINED
10 
11 #include <new>
12 #include "SkTypes.h"
13 #include "SkTemplates.h"
14 
15 template <typename T, bool MEM_COPY = false> class SkTArray;
16 
17 namespace SkTArrayExt {
18 
19 template<typename T>
copy(SkTArray<T,true> * self,int dst,int src)20 inline void copy(SkTArray<T, true>* self, int dst, int src) {
21     memcpy(&self->fItemArray[dst], &self->fItemArray[src], sizeof(T));
22 }
23 template<typename T>
copy(SkTArray<T,true> * self,const T * array)24 inline void copy(SkTArray<T, true>* self, const T* array) {
25     memcpy(self->fMemArray, array, self->fCount * sizeof(T));
26 }
27 template<typename T>
copyAndDelete(SkTArray<T,true> * self,char * newMemArray)28 inline void copyAndDelete(SkTArray<T, true>* self, char* newMemArray) {
29     memcpy(newMemArray, self->fMemArray, self->fCount * sizeof(T));
30 }
31 
32 template<typename T>
copy(SkTArray<T,false> * self,int dst,int src)33 inline void copy(SkTArray<T, false>* self, int dst, int src) {
34     SkNEW_PLACEMENT_ARGS(&self->fItemArray[dst], T, (self->fItemArray[src]));
35 }
36 template<typename T>
copy(SkTArray<T,false> * self,const T * array)37 inline void copy(SkTArray<T, false>* self, const T* array) {
38     for (int i = 0; i < self->fCount; ++i) {
39         SkNEW_PLACEMENT_ARGS(self->fItemArray + i, T, (array[i]));
40     }
41 }
42 template<typename T>
copyAndDelete(SkTArray<T,false> * self,char * newMemArray)43 inline void copyAndDelete(SkTArray<T, false>* self, char* newMemArray) {
44     for (int i = 0; i < self->fCount; ++i) {
45         SkNEW_PLACEMENT_ARGS(newMemArray + sizeof(T) * i, T, (self->fItemArray[i]));
46         self->fItemArray[i].~T();
47     }
48 }
49 
50 }
51 
52 template <typename T, bool MEM_COPY> void* operator new(size_t, SkTArray<T, MEM_COPY>*, int);
53 
54 /** When MEM_COPY is true T will be bit copied when moved.
55     When MEM_COPY is false, T will be copy constructed / destructed.
56     In all cases T will be default-initialized on allocation,
57     and its destructor will be called from this object's destructor.
58 */
59 template <typename T, bool MEM_COPY> class SkTArray {
60 public:
61     /**
62      * Creates an empty array with no initial storage
63      */
SkTArray()64     SkTArray() {
65         fCount = 0;
66         fReserveCount = gMIN_ALLOC_COUNT;
67         fAllocCount = 0;
68         fMemArray = NULL;
69         fPreAllocMemArray = NULL;
70     }
71 
72     /**
73      * Creates an empty array that will preallocate space for reserveCount
74      * elements.
75      */
SkTArray(int reserveCount)76     explicit SkTArray(int reserveCount) {
77         this->init(NULL, 0, NULL, reserveCount);
78     }
79 
80     /**
81      * Copies one array to another. The new array will be heap allocated.
82      */
SkTArray(const SkTArray & array)83     explicit SkTArray(const SkTArray& array) {
84         this->init(array.fItemArray, array.fCount, NULL, 0);
85     }
86 
87     /**
88      * Creates a SkTArray by copying contents of a standard C array. The new
89      * array will be heap allocated. Be careful not to use this constructor
90      * when you really want the (void*, int) version.
91      */
SkTArray(const T * array,int count)92     SkTArray(const T* array, int count) {
93         this->init(array, count, NULL, 0);
94     }
95 
96     /**
97      * assign copy of array to this
98      */
99     SkTArray& operator =(const SkTArray& array) {
100         for (int i = 0; i < fCount; ++i) {
101             fItemArray[i].~T();
102         }
103         fCount = 0;
104         this->checkRealloc((int)array.count());
105         fCount = array.count();
106         SkTArrayExt::copy(this, static_cast<const T*>(array.fMemArray));
107         return *this;
108     }
109 
~SkTArray()110     virtual ~SkTArray() {
111         for (int i = 0; i < fCount; ++i) {
112             fItemArray[i].~T();
113         }
114         if (fMemArray != fPreAllocMemArray) {
115             sk_free(fMemArray);
116         }
117     }
118 
119     /**
120      * Resets to count() == 0
121      */
reset()122     void reset() { this->pop_back_n(fCount); }
123 
124     /**
125      * Resets to count() = n newly constructed T objects.
126      */
reset(int n)127     void reset(int n) {
128         SkASSERT(n >= 0);
129         for (int i = 0; i < fCount; ++i) {
130             fItemArray[i].~T();
131         }
132         // set fCount to 0 before calling checkRealloc so that no copy cons. are called.
133         fCount = 0;
134         this->checkRealloc(n);
135         fCount = n;
136         for (int i = 0; i < fCount; ++i) {
137             SkNEW_PLACEMENT(fItemArray + i, T);
138         }
139     }
140 
141     /**
142      * Resets to a copy of a C array.
143      */
reset(const T * array,int count)144     void reset(const T* array, int count) {
145         for (int i = 0; i < fCount; ++i) {
146             fItemArray[i].~T();
147         }
148         int delta = count - fCount;
149         this->checkRealloc(delta);
150         fCount = count;
151         SkTArrayExt::copy(this, array);
152     }
153 
removeShuffle(int n)154     void removeShuffle(int n) {
155         SkASSERT(n < fCount);
156         int newCount = fCount - 1;
157         fCount = newCount;
158         fItemArray[n].~T();
159         if (n != newCount) {
160             SkTArrayExt::copy(this, n, newCount);
161             fItemArray[newCount].~T();
162         }
163     }
164 
165     /**
166      * Number of elements in the array.
167      */
count()168     int count() const { return fCount; }
169 
170     /**
171      * Is the array empty.
172      */
empty()173     bool empty() const { return !fCount; }
174 
175     /**
176      * Adds 1 new default-initialized T value and returns it by reference. Note
177      * the reference only remains valid until the next call that adds or removes
178      * elements.
179      */
push_back()180     T& push_back() {
181         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
182         SkNEW_PLACEMENT(newT, T);
183         return *newT;
184     }
185 
186     /**
187      * Version of above that uses a copy constructor to initialize the new item
188      */
push_back(const T & t)189     T& push_back(const T& t) {
190         T* newT = reinterpret_cast<T*>(this->push_back_raw(1));
191         SkNEW_PLACEMENT_ARGS(newT, T, (t));
192         return *newT;
193     }
194 
195     /**
196      * Allocates n more default-initialized T values, and returns the address of
197      * the start of that new range. Note: this address is only valid until the
198      * next API call made on the array that might add or remove elements.
199      */
push_back_n(int n)200     T* push_back_n(int n) {
201         SkASSERT(n >= 0);
202         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
203         for (int i = 0; i < n; ++i) {
204             SkNEW_PLACEMENT(newTs + i, T);
205         }
206         return newTs;
207     }
208 
209     /**
210      * Version of above that uses a copy constructor to initialize all n items
211      * to the same T.
212      */
push_back_n(int n,const T & t)213     T* push_back_n(int n, const T& t) {
214         SkASSERT(n >= 0);
215         T* newTs = reinterpret_cast<T*>(this->push_back_raw(n));
216         for (int i = 0; i < n; ++i) {
217             SkNEW_PLACEMENT_ARGS(newTs[i], T, (t));
218         }
219         return newTs;
220     }
221 
222     /**
223      * Version of above that uses a copy constructor to initialize the n items
224      * to separate T values.
225      */
push_back_n(int n,const T t[])226     T* push_back_n(int n, const T t[]) {
227         SkASSERT(n >= 0);
228         this->checkRealloc(n);
229         for (int i = 0; i < n; ++i) {
230             SkNEW_PLACEMENT_ARGS(fItemArray + fCount + i, T, (t[i]));
231         }
232         fCount += n;
233         return fItemArray + fCount - n;
234     }
235 
236     /**
237      * Removes the last element. Not safe to call when count() == 0.
238      */
pop_back()239     void pop_back() {
240         SkASSERT(fCount > 0);
241         --fCount;
242         fItemArray[fCount].~T();
243         this->checkRealloc(0);
244     }
245 
246     /**
247      * Removes the last n elements. Not safe to call when count() < n.
248      */
pop_back_n(int n)249     void pop_back_n(int n) {
250         SkASSERT(n >= 0);
251         SkASSERT(fCount >= n);
252         fCount -= n;
253         for (int i = 0; i < n; ++i) {
254             fItemArray[fCount + i].~T();
255         }
256         this->checkRealloc(0);
257     }
258 
259     /**
260      * Pushes or pops from the back to resize. Pushes will be default
261      * initialized.
262      */
resize_back(int newCount)263     void resize_back(int newCount) {
264         SkASSERT(newCount >= 0);
265 
266         if (newCount > fCount) {
267             this->push_back_n(newCount - fCount);
268         } else if (newCount < fCount) {
269             this->pop_back_n(fCount - newCount);
270         }
271     }
272 
273     /** Swaps the contents of this array with that array. Does a pointer swap if possible,
274         otherwise copies the T values. */
swap(SkTArray * that)275     void swap(SkTArray* that) {
276         if (this == that) {
277             return;
278         }
279         if (this->fPreAllocMemArray != this->fItemArray &&
280             that->fPreAllocMemArray != that->fItemArray) {
281             // If neither is using a preallocated array then just swap.
282             SkTSwap(fItemArray, that->fItemArray);
283             SkTSwap(fCount, that->fCount);
284             SkTSwap(fAllocCount, that->fAllocCount);
285         } else {
286             // This could be more optimal...
287             SkTArray copy(*that);
288             *that = *this;
289             *this = copy;
290         }
291     }
292 
begin()293     T* begin() {
294         return fItemArray;
295     }
begin()296     const T* begin() const {
297         return fItemArray;
298     }
end()299     T* end() {
300         return fItemArray ? fItemArray + fCount : NULL;
301     }
end()302     const T* end() const {
303         return fItemArray ? fItemArray + fCount : NULL;
304     }
305 
306    /**
307      * Get the i^th element.
308      */
309     T& operator[] (int i) {
310         SkASSERT(i < fCount);
311         SkASSERT(i >= 0);
312         return fItemArray[i];
313     }
314 
315     const T& operator[] (int i) const {
316         SkASSERT(i < fCount);
317         SkASSERT(i >= 0);
318         return fItemArray[i];
319     }
320 
321     /**
322      * equivalent to operator[](0)
323      */
front()324     T& front() { SkASSERT(fCount > 0); return fItemArray[0];}
325 
front()326     const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];}
327 
328     /**
329      * equivalent to operator[](count() - 1)
330      */
back()331     T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];}
332 
back()333     const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];}
334 
335     /**
336      * equivalent to operator[](count()-1-i)
337      */
fromBack(int i)338     T& fromBack(int i) {
339         SkASSERT(i >= 0);
340         SkASSERT(i < fCount);
341         return fItemArray[fCount - i - 1];
342     }
343 
fromBack(int i)344     const T& fromBack(int i) const {
345         SkASSERT(i >= 0);
346         SkASSERT(i < fCount);
347         return fItemArray[fCount - i - 1];
348     }
349 
350     bool operator==(const SkTArray<T, MEM_COPY>& right) const {
351         int leftCount = this->count();
352         if (leftCount != right.count()) {
353             return false;
354         }
355         for (int index = 0; index < leftCount; ++index) {
356             if (fItemArray[index] != right.fItemArray[index]) {
357                 return false;
358             }
359         }
360         return true;
361     }
362 
363     bool operator!=(const SkTArray<T, MEM_COPY>& right) const {
364         return !(*this == right);
365     }
366 
367 protected:
368     /**
369      * Creates an empty array that will use the passed storage block until it
370      * is insufficiently large to hold the entire array.
371      */
372     template <int N>
SkTArray(SkAlignedSTStorage<N,T> * storage)373     SkTArray(SkAlignedSTStorage<N,T>* storage) {
374         this->init(NULL, 0, storage->get(), N);
375     }
376 
377     /**
378      * Copy another array, using preallocated storage if preAllocCount >=
379      * array.count(). Otherwise storage will only be used when array shrinks
380      * to fit.
381      */
382     template <int N>
SkTArray(const SkTArray & array,SkAlignedSTStorage<N,T> * storage)383     SkTArray(const SkTArray& array, SkAlignedSTStorage<N,T>* storage) {
384         this->init(array.fItemArray, array.fCount, storage->get(), N);
385     }
386 
387     /**
388      * Copy a C array, using preallocated storage if preAllocCount >=
389      * count. Otherwise storage will only be used when array shrinks
390      * to fit.
391      */
392     template <int N>
SkTArray(const T * array,int count,SkAlignedSTStorage<N,T> * storage)393     SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) {
394         this->init(array, count, storage->get(), N);
395     }
396 
init(const T * array,int count,void * preAllocStorage,int preAllocOrReserveCount)397     void init(const T* array, int count,
398               void* preAllocStorage, int preAllocOrReserveCount) {
399         SkASSERT(count >= 0);
400         SkASSERT(preAllocOrReserveCount >= 0);
401         fCount              = count;
402         fReserveCount       = (preAllocOrReserveCount > 0) ?
403                                     preAllocOrReserveCount :
404                                     gMIN_ALLOC_COUNT;
405         fPreAllocMemArray   = preAllocStorage;
406         if (fReserveCount >= fCount &&
407             preAllocStorage) {
408             fAllocCount = fReserveCount;
409             fMemArray = preAllocStorage;
410         } else {
411             fAllocCount = SkMax32(fCount, fReserveCount);
412             fMemArray = sk_malloc_throw(fAllocCount * sizeof(T));
413         }
414 
415         SkTArrayExt::copy(this, array);
416     }
417 
418 private:
419 
420     static const int gMIN_ALLOC_COUNT = 8;
421 
422     // Helper function that makes space for n objects, adjusts the count, but does not initialize
423     // the new objects.
push_back_raw(int n)424     void* push_back_raw(int n) {
425         this->checkRealloc(n);
426         void* ptr = fItemArray + fCount;
427         fCount += n;
428         return ptr;
429     }
430 
checkRealloc(int delta)431     inline void checkRealloc(int delta) {
432         SkASSERT(fCount >= 0);
433         SkASSERT(fAllocCount >= 0);
434 
435         SkASSERT(-delta <= fCount);
436 
437         int newCount = fCount + delta;
438         int newAllocCount = fAllocCount;
439 
440         if (newCount > fAllocCount || newCount < (fAllocCount / 3)) {
441             // whether we're growing or shrinking, we leave at least 50% extra space for future
442             // growth (clamped to the reserve count).
443             newAllocCount = SkMax32(newCount + ((newCount + 1) >> 1), fReserveCount);
444         }
445         if (newAllocCount != fAllocCount) {
446 
447             fAllocCount = newAllocCount;
448             char* newMemArray;
449 
450             if (fAllocCount == fReserveCount && fPreAllocMemArray) {
451                 newMemArray = (char*) fPreAllocMemArray;
452             } else {
453                 newMemArray = (char*) sk_malloc_throw(fAllocCount*sizeof(T));
454             }
455 
456             SkTArrayExt::copyAndDelete<T>(this, newMemArray);
457 
458             if (fMemArray != fPreAllocMemArray) {
459                 sk_free(fMemArray);
460             }
461             fMemArray = newMemArray;
462         }
463     }
464 
465     friend void* operator new<T>(size_t, SkTArray*, int);
466 
467     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, int dst, int src);
468     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, true>* that, const X*);
469     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, true>* that, char*);
470 
471     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, int dst, int src);
472     template<typename X> friend void SkTArrayExt::copy(SkTArray<X, false>* that, const X*);
473     template<typename X> friend void SkTArrayExt::copyAndDelete(SkTArray<X, false>* that, char*);
474 
475     int     fReserveCount;
476     int     fCount;
477     int     fAllocCount;
478     void*   fPreAllocMemArray;
479     union {
480         T*       fItemArray;
481         void*    fMemArray;
482     };
483 };
484 
485 // Use the below macro (SkNEW_APPEND_TO_TARRAY) rather than calling this directly
486 template <typename T, bool MEM_COPY>
new(size_t,SkTArray<T,MEM_COPY> * array,int SkDEBUGCODE (atIndex))487 void* operator new(size_t, SkTArray<T, MEM_COPY>* array, int SkDEBUGCODE(atIndex)) {
488     // Currently, we only support adding to the end of the array. When the array class itself
489     // supports random insertion then this should be updated.
490     // SkASSERT(atIndex >= 0 && atIndex <= array->count());
491     SkASSERT(atIndex == array->count());
492     return array->push_back_raw(1);
493 }
494 
495 // Skia doesn't use C++ exceptions but it may be compiled with them enabled. Having an op delete
496 // to match the op new silences warnings about missing op delete when a constructor throws an
497 // exception.
498 template <typename T, bool MEM_COPY>
delete(void *,SkTArray<T,MEM_COPY> *,int)499 void operator delete(void*, SkTArray<T, MEM_COPY>* /*array*/, int /*atIndex*/) {
500     SK_CRASH();
501 }
502 
503 // Constructs a new object as the last element of an SkTArray.
504 #define SkNEW_APPEND_TO_TARRAY(array_ptr, type_name, args)  \
505     (new ((array_ptr), (array_ptr)->count()) type_name args)
506 
507 
508 /**
509  * Subclass of SkTArray that contains a preallocated memory block for the array.
510  */
511 template <int N, typename T, bool MEM_COPY = false>
512 class SkSTArray : public SkTArray<T, MEM_COPY> {
513 private:
514     typedef SkTArray<T, MEM_COPY> INHERITED;
515 
516 public:
SkSTArray()517     SkSTArray() : INHERITED(&fStorage) {
518     }
519 
SkSTArray(const SkSTArray & array)520     SkSTArray(const SkSTArray& array)
521         : INHERITED(array, &fStorage) {
522     }
523 
SkSTArray(const INHERITED & array)524     explicit SkSTArray(const INHERITED& array)
525         : INHERITED(array, &fStorage) {
526     }
527 
SkSTArray(int reserveCount)528     explicit SkSTArray(int reserveCount)
529         : INHERITED(reserveCount) {
530     }
531 
SkSTArray(const T * array,int count)532     SkSTArray(const T* array, int count)
533         : INHERITED(array, count, &fStorage) {
534     }
535 
536     SkSTArray& operator= (const SkSTArray& array) {
537         return *this = *(const INHERITED*)&array;
538     }
539 
540     SkSTArray& operator= (const INHERITED& array) {
541         INHERITED::operator=(array);
542         return *this;
543     }
544 
545 private:
546     SkAlignedSTStorage<N,T> fStorage;
547 };
548 
549 #endif
550