1 //=-- lsan_common_linux.cc ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality. Linux-specific code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_platform.h"
16 #include "lsan_common.h"
17
18 #if CAN_SANITIZE_LEAKS && SANITIZER_LINUX
19 #include <link.h>
20
21 #include "sanitizer_common/sanitizer_common.h"
22 #include "sanitizer_common/sanitizer_flags.h"
23 #include "sanitizer_common/sanitizer_linux.h"
24 #include "sanitizer_common/sanitizer_stackdepot.h"
25
26 namespace __lsan {
27
28 static const char kLinkerName[] = "ld";
29 // We request 2 modules matching "ld", so we can print a warning if there's more
30 // than one match. But only the first one is actually used.
31 static char linker_placeholder[2 * sizeof(LoadedModule)] ALIGNED(64);
32 static LoadedModule *linker = 0;
33
IsLinker(const char * full_name)34 static bool IsLinker(const char* full_name) {
35 return LibraryNameIs(full_name, kLinkerName);
36 }
37
InitializePlatformSpecificModules()38 void InitializePlatformSpecificModules() {
39 internal_memset(linker_placeholder, 0, sizeof(linker_placeholder));
40 uptr num_matches = GetListOfModules(
41 reinterpret_cast<LoadedModule *>(linker_placeholder), 2, IsLinker);
42 if (num_matches == 1) {
43 linker = reinterpret_cast<LoadedModule *>(linker_placeholder);
44 return;
45 }
46 if (num_matches == 0)
47 VReport(1, "LeakSanitizer: Dynamic linker not found. "
48 "TLS will not be handled correctly.\n");
49 else if (num_matches > 1)
50 VReport(1, "LeakSanitizer: Multiple modules match \"%s\". "
51 "TLS will not be handled correctly.\n", kLinkerName);
52 linker = 0;
53 }
54
ProcessGlobalRegionsCallback(struct dl_phdr_info * info,size_t size,void * data)55 static int ProcessGlobalRegionsCallback(struct dl_phdr_info *info, size_t size,
56 void *data) {
57 Frontier *frontier = reinterpret_cast<Frontier *>(data);
58 for (uptr j = 0; j < info->dlpi_phnum; j++) {
59 const ElfW(Phdr) *phdr = &(info->dlpi_phdr[j]);
60 // We're looking for .data and .bss sections, which reside in writeable,
61 // loadable segments.
62 if (!(phdr->p_flags & PF_W) || (phdr->p_type != PT_LOAD) ||
63 (phdr->p_memsz == 0))
64 continue;
65 uptr begin = info->dlpi_addr + phdr->p_vaddr;
66 uptr end = begin + phdr->p_memsz;
67 uptr allocator_begin = 0, allocator_end = 0;
68 GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
69 if (begin <= allocator_begin && allocator_begin < end) {
70 CHECK_LE(allocator_begin, allocator_end);
71 CHECK_LT(allocator_end, end);
72 if (begin < allocator_begin)
73 ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
74 kReachable);
75 if (allocator_end < end)
76 ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL",
77 kReachable);
78 } else {
79 ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
80 }
81 }
82 return 0;
83 }
84
85 // Scans global variables for heap pointers.
ProcessGlobalRegions(Frontier * frontier)86 void ProcessGlobalRegions(Frontier *frontier) {
87 if (!flags()->use_globals) return;
88 dl_iterate_phdr(ProcessGlobalRegionsCallback, frontier);
89 }
90
GetCallerPC(u32 stack_id,StackDepotReverseMap * map)91 static uptr GetCallerPC(u32 stack_id, StackDepotReverseMap *map) {
92 CHECK(stack_id);
93 StackTrace stack = map->Get(stack_id);
94 // The top frame is our malloc/calloc/etc. The next frame is the caller.
95 if (stack.size >= 2)
96 return stack.trace[1];
97 return 0;
98 }
99
100 struct ProcessPlatformAllocParam {
101 Frontier *frontier;
102 StackDepotReverseMap *stack_depot_reverse_map;
103 };
104
105 // ForEachChunk callback. Identifies unreachable chunks which must be treated as
106 // reachable. Marks them as reachable and adds them to the frontier.
ProcessPlatformSpecificAllocationsCb(uptr chunk,void * arg)107 static void ProcessPlatformSpecificAllocationsCb(uptr chunk, void *arg) {
108 CHECK(arg);
109 ProcessPlatformAllocParam *param =
110 reinterpret_cast<ProcessPlatformAllocParam *>(arg);
111 chunk = GetUserBegin(chunk);
112 LsanMetadata m(chunk);
113 if (m.allocated() && m.tag() != kReachable) {
114 u32 stack_id = m.stack_trace_id();
115 uptr caller_pc = 0;
116 if (stack_id > 0)
117 caller_pc = GetCallerPC(stack_id, param->stack_depot_reverse_map);
118 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
119 // it as reachable, as we can't properly report its allocation stack anyway.
120 if (caller_pc == 0 || linker->containsAddress(caller_pc)) {
121 m.set_tag(kReachable);
122 param->frontier->push_back(chunk);
123 }
124 }
125 }
126
127 // Handles dynamically allocated TLS blocks by treating all chunks allocated
128 // from ld-linux.so as reachable.
129 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
130 // They are allocated with a __libc_memalign() call in allocate_and_init()
131 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
132 // blocks, but we can make sure they come from our own allocator by intercepting
133 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
134 // addresses are stored in a dynamically allocated array (the DTV) which is
135 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
136 // being reachable from the static TLS, and the dynamic TLS being reachable from
137 // the DTV. This is because the initial DTV is allocated before our interception
138 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
139 // can't special-case it either, since we don't know its size.
140 // Our solution is to include in the root set all allocations made from
141 // ld-linux.so (which is where allocate_and_init() is implemented). This is
142 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
143 // which we don't care about).
ProcessPlatformSpecificAllocations(Frontier * frontier)144 void ProcessPlatformSpecificAllocations(Frontier *frontier) {
145 if (!flags()->use_tls) return;
146 if (!linker) return;
147 StackDepotReverseMap stack_depot_reverse_map;
148 ProcessPlatformAllocParam arg = {frontier, &stack_depot_reverse_map};
149 ForEachChunk(ProcessPlatformSpecificAllocationsCb, &arg);
150 }
151
152 struct DoStopTheWorldParam {
153 StopTheWorldCallback callback;
154 void *argument;
155 };
156
DoStopTheWorldCallback(struct dl_phdr_info * info,size_t size,void * data)157 static int DoStopTheWorldCallback(struct dl_phdr_info *info, size_t size,
158 void *data) {
159 DoStopTheWorldParam *param = reinterpret_cast<DoStopTheWorldParam *>(data);
160 StopTheWorld(param->callback, param->argument);
161 return 1;
162 }
163
164 // LSan calls dl_iterate_phdr() from the tracer task. This may deadlock: if one
165 // of the threads is frozen while holding the libdl lock, the tracer will hang
166 // in dl_iterate_phdr() forever.
167 // Luckily, (a) the lock is reentrant and (b) libc can't distinguish between the
168 // tracer task and the thread that spawned it. Thus, if we run the tracer task
169 // while holding the libdl lock in the parent thread, we can safely reenter it
170 // in the tracer. The solution is to run stoptheworld from a dl_iterate_phdr()
171 // callback in the parent thread.
DoStopTheWorld(StopTheWorldCallback callback,void * argument)172 void DoStopTheWorld(StopTheWorldCallback callback, void *argument) {
173 DoStopTheWorldParam param = {callback, argument};
174 dl_iterate_phdr(DoStopTheWorldCallback, ¶m);
175 }
176
177 } // namespace __lsan
178 #endif // CAN_SANITIZE_LEAKS && SANITIZER_LINUX
179