1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkIntersections.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsConic.h"
10 #include "SkPathOpsCubic.h"
11 #include "SkPathOpsQuad.h"
12 
13 // cribbed from the float version in SkGeometry.cpp
conic_deriv_coeff(const double src[],SkScalar w,double coeff[3])14 static void conic_deriv_coeff(const double src[],
15                               SkScalar w,
16                               double coeff[3]) {
17     const double P20 = src[4] - src[0];
18     const double P10 = src[2] - src[0];
19     const double wP10 = w * P10;
20     coeff[0] = w * P20 - P20;
21     coeff[1] = P20 - 2 * wP10;
22     coeff[2] = wP10;
23 }
24 
conic_eval_tan(const double coord[],SkScalar w,double t)25 static double conic_eval_tan(const double coord[], SkScalar w, double t) {
26     double coeff[3];
27     conic_deriv_coeff(coord, w, coeff);
28     return t * (t * coeff[0] + coeff[1]) + coeff[2];
29 }
30 
FindExtrema(const double src[],SkScalar w,double t[1])31 int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) {
32     double coeff[3];
33     conic_deriv_coeff(src, w, coeff);
34 
35     double tValues[2];
36     int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues);
37     SkASSERT(0 == roots || 1 == roots);
38 
39     if (1 == roots) {
40         t[0] = tValues[0];
41         return 1;
42     }
43     return 0;
44 }
45 
dxdyAtT(double t) const46 SkDVector SkDConic::dxdyAtT(double t) const {
47     SkDVector result = {
48         conic_eval_tan(&fPts[0].fX, fWeight, t),
49         conic_eval_tan(&fPts[0].fY, fWeight, t)
50     };
51     return result;
52 }
53 
conic_eval_numerator(const double src[],SkScalar w,double t)54 static double conic_eval_numerator(const double src[], SkScalar w, double t) {
55     SkASSERT(src);
56     SkASSERT(t >= 0 && t <= 1);
57     double src2w = src[2] * w;
58     double C = src[0];
59     double A = src[4] - 2 * src2w + C;
60     double B = 2 * (src2w - C);
61     return (A * t + B) * t + C;
62 }
63 
64 
conic_eval_denominator(SkScalar w,double t)65 static double conic_eval_denominator(SkScalar w, double t) {
66     double B = 2 * (w - 1);
67     double C = 1;
68     double A = -B;
69     return (A * t + B) * t + C;
70 }
71 
hullIntersects(const SkDCubic & cubic,bool * isLinear) const72 bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const {
73     return cubic.hullIntersects(*this, isLinear);
74 }
75 
ptAtT(double t) const76 SkDPoint SkDConic::ptAtT(double t) const {
77     double denominator = conic_eval_denominator(fWeight, t);
78     SkDPoint result = {
79         conic_eval_numerator(&fPts[0].fX, fWeight, t) / denominator,
80         conic_eval_numerator(&fPts[0].fY, fWeight, t) / denominator
81     };
82     return result;
83 }
84 
85 /* see quad subdivide for rationale */
subDivide(double t1,double t2) const86 SkDConic SkDConic::subDivide(double t1, double t2) const {
87     double ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1);
88     double ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1);
89     double az = conic_eval_denominator(fWeight, t1);
90     double midT = (t1 + t2) / 2;
91     double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT);
92     double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT);
93     double dz = conic_eval_denominator(fWeight, midT);
94     double cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2);
95     double cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2);
96     double cz = conic_eval_denominator(fWeight, t2);
97     double bx = 2 * dx - (ax + cx) / 2;
98     double by = 2 * dy - (ay + cy) / 2;
99     double bz = 2 * dz - (az + cz) / 2;
100     double dt = t2 - t1;
101     double dt_1 = 1 - dt;
102     SkScalar w = SkDoubleToScalar((1 + dt * (fWeight - 1))
103             / sqrt(dt * dt + 2 * dt * dt_1 * fWeight + dt_1 * dt_1));
104     SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}}}, w };
105     return dst;
106 }
107 
subDivide(const SkDPoint & a,const SkDPoint & c,double t1,double t2,SkScalar * weight) const108 SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2,
109         SkScalar* weight) const {
110     SkDConic chopped = this->subDivide(t1, t2);
111     *weight = chopped.fWeight;
112     return chopped[1];
113 }
114