1 //===-- sanitizer_stoptheworld_linux_libcdep.cc ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // See sanitizer_stoptheworld.h for details.
11 // This implementation was inspired by Markus Gutschke's linuxthreads.cc.
12 //
13 //===----------------------------------------------------------------------===//
14
15
16 #include "sanitizer_platform.h"
17 #if SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__))
18
19 #include "sanitizer_stoptheworld.h"
20
21 #include "sanitizer_platform_limits_posix.h"
22 #include "sanitizer_atomic.h"
23
24 #include <errno.h>
25 #include <sched.h> // for CLONE_* definitions
26 #include <stddef.h>
27 #include <sys/prctl.h> // for PR_* definitions
28 #include <sys/ptrace.h> // for PTRACE_* definitions
29 #include <sys/types.h> // for pid_t
30 #if SANITIZER_ANDROID && defined(__arm__)
31 # include <linux/user.h> // for pt_regs
32 #else
33 # include <sys/user.h> // for user_regs_struct
34 #endif
35 #include <sys/wait.h> // for signal-related stuff
36
37 #ifdef sa_handler
38 # undef sa_handler
39 #endif
40
41 #ifdef sa_sigaction
42 # undef sa_sigaction
43 #endif
44
45 #include "sanitizer_common.h"
46 #include "sanitizer_flags.h"
47 #include "sanitizer_libc.h"
48 #include "sanitizer_linux.h"
49 #include "sanitizer_mutex.h"
50 #include "sanitizer_placement_new.h"
51
52 // This module works by spawning a Linux task which then attaches to every
53 // thread in the caller process with ptrace. This suspends the threads, and
54 // PTRACE_GETREGS can then be used to obtain their register state. The callback
55 // supplied to StopTheWorld() is run in the tracer task while the threads are
56 // suspended.
57 // The tracer task must be placed in a different thread group for ptrace to
58 // work, so it cannot be spawned as a pthread. Instead, we use the low-level
59 // clone() interface (we want to share the address space with the caller
60 // process, so we prefer clone() over fork()).
61 //
62 // We don't use any libc functions, relying instead on direct syscalls. There
63 // are two reasons for this:
64 // 1. calling a library function while threads are suspended could cause a
65 // deadlock, if one of the treads happens to be holding a libc lock;
66 // 2. it's generally not safe to call libc functions from the tracer task,
67 // because clone() does not set up a thread-local storage for it. Any
68 // thread-local variables used by libc will be shared between the tracer task
69 // and the thread which spawned it.
70
71 COMPILER_CHECK(sizeof(SuspendedThreadID) == sizeof(pid_t));
72
73 namespace __sanitizer {
74
75 // Structure for passing arguments into the tracer thread.
76 struct TracerThreadArgument {
77 StopTheWorldCallback callback;
78 void *callback_argument;
79 // The tracer thread waits on this mutex while the parent finishes its
80 // preparations.
81 BlockingMutex mutex;
82 // Tracer thread signals its completion by setting done.
83 atomic_uintptr_t done;
84 uptr parent_pid;
85 };
86
87 // This class handles thread suspending/unsuspending in the tracer thread.
88 class ThreadSuspender {
89 public:
ThreadSuspender(pid_t pid,TracerThreadArgument * arg)90 explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg)
91 : arg(arg)
92 , pid_(pid) {
93 CHECK_GE(pid, 0);
94 }
95 bool SuspendAllThreads();
96 void ResumeAllThreads();
97 void KillAllThreads();
suspended_threads_list()98 SuspendedThreadsList &suspended_threads_list() {
99 return suspended_threads_list_;
100 }
101 TracerThreadArgument *arg;
102 private:
103 SuspendedThreadsList suspended_threads_list_;
104 pid_t pid_;
105 bool SuspendThread(SuspendedThreadID thread_id);
106 };
107
SuspendThread(SuspendedThreadID tid)108 bool ThreadSuspender::SuspendThread(SuspendedThreadID tid) {
109 // Are we already attached to this thread?
110 // Currently this check takes linear time, however the number of threads is
111 // usually small.
112 if (suspended_threads_list_.Contains(tid))
113 return false;
114 int pterrno;
115 if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, NULL, NULL),
116 &pterrno)) {
117 // Either the thread is dead, or something prevented us from attaching.
118 // Log this event and move on.
119 VReport(1, "Could not attach to thread %d (errno %d).\n", tid, pterrno);
120 return false;
121 } else {
122 VReport(2, "Attached to thread %d.\n", tid);
123 // The thread is not guaranteed to stop before ptrace returns, so we must
124 // wait on it. Note: if the thread receives a signal concurrently,
125 // we can get notification about the signal before notification about stop.
126 // In such case we need to forward the signal to the thread, otherwise
127 // the signal will be missed (as we do PTRACE_DETACH with arg=0) and
128 // any logic relying on signals will break. After forwarding we need to
129 // continue to wait for stopping, because the thread is not stopped yet.
130 // We do ignore delivery of SIGSTOP, because we want to make stop-the-world
131 // as invisible as possible.
132 for (;;) {
133 int status;
134 uptr waitpid_status;
135 HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL));
136 int wperrno;
137 if (internal_iserror(waitpid_status, &wperrno)) {
138 // Got a ECHILD error. I don't think this situation is possible, but it
139 // doesn't hurt to report it.
140 VReport(1, "Waiting on thread %d failed, detaching (errno %d).\n",
141 tid, wperrno);
142 internal_ptrace(PTRACE_DETACH, tid, NULL, NULL);
143 return false;
144 }
145 if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) {
146 internal_ptrace(PTRACE_CONT, tid, 0, (void*)(uptr)WSTOPSIG(status));
147 continue;
148 }
149 break;
150 }
151 suspended_threads_list_.Append(tid);
152 return true;
153 }
154 }
155
ResumeAllThreads()156 void ThreadSuspender::ResumeAllThreads() {
157 for (uptr i = 0; i < suspended_threads_list_.thread_count(); i++) {
158 pid_t tid = suspended_threads_list_.GetThreadID(i);
159 int pterrno;
160 if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, NULL, NULL),
161 &pterrno)) {
162 VReport(2, "Detached from thread %d.\n", tid);
163 } else {
164 // Either the thread is dead, or we are already detached.
165 // The latter case is possible, for instance, if this function was called
166 // from a signal handler.
167 VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno);
168 }
169 }
170 }
171
KillAllThreads()172 void ThreadSuspender::KillAllThreads() {
173 for (uptr i = 0; i < suspended_threads_list_.thread_count(); i++)
174 internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i),
175 NULL, NULL);
176 }
177
SuspendAllThreads()178 bool ThreadSuspender::SuspendAllThreads() {
179 ThreadLister thread_lister(pid_);
180 bool added_threads;
181 do {
182 // Run through the directory entries once.
183 added_threads = false;
184 pid_t tid = thread_lister.GetNextTID();
185 while (tid >= 0) {
186 if (SuspendThread(tid))
187 added_threads = true;
188 tid = thread_lister.GetNextTID();
189 }
190 if (thread_lister.error()) {
191 // Detach threads and fail.
192 ResumeAllThreads();
193 return false;
194 }
195 thread_lister.Reset();
196 } while (added_threads);
197 return true;
198 }
199
200 // Pointer to the ThreadSuspender instance for use in signal handler.
201 static ThreadSuspender *thread_suspender_instance = NULL;
202
203 // Synchronous signals that should not be blocked.
204 static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS,
205 SIGXCPU, SIGXFSZ };
206
207 static DieCallbackType old_die_callback;
208
209 // Signal handler to wake up suspended threads when the tracer thread dies.
TracerThreadSignalHandler(int signum,void * siginfo,void * uctx)210 static void TracerThreadSignalHandler(int signum, void *siginfo, void *uctx) {
211 SignalContext ctx = SignalContext::Create(siginfo, uctx);
212 VPrintf(1, "Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n",
213 signum, ctx.addr, ctx.pc, ctx.sp);
214 ThreadSuspender *inst = thread_suspender_instance;
215 if (inst != NULL) {
216 if (signum == SIGABRT)
217 inst->KillAllThreads();
218 else
219 inst->ResumeAllThreads();
220 SetDieCallback(old_die_callback);
221 old_die_callback = NULL;
222 thread_suspender_instance = NULL;
223 atomic_store(&inst->arg->done, 1, memory_order_relaxed);
224 }
225 internal__exit((signum == SIGABRT) ? 1 : 2);
226 }
227
TracerThreadDieCallback()228 static void TracerThreadDieCallback() {
229 // Generally a call to Die() in the tracer thread should be fatal to the
230 // parent process as well, because they share the address space.
231 // This really only works correctly if all the threads are suspended at this
232 // point. So we correctly handle calls to Die() from within the callback, but
233 // not those that happen before or after the callback. Hopefully there aren't
234 // a lot of opportunities for that to happen...
235 ThreadSuspender *inst = thread_suspender_instance;
236 if (inst != NULL && stoptheworld_tracer_pid == internal_getpid()) {
237 inst->KillAllThreads();
238 thread_suspender_instance = NULL;
239 }
240 if (old_die_callback)
241 old_die_callback();
242 SetDieCallback(old_die_callback);
243 old_die_callback = NULL;
244 }
245
246 // Size of alternative stack for signal handlers in the tracer thread.
247 static const int kHandlerStackSize = 4096;
248
249 // This function will be run as a cloned task.
TracerThread(void * argument)250 static int TracerThread(void* argument) {
251 TracerThreadArgument *tracer_thread_argument =
252 (TracerThreadArgument *)argument;
253
254 internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0);
255 // Check if parent is already dead.
256 if (internal_getppid() != tracer_thread_argument->parent_pid)
257 internal__exit(4);
258
259 // Wait for the parent thread to finish preparations.
260 tracer_thread_argument->mutex.Lock();
261 tracer_thread_argument->mutex.Unlock();
262
263 old_die_callback = GetDieCallback();
264 SetDieCallback(TracerThreadDieCallback);
265
266 ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument);
267 // Global pointer for the signal handler.
268 thread_suspender_instance = &thread_suspender;
269
270 // Alternate stack for signal handling.
271 InternalScopedBuffer<char> handler_stack_memory(kHandlerStackSize);
272 struct sigaltstack handler_stack;
273 internal_memset(&handler_stack, 0, sizeof(handler_stack));
274 handler_stack.ss_sp = handler_stack_memory.data();
275 handler_stack.ss_size = kHandlerStackSize;
276 internal_sigaltstack(&handler_stack, NULL);
277
278 // Install our handler for synchronous signals. Other signals should be
279 // blocked by the mask we inherited from the parent thread.
280 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) {
281 __sanitizer_sigaction act;
282 internal_memset(&act, 0, sizeof(act));
283 act.sigaction = TracerThreadSignalHandler;
284 act.sa_flags = SA_ONSTACK | SA_SIGINFO;
285 internal_sigaction_norestorer(kSyncSignals[i], &act, 0);
286 }
287
288 int exit_code = 0;
289 if (!thread_suspender.SuspendAllThreads()) {
290 VReport(1, "Failed suspending threads.\n");
291 exit_code = 3;
292 } else {
293 tracer_thread_argument->callback(thread_suspender.suspended_threads_list(),
294 tracer_thread_argument->callback_argument);
295 thread_suspender.ResumeAllThreads();
296 exit_code = 0;
297 }
298 SetDieCallback(old_die_callback);
299 thread_suspender_instance = NULL;
300 atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed);
301 return exit_code;
302 }
303
304 class ScopedStackSpaceWithGuard {
305 public:
ScopedStackSpaceWithGuard(uptr stack_size)306 explicit ScopedStackSpaceWithGuard(uptr stack_size) {
307 stack_size_ = stack_size;
308 guard_size_ = GetPageSizeCached();
309 // FIXME: Omitting MAP_STACK here works in current kernels but might break
310 // in the future.
311 guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_,
312 "ScopedStackWithGuard");
313 CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_));
314 }
~ScopedStackSpaceWithGuard()315 ~ScopedStackSpaceWithGuard() {
316 UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_);
317 }
Bottom() const318 void *Bottom() const {
319 return (void *)(guard_start_ + stack_size_ + guard_size_);
320 }
321
322 private:
323 uptr stack_size_;
324 uptr guard_size_;
325 uptr guard_start_;
326 };
327
328 // We have a limitation on the stack frame size, so some stuff had to be moved
329 // into globals.
330 static __sanitizer_sigset_t blocked_sigset;
331 static __sanitizer_sigset_t old_sigset;
332
333 class StopTheWorldScope {
334 public:
StopTheWorldScope()335 StopTheWorldScope() {
336 // Make this process dumpable. Processes that are not dumpable cannot be
337 // attached to.
338 process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0);
339 if (!process_was_dumpable_)
340 internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0);
341 }
342
~StopTheWorldScope()343 ~StopTheWorldScope() {
344 // Restore the dumpable flag.
345 if (!process_was_dumpable_)
346 internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0);
347 }
348
349 private:
350 int process_was_dumpable_;
351 };
352
353 // When sanitizer output is being redirected to file (i.e. by using log_path),
354 // the tracer should write to the parent's log instead of trying to open a new
355 // file. Alert the logging code to the fact that we have a tracer.
356 struct ScopedSetTracerPID {
ScopedSetTracerPID__sanitizer::ScopedSetTracerPID357 explicit ScopedSetTracerPID(uptr tracer_pid) {
358 stoptheworld_tracer_pid = tracer_pid;
359 stoptheworld_tracer_ppid = internal_getpid();
360 }
~ScopedSetTracerPID__sanitizer::ScopedSetTracerPID361 ~ScopedSetTracerPID() {
362 stoptheworld_tracer_pid = 0;
363 stoptheworld_tracer_ppid = 0;
364 }
365 };
366
StopTheWorld(StopTheWorldCallback callback,void * argument)367 void StopTheWorld(StopTheWorldCallback callback, void *argument) {
368 StopTheWorldScope in_stoptheworld;
369 // Prepare the arguments for TracerThread.
370 struct TracerThreadArgument tracer_thread_argument;
371 tracer_thread_argument.callback = callback;
372 tracer_thread_argument.callback_argument = argument;
373 tracer_thread_argument.parent_pid = internal_getpid();
374 atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed);
375 const uptr kTracerStackSize = 2 * 1024 * 1024;
376 ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize);
377 // Block the execution of TracerThread until after we have set ptrace
378 // permissions.
379 tracer_thread_argument.mutex.Lock();
380 // Signal handling story.
381 // We don't want async signals to be delivered to the tracer thread,
382 // so we block all async signals before creating the thread. An async signal
383 // handler can temporary modify errno, which is shared with this thread.
384 // We ought to use pthread_sigmask here, because sigprocmask has undefined
385 // behavior in multithreaded programs. However, on linux sigprocmask is
386 // equivalent to pthread_sigmask with the exception that pthread_sigmask
387 // does not allow to block some signals used internally in pthread
388 // implementation. We are fine with blocking them here, we are really not
389 // going to pthread_cancel the thread.
390 // The tracer thread should not raise any synchronous signals. But in case it
391 // does, we setup a special handler for sync signals that properly kills the
392 // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers
393 // in the tracer thread won't interfere with user program. Double note: if a
394 // user does something along the lines of 'kill -11 pid', that can kill the
395 // process even if user setup own handler for SEGV.
396 // Thing to watch out for: this code should not change behavior of user code
397 // in any observable way. In particular it should not override user signal
398 // handlers.
399 internal_sigfillset(&blocked_sigset);
400 for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++)
401 internal_sigdelset(&blocked_sigset, kSyncSignals[i]);
402 int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset);
403 CHECK_EQ(rv, 0);
404 uptr tracer_pid = internal_clone(
405 TracerThread, tracer_stack.Bottom(),
406 CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED,
407 &tracer_thread_argument, 0 /* parent_tidptr */, 0 /* newtls */, 0
408 /* child_tidptr */);
409 internal_sigprocmask(SIG_SETMASK, &old_sigset, 0);
410 int local_errno = 0;
411 if (internal_iserror(tracer_pid, &local_errno)) {
412 VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno);
413 tracer_thread_argument.mutex.Unlock();
414 } else {
415 ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid);
416 // On some systems we have to explicitly declare that we want to be traced
417 // by the tracer thread.
418 #ifdef PR_SET_PTRACER
419 internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0);
420 #endif
421 // Allow the tracer thread to start.
422 tracer_thread_argument.mutex.Unlock();
423 // NOTE: errno is shared between this thread and the tracer thread.
424 // internal_waitpid() may call syscall() which can access/spoil errno,
425 // so we can't call it now. Instead we for the tracer thread to finish using
426 // the spin loop below. Man page for sched_yield() says "In the Linux
427 // implementation, sched_yield() always succeeds", so let's hope it does not
428 // spoil errno. Note that this spin loop runs only for brief periods before
429 // the tracer thread has suspended us and when it starts unblocking threads.
430 while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0)
431 sched_yield();
432 // Now the tracer thread is about to exit and does not touch errno,
433 // wait for it.
434 for (;;) {
435 uptr waitpid_status = internal_waitpid(tracer_pid, NULL, __WALL);
436 if (!internal_iserror(waitpid_status, &local_errno))
437 break;
438 if (local_errno == EINTR)
439 continue;
440 VReport(1, "Waiting on the tracer thread failed (errno %d).\n",
441 local_errno);
442 break;
443 }
444 }
445 }
446
447 // Platform-specific methods from SuspendedThreadsList.
448 #if SANITIZER_ANDROID && defined(__arm__)
449 typedef pt_regs regs_struct;
450 #define REG_SP ARM_sp
451
452 #elif SANITIZER_LINUX && defined(__arm__)
453 typedef user_regs regs_struct;
454 #define REG_SP uregs[13]
455
456 #elif defined(__i386__) || defined(__x86_64__)
457 typedef user_regs_struct regs_struct;
458 #if defined(__i386__)
459 #define REG_SP esp
460 #else
461 #define REG_SP rsp
462 #endif
463
464 #elif defined(__powerpc__) || defined(__powerpc64__)
465 typedef pt_regs regs_struct;
466 #define REG_SP gpr[PT_R1]
467
468 #elif defined(__mips__)
469 typedef struct user regs_struct;
470 #define REG_SP regs[EF_REG29]
471
472 #else
473 #error "Unsupported architecture"
474 #endif // SANITIZER_ANDROID && defined(__arm__)
475
GetRegistersAndSP(uptr index,uptr * buffer,uptr * sp) const476 int SuspendedThreadsList::GetRegistersAndSP(uptr index,
477 uptr *buffer,
478 uptr *sp) const {
479 pid_t tid = GetThreadID(index);
480 regs_struct regs;
481 int pterrno;
482 if (internal_iserror(internal_ptrace(PTRACE_GETREGS, tid, NULL, ®s),
483 &pterrno)) {
484 VReport(1, "Could not get registers from thread %d (errno %d).\n", tid,
485 pterrno);
486 return -1;
487 }
488
489 *sp = regs.REG_SP;
490 internal_memcpy(buffer, ®s, sizeof(regs));
491 return 0;
492 }
493
RegisterCount()494 uptr SuspendedThreadsList::RegisterCount() {
495 return sizeof(regs_struct) / sizeof(uptr);
496 }
497 } // namespace __sanitizer
498
499 #endif // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__))
500