1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM
8
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug.h"
14 #include "src/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/isolate-inl.h"
17 #include "src/parser.h"
18 #include "src/scopes.h"
19
20 #include "src/arm/code-stubs-arm.h"
21 #include "src/arm/macro-assembler-arm.h"
22
23 namespace v8 {
24 namespace internal {
25
26 #define __ ACCESS_MASM(masm_)
27
28
29 // A patch site is a location in the code which it is possible to patch. This
30 // class has a number of methods to emit the code which is patchable and the
31 // method EmitPatchInfo to record a marker back to the patchable code. This
32 // marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit
33 // immediate value is used) is the delta from the pc to the first instruction of
34 // the patchable code.
35 class JumpPatchSite BASE_EMBEDDED {
36 public:
JumpPatchSite(MacroAssembler * masm)37 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
38 #ifdef DEBUG
39 info_emitted_ = false;
40 #endif
41 }
42
~JumpPatchSite()43 ~JumpPatchSite() {
44 DCHECK(patch_site_.is_bound() == info_emitted_);
45 }
46
47 // When initially emitting this ensure that a jump is always generated to skip
48 // the inlined smi code.
EmitJumpIfNotSmi(Register reg,Label * target)49 void EmitJumpIfNotSmi(Register reg, Label* target) {
50 DCHECK(!patch_site_.is_bound() && !info_emitted_);
51 Assembler::BlockConstPoolScope block_const_pool(masm_);
52 __ bind(&patch_site_);
53 __ cmp(reg, Operand(reg));
54 __ b(eq, target); // Always taken before patched.
55 }
56
57 // When initially emitting this ensure that a jump is never generated to skip
58 // the inlined smi code.
EmitJumpIfSmi(Register reg,Label * target)59 void EmitJumpIfSmi(Register reg, Label* target) {
60 DCHECK(!patch_site_.is_bound() && !info_emitted_);
61 Assembler::BlockConstPoolScope block_const_pool(masm_);
62 __ bind(&patch_site_);
63 __ cmp(reg, Operand(reg));
64 __ b(ne, target); // Never taken before patched.
65 }
66
EmitPatchInfo()67 void EmitPatchInfo() {
68 // Block literal pool emission whilst recording patch site information.
69 Assembler::BlockConstPoolScope block_const_pool(masm_);
70 if (patch_site_.is_bound()) {
71 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
72 Register reg;
73 reg.set_code(delta_to_patch_site / kOff12Mask);
74 __ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask);
75 #ifdef DEBUG
76 info_emitted_ = true;
77 #endif
78 } else {
79 __ nop(); // Signals no inlined code.
80 }
81 }
82
83 private:
84 MacroAssembler* masm_;
85 Label patch_site_;
86 #ifdef DEBUG
87 bool info_emitted_;
88 #endif
89 };
90
91
92 // Generate code for a JS function. On entry to the function the receiver
93 // and arguments have been pushed on the stack left to right. The actual
94 // argument count matches the formal parameter count expected by the
95 // function.
96 //
97 // The live registers are:
98 // o r1: the JS function object being called (i.e., ourselves)
99 // o cp: our context
100 // o pp: our caller's constant pool pointer (if FLAG_enable_ool_constant_pool)
101 // o fp: our caller's frame pointer
102 // o sp: stack pointer
103 // o lr: return address
104 //
105 // The function builds a JS frame. Please see JavaScriptFrameConstants in
106 // frames-arm.h for its layout.
Generate()107 void FullCodeGenerator::Generate() {
108 CompilationInfo* info = info_;
109 handler_table_ =
110 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
111
112 profiling_counter_ = isolate()->factory()->NewCell(
113 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
114 SetFunctionPosition(function());
115 Comment cmnt(masm_, "[ function compiled by full code generator");
116
117 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
118
119 #ifdef DEBUG
120 if (strlen(FLAG_stop_at) > 0 &&
121 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
122 __ stop("stop-at");
123 }
124 #endif
125
126 // Sloppy mode functions and builtins need to replace the receiver with the
127 // global proxy when called as functions (without an explicit receiver
128 // object).
129 if (info->strict_mode() == SLOPPY && !info->is_native()) {
130 Label ok;
131 int receiver_offset = info->scope()->num_parameters() * kPointerSize;
132 __ ldr(r2, MemOperand(sp, receiver_offset));
133 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
134 __ b(ne, &ok);
135
136 __ ldr(r2, GlobalObjectOperand());
137 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset));
138
139 __ str(r2, MemOperand(sp, receiver_offset));
140
141 __ bind(&ok);
142 }
143
144 // Open a frame scope to indicate that there is a frame on the stack. The
145 // MANUAL indicates that the scope shouldn't actually generate code to set up
146 // the frame (that is done below).
147 FrameScope frame_scope(masm_, StackFrame::MANUAL);
148
149 info->set_prologue_offset(masm_->pc_offset());
150 __ Prologue(info->IsCodePreAgingActive());
151 info->AddNoFrameRange(0, masm_->pc_offset());
152
153 { Comment cmnt(masm_, "[ Allocate locals");
154 int locals_count = info->scope()->num_stack_slots();
155 // Generators allocate locals, if any, in context slots.
156 DCHECK(!info->function()->is_generator() || locals_count == 0);
157 if (locals_count > 0) {
158 if (locals_count >= 128) {
159 Label ok;
160 __ sub(r9, sp, Operand(locals_count * kPointerSize));
161 __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
162 __ cmp(r9, Operand(r2));
163 __ b(hs, &ok);
164 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
165 __ bind(&ok);
166 }
167 __ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
168 int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
169 if (locals_count >= kMaxPushes) {
170 int loop_iterations = locals_count / kMaxPushes;
171 __ mov(r2, Operand(loop_iterations));
172 Label loop_header;
173 __ bind(&loop_header);
174 // Do pushes.
175 for (int i = 0; i < kMaxPushes; i++) {
176 __ push(r9);
177 }
178 // Continue loop if not done.
179 __ sub(r2, r2, Operand(1), SetCC);
180 __ b(&loop_header, ne);
181 }
182 int remaining = locals_count % kMaxPushes;
183 // Emit the remaining pushes.
184 for (int i = 0; i < remaining; i++) {
185 __ push(r9);
186 }
187 }
188 }
189
190 bool function_in_register = true;
191
192 // Possibly allocate a local context.
193 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
194 if (heap_slots > 0) {
195 // Argument to NewContext is the function, which is still in r1.
196 Comment cmnt(masm_, "[ Allocate context");
197 bool need_write_barrier = true;
198 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
199 __ push(r1);
200 __ Push(info->scope()->GetScopeInfo());
201 __ CallRuntime(Runtime::kNewGlobalContext, 2);
202 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
203 FastNewContextStub stub(isolate(), heap_slots);
204 __ CallStub(&stub);
205 // Result of FastNewContextStub is always in new space.
206 need_write_barrier = false;
207 } else {
208 __ push(r1);
209 __ CallRuntime(Runtime::kNewFunctionContext, 1);
210 }
211 function_in_register = false;
212 // Context is returned in r0. It replaces the context passed to us.
213 // It's saved in the stack and kept live in cp.
214 __ mov(cp, r0);
215 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
216 // Copy any necessary parameters into the context.
217 int num_parameters = info->scope()->num_parameters();
218 for (int i = 0; i < num_parameters; i++) {
219 Variable* var = scope()->parameter(i);
220 if (var->IsContextSlot()) {
221 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
222 (num_parameters - 1 - i) * kPointerSize;
223 // Load parameter from stack.
224 __ ldr(r0, MemOperand(fp, parameter_offset));
225 // Store it in the context.
226 MemOperand target = ContextOperand(cp, var->index());
227 __ str(r0, target);
228
229 // Update the write barrier.
230 if (need_write_barrier) {
231 __ RecordWriteContextSlot(
232 cp, target.offset(), r0, r3, kLRHasBeenSaved, kDontSaveFPRegs);
233 } else if (FLAG_debug_code) {
234 Label done;
235 __ JumpIfInNewSpace(cp, r0, &done);
236 __ Abort(kExpectedNewSpaceObject);
237 __ bind(&done);
238 }
239 }
240 }
241 }
242
243 Variable* arguments = scope()->arguments();
244 if (arguments != NULL) {
245 // Function uses arguments object.
246 Comment cmnt(masm_, "[ Allocate arguments object");
247 if (!function_in_register) {
248 // Load this again, if it's used by the local context below.
249 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
250 } else {
251 __ mov(r3, r1);
252 }
253 // Receiver is just before the parameters on the caller's stack.
254 int num_parameters = info->scope()->num_parameters();
255 int offset = num_parameters * kPointerSize;
256 __ add(r2, fp,
257 Operand(StandardFrameConstants::kCallerSPOffset + offset));
258 __ mov(r1, Operand(Smi::FromInt(num_parameters)));
259 __ Push(r3, r2, r1);
260
261 // Arguments to ArgumentsAccessStub:
262 // function, receiver address, parameter count.
263 // The stub will rewrite receiever and parameter count if the previous
264 // stack frame was an arguments adapter frame.
265 ArgumentsAccessStub::Type type;
266 if (strict_mode() == STRICT) {
267 type = ArgumentsAccessStub::NEW_STRICT;
268 } else if (function()->has_duplicate_parameters()) {
269 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
270 } else {
271 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
272 }
273 ArgumentsAccessStub stub(isolate(), type);
274 __ CallStub(&stub);
275
276 SetVar(arguments, r0, r1, r2);
277 }
278
279 if (FLAG_trace) {
280 __ CallRuntime(Runtime::kTraceEnter, 0);
281 }
282
283 // Visit the declarations and body unless there is an illegal
284 // redeclaration.
285 if (scope()->HasIllegalRedeclaration()) {
286 Comment cmnt(masm_, "[ Declarations");
287 scope()->VisitIllegalRedeclaration(this);
288
289 } else {
290 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
291 { Comment cmnt(masm_, "[ Declarations");
292 // For named function expressions, declare the function name as a
293 // constant.
294 if (scope()->is_function_scope() && scope()->function() != NULL) {
295 VariableDeclaration* function = scope()->function();
296 DCHECK(function->proxy()->var()->mode() == CONST ||
297 function->proxy()->var()->mode() == CONST_LEGACY);
298 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
299 VisitVariableDeclaration(function);
300 }
301 VisitDeclarations(scope()->declarations());
302 }
303
304 { Comment cmnt(masm_, "[ Stack check");
305 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
306 Label ok;
307 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
308 __ cmp(sp, Operand(ip));
309 __ b(hs, &ok);
310 Handle<Code> stack_check = isolate()->builtins()->StackCheck();
311 PredictableCodeSizeScope predictable(masm_,
312 masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
313 __ Call(stack_check, RelocInfo::CODE_TARGET);
314 __ bind(&ok);
315 }
316
317 { Comment cmnt(masm_, "[ Body");
318 DCHECK(loop_depth() == 0);
319 VisitStatements(function()->body());
320 DCHECK(loop_depth() == 0);
321 }
322 }
323
324 // Always emit a 'return undefined' in case control fell off the end of
325 // the body.
326 { Comment cmnt(masm_, "[ return <undefined>;");
327 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
328 }
329 EmitReturnSequence();
330
331 // Force emit the constant pool, so it doesn't get emitted in the middle
332 // of the back edge table.
333 masm()->CheckConstPool(true, false);
334 }
335
336
ClearAccumulator()337 void FullCodeGenerator::ClearAccumulator() {
338 __ mov(r0, Operand(Smi::FromInt(0)));
339 }
340
341
EmitProfilingCounterDecrement(int delta)342 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
343 __ mov(r2, Operand(profiling_counter_));
344 __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
345 __ sub(r3, r3, Operand(Smi::FromInt(delta)), SetCC);
346 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
347 }
348
349
350 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
351 static const int kProfileCounterResetSequenceLength = 5 * Assembler::kInstrSize;
352 #else
353 static const int kProfileCounterResetSequenceLength = 7 * Assembler::kInstrSize;
354 #endif
355
356
EmitProfilingCounterReset()357 void FullCodeGenerator::EmitProfilingCounterReset() {
358 Assembler::BlockConstPoolScope block_const_pool(masm_);
359 PredictableCodeSizeScope predictable_code_size_scope(
360 masm_, kProfileCounterResetSequenceLength);
361 Label start;
362 __ bind(&start);
363 int reset_value = FLAG_interrupt_budget;
364 if (info_->is_debug()) {
365 // Detect debug break requests as soon as possible.
366 reset_value = FLAG_interrupt_budget >> 4;
367 }
368 __ mov(r2, Operand(profiling_counter_));
369 // The mov instruction above can be either 1 to 3 (for ARMv7) or 1 to 5
370 // instructions (for ARMv6) depending upon whether it is an extended constant
371 // pool - insert nop to compensate.
372 int expected_instr_count =
373 (kProfileCounterResetSequenceLength / Assembler::kInstrSize) - 2;
374 DCHECK(masm_->InstructionsGeneratedSince(&start) <= expected_instr_count);
375 while (masm_->InstructionsGeneratedSince(&start) != expected_instr_count) {
376 __ nop();
377 }
378 __ mov(r3, Operand(Smi::FromInt(reset_value)));
379 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
380 }
381
382
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)383 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
384 Label* back_edge_target) {
385 Comment cmnt(masm_, "[ Back edge bookkeeping");
386 // Block literal pools whilst emitting back edge code.
387 Assembler::BlockConstPoolScope block_const_pool(masm_);
388 Label ok;
389
390 DCHECK(back_edge_target->is_bound());
391 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
392 int weight = Min(kMaxBackEdgeWeight,
393 Max(1, distance / kCodeSizeMultiplier));
394 EmitProfilingCounterDecrement(weight);
395 __ b(pl, &ok);
396 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
397
398 // Record a mapping of this PC offset to the OSR id. This is used to find
399 // the AST id from the unoptimized code in order to use it as a key into
400 // the deoptimization input data found in the optimized code.
401 RecordBackEdge(stmt->OsrEntryId());
402
403 EmitProfilingCounterReset();
404
405 __ bind(&ok);
406 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
407 // Record a mapping of the OSR id to this PC. This is used if the OSR
408 // entry becomes the target of a bailout. We don't expect it to be, but
409 // we want it to work if it is.
410 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
411 }
412
413
EmitReturnSequence()414 void FullCodeGenerator::EmitReturnSequence() {
415 Comment cmnt(masm_, "[ Return sequence");
416 if (return_label_.is_bound()) {
417 __ b(&return_label_);
418 } else {
419 __ bind(&return_label_);
420 if (FLAG_trace) {
421 // Push the return value on the stack as the parameter.
422 // Runtime::TraceExit returns its parameter in r0.
423 __ push(r0);
424 __ CallRuntime(Runtime::kTraceExit, 1);
425 }
426 // Pretend that the exit is a backwards jump to the entry.
427 int weight = 1;
428 if (info_->ShouldSelfOptimize()) {
429 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
430 } else {
431 int distance = masm_->pc_offset();
432 weight = Min(kMaxBackEdgeWeight,
433 Max(1, distance / kCodeSizeMultiplier));
434 }
435 EmitProfilingCounterDecrement(weight);
436 Label ok;
437 __ b(pl, &ok);
438 __ push(r0);
439 __ Call(isolate()->builtins()->InterruptCheck(),
440 RelocInfo::CODE_TARGET);
441 __ pop(r0);
442 EmitProfilingCounterReset();
443 __ bind(&ok);
444
445 #ifdef DEBUG
446 // Add a label for checking the size of the code used for returning.
447 Label check_exit_codesize;
448 __ bind(&check_exit_codesize);
449 #endif
450 // Make sure that the constant pool is not emitted inside of the return
451 // sequence.
452 { Assembler::BlockConstPoolScope block_const_pool(masm_);
453 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
454 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
455 // TODO(svenpanne) The code below is sometimes 4 words, sometimes 5!
456 PredictableCodeSizeScope predictable(masm_, -1);
457 __ RecordJSReturn();
458 int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT);
459 { ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
460 __ add(sp, sp, Operand(sp_delta));
461 __ Jump(lr);
462 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
463 }
464 }
465
466 #ifdef DEBUG
467 // Check that the size of the code used for returning is large enough
468 // for the debugger's requirements.
469 DCHECK(Assembler::kJSReturnSequenceInstructions <=
470 masm_->InstructionsGeneratedSince(&check_exit_codesize));
471 #endif
472 }
473 }
474
475
Plug(Variable * var) const476 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
477 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
478 }
479
480
Plug(Variable * var) const481 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
482 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
483 codegen()->GetVar(result_register(), var);
484 }
485
486
Plug(Variable * var) const487 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
488 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
489 codegen()->GetVar(result_register(), var);
490 __ push(result_register());
491 }
492
493
Plug(Variable * var) const494 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
495 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
496 // For simplicity we always test the accumulator register.
497 codegen()->GetVar(result_register(), var);
498 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
499 codegen()->DoTest(this);
500 }
501
502
Plug(Heap::RootListIndex index) const503 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
504 }
505
506
Plug(Heap::RootListIndex index) const507 void FullCodeGenerator::AccumulatorValueContext::Plug(
508 Heap::RootListIndex index) const {
509 __ LoadRoot(result_register(), index);
510 }
511
512
Plug(Heap::RootListIndex index) const513 void FullCodeGenerator::StackValueContext::Plug(
514 Heap::RootListIndex index) const {
515 __ LoadRoot(result_register(), index);
516 __ push(result_register());
517 }
518
519
Plug(Heap::RootListIndex index) const520 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
521 codegen()->PrepareForBailoutBeforeSplit(condition(),
522 true,
523 true_label_,
524 false_label_);
525 if (index == Heap::kUndefinedValueRootIndex ||
526 index == Heap::kNullValueRootIndex ||
527 index == Heap::kFalseValueRootIndex) {
528 if (false_label_ != fall_through_) __ b(false_label_);
529 } else if (index == Heap::kTrueValueRootIndex) {
530 if (true_label_ != fall_through_) __ b(true_label_);
531 } else {
532 __ LoadRoot(result_register(), index);
533 codegen()->DoTest(this);
534 }
535 }
536
537
Plug(Handle<Object> lit) const538 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
539 }
540
541
Plug(Handle<Object> lit) const542 void FullCodeGenerator::AccumulatorValueContext::Plug(
543 Handle<Object> lit) const {
544 __ mov(result_register(), Operand(lit));
545 }
546
547
Plug(Handle<Object> lit) const548 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
549 // Immediates cannot be pushed directly.
550 __ mov(result_register(), Operand(lit));
551 __ push(result_register());
552 }
553
554
Plug(Handle<Object> lit) const555 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
556 codegen()->PrepareForBailoutBeforeSplit(condition(),
557 true,
558 true_label_,
559 false_label_);
560 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
561 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
562 if (false_label_ != fall_through_) __ b(false_label_);
563 } else if (lit->IsTrue() || lit->IsJSObject()) {
564 if (true_label_ != fall_through_) __ b(true_label_);
565 } else if (lit->IsString()) {
566 if (String::cast(*lit)->length() == 0) {
567 if (false_label_ != fall_through_) __ b(false_label_);
568 } else {
569 if (true_label_ != fall_through_) __ b(true_label_);
570 }
571 } else if (lit->IsSmi()) {
572 if (Smi::cast(*lit)->value() == 0) {
573 if (false_label_ != fall_through_) __ b(false_label_);
574 } else {
575 if (true_label_ != fall_through_) __ b(true_label_);
576 }
577 } else {
578 // For simplicity we always test the accumulator register.
579 __ mov(result_register(), Operand(lit));
580 codegen()->DoTest(this);
581 }
582 }
583
584
DropAndPlug(int count,Register reg) const585 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
586 Register reg) const {
587 DCHECK(count > 0);
588 __ Drop(count);
589 }
590
591
DropAndPlug(int count,Register reg) const592 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
593 int count,
594 Register reg) const {
595 DCHECK(count > 0);
596 __ Drop(count);
597 __ Move(result_register(), reg);
598 }
599
600
DropAndPlug(int count,Register reg) const601 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
602 Register reg) const {
603 DCHECK(count > 0);
604 if (count > 1) __ Drop(count - 1);
605 __ str(reg, MemOperand(sp, 0));
606 }
607
608
DropAndPlug(int count,Register reg) const609 void FullCodeGenerator::TestContext::DropAndPlug(int count,
610 Register reg) const {
611 DCHECK(count > 0);
612 // For simplicity we always test the accumulator register.
613 __ Drop(count);
614 __ Move(result_register(), reg);
615 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
616 codegen()->DoTest(this);
617 }
618
619
Plug(Label * materialize_true,Label * materialize_false) const620 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
621 Label* materialize_false) const {
622 DCHECK(materialize_true == materialize_false);
623 __ bind(materialize_true);
624 }
625
626
Plug(Label * materialize_true,Label * materialize_false) const627 void FullCodeGenerator::AccumulatorValueContext::Plug(
628 Label* materialize_true,
629 Label* materialize_false) const {
630 Label done;
631 __ bind(materialize_true);
632 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
633 __ jmp(&done);
634 __ bind(materialize_false);
635 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
636 __ bind(&done);
637 }
638
639
Plug(Label * materialize_true,Label * materialize_false) const640 void FullCodeGenerator::StackValueContext::Plug(
641 Label* materialize_true,
642 Label* materialize_false) const {
643 Label done;
644 __ bind(materialize_true);
645 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
646 __ jmp(&done);
647 __ bind(materialize_false);
648 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
649 __ bind(&done);
650 __ push(ip);
651 }
652
653
Plug(Label * materialize_true,Label * materialize_false) const654 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
655 Label* materialize_false) const {
656 DCHECK(materialize_true == true_label_);
657 DCHECK(materialize_false == false_label_);
658 }
659
660
Plug(bool flag) const661 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
662 }
663
664
Plug(bool flag) const665 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
666 Heap::RootListIndex value_root_index =
667 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
668 __ LoadRoot(result_register(), value_root_index);
669 }
670
671
Plug(bool flag) const672 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
673 Heap::RootListIndex value_root_index =
674 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
675 __ LoadRoot(ip, value_root_index);
676 __ push(ip);
677 }
678
679
Plug(bool flag) const680 void FullCodeGenerator::TestContext::Plug(bool flag) const {
681 codegen()->PrepareForBailoutBeforeSplit(condition(),
682 true,
683 true_label_,
684 false_label_);
685 if (flag) {
686 if (true_label_ != fall_through_) __ b(true_label_);
687 } else {
688 if (false_label_ != fall_through_) __ b(false_label_);
689 }
690 }
691
692
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)693 void FullCodeGenerator::DoTest(Expression* condition,
694 Label* if_true,
695 Label* if_false,
696 Label* fall_through) {
697 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
698 CallIC(ic, condition->test_id());
699 __ tst(result_register(), result_register());
700 Split(ne, if_true, if_false, fall_through);
701 }
702
703
Split(Condition cond,Label * if_true,Label * if_false,Label * fall_through)704 void FullCodeGenerator::Split(Condition cond,
705 Label* if_true,
706 Label* if_false,
707 Label* fall_through) {
708 if (if_false == fall_through) {
709 __ b(cond, if_true);
710 } else if (if_true == fall_through) {
711 __ b(NegateCondition(cond), if_false);
712 } else {
713 __ b(cond, if_true);
714 __ b(if_false);
715 }
716 }
717
718
StackOperand(Variable * var)719 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
720 DCHECK(var->IsStackAllocated());
721 // Offset is negative because higher indexes are at lower addresses.
722 int offset = -var->index() * kPointerSize;
723 // Adjust by a (parameter or local) base offset.
724 if (var->IsParameter()) {
725 offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
726 } else {
727 offset += JavaScriptFrameConstants::kLocal0Offset;
728 }
729 return MemOperand(fp, offset);
730 }
731
732
VarOperand(Variable * var,Register scratch)733 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
734 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
735 if (var->IsContextSlot()) {
736 int context_chain_length = scope()->ContextChainLength(var->scope());
737 __ LoadContext(scratch, context_chain_length);
738 return ContextOperand(scratch, var->index());
739 } else {
740 return StackOperand(var);
741 }
742 }
743
744
GetVar(Register dest,Variable * var)745 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
746 // Use destination as scratch.
747 MemOperand location = VarOperand(var, dest);
748 __ ldr(dest, location);
749 }
750
751
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)752 void FullCodeGenerator::SetVar(Variable* var,
753 Register src,
754 Register scratch0,
755 Register scratch1) {
756 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
757 DCHECK(!scratch0.is(src));
758 DCHECK(!scratch0.is(scratch1));
759 DCHECK(!scratch1.is(src));
760 MemOperand location = VarOperand(var, scratch0);
761 __ str(src, location);
762
763 // Emit the write barrier code if the location is in the heap.
764 if (var->IsContextSlot()) {
765 __ RecordWriteContextSlot(scratch0,
766 location.offset(),
767 src,
768 scratch1,
769 kLRHasBeenSaved,
770 kDontSaveFPRegs);
771 }
772 }
773
774
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)775 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
776 bool should_normalize,
777 Label* if_true,
778 Label* if_false) {
779 // Only prepare for bailouts before splits if we're in a test
780 // context. Otherwise, we let the Visit function deal with the
781 // preparation to avoid preparing with the same AST id twice.
782 if (!context()->IsTest() || !info_->IsOptimizable()) return;
783
784 Label skip;
785 if (should_normalize) __ b(&skip);
786 PrepareForBailout(expr, TOS_REG);
787 if (should_normalize) {
788 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
789 __ cmp(r0, ip);
790 Split(eq, if_true, if_false, NULL);
791 __ bind(&skip);
792 }
793 }
794
795
EmitDebugCheckDeclarationContext(Variable * variable)796 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
797 // The variable in the declaration always resides in the current function
798 // context.
799 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
800 if (generate_debug_code_) {
801 // Check that we're not inside a with or catch context.
802 __ ldr(r1, FieldMemOperand(cp, HeapObject::kMapOffset));
803 __ CompareRoot(r1, Heap::kWithContextMapRootIndex);
804 __ Check(ne, kDeclarationInWithContext);
805 __ CompareRoot(r1, Heap::kCatchContextMapRootIndex);
806 __ Check(ne, kDeclarationInCatchContext);
807 }
808 }
809
810
VisitVariableDeclaration(VariableDeclaration * declaration)811 void FullCodeGenerator::VisitVariableDeclaration(
812 VariableDeclaration* declaration) {
813 // If it was not possible to allocate the variable at compile time, we
814 // need to "declare" it at runtime to make sure it actually exists in the
815 // local context.
816 VariableProxy* proxy = declaration->proxy();
817 VariableMode mode = declaration->mode();
818 Variable* variable = proxy->var();
819 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
820 switch (variable->location()) {
821 case Variable::UNALLOCATED:
822 globals_->Add(variable->name(), zone());
823 globals_->Add(variable->binding_needs_init()
824 ? isolate()->factory()->the_hole_value()
825 : isolate()->factory()->undefined_value(),
826 zone());
827 break;
828
829 case Variable::PARAMETER:
830 case Variable::LOCAL:
831 if (hole_init) {
832 Comment cmnt(masm_, "[ VariableDeclaration");
833 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
834 __ str(ip, StackOperand(variable));
835 }
836 break;
837
838 case Variable::CONTEXT:
839 if (hole_init) {
840 Comment cmnt(masm_, "[ VariableDeclaration");
841 EmitDebugCheckDeclarationContext(variable);
842 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
843 __ str(ip, ContextOperand(cp, variable->index()));
844 // No write barrier since the_hole_value is in old space.
845 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
846 }
847 break;
848
849 case Variable::LOOKUP: {
850 Comment cmnt(masm_, "[ VariableDeclaration");
851 __ mov(r2, Operand(variable->name()));
852 // Declaration nodes are always introduced in one of four modes.
853 DCHECK(IsDeclaredVariableMode(mode));
854 PropertyAttributes attr =
855 IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
856 __ mov(r1, Operand(Smi::FromInt(attr)));
857 // Push initial value, if any.
858 // Note: For variables we must not push an initial value (such as
859 // 'undefined') because we may have a (legal) redeclaration and we
860 // must not destroy the current value.
861 if (hole_init) {
862 __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
863 __ Push(cp, r2, r1, r0);
864 } else {
865 __ mov(r0, Operand(Smi::FromInt(0))); // Indicates no initial value.
866 __ Push(cp, r2, r1, r0);
867 }
868 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
869 break;
870 }
871 }
872 }
873
874
VisitFunctionDeclaration(FunctionDeclaration * declaration)875 void FullCodeGenerator::VisitFunctionDeclaration(
876 FunctionDeclaration* declaration) {
877 VariableProxy* proxy = declaration->proxy();
878 Variable* variable = proxy->var();
879 switch (variable->location()) {
880 case Variable::UNALLOCATED: {
881 globals_->Add(variable->name(), zone());
882 Handle<SharedFunctionInfo> function =
883 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
884 // Check for stack-overflow exception.
885 if (function.is_null()) return SetStackOverflow();
886 globals_->Add(function, zone());
887 break;
888 }
889
890 case Variable::PARAMETER:
891 case Variable::LOCAL: {
892 Comment cmnt(masm_, "[ FunctionDeclaration");
893 VisitForAccumulatorValue(declaration->fun());
894 __ str(result_register(), StackOperand(variable));
895 break;
896 }
897
898 case Variable::CONTEXT: {
899 Comment cmnt(masm_, "[ FunctionDeclaration");
900 EmitDebugCheckDeclarationContext(variable);
901 VisitForAccumulatorValue(declaration->fun());
902 __ str(result_register(), ContextOperand(cp, variable->index()));
903 int offset = Context::SlotOffset(variable->index());
904 // We know that we have written a function, which is not a smi.
905 __ RecordWriteContextSlot(cp,
906 offset,
907 result_register(),
908 r2,
909 kLRHasBeenSaved,
910 kDontSaveFPRegs,
911 EMIT_REMEMBERED_SET,
912 OMIT_SMI_CHECK);
913 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
914 break;
915 }
916
917 case Variable::LOOKUP: {
918 Comment cmnt(masm_, "[ FunctionDeclaration");
919 __ mov(r2, Operand(variable->name()));
920 __ mov(r1, Operand(Smi::FromInt(NONE)));
921 __ Push(cp, r2, r1);
922 // Push initial value for function declaration.
923 VisitForStackValue(declaration->fun());
924 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
925 break;
926 }
927 }
928 }
929
930
VisitModuleDeclaration(ModuleDeclaration * declaration)931 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
932 Variable* variable = declaration->proxy()->var();
933 DCHECK(variable->location() == Variable::CONTEXT);
934 DCHECK(variable->interface()->IsFrozen());
935
936 Comment cmnt(masm_, "[ ModuleDeclaration");
937 EmitDebugCheckDeclarationContext(variable);
938
939 // Load instance object.
940 __ LoadContext(r1, scope_->ContextChainLength(scope_->GlobalScope()));
941 __ ldr(r1, ContextOperand(r1, variable->interface()->Index()));
942 __ ldr(r1, ContextOperand(r1, Context::EXTENSION_INDEX));
943
944 // Assign it.
945 __ str(r1, ContextOperand(cp, variable->index()));
946 // We know that we have written a module, which is not a smi.
947 __ RecordWriteContextSlot(cp,
948 Context::SlotOffset(variable->index()),
949 r1,
950 r3,
951 kLRHasBeenSaved,
952 kDontSaveFPRegs,
953 EMIT_REMEMBERED_SET,
954 OMIT_SMI_CHECK);
955 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
956
957 // Traverse into body.
958 Visit(declaration->module());
959 }
960
961
VisitImportDeclaration(ImportDeclaration * declaration)962 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
963 VariableProxy* proxy = declaration->proxy();
964 Variable* variable = proxy->var();
965 switch (variable->location()) {
966 case Variable::UNALLOCATED:
967 // TODO(rossberg)
968 break;
969
970 case Variable::CONTEXT: {
971 Comment cmnt(masm_, "[ ImportDeclaration");
972 EmitDebugCheckDeclarationContext(variable);
973 // TODO(rossberg)
974 break;
975 }
976
977 case Variable::PARAMETER:
978 case Variable::LOCAL:
979 case Variable::LOOKUP:
980 UNREACHABLE();
981 }
982 }
983
984
VisitExportDeclaration(ExportDeclaration * declaration)985 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
986 // TODO(rossberg)
987 }
988
989
DeclareGlobals(Handle<FixedArray> pairs)990 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
991 // Call the runtime to declare the globals.
992 // The context is the first argument.
993 __ mov(r1, Operand(pairs));
994 __ mov(r0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
995 __ Push(cp, r1, r0);
996 __ CallRuntime(Runtime::kDeclareGlobals, 3);
997 // Return value is ignored.
998 }
999
1000
DeclareModules(Handle<FixedArray> descriptions)1001 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
1002 // Call the runtime to declare the modules.
1003 __ Push(descriptions);
1004 __ CallRuntime(Runtime::kDeclareModules, 1);
1005 // Return value is ignored.
1006 }
1007
1008
VisitSwitchStatement(SwitchStatement * stmt)1009 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
1010 Comment cmnt(masm_, "[ SwitchStatement");
1011 Breakable nested_statement(this, stmt);
1012 SetStatementPosition(stmt);
1013
1014 // Keep the switch value on the stack until a case matches.
1015 VisitForStackValue(stmt->tag());
1016 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1017
1018 ZoneList<CaseClause*>* clauses = stmt->cases();
1019 CaseClause* default_clause = NULL; // Can occur anywhere in the list.
1020
1021 Label next_test; // Recycled for each test.
1022 // Compile all the tests with branches to their bodies.
1023 for (int i = 0; i < clauses->length(); i++) {
1024 CaseClause* clause = clauses->at(i);
1025 clause->body_target()->Unuse();
1026
1027 // The default is not a test, but remember it as final fall through.
1028 if (clause->is_default()) {
1029 default_clause = clause;
1030 continue;
1031 }
1032
1033 Comment cmnt(masm_, "[ Case comparison");
1034 __ bind(&next_test);
1035 next_test.Unuse();
1036
1037 // Compile the label expression.
1038 VisitForAccumulatorValue(clause->label());
1039
1040 // Perform the comparison as if via '==='.
1041 __ ldr(r1, MemOperand(sp, 0)); // Switch value.
1042 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
1043 JumpPatchSite patch_site(masm_);
1044 if (inline_smi_code) {
1045 Label slow_case;
1046 __ orr(r2, r1, r0);
1047 patch_site.EmitJumpIfNotSmi(r2, &slow_case);
1048
1049 __ cmp(r1, r0);
1050 __ b(ne, &next_test);
1051 __ Drop(1); // Switch value is no longer needed.
1052 __ b(clause->body_target());
1053 __ bind(&slow_case);
1054 }
1055
1056 // Record position before stub call for type feedback.
1057 SetSourcePosition(clause->position());
1058 Handle<Code> ic =
1059 CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
1060 CallIC(ic, clause->CompareId());
1061 patch_site.EmitPatchInfo();
1062
1063 Label skip;
1064 __ b(&skip);
1065 PrepareForBailout(clause, TOS_REG);
1066 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
1067 __ cmp(r0, ip);
1068 __ b(ne, &next_test);
1069 __ Drop(1);
1070 __ jmp(clause->body_target());
1071 __ bind(&skip);
1072
1073 __ cmp(r0, Operand::Zero());
1074 __ b(ne, &next_test);
1075 __ Drop(1); // Switch value is no longer needed.
1076 __ b(clause->body_target());
1077 }
1078
1079 // Discard the test value and jump to the default if present, otherwise to
1080 // the end of the statement.
1081 __ bind(&next_test);
1082 __ Drop(1); // Switch value is no longer needed.
1083 if (default_clause == NULL) {
1084 __ b(nested_statement.break_label());
1085 } else {
1086 __ b(default_clause->body_target());
1087 }
1088
1089 // Compile all the case bodies.
1090 for (int i = 0; i < clauses->length(); i++) {
1091 Comment cmnt(masm_, "[ Case body");
1092 CaseClause* clause = clauses->at(i);
1093 __ bind(clause->body_target());
1094 PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1095 VisitStatements(clause->statements());
1096 }
1097
1098 __ bind(nested_statement.break_label());
1099 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1100 }
1101
1102
VisitForInStatement(ForInStatement * stmt)1103 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1104 Comment cmnt(masm_, "[ ForInStatement");
1105 int slot = stmt->ForInFeedbackSlot();
1106 SetStatementPosition(stmt);
1107
1108 Label loop, exit;
1109 ForIn loop_statement(this, stmt);
1110 increment_loop_depth();
1111
1112 // Get the object to enumerate over. If the object is null or undefined, skip
1113 // over the loop. See ECMA-262 version 5, section 12.6.4.
1114 VisitForAccumulatorValue(stmt->enumerable());
1115 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1116 __ cmp(r0, ip);
1117 __ b(eq, &exit);
1118 Register null_value = r5;
1119 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1120 __ cmp(r0, null_value);
1121 __ b(eq, &exit);
1122
1123 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1124
1125 // Convert the object to a JS object.
1126 Label convert, done_convert;
1127 __ JumpIfSmi(r0, &convert);
1128 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
1129 __ b(ge, &done_convert);
1130 __ bind(&convert);
1131 __ push(r0);
1132 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1133 __ bind(&done_convert);
1134 __ push(r0);
1135
1136 // Check for proxies.
1137 Label call_runtime;
1138 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1139 __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
1140 __ b(le, &call_runtime);
1141
1142 // Check cache validity in generated code. This is a fast case for
1143 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1144 // guarantee cache validity, call the runtime system to check cache
1145 // validity or get the property names in a fixed array.
1146 __ CheckEnumCache(null_value, &call_runtime);
1147
1148 // The enum cache is valid. Load the map of the object being
1149 // iterated over and use the cache for the iteration.
1150 Label use_cache;
1151 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
1152 __ b(&use_cache);
1153
1154 // Get the set of properties to enumerate.
1155 __ bind(&call_runtime);
1156 __ push(r0); // Duplicate the enumerable object on the stack.
1157 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1158
1159 // If we got a map from the runtime call, we can do a fast
1160 // modification check. Otherwise, we got a fixed array, and we have
1161 // to do a slow check.
1162 Label fixed_array;
1163 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
1164 __ LoadRoot(ip, Heap::kMetaMapRootIndex);
1165 __ cmp(r2, ip);
1166 __ b(ne, &fixed_array);
1167
1168 // We got a map in register r0. Get the enumeration cache from it.
1169 Label no_descriptors;
1170 __ bind(&use_cache);
1171
1172 __ EnumLength(r1, r0);
1173 __ cmp(r1, Operand(Smi::FromInt(0)));
1174 __ b(eq, &no_descriptors);
1175
1176 __ LoadInstanceDescriptors(r0, r2);
1177 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheOffset));
1178 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1179
1180 // Set up the four remaining stack slots.
1181 __ push(r0); // Map.
1182 __ mov(r0, Operand(Smi::FromInt(0)));
1183 // Push enumeration cache, enumeration cache length (as smi) and zero.
1184 __ Push(r2, r1, r0);
1185 __ jmp(&loop);
1186
1187 __ bind(&no_descriptors);
1188 __ Drop(1);
1189 __ jmp(&exit);
1190
1191 // We got a fixed array in register r0. Iterate through that.
1192 Label non_proxy;
1193 __ bind(&fixed_array);
1194
1195 __ Move(r1, FeedbackVector());
1196 __ mov(r2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1197 __ str(r2, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(slot)));
1198
1199 __ mov(r1, Operand(Smi::FromInt(1))); // Smi indicates slow check
1200 __ ldr(r2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
1201 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1202 __ CompareObjectType(r2, r3, r3, LAST_JS_PROXY_TYPE);
1203 __ b(gt, &non_proxy);
1204 __ mov(r1, Operand(Smi::FromInt(0))); // Zero indicates proxy
1205 __ bind(&non_proxy);
1206 __ Push(r1, r0); // Smi and array
1207 __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset));
1208 __ mov(r0, Operand(Smi::FromInt(0)));
1209 __ Push(r1, r0); // Fixed array length (as smi) and initial index.
1210
1211 // Generate code for doing the condition check.
1212 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1213 __ bind(&loop);
1214 // Load the current count to r0, load the length to r1.
1215 __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize));
1216 __ cmp(r0, r1); // Compare to the array length.
1217 __ b(hs, loop_statement.break_label());
1218
1219 // Get the current entry of the array into register r3.
1220 __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
1221 __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1222 __ ldr(r3, MemOperand::PointerAddressFromSmiKey(r2, r0));
1223
1224 // Get the expected map from the stack or a smi in the
1225 // permanent slow case into register r2.
1226 __ ldr(r2, MemOperand(sp, 3 * kPointerSize));
1227
1228 // Check if the expected map still matches that of the enumerable.
1229 // If not, we may have to filter the key.
1230 Label update_each;
1231 __ ldr(r1, MemOperand(sp, 4 * kPointerSize));
1232 __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
1233 __ cmp(r4, Operand(r2));
1234 __ b(eq, &update_each);
1235
1236 // For proxies, no filtering is done.
1237 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1238 __ cmp(r2, Operand(Smi::FromInt(0)));
1239 __ b(eq, &update_each);
1240
1241 // Convert the entry to a string or (smi) 0 if it isn't a property
1242 // any more. If the property has been removed while iterating, we
1243 // just skip it.
1244 __ push(r1); // Enumerable.
1245 __ push(r3); // Current entry.
1246 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1247 __ mov(r3, Operand(r0), SetCC);
1248 __ b(eq, loop_statement.continue_label());
1249
1250 // Update the 'each' property or variable from the possibly filtered
1251 // entry in register r3.
1252 __ bind(&update_each);
1253 __ mov(result_register(), r3);
1254 // Perform the assignment as if via '='.
1255 { EffectContext context(this);
1256 EmitAssignment(stmt->each());
1257 }
1258
1259 // Generate code for the body of the loop.
1260 Visit(stmt->body());
1261
1262 // Generate code for the going to the next element by incrementing
1263 // the index (smi) stored on top of the stack.
1264 __ bind(loop_statement.continue_label());
1265 __ pop(r0);
1266 __ add(r0, r0, Operand(Smi::FromInt(1)));
1267 __ push(r0);
1268
1269 EmitBackEdgeBookkeeping(stmt, &loop);
1270 __ b(&loop);
1271
1272 // Remove the pointers stored on the stack.
1273 __ bind(loop_statement.break_label());
1274 __ Drop(5);
1275
1276 // Exit and decrement the loop depth.
1277 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1278 __ bind(&exit);
1279 decrement_loop_depth();
1280 }
1281
1282
VisitForOfStatement(ForOfStatement * stmt)1283 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
1284 Comment cmnt(masm_, "[ ForOfStatement");
1285 SetStatementPosition(stmt);
1286
1287 Iteration loop_statement(this, stmt);
1288 increment_loop_depth();
1289
1290 // var iterator = iterable[Symbol.iterator]();
1291 VisitForEffect(stmt->assign_iterator());
1292
1293 // Loop entry.
1294 __ bind(loop_statement.continue_label());
1295
1296 // result = iterator.next()
1297 VisitForEffect(stmt->next_result());
1298
1299 // if (result.done) break;
1300 Label result_not_done;
1301 VisitForControl(stmt->result_done(),
1302 loop_statement.break_label(),
1303 &result_not_done,
1304 &result_not_done);
1305 __ bind(&result_not_done);
1306
1307 // each = result.value
1308 VisitForEffect(stmt->assign_each());
1309
1310 // Generate code for the body of the loop.
1311 Visit(stmt->body());
1312
1313 // Check stack before looping.
1314 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1315 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1316 __ jmp(loop_statement.continue_label());
1317
1318 // Exit and decrement the loop depth.
1319 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1320 __ bind(loop_statement.break_label());
1321 decrement_loop_depth();
1322 }
1323
1324
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1325 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1326 bool pretenure) {
1327 // Use the fast case closure allocation code that allocates in new
1328 // space for nested functions that don't need literals cloning. If
1329 // we're running with the --always-opt or the --prepare-always-opt
1330 // flag, we need to use the runtime function so that the new function
1331 // we are creating here gets a chance to have its code optimized and
1332 // doesn't just get a copy of the existing unoptimized code.
1333 if (!FLAG_always_opt &&
1334 !FLAG_prepare_always_opt &&
1335 !pretenure &&
1336 scope()->is_function_scope() &&
1337 info->num_literals() == 0) {
1338 FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
1339 __ mov(r2, Operand(info));
1340 __ CallStub(&stub);
1341 } else {
1342 __ mov(r0, Operand(info));
1343 __ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex
1344 : Heap::kFalseValueRootIndex);
1345 __ Push(cp, r0, r1);
1346 __ CallRuntime(Runtime::kNewClosure, 3);
1347 }
1348 context()->Plug(r0);
1349 }
1350
1351
VisitVariableProxy(VariableProxy * expr)1352 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1353 Comment cmnt(masm_, "[ VariableProxy");
1354 EmitVariableLoad(expr);
1355 }
1356
1357
EmitLoadHomeObject(SuperReference * expr)1358 void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
1359 Comment cnmt(masm_, "[ SuperReference ");
1360
1361 __ ldr(LoadDescriptor::ReceiverRegister(),
1362 MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1363
1364 Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
1365 __ Move(LoadDescriptor::NameRegister(), home_object_symbol);
1366
1367 CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
1368
1369 __ cmp(r0, Operand(isolate()->factory()->undefined_value()));
1370 Label done;
1371 __ b(ne, &done);
1372 __ CallRuntime(Runtime::kThrowNonMethodError, 0);
1373 __ bind(&done);
1374 }
1375
1376
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofState typeof_state,Label * slow)1377 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1378 TypeofState typeof_state,
1379 Label* slow) {
1380 Register current = cp;
1381 Register next = r1;
1382 Register temp = r2;
1383
1384 Scope* s = scope();
1385 while (s != NULL) {
1386 if (s->num_heap_slots() > 0) {
1387 if (s->calls_sloppy_eval()) {
1388 // Check that extension is NULL.
1389 __ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX));
1390 __ tst(temp, temp);
1391 __ b(ne, slow);
1392 }
1393 // Load next context in chain.
1394 __ ldr(next, ContextOperand(current, Context::PREVIOUS_INDEX));
1395 // Walk the rest of the chain without clobbering cp.
1396 current = next;
1397 }
1398 // If no outer scope calls eval, we do not need to check more
1399 // context extensions.
1400 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1401 s = s->outer_scope();
1402 }
1403
1404 if (s->is_eval_scope()) {
1405 Label loop, fast;
1406 if (!current.is(next)) {
1407 __ Move(next, current);
1408 }
1409 __ bind(&loop);
1410 // Terminate at native context.
1411 __ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1412 __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1413 __ cmp(temp, ip);
1414 __ b(eq, &fast);
1415 // Check that extension is NULL.
1416 __ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX));
1417 __ tst(temp, temp);
1418 __ b(ne, slow);
1419 // Load next context in chain.
1420 __ ldr(next, ContextOperand(next, Context::PREVIOUS_INDEX));
1421 __ b(&loop);
1422 __ bind(&fast);
1423 }
1424
1425 __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1426 __ mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
1427 if (FLAG_vector_ics) {
1428 __ mov(VectorLoadICDescriptor::SlotRegister(),
1429 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1430 }
1431
1432 ContextualMode mode = (typeof_state == INSIDE_TYPEOF)
1433 ? NOT_CONTEXTUAL
1434 : CONTEXTUAL;
1435 CallLoadIC(mode);
1436 }
1437
1438
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1439 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1440 Label* slow) {
1441 DCHECK(var->IsContextSlot());
1442 Register context = cp;
1443 Register next = r3;
1444 Register temp = r4;
1445
1446 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1447 if (s->num_heap_slots() > 0) {
1448 if (s->calls_sloppy_eval()) {
1449 // Check that extension is NULL.
1450 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1451 __ tst(temp, temp);
1452 __ b(ne, slow);
1453 }
1454 __ ldr(next, ContextOperand(context, Context::PREVIOUS_INDEX));
1455 // Walk the rest of the chain without clobbering cp.
1456 context = next;
1457 }
1458 }
1459 // Check that last extension is NULL.
1460 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1461 __ tst(temp, temp);
1462 __ b(ne, slow);
1463
1464 // This function is used only for loads, not stores, so it's safe to
1465 // return an cp-based operand (the write barrier cannot be allowed to
1466 // destroy the cp register).
1467 return ContextOperand(context, var->index());
1468 }
1469
1470
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofState typeof_state,Label * slow,Label * done)1471 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1472 TypeofState typeof_state,
1473 Label* slow,
1474 Label* done) {
1475 // Generate fast-case code for variables that might be shadowed by
1476 // eval-introduced variables. Eval is used a lot without
1477 // introducing variables. In those cases, we do not want to
1478 // perform a runtime call for all variables in the scope
1479 // containing the eval.
1480 Variable* var = proxy->var();
1481 if (var->mode() == DYNAMIC_GLOBAL) {
1482 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1483 __ jmp(done);
1484 } else if (var->mode() == DYNAMIC_LOCAL) {
1485 Variable* local = var->local_if_not_shadowed();
1486 __ ldr(r0, ContextSlotOperandCheckExtensions(local, slow));
1487 if (local->mode() == LET || local->mode() == CONST ||
1488 local->mode() == CONST_LEGACY) {
1489 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
1490 if (local->mode() == CONST_LEGACY) {
1491 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1492 } else { // LET || CONST
1493 __ b(ne, done);
1494 __ mov(r0, Operand(var->name()));
1495 __ push(r0);
1496 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1497 }
1498 }
1499 __ jmp(done);
1500 }
1501 }
1502
1503
EmitVariableLoad(VariableProxy * proxy)1504 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1505 // Record position before possible IC call.
1506 SetSourcePosition(proxy->position());
1507 Variable* var = proxy->var();
1508
1509 // Three cases: global variables, lookup variables, and all other types of
1510 // variables.
1511 switch (var->location()) {
1512 case Variable::UNALLOCATED: {
1513 Comment cmnt(masm_, "[ Global variable");
1514 __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1515 __ mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1516 if (FLAG_vector_ics) {
1517 __ mov(VectorLoadICDescriptor::SlotRegister(),
1518 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1519 }
1520 CallLoadIC(CONTEXTUAL);
1521 context()->Plug(r0);
1522 break;
1523 }
1524
1525 case Variable::PARAMETER:
1526 case Variable::LOCAL:
1527 case Variable::CONTEXT: {
1528 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1529 : "[ Stack variable");
1530 if (var->binding_needs_init()) {
1531 // var->scope() may be NULL when the proxy is located in eval code and
1532 // refers to a potential outside binding. Currently those bindings are
1533 // always looked up dynamically, i.e. in that case
1534 // var->location() == LOOKUP.
1535 // always holds.
1536 DCHECK(var->scope() != NULL);
1537
1538 // Check if the binding really needs an initialization check. The check
1539 // can be skipped in the following situation: we have a LET or CONST
1540 // binding in harmony mode, both the Variable and the VariableProxy have
1541 // the same declaration scope (i.e. they are both in global code, in the
1542 // same function or in the same eval code) and the VariableProxy is in
1543 // the source physically located after the initializer of the variable.
1544 //
1545 // We cannot skip any initialization checks for CONST in non-harmony
1546 // mode because const variables may be declared but never initialized:
1547 // if (false) { const x; }; var y = x;
1548 //
1549 // The condition on the declaration scopes is a conservative check for
1550 // nested functions that access a binding and are called before the
1551 // binding is initialized:
1552 // function() { f(); let x = 1; function f() { x = 2; } }
1553 //
1554 bool skip_init_check;
1555 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1556 skip_init_check = false;
1557 } else {
1558 // Check that we always have valid source position.
1559 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1560 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1561 skip_init_check = var->mode() != CONST_LEGACY &&
1562 var->initializer_position() < proxy->position();
1563 }
1564
1565 if (!skip_init_check) {
1566 // Let and const need a read barrier.
1567 GetVar(r0, var);
1568 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
1569 if (var->mode() == LET || var->mode() == CONST) {
1570 // Throw a reference error when using an uninitialized let/const
1571 // binding in harmony mode.
1572 Label done;
1573 __ b(ne, &done);
1574 __ mov(r0, Operand(var->name()));
1575 __ push(r0);
1576 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1577 __ bind(&done);
1578 } else {
1579 // Uninitalized const bindings outside of harmony mode are unholed.
1580 DCHECK(var->mode() == CONST_LEGACY);
1581 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1582 }
1583 context()->Plug(r0);
1584 break;
1585 }
1586 }
1587 context()->Plug(var);
1588 break;
1589 }
1590
1591 case Variable::LOOKUP: {
1592 Comment cmnt(masm_, "[ Lookup variable");
1593 Label done, slow;
1594 // Generate code for loading from variables potentially shadowed
1595 // by eval-introduced variables.
1596 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1597 __ bind(&slow);
1598 __ mov(r1, Operand(var->name()));
1599 __ Push(cp, r1); // Context and name.
1600 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1601 __ bind(&done);
1602 context()->Plug(r0);
1603 }
1604 }
1605 }
1606
1607
VisitRegExpLiteral(RegExpLiteral * expr)1608 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1609 Comment cmnt(masm_, "[ RegExpLiteral");
1610 Label materialized;
1611 // Registers will be used as follows:
1612 // r5 = materialized value (RegExp literal)
1613 // r4 = JS function, literals array
1614 // r3 = literal index
1615 // r2 = RegExp pattern
1616 // r1 = RegExp flags
1617 // r0 = RegExp literal clone
1618 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1619 __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
1620 int literal_offset =
1621 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1622 __ ldr(r5, FieldMemOperand(r4, literal_offset));
1623 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1624 __ cmp(r5, ip);
1625 __ b(ne, &materialized);
1626
1627 // Create regexp literal using runtime function.
1628 // Result will be in r0.
1629 __ mov(r3, Operand(Smi::FromInt(expr->literal_index())));
1630 __ mov(r2, Operand(expr->pattern()));
1631 __ mov(r1, Operand(expr->flags()));
1632 __ Push(r4, r3, r2, r1);
1633 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1634 __ mov(r5, r0);
1635
1636 __ bind(&materialized);
1637 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1638 Label allocated, runtime_allocate;
1639 __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
1640 __ jmp(&allocated);
1641
1642 __ bind(&runtime_allocate);
1643 __ mov(r0, Operand(Smi::FromInt(size)));
1644 __ Push(r5, r0);
1645 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1646 __ pop(r5);
1647
1648 __ bind(&allocated);
1649 // After this, registers are used as follows:
1650 // r0: Newly allocated regexp.
1651 // r5: Materialized regexp.
1652 // r2: temp.
1653 __ CopyFields(r0, r5, d0, size / kPointerSize);
1654 context()->Plug(r0);
1655 }
1656
1657
EmitAccessor(Expression * expression)1658 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1659 if (expression == NULL) {
1660 __ LoadRoot(r1, Heap::kNullValueRootIndex);
1661 __ push(r1);
1662 } else {
1663 VisitForStackValue(expression);
1664 }
1665 }
1666
1667
VisitObjectLiteral(ObjectLiteral * expr)1668 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1669 Comment cmnt(masm_, "[ ObjectLiteral");
1670
1671 expr->BuildConstantProperties(isolate());
1672 Handle<FixedArray> constant_properties = expr->constant_properties();
1673 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1674 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1675 __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
1676 __ mov(r1, Operand(constant_properties));
1677 int flags = expr->fast_elements()
1678 ? ObjectLiteral::kFastElements
1679 : ObjectLiteral::kNoFlags;
1680 flags |= expr->has_function()
1681 ? ObjectLiteral::kHasFunction
1682 : ObjectLiteral::kNoFlags;
1683 __ mov(r0, Operand(Smi::FromInt(flags)));
1684 int properties_count = constant_properties->length() / 2;
1685 if (expr->may_store_doubles() || expr->depth() > 1 ||
1686 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1687 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1688 __ Push(r3, r2, r1, r0);
1689 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1690 } else {
1691 FastCloneShallowObjectStub stub(isolate(), properties_count);
1692 __ CallStub(&stub);
1693 }
1694
1695 // If result_saved is true the result is on top of the stack. If
1696 // result_saved is false the result is in r0.
1697 bool result_saved = false;
1698
1699 // Mark all computed expressions that are bound to a key that
1700 // is shadowed by a later occurrence of the same key. For the
1701 // marked expressions, no store code is emitted.
1702 expr->CalculateEmitStore(zone());
1703
1704 AccessorTable accessor_table(zone());
1705 for (int i = 0; i < expr->properties()->length(); i++) {
1706 ObjectLiteral::Property* property = expr->properties()->at(i);
1707 if (property->IsCompileTimeValue()) continue;
1708
1709 Literal* key = property->key();
1710 Expression* value = property->value();
1711 if (!result_saved) {
1712 __ push(r0); // Save result on stack
1713 result_saved = true;
1714 }
1715 switch (property->kind()) {
1716 case ObjectLiteral::Property::CONSTANT:
1717 UNREACHABLE();
1718 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1719 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1720 // Fall through.
1721 case ObjectLiteral::Property::COMPUTED:
1722 if (key->value()->IsInternalizedString()) {
1723 if (property->emit_store()) {
1724 VisitForAccumulatorValue(value);
1725 DCHECK(StoreDescriptor::ValueRegister().is(r0));
1726 __ mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1727 __ ldr(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
1728 CallStoreIC(key->LiteralFeedbackId());
1729 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1730 } else {
1731 VisitForEffect(value);
1732 }
1733 break;
1734 }
1735 // Duplicate receiver on stack.
1736 __ ldr(r0, MemOperand(sp));
1737 __ push(r0);
1738 VisitForStackValue(key);
1739 VisitForStackValue(value);
1740 if (property->emit_store()) {
1741 __ mov(r0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes
1742 __ push(r0);
1743 __ CallRuntime(Runtime::kSetProperty, 4);
1744 } else {
1745 __ Drop(3);
1746 }
1747 break;
1748 case ObjectLiteral::Property::PROTOTYPE:
1749 // Duplicate receiver on stack.
1750 __ ldr(r0, MemOperand(sp));
1751 __ push(r0);
1752 VisitForStackValue(value);
1753 if (property->emit_store()) {
1754 __ CallRuntime(Runtime::kSetPrototype, 2);
1755 } else {
1756 __ Drop(2);
1757 }
1758 break;
1759
1760 case ObjectLiteral::Property::GETTER:
1761 accessor_table.lookup(key)->second->getter = value;
1762 break;
1763 case ObjectLiteral::Property::SETTER:
1764 accessor_table.lookup(key)->second->setter = value;
1765 break;
1766 }
1767 }
1768
1769 // Emit code to define accessors, using only a single call to the runtime for
1770 // each pair of corresponding getters and setters.
1771 for (AccessorTable::Iterator it = accessor_table.begin();
1772 it != accessor_table.end();
1773 ++it) {
1774 __ ldr(r0, MemOperand(sp)); // Duplicate receiver.
1775 __ push(r0);
1776 VisitForStackValue(it->first);
1777 EmitAccessor(it->second->getter);
1778 EmitAccessor(it->second->setter);
1779 __ mov(r0, Operand(Smi::FromInt(NONE)));
1780 __ push(r0);
1781 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1782 }
1783
1784 if (expr->has_function()) {
1785 DCHECK(result_saved);
1786 __ ldr(r0, MemOperand(sp));
1787 __ push(r0);
1788 __ CallRuntime(Runtime::kToFastProperties, 1);
1789 }
1790
1791 if (result_saved) {
1792 context()->PlugTOS();
1793 } else {
1794 context()->Plug(r0);
1795 }
1796 }
1797
1798
VisitArrayLiteral(ArrayLiteral * expr)1799 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1800 Comment cmnt(masm_, "[ ArrayLiteral");
1801
1802 expr->BuildConstantElements(isolate());
1803 int flags = expr->depth() == 1
1804 ? ArrayLiteral::kShallowElements
1805 : ArrayLiteral::kNoFlags;
1806
1807 ZoneList<Expression*>* subexprs = expr->values();
1808 int length = subexprs->length();
1809 Handle<FixedArray> constant_elements = expr->constant_elements();
1810 DCHECK_EQ(2, constant_elements->length());
1811 ElementsKind constant_elements_kind =
1812 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1813 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1814 Handle<FixedArrayBase> constant_elements_values(
1815 FixedArrayBase::cast(constant_elements->get(1)));
1816
1817 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1818 if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1819 // If the only customer of allocation sites is transitioning, then
1820 // we can turn it off if we don't have anywhere else to transition to.
1821 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1822 }
1823
1824 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1825 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1826 __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
1827 __ mov(r1, Operand(constant_elements));
1828 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1829 __ mov(r0, Operand(Smi::FromInt(flags)));
1830 __ Push(r3, r2, r1, r0);
1831 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1832 } else {
1833 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1834 __ CallStub(&stub);
1835 }
1836
1837 bool result_saved = false; // Is the result saved to the stack?
1838
1839 // Emit code to evaluate all the non-constant subexpressions and to store
1840 // them into the newly cloned array.
1841 for (int i = 0; i < length; i++) {
1842 Expression* subexpr = subexprs->at(i);
1843 // If the subexpression is a literal or a simple materialized literal it
1844 // is already set in the cloned array.
1845 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1846
1847 if (!result_saved) {
1848 __ push(r0);
1849 __ Push(Smi::FromInt(expr->literal_index()));
1850 result_saved = true;
1851 }
1852 VisitForAccumulatorValue(subexpr);
1853
1854 if (IsFastObjectElementsKind(constant_elements_kind)) {
1855 int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1856 __ ldr(r6, MemOperand(sp, kPointerSize)); // Copy of array literal.
1857 __ ldr(r1, FieldMemOperand(r6, JSObject::kElementsOffset));
1858 __ str(result_register(), FieldMemOperand(r1, offset));
1859 // Update the write barrier for the array store.
1860 __ RecordWriteField(r1, offset, result_register(), r2,
1861 kLRHasBeenSaved, kDontSaveFPRegs,
1862 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1863 } else {
1864 __ mov(r3, Operand(Smi::FromInt(i)));
1865 StoreArrayLiteralElementStub stub(isolate());
1866 __ CallStub(&stub);
1867 }
1868
1869 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1870 }
1871
1872 if (result_saved) {
1873 __ pop(); // literal index
1874 context()->PlugTOS();
1875 } else {
1876 context()->Plug(r0);
1877 }
1878 }
1879
1880
VisitAssignment(Assignment * expr)1881 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1882 DCHECK(expr->target()->IsValidReferenceExpression());
1883
1884 Comment cmnt(masm_, "[ Assignment");
1885
1886 // Left-hand side can only be a property, a global or a (parameter or local)
1887 // slot.
1888 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1889 LhsKind assign_type = VARIABLE;
1890 Property* property = expr->target()->AsProperty();
1891 if (property != NULL) {
1892 assign_type = (property->key()->IsPropertyName())
1893 ? NAMED_PROPERTY
1894 : KEYED_PROPERTY;
1895 }
1896
1897 // Evaluate LHS expression.
1898 switch (assign_type) {
1899 case VARIABLE:
1900 // Nothing to do here.
1901 break;
1902 case NAMED_PROPERTY:
1903 if (expr->is_compound()) {
1904 // We need the receiver both on the stack and in the register.
1905 VisitForStackValue(property->obj());
1906 __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
1907 } else {
1908 VisitForStackValue(property->obj());
1909 }
1910 break;
1911 case KEYED_PROPERTY:
1912 if (expr->is_compound()) {
1913 VisitForStackValue(property->obj());
1914 VisitForStackValue(property->key());
1915 __ ldr(LoadDescriptor::ReceiverRegister(),
1916 MemOperand(sp, 1 * kPointerSize));
1917 __ ldr(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
1918 } else {
1919 VisitForStackValue(property->obj());
1920 VisitForStackValue(property->key());
1921 }
1922 break;
1923 }
1924
1925 // For compound assignments we need another deoptimization point after the
1926 // variable/property load.
1927 if (expr->is_compound()) {
1928 { AccumulatorValueContext context(this);
1929 switch (assign_type) {
1930 case VARIABLE:
1931 EmitVariableLoad(expr->target()->AsVariableProxy());
1932 PrepareForBailout(expr->target(), TOS_REG);
1933 break;
1934 case NAMED_PROPERTY:
1935 EmitNamedPropertyLoad(property);
1936 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1937 break;
1938 case KEYED_PROPERTY:
1939 EmitKeyedPropertyLoad(property);
1940 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1941 break;
1942 }
1943 }
1944
1945 Token::Value op = expr->binary_op();
1946 __ push(r0); // Left operand goes on the stack.
1947 VisitForAccumulatorValue(expr->value());
1948
1949 OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1950 ? OVERWRITE_RIGHT
1951 : NO_OVERWRITE;
1952 SetSourcePosition(expr->position() + 1);
1953 AccumulatorValueContext context(this);
1954 if (ShouldInlineSmiCase(op)) {
1955 EmitInlineSmiBinaryOp(expr->binary_operation(),
1956 op,
1957 mode,
1958 expr->target(),
1959 expr->value());
1960 } else {
1961 EmitBinaryOp(expr->binary_operation(), op, mode);
1962 }
1963
1964 // Deoptimization point in case the binary operation may have side effects.
1965 PrepareForBailout(expr->binary_operation(), TOS_REG);
1966 } else {
1967 VisitForAccumulatorValue(expr->value());
1968 }
1969
1970 // Record source position before possible IC call.
1971 SetSourcePosition(expr->position());
1972
1973 // Store the value.
1974 switch (assign_type) {
1975 case VARIABLE:
1976 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1977 expr->op());
1978 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1979 context()->Plug(r0);
1980 break;
1981 case NAMED_PROPERTY:
1982 EmitNamedPropertyAssignment(expr);
1983 break;
1984 case KEYED_PROPERTY:
1985 EmitKeyedPropertyAssignment(expr);
1986 break;
1987 }
1988 }
1989
1990
VisitYield(Yield * expr)1991 void FullCodeGenerator::VisitYield(Yield* expr) {
1992 Comment cmnt(masm_, "[ Yield");
1993 // Evaluate yielded value first; the initial iterator definition depends on
1994 // this. It stays on the stack while we update the iterator.
1995 VisitForStackValue(expr->expression());
1996
1997 switch (expr->yield_kind()) {
1998 case Yield::kSuspend:
1999 // Pop value from top-of-stack slot; box result into result register.
2000 EmitCreateIteratorResult(false);
2001 __ push(result_register());
2002 // Fall through.
2003 case Yield::kInitial: {
2004 Label suspend, continuation, post_runtime, resume;
2005
2006 __ jmp(&suspend);
2007
2008 __ bind(&continuation);
2009 __ jmp(&resume);
2010
2011 __ bind(&suspend);
2012 VisitForAccumulatorValue(expr->generator_object());
2013 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
2014 __ mov(r1, Operand(Smi::FromInt(continuation.pos())));
2015 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
2016 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
2017 __ mov(r1, cp);
2018 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
2019 kLRHasBeenSaved, kDontSaveFPRegs);
2020 __ add(r1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
2021 __ cmp(sp, r1);
2022 __ b(eq, &post_runtime);
2023 __ push(r0); // generator object
2024 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2025 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2026 __ bind(&post_runtime);
2027 __ pop(result_register());
2028 EmitReturnSequence();
2029
2030 __ bind(&resume);
2031 context()->Plug(result_register());
2032 break;
2033 }
2034
2035 case Yield::kFinal: {
2036 VisitForAccumulatorValue(expr->generator_object());
2037 __ mov(r1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
2038 __ str(r1, FieldMemOperand(result_register(),
2039 JSGeneratorObject::kContinuationOffset));
2040 // Pop value from top-of-stack slot, box result into result register.
2041 EmitCreateIteratorResult(true);
2042 EmitUnwindBeforeReturn();
2043 EmitReturnSequence();
2044 break;
2045 }
2046
2047 case Yield::kDelegating: {
2048 VisitForStackValue(expr->generator_object());
2049
2050 // Initial stack layout is as follows:
2051 // [sp + 1 * kPointerSize] iter
2052 // [sp + 0 * kPointerSize] g
2053
2054 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2055 Label l_next, l_call, l_loop;
2056 Register load_receiver = LoadDescriptor::ReceiverRegister();
2057 Register load_name = LoadDescriptor::NameRegister();
2058
2059 // Initial send value is undefined.
2060 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
2061 __ b(&l_next);
2062
2063 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2064 __ bind(&l_catch);
2065 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
2066 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
2067 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter
2068 __ Push(load_name, r3, r0); // "throw", iter, except
2069 __ jmp(&l_call);
2070
2071 // try { received = %yield result }
2072 // Shuffle the received result above a try handler and yield it without
2073 // re-boxing.
2074 __ bind(&l_try);
2075 __ pop(r0); // result
2076 __ PushTryHandler(StackHandler::CATCH, expr->index());
2077 const int handler_size = StackHandlerConstants::kSize;
2078 __ push(r0); // result
2079 __ jmp(&l_suspend);
2080 __ bind(&l_continuation);
2081 __ jmp(&l_resume);
2082 __ bind(&l_suspend);
2083 const int generator_object_depth = kPointerSize + handler_size;
2084 __ ldr(r0, MemOperand(sp, generator_object_depth));
2085 __ push(r0); // g
2086 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2087 __ mov(r1, Operand(Smi::FromInt(l_continuation.pos())));
2088 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
2089 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
2090 __ mov(r1, cp);
2091 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
2092 kLRHasBeenSaved, kDontSaveFPRegs);
2093 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2094 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2095 __ pop(r0); // result
2096 EmitReturnSequence();
2097 __ bind(&l_resume); // received in r0
2098 __ PopTryHandler();
2099
2100 // receiver = iter; f = 'next'; arg = received;
2101 __ bind(&l_next);
2102
2103 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
2104 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter
2105 __ Push(load_name, r3, r0); // "next", iter, received
2106
2107 // result = receiver[f](arg);
2108 __ bind(&l_call);
2109 __ ldr(load_receiver, MemOperand(sp, kPointerSize));
2110 __ ldr(load_name, MemOperand(sp, 2 * kPointerSize));
2111 if (FLAG_vector_ics) {
2112 __ mov(VectorLoadICDescriptor::SlotRegister(),
2113 Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot())));
2114 }
2115 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2116 CallIC(ic, TypeFeedbackId::None());
2117 __ mov(r1, r0);
2118 __ str(r1, MemOperand(sp, 2 * kPointerSize));
2119 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2120 __ CallStub(&stub);
2121
2122 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2123 __ Drop(1); // The function is still on the stack; drop it.
2124
2125 // if (!result.done) goto l_try;
2126 __ bind(&l_loop);
2127 __ Move(load_receiver, r0);
2128
2129 __ push(load_receiver); // save result
2130 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
2131 if (FLAG_vector_ics) {
2132 __ mov(VectorLoadICDescriptor::SlotRegister(),
2133 Operand(Smi::FromInt(expr->DoneFeedbackSlot())));
2134 }
2135 CallLoadIC(NOT_CONTEXTUAL); // r0=result.done
2136 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2137 CallIC(bool_ic);
2138 __ cmp(r0, Operand(0));
2139 __ b(eq, &l_try);
2140
2141 // result.value
2142 __ pop(load_receiver); // result
2143 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
2144 if (FLAG_vector_ics) {
2145 __ mov(VectorLoadICDescriptor::SlotRegister(),
2146 Operand(Smi::FromInt(expr->ValueFeedbackSlot())));
2147 }
2148 CallLoadIC(NOT_CONTEXTUAL); // r0=result.value
2149 context()->DropAndPlug(2, r0); // drop iter and g
2150 break;
2151 }
2152 }
2153 }
2154
2155
EmitGeneratorResume(Expression * generator,Expression * value,JSGeneratorObject::ResumeMode resume_mode)2156 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2157 Expression *value,
2158 JSGeneratorObject::ResumeMode resume_mode) {
2159 // The value stays in r0, and is ultimately read by the resumed generator, as
2160 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2161 // is read to throw the value when the resumed generator is already closed.
2162 // r1 will hold the generator object until the activation has been resumed.
2163 VisitForStackValue(generator);
2164 VisitForAccumulatorValue(value);
2165 __ pop(r1);
2166
2167 // Check generator state.
2168 Label wrong_state, closed_state, done;
2169 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2170 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
2171 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
2172 __ cmp(r3, Operand(Smi::FromInt(0)));
2173 __ b(eq, &closed_state);
2174 __ b(lt, &wrong_state);
2175
2176 // Load suspended function and context.
2177 __ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset));
2178 __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
2179
2180 // Load receiver and store as the first argument.
2181 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
2182 __ push(r2);
2183
2184 // Push holes for the rest of the arguments to the generator function.
2185 __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2186 __ ldr(r3,
2187 FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
2188 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
2189 Label push_argument_holes, push_frame;
2190 __ bind(&push_argument_holes);
2191 __ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC);
2192 __ b(mi, &push_frame);
2193 __ push(r2);
2194 __ jmp(&push_argument_holes);
2195
2196 // Enter a new JavaScript frame, and initialize its slots as they were when
2197 // the generator was suspended.
2198 Label resume_frame;
2199 __ bind(&push_frame);
2200 __ bl(&resume_frame);
2201 __ jmp(&done);
2202 __ bind(&resume_frame);
2203 // lr = return address.
2204 // fp = caller's frame pointer.
2205 // pp = caller's constant pool (if FLAG_enable_ool_constant_pool),
2206 // cp = callee's context,
2207 // r4 = callee's JS function.
2208 __ PushFixedFrame(r4);
2209 // Adjust FP to point to saved FP.
2210 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
2211
2212 // Load the operand stack size.
2213 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kOperandStackOffset));
2214 __ ldr(r3, FieldMemOperand(r3, FixedArray::kLengthOffset));
2215 __ SmiUntag(r3);
2216
2217 // If we are sending a value and there is no operand stack, we can jump back
2218 // in directly.
2219 if (resume_mode == JSGeneratorObject::NEXT) {
2220 Label slow_resume;
2221 __ cmp(r3, Operand(0));
2222 __ b(ne, &slow_resume);
2223 __ ldr(r3, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
2224
2225 { ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
2226 if (FLAG_enable_ool_constant_pool) {
2227 // Load the new code object's constant pool pointer.
2228 __ ldr(pp,
2229 MemOperand(r3, Code::kConstantPoolOffset - Code::kHeaderSize));
2230 }
2231
2232 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2233 __ SmiUntag(r2);
2234 __ add(r3, r3, r2);
2235 __ mov(r2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
2236 __ str(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2237 __ Jump(r3);
2238 }
2239 __ bind(&slow_resume);
2240 }
2241
2242 // Otherwise, we push holes for the operand stack and call the runtime to fix
2243 // up the stack and the handlers.
2244 Label push_operand_holes, call_resume;
2245 __ bind(&push_operand_holes);
2246 __ sub(r3, r3, Operand(1), SetCC);
2247 __ b(mi, &call_resume);
2248 __ push(r2);
2249 __ b(&push_operand_holes);
2250 __ bind(&call_resume);
2251 DCHECK(!result_register().is(r1));
2252 __ Push(r1, result_register());
2253 __ Push(Smi::FromInt(resume_mode));
2254 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2255 // Not reached: the runtime call returns elsewhere.
2256 __ stop("not-reached");
2257
2258 // Reach here when generator is closed.
2259 __ bind(&closed_state);
2260 if (resume_mode == JSGeneratorObject::NEXT) {
2261 // Return completed iterator result when generator is closed.
2262 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2263 __ push(r2);
2264 // Pop value from top-of-stack slot; box result into result register.
2265 EmitCreateIteratorResult(true);
2266 } else {
2267 // Throw the provided value.
2268 __ push(r0);
2269 __ CallRuntime(Runtime::kThrow, 1);
2270 }
2271 __ jmp(&done);
2272
2273 // Throw error if we attempt to operate on a running generator.
2274 __ bind(&wrong_state);
2275 __ push(r1);
2276 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
2277
2278 __ bind(&done);
2279 context()->Plug(result_register());
2280 }
2281
2282
EmitCreateIteratorResult(bool done)2283 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2284 Label gc_required;
2285 Label allocated;
2286
2287 Handle<Map> map(isolate()->native_context()->iterator_result_map());
2288
2289 __ Allocate(map->instance_size(), r0, r2, r3, &gc_required, TAG_OBJECT);
2290 __ jmp(&allocated);
2291
2292 __ bind(&gc_required);
2293 __ Push(Smi::FromInt(map->instance_size()));
2294 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2295 __ ldr(context_register(),
2296 MemOperand(fp, StandardFrameConstants::kContextOffset));
2297
2298 __ bind(&allocated);
2299 __ mov(r1, Operand(map));
2300 __ pop(r2);
2301 __ mov(r3, Operand(isolate()->factory()->ToBoolean(done)));
2302 __ mov(r4, Operand(isolate()->factory()->empty_fixed_array()));
2303 DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
2304 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
2305 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
2306 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2307 __ str(r2,
2308 FieldMemOperand(r0, JSGeneratorObject::kResultValuePropertyOffset));
2309 __ str(r3,
2310 FieldMemOperand(r0, JSGeneratorObject::kResultDonePropertyOffset));
2311
2312 // Only the value field needs a write barrier, as the other values are in the
2313 // root set.
2314 __ RecordWriteField(r0, JSGeneratorObject::kResultValuePropertyOffset,
2315 r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
2316 }
2317
2318
EmitNamedPropertyLoad(Property * prop)2319 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2320 SetSourcePosition(prop->position());
2321 Literal* key = prop->key()->AsLiteral();
2322
2323 __ mov(LoadDescriptor::NameRegister(), Operand(key->value()));
2324 if (FLAG_vector_ics) {
2325 __ mov(VectorLoadICDescriptor::SlotRegister(),
2326 Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2327 CallLoadIC(NOT_CONTEXTUAL);
2328 } else {
2329 CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
2330 }
2331 }
2332
2333
EmitNamedSuperPropertyLoad(Property * prop)2334 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2335 SetSourcePosition(prop->position());
2336 Literal* key = prop->key()->AsLiteral();
2337 DCHECK(!key->value()->IsSmi());
2338 DCHECK(prop->IsSuperAccess());
2339
2340 SuperReference* super_ref = prop->obj()->AsSuperReference();
2341 EmitLoadHomeObject(super_ref);
2342 __ Push(r0);
2343 VisitForStackValue(super_ref->this_var());
2344 __ Push(key->value());
2345 __ CallRuntime(Runtime::kLoadFromSuper, 3);
2346 }
2347
2348
EmitKeyedPropertyLoad(Property * prop)2349 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2350 SetSourcePosition(prop->position());
2351 Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2352 if (FLAG_vector_ics) {
2353 __ mov(VectorLoadICDescriptor::SlotRegister(),
2354 Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2355 CallIC(ic);
2356 } else {
2357 CallIC(ic, prop->PropertyFeedbackId());
2358 }
2359 }
2360
2361
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode,Expression * left_expr,Expression * right_expr)2362 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2363 Token::Value op,
2364 OverwriteMode mode,
2365 Expression* left_expr,
2366 Expression* right_expr) {
2367 Label done, smi_case, stub_call;
2368
2369 Register scratch1 = r2;
2370 Register scratch2 = r3;
2371
2372 // Get the arguments.
2373 Register left = r1;
2374 Register right = r0;
2375 __ pop(left);
2376
2377 // Perform combined smi check on both operands.
2378 __ orr(scratch1, left, Operand(right));
2379 STATIC_ASSERT(kSmiTag == 0);
2380 JumpPatchSite patch_site(masm_);
2381 patch_site.EmitJumpIfSmi(scratch1, &smi_case);
2382
2383 __ bind(&stub_call);
2384 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2385 CallIC(code, expr->BinaryOperationFeedbackId());
2386 patch_site.EmitPatchInfo();
2387 __ jmp(&done);
2388
2389 __ bind(&smi_case);
2390 // Smi case. This code works the same way as the smi-smi case in the type
2391 // recording binary operation stub, see
2392 switch (op) {
2393 case Token::SAR:
2394 __ GetLeastBitsFromSmi(scratch1, right, 5);
2395 __ mov(right, Operand(left, ASR, scratch1));
2396 __ bic(right, right, Operand(kSmiTagMask));
2397 break;
2398 case Token::SHL: {
2399 __ SmiUntag(scratch1, left);
2400 __ GetLeastBitsFromSmi(scratch2, right, 5);
2401 __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2402 __ TrySmiTag(right, scratch1, &stub_call);
2403 break;
2404 }
2405 case Token::SHR: {
2406 __ SmiUntag(scratch1, left);
2407 __ GetLeastBitsFromSmi(scratch2, right, 5);
2408 __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2409 __ tst(scratch1, Operand(0xc0000000));
2410 __ b(ne, &stub_call);
2411 __ SmiTag(right, scratch1);
2412 break;
2413 }
2414 case Token::ADD:
2415 __ add(scratch1, left, Operand(right), SetCC);
2416 __ b(vs, &stub_call);
2417 __ mov(right, scratch1);
2418 break;
2419 case Token::SUB:
2420 __ sub(scratch1, left, Operand(right), SetCC);
2421 __ b(vs, &stub_call);
2422 __ mov(right, scratch1);
2423 break;
2424 case Token::MUL: {
2425 __ SmiUntag(ip, right);
2426 __ smull(scratch1, scratch2, left, ip);
2427 __ mov(ip, Operand(scratch1, ASR, 31));
2428 __ cmp(ip, Operand(scratch2));
2429 __ b(ne, &stub_call);
2430 __ cmp(scratch1, Operand::Zero());
2431 __ mov(right, Operand(scratch1), LeaveCC, ne);
2432 __ b(ne, &done);
2433 __ add(scratch2, right, Operand(left), SetCC);
2434 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2435 __ b(mi, &stub_call);
2436 break;
2437 }
2438 case Token::BIT_OR:
2439 __ orr(right, left, Operand(right));
2440 break;
2441 case Token::BIT_AND:
2442 __ and_(right, left, Operand(right));
2443 break;
2444 case Token::BIT_XOR:
2445 __ eor(right, left, Operand(right));
2446 break;
2447 default:
2448 UNREACHABLE();
2449 }
2450
2451 __ bind(&done);
2452 context()->Plug(r0);
2453 }
2454
2455
EmitBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode)2456 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2457 Token::Value op,
2458 OverwriteMode mode) {
2459 __ pop(r1);
2460 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2461 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2462 CallIC(code, expr->BinaryOperationFeedbackId());
2463 patch_site.EmitPatchInfo();
2464 context()->Plug(r0);
2465 }
2466
2467
EmitAssignment(Expression * expr)2468 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2469 DCHECK(expr->IsValidReferenceExpression());
2470
2471 // Left-hand side can only be a property, a global or a (parameter or local)
2472 // slot.
2473 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2474 LhsKind assign_type = VARIABLE;
2475 Property* prop = expr->AsProperty();
2476 if (prop != NULL) {
2477 assign_type = (prop->key()->IsPropertyName())
2478 ? NAMED_PROPERTY
2479 : KEYED_PROPERTY;
2480 }
2481
2482 switch (assign_type) {
2483 case VARIABLE: {
2484 Variable* var = expr->AsVariableProxy()->var();
2485 EffectContext context(this);
2486 EmitVariableAssignment(var, Token::ASSIGN);
2487 break;
2488 }
2489 case NAMED_PROPERTY: {
2490 __ push(r0); // Preserve value.
2491 VisitForAccumulatorValue(prop->obj());
2492 __ Move(StoreDescriptor::ReceiverRegister(), r0);
2493 __ pop(StoreDescriptor::ValueRegister()); // Restore value.
2494 __ mov(StoreDescriptor::NameRegister(),
2495 Operand(prop->key()->AsLiteral()->value()));
2496 CallStoreIC();
2497 break;
2498 }
2499 case KEYED_PROPERTY: {
2500 __ push(r0); // Preserve value.
2501 VisitForStackValue(prop->obj());
2502 VisitForAccumulatorValue(prop->key());
2503 __ Move(StoreDescriptor::NameRegister(), r0);
2504 __ Pop(StoreDescriptor::ValueRegister(),
2505 StoreDescriptor::ReceiverRegister());
2506 Handle<Code> ic =
2507 CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2508 CallIC(ic);
2509 break;
2510 }
2511 }
2512 context()->Plug(r0);
2513 }
2514
2515
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)2516 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2517 Variable* var, MemOperand location) {
2518 __ str(result_register(), location);
2519 if (var->IsContextSlot()) {
2520 // RecordWrite may destroy all its register arguments.
2521 __ mov(r3, result_register());
2522 int offset = Context::SlotOffset(var->index());
2523 __ RecordWriteContextSlot(
2524 r1, offset, r3, r2, kLRHasBeenSaved, kDontSaveFPRegs);
2525 }
2526 }
2527
2528
EmitVariableAssignment(Variable * var,Token::Value op)2529 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
2530 if (var->IsUnallocated()) {
2531 // Global var, const, or let.
2532 __ mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2533 __ ldr(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
2534 CallStoreIC();
2535
2536 } else if (op == Token::INIT_CONST_LEGACY) {
2537 // Const initializers need a write barrier.
2538 DCHECK(!var->IsParameter()); // No const parameters.
2539 if (var->IsLookupSlot()) {
2540 __ push(r0);
2541 __ mov(r0, Operand(var->name()));
2542 __ Push(cp, r0); // Context and name.
2543 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2544 } else {
2545 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2546 Label skip;
2547 MemOperand location = VarOperand(var, r1);
2548 __ ldr(r2, location);
2549 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
2550 __ b(ne, &skip);
2551 EmitStoreToStackLocalOrContextSlot(var, location);
2552 __ bind(&skip);
2553 }
2554
2555 } else if (var->mode() == LET && op != Token::INIT_LET) {
2556 // Non-initializing assignment to let variable needs a write barrier.
2557 DCHECK(!var->IsLookupSlot());
2558 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2559 Label assign;
2560 MemOperand location = VarOperand(var, r1);
2561 __ ldr(r3, location);
2562 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
2563 __ b(ne, &assign);
2564 __ mov(r3, Operand(var->name()));
2565 __ push(r3);
2566 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2567 // Perform the assignment.
2568 __ bind(&assign);
2569 EmitStoreToStackLocalOrContextSlot(var, location);
2570
2571 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2572 if (var->IsLookupSlot()) {
2573 // Assignment to var.
2574 __ push(r0); // Value.
2575 __ mov(r1, Operand(var->name()));
2576 __ mov(r0, Operand(Smi::FromInt(strict_mode())));
2577 __ Push(cp, r1, r0); // Context, name, strict mode.
2578 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2579 } else {
2580 // Assignment to var or initializing assignment to let/const in harmony
2581 // mode.
2582 DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
2583 MemOperand location = VarOperand(var, r1);
2584 if (generate_debug_code_ && op == Token::INIT_LET) {
2585 // Check for an uninitialized let binding.
2586 __ ldr(r2, location);
2587 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
2588 __ Check(eq, kLetBindingReInitialization);
2589 }
2590 EmitStoreToStackLocalOrContextSlot(var, location);
2591 }
2592 }
2593 // Non-initializing assignments to consts are ignored.
2594 }
2595
2596
EmitNamedPropertyAssignment(Assignment * expr)2597 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2598 // Assignment to a property, using a named store IC.
2599 Property* prop = expr->target()->AsProperty();
2600 DCHECK(prop != NULL);
2601 DCHECK(prop->key()->IsLiteral());
2602
2603 // Record source code position before IC call.
2604 SetSourcePosition(expr->position());
2605 __ mov(StoreDescriptor::NameRegister(),
2606 Operand(prop->key()->AsLiteral()->value()));
2607 __ pop(StoreDescriptor::ReceiverRegister());
2608 CallStoreIC(expr->AssignmentFeedbackId());
2609
2610 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2611 context()->Plug(r0);
2612 }
2613
2614
EmitKeyedPropertyAssignment(Assignment * expr)2615 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2616 // Assignment to a property, using a keyed store IC.
2617
2618 // Record source code position before IC call.
2619 SetSourcePosition(expr->position());
2620 __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
2621 DCHECK(StoreDescriptor::ValueRegister().is(r0));
2622
2623 Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2624 CallIC(ic, expr->AssignmentFeedbackId());
2625
2626 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2627 context()->Plug(r0);
2628 }
2629
2630
VisitProperty(Property * expr)2631 void FullCodeGenerator::VisitProperty(Property* expr) {
2632 Comment cmnt(masm_, "[ Property");
2633 Expression* key = expr->key();
2634
2635 if (key->IsPropertyName()) {
2636 if (!expr->IsSuperAccess()) {
2637 VisitForAccumulatorValue(expr->obj());
2638 __ Move(LoadDescriptor::ReceiverRegister(), r0);
2639 EmitNamedPropertyLoad(expr);
2640 } else {
2641 EmitNamedSuperPropertyLoad(expr);
2642 }
2643 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2644 context()->Plug(r0);
2645 } else {
2646 VisitForStackValue(expr->obj());
2647 VisitForAccumulatorValue(expr->key());
2648 __ Move(LoadDescriptor::NameRegister(), r0);
2649 __ pop(LoadDescriptor::ReceiverRegister());
2650 EmitKeyedPropertyLoad(expr);
2651 context()->Plug(r0);
2652 }
2653 }
2654
2655
CallIC(Handle<Code> code,TypeFeedbackId ast_id)2656 void FullCodeGenerator::CallIC(Handle<Code> code,
2657 TypeFeedbackId ast_id) {
2658 ic_total_count_++;
2659 // All calls must have a predictable size in full-codegen code to ensure that
2660 // the debugger can patch them correctly.
2661 __ Call(code, RelocInfo::CODE_TARGET, ast_id, al,
2662 NEVER_INLINE_TARGET_ADDRESS);
2663 }
2664
2665
2666 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2667 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2668 Expression* callee = expr->expression();
2669
2670 CallICState::CallType call_type =
2671 callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2672
2673 // Get the target function.
2674 if (call_type == CallICState::FUNCTION) {
2675 { StackValueContext context(this);
2676 EmitVariableLoad(callee->AsVariableProxy());
2677 PrepareForBailout(callee, NO_REGISTERS);
2678 }
2679 // Push undefined as receiver. This is patched in the method prologue if it
2680 // is a sloppy mode method.
2681 __ Push(isolate()->factory()->undefined_value());
2682 } else {
2683 // Load the function from the receiver.
2684 DCHECK(callee->IsProperty());
2685 DCHECK(!callee->AsProperty()->IsSuperAccess());
2686 __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2687 EmitNamedPropertyLoad(callee->AsProperty());
2688 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2689 // Push the target function under the receiver.
2690 __ ldr(ip, MemOperand(sp, 0));
2691 __ push(ip);
2692 __ str(r0, MemOperand(sp, kPointerSize));
2693 }
2694
2695 EmitCall(expr, call_type);
2696 }
2697
2698
EmitSuperCallWithLoadIC(Call * expr)2699 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2700 Expression* callee = expr->expression();
2701 DCHECK(callee->IsProperty());
2702 Property* prop = callee->AsProperty();
2703 DCHECK(prop->IsSuperAccess());
2704
2705 SetSourcePosition(prop->position());
2706 Literal* key = prop->key()->AsLiteral();
2707 DCHECK(!key->value()->IsSmi());
2708 // Load the function from the receiver.
2709 const Register scratch = r1;
2710 SuperReference* super_ref = prop->obj()->AsSuperReference();
2711 EmitLoadHomeObject(super_ref);
2712 __ Push(r0);
2713 VisitForAccumulatorValue(super_ref->this_var());
2714 __ Push(r0);
2715 __ ldr(scratch, MemOperand(sp, kPointerSize));
2716 __ Push(scratch);
2717 __ Push(r0);
2718 __ Push(key->value());
2719
2720 // Stack here:
2721 // - home_object
2722 // - this (receiver)
2723 // - home_object <-- LoadFromSuper will pop here and below.
2724 // - this (receiver)
2725 // - key
2726 __ CallRuntime(Runtime::kLoadFromSuper, 3);
2727
2728 // Replace home_object with target function.
2729 __ str(r0, MemOperand(sp, kPointerSize));
2730
2731 // Stack here:
2732 // - target function
2733 // - this (receiver)
2734 EmitCall(expr, CallICState::METHOD);
2735 }
2736
2737
2738 // Code common for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2739 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2740 Expression* key) {
2741 // Load the key.
2742 VisitForAccumulatorValue(key);
2743
2744 Expression* callee = expr->expression();
2745
2746 // Load the function from the receiver.
2747 DCHECK(callee->IsProperty());
2748 __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2749 __ Move(LoadDescriptor::NameRegister(), r0);
2750 EmitKeyedPropertyLoad(callee->AsProperty());
2751 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2752
2753 // Push the target function under the receiver.
2754 __ ldr(ip, MemOperand(sp, 0));
2755 __ push(ip);
2756 __ str(r0, MemOperand(sp, kPointerSize));
2757
2758 EmitCall(expr, CallICState::METHOD);
2759 }
2760
2761
EmitCall(Call * expr,CallICState::CallType call_type)2762 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2763 // Load the arguments.
2764 ZoneList<Expression*>* args = expr->arguments();
2765 int arg_count = args->length();
2766 { PreservePositionScope scope(masm()->positions_recorder());
2767 for (int i = 0; i < arg_count; i++) {
2768 VisitForStackValue(args->at(i));
2769 }
2770 }
2771
2772 // Record source position of the IC call.
2773 SetSourcePosition(expr->position());
2774 Handle<Code> ic = CallIC::initialize_stub(
2775 isolate(), arg_count, call_type);
2776 __ mov(r3, Operand(Smi::FromInt(expr->CallFeedbackSlot())));
2777 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2778 // Don't assign a type feedback id to the IC, since type feedback is provided
2779 // by the vector above.
2780 CallIC(ic);
2781
2782 RecordJSReturnSite(expr);
2783 // Restore context register.
2784 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2785 context()->DropAndPlug(1, r0);
2786 }
2787
2788
EmitResolvePossiblyDirectEval(int arg_count)2789 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2790 // r5: copy of the first argument or undefined if it doesn't exist.
2791 if (arg_count > 0) {
2792 __ ldr(r5, MemOperand(sp, arg_count * kPointerSize));
2793 } else {
2794 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2795 }
2796
2797 // r4: the receiver of the enclosing function.
2798 __ ldr(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2799
2800 // r3: the receiver of the enclosing function.
2801 int receiver_offset = 2 + info_->scope()->num_parameters();
2802 __ ldr(r3, MemOperand(fp, receiver_offset * kPointerSize));
2803
2804 // r2: strict mode.
2805 __ mov(r2, Operand(Smi::FromInt(strict_mode())));
2806
2807 // r1: the start position of the scope the calls resides in.
2808 __ mov(r1, Operand(Smi::FromInt(scope()->start_position())));
2809
2810 // Do the runtime call.
2811 __ Push(r5);
2812 __ Push(r4, r3, r2, r1);
2813 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
2814 }
2815
2816
VisitCall(Call * expr)2817 void FullCodeGenerator::VisitCall(Call* expr) {
2818 #ifdef DEBUG
2819 // We want to verify that RecordJSReturnSite gets called on all paths
2820 // through this function. Avoid early returns.
2821 expr->return_is_recorded_ = false;
2822 #endif
2823
2824 Comment cmnt(masm_, "[ Call");
2825 Expression* callee = expr->expression();
2826 Call::CallType call_type = expr->GetCallType(isolate());
2827
2828 if (call_type == Call::POSSIBLY_EVAL_CALL) {
2829 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2830 // to resolve the function we need to call and the receiver of the
2831 // call. Then we call the resolved function using the given
2832 // arguments.
2833 ZoneList<Expression*>* args = expr->arguments();
2834 int arg_count = args->length();
2835
2836 { PreservePositionScope pos_scope(masm()->positions_recorder());
2837 VisitForStackValue(callee);
2838 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2839 __ push(r2); // Reserved receiver slot.
2840
2841 // Push the arguments.
2842 for (int i = 0; i < arg_count; i++) {
2843 VisitForStackValue(args->at(i));
2844 }
2845
2846 // Push a copy of the function (found below the arguments) and
2847 // resolve eval.
2848 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2849 __ push(r1);
2850 EmitResolvePossiblyDirectEval(arg_count);
2851
2852 // The runtime call returns a pair of values in r0 (function) and
2853 // r1 (receiver). Touch up the stack with the right values.
2854 __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
2855 __ str(r1, MemOperand(sp, arg_count * kPointerSize));
2856 }
2857
2858 // Record source position for debugger.
2859 SetSourcePosition(expr->position());
2860 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2861 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2862 __ CallStub(&stub);
2863 RecordJSReturnSite(expr);
2864 // Restore context register.
2865 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2866 context()->DropAndPlug(1, r0);
2867 } else if (call_type == Call::GLOBAL_CALL) {
2868 EmitCallWithLoadIC(expr);
2869
2870 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2871 // Call to a lookup slot (dynamically introduced variable).
2872 VariableProxy* proxy = callee->AsVariableProxy();
2873 Label slow, done;
2874
2875 { PreservePositionScope scope(masm()->positions_recorder());
2876 // Generate code for loading from variables potentially shadowed
2877 // by eval-introduced variables.
2878 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2879 }
2880
2881 __ bind(&slow);
2882 // Call the runtime to find the function to call (returned in r0)
2883 // and the object holding it (returned in edx).
2884 DCHECK(!context_register().is(r2));
2885 __ mov(r2, Operand(proxy->name()));
2886 __ Push(context_register(), r2);
2887 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2888 __ Push(r0, r1); // Function, receiver.
2889
2890 // If fast case code has been generated, emit code to push the
2891 // function and receiver and have the slow path jump around this
2892 // code.
2893 if (done.is_linked()) {
2894 Label call;
2895 __ b(&call);
2896 __ bind(&done);
2897 // Push function.
2898 __ push(r0);
2899 // The receiver is implicitly the global receiver. Indicate this
2900 // by passing the hole to the call function stub.
2901 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
2902 __ push(r1);
2903 __ bind(&call);
2904 }
2905
2906 // The receiver is either the global receiver or an object found
2907 // by LoadContextSlot.
2908 EmitCall(expr);
2909 } else if (call_type == Call::PROPERTY_CALL) {
2910 Property* property = callee->AsProperty();
2911 bool is_named_call = property->key()->IsPropertyName();
2912 // super.x() is handled in EmitCallWithLoadIC.
2913 if (property->IsSuperAccess() && is_named_call) {
2914 EmitSuperCallWithLoadIC(expr);
2915 } else {
2916 {
2917 PreservePositionScope scope(masm()->positions_recorder());
2918 VisitForStackValue(property->obj());
2919 }
2920 if (is_named_call) {
2921 EmitCallWithLoadIC(expr);
2922 } else {
2923 EmitKeyedCallWithLoadIC(expr, property->key());
2924 }
2925 }
2926 } else {
2927 DCHECK(call_type == Call::OTHER_CALL);
2928 // Call to an arbitrary expression not handled specially above.
2929 { PreservePositionScope scope(masm()->positions_recorder());
2930 VisitForStackValue(callee);
2931 }
2932 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
2933 __ push(r1);
2934 // Emit function call.
2935 EmitCall(expr);
2936 }
2937
2938 #ifdef DEBUG
2939 // RecordJSReturnSite should have been called.
2940 DCHECK(expr->return_is_recorded_);
2941 #endif
2942 }
2943
2944
VisitCallNew(CallNew * expr)2945 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2946 Comment cmnt(masm_, "[ CallNew");
2947 // According to ECMA-262, section 11.2.2, page 44, the function
2948 // expression in new calls must be evaluated before the
2949 // arguments.
2950
2951 // Push constructor on the stack. If it's not a function it's used as
2952 // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2953 // ignored.
2954 VisitForStackValue(expr->expression());
2955
2956 // Push the arguments ("left-to-right") on the stack.
2957 ZoneList<Expression*>* args = expr->arguments();
2958 int arg_count = args->length();
2959 for (int i = 0; i < arg_count; i++) {
2960 VisitForStackValue(args->at(i));
2961 }
2962
2963 // Call the construct call builtin that handles allocation and
2964 // constructor invocation.
2965 SetSourcePosition(expr->position());
2966
2967 // Load function and argument count into r1 and r0.
2968 __ mov(r0, Operand(arg_count));
2969 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
2970
2971 // Record call targets in unoptimized code.
2972 if (FLAG_pretenuring_call_new) {
2973 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2974 DCHECK(expr->AllocationSiteFeedbackSlot() ==
2975 expr->CallNewFeedbackSlot() + 1);
2976 }
2977
2978 __ Move(r2, FeedbackVector());
2979 __ mov(r3, Operand(Smi::FromInt(expr->CallNewFeedbackSlot())));
2980
2981 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2982 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2983 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2984 context()->Plug(r0);
2985 }
2986
2987
EmitIsSmi(CallRuntime * expr)2988 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2989 ZoneList<Expression*>* args = expr->arguments();
2990 DCHECK(args->length() == 1);
2991
2992 VisitForAccumulatorValue(args->at(0));
2993
2994 Label materialize_true, materialize_false;
2995 Label* if_true = NULL;
2996 Label* if_false = NULL;
2997 Label* fall_through = NULL;
2998 context()->PrepareTest(&materialize_true, &materialize_false,
2999 &if_true, &if_false, &fall_through);
3000
3001 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3002 __ SmiTst(r0);
3003 Split(eq, if_true, if_false, fall_through);
3004
3005 context()->Plug(if_true, if_false);
3006 }
3007
3008
EmitIsNonNegativeSmi(CallRuntime * expr)3009 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
3010 ZoneList<Expression*>* args = expr->arguments();
3011 DCHECK(args->length() == 1);
3012
3013 VisitForAccumulatorValue(args->at(0));
3014
3015 Label materialize_true, materialize_false;
3016 Label* if_true = NULL;
3017 Label* if_false = NULL;
3018 Label* fall_through = NULL;
3019 context()->PrepareTest(&materialize_true, &materialize_false,
3020 &if_true, &if_false, &fall_through);
3021
3022 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3023 __ NonNegativeSmiTst(r0);
3024 Split(eq, if_true, if_false, fall_through);
3025
3026 context()->Plug(if_true, if_false);
3027 }
3028
3029
EmitIsObject(CallRuntime * expr)3030 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
3031 ZoneList<Expression*>* args = expr->arguments();
3032 DCHECK(args->length() == 1);
3033
3034 VisitForAccumulatorValue(args->at(0));
3035
3036 Label materialize_true, materialize_false;
3037 Label* if_true = NULL;
3038 Label* if_false = NULL;
3039 Label* fall_through = NULL;
3040 context()->PrepareTest(&materialize_true, &materialize_false,
3041 &if_true, &if_false, &fall_through);
3042
3043 __ JumpIfSmi(r0, if_false);
3044 __ LoadRoot(ip, Heap::kNullValueRootIndex);
3045 __ cmp(r0, ip);
3046 __ b(eq, if_true);
3047 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3048 // Undetectable objects behave like undefined when tested with typeof.
3049 __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
3050 __ tst(r1, Operand(1 << Map::kIsUndetectable));
3051 __ b(ne, if_false);
3052 __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset));
3053 __ cmp(r1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
3054 __ b(lt, if_false);
3055 __ cmp(r1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
3056 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3057 Split(le, if_true, if_false, fall_through);
3058
3059 context()->Plug(if_true, if_false);
3060 }
3061
3062
EmitIsSpecObject(CallRuntime * expr)3063 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
3064 ZoneList<Expression*>* args = expr->arguments();
3065 DCHECK(args->length() == 1);
3066
3067 VisitForAccumulatorValue(args->at(0));
3068
3069 Label materialize_true, materialize_false;
3070 Label* if_true = NULL;
3071 Label* if_false = NULL;
3072 Label* fall_through = NULL;
3073 context()->PrepareTest(&materialize_true, &materialize_false,
3074 &if_true, &if_false, &fall_through);
3075
3076 __ JumpIfSmi(r0, if_false);
3077 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
3078 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3079 Split(ge, if_true, if_false, fall_through);
3080
3081 context()->Plug(if_true, if_false);
3082 }
3083
3084
EmitIsUndetectableObject(CallRuntime * expr)3085 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
3086 ZoneList<Expression*>* args = expr->arguments();
3087 DCHECK(args->length() == 1);
3088
3089 VisitForAccumulatorValue(args->at(0));
3090
3091 Label materialize_true, materialize_false;
3092 Label* if_true = NULL;
3093 Label* if_false = NULL;
3094 Label* fall_through = NULL;
3095 context()->PrepareTest(&materialize_true, &materialize_false,
3096 &if_true, &if_false, &fall_through);
3097
3098 __ JumpIfSmi(r0, if_false);
3099 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3100 __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
3101 __ tst(r1, Operand(1 << Map::kIsUndetectable));
3102 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3103 Split(ne, if_true, if_false, fall_through);
3104
3105 context()->Plug(if_true, if_false);
3106 }
3107
3108
EmitIsStringWrapperSafeForDefaultValueOf(CallRuntime * expr)3109 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3110 CallRuntime* expr) {
3111 ZoneList<Expression*>* args = expr->arguments();
3112 DCHECK(args->length() == 1);
3113
3114 VisitForAccumulatorValue(args->at(0));
3115
3116 Label materialize_true, materialize_false, skip_lookup;
3117 Label* if_true = NULL;
3118 Label* if_false = NULL;
3119 Label* fall_through = NULL;
3120 context()->PrepareTest(&materialize_true, &materialize_false,
3121 &if_true, &if_false, &fall_through);
3122
3123 __ AssertNotSmi(r0);
3124
3125 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3126 __ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset));
3127 __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3128 __ b(ne, &skip_lookup);
3129
3130 // Check for fast case object. Generate false result for slow case object.
3131 __ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset));
3132 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3133 __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
3134 __ cmp(r2, ip);
3135 __ b(eq, if_false);
3136
3137 // Look for valueOf name in the descriptor array, and indicate false if
3138 // found. Since we omit an enumeration index check, if it is added via a
3139 // transition that shares its descriptor array, this is a false positive.
3140 Label entry, loop, done;
3141
3142 // Skip loop if no descriptors are valid.
3143 __ NumberOfOwnDescriptors(r3, r1);
3144 __ cmp(r3, Operand::Zero());
3145 __ b(eq, &done);
3146
3147 __ LoadInstanceDescriptors(r1, r4);
3148 // r4: descriptor array.
3149 // r3: valid entries in the descriptor array.
3150 __ mov(ip, Operand(DescriptorArray::kDescriptorSize));
3151 __ mul(r3, r3, ip);
3152 // Calculate location of the first key name.
3153 __ add(r4, r4, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
3154 // Calculate the end of the descriptor array.
3155 __ mov(r2, r4);
3156 __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2));
3157
3158 // Loop through all the keys in the descriptor array. If one of these is the
3159 // string "valueOf" the result is false.
3160 // The use of ip to store the valueOf string assumes that it is not otherwise
3161 // used in the loop below.
3162 __ mov(ip, Operand(isolate()->factory()->value_of_string()));
3163 __ jmp(&entry);
3164 __ bind(&loop);
3165 __ ldr(r3, MemOperand(r4, 0));
3166 __ cmp(r3, ip);
3167 __ b(eq, if_false);
3168 __ add(r4, r4, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
3169 __ bind(&entry);
3170 __ cmp(r4, Operand(r2));
3171 __ b(ne, &loop);
3172
3173 __ bind(&done);
3174
3175 // Set the bit in the map to indicate that there is no local valueOf field.
3176 __ ldrb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
3177 __ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3178 __ strb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
3179
3180 __ bind(&skip_lookup);
3181
3182 // If a valueOf property is not found on the object check that its
3183 // prototype is the un-modified String prototype. If not result is false.
3184 __ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
3185 __ JumpIfSmi(r2, if_false);
3186 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3187 __ ldr(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3188 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
3189 __ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3190 __ cmp(r2, r3);
3191 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3192 Split(eq, if_true, if_false, fall_through);
3193
3194 context()->Plug(if_true, if_false);
3195 }
3196
3197
EmitIsFunction(CallRuntime * expr)3198 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3199 ZoneList<Expression*>* args = expr->arguments();
3200 DCHECK(args->length() == 1);
3201
3202 VisitForAccumulatorValue(args->at(0));
3203
3204 Label materialize_true, materialize_false;
3205 Label* if_true = NULL;
3206 Label* if_false = NULL;
3207 Label* fall_through = NULL;
3208 context()->PrepareTest(&materialize_true, &materialize_false,
3209 &if_true, &if_false, &fall_through);
3210
3211 __ JumpIfSmi(r0, if_false);
3212 __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE);
3213 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3214 Split(eq, if_true, if_false, fall_through);
3215
3216 context()->Plug(if_true, if_false);
3217 }
3218
3219
EmitIsMinusZero(CallRuntime * expr)3220 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3221 ZoneList<Expression*>* args = expr->arguments();
3222 DCHECK(args->length() == 1);
3223
3224 VisitForAccumulatorValue(args->at(0));
3225
3226 Label materialize_true, materialize_false;
3227 Label* if_true = NULL;
3228 Label* if_false = NULL;
3229 Label* fall_through = NULL;
3230 context()->PrepareTest(&materialize_true, &materialize_false,
3231 &if_true, &if_false, &fall_through);
3232
3233 __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
3234 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3235 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
3236 __ cmp(r2, Operand(0x80000000));
3237 __ cmp(r1, Operand(0x00000000), eq);
3238
3239 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3240 Split(eq, if_true, if_false, fall_through);
3241
3242 context()->Plug(if_true, if_false);
3243 }
3244
3245
EmitIsArray(CallRuntime * expr)3246 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3247 ZoneList<Expression*>* args = expr->arguments();
3248 DCHECK(args->length() == 1);
3249
3250 VisitForAccumulatorValue(args->at(0));
3251
3252 Label materialize_true, materialize_false;
3253 Label* if_true = NULL;
3254 Label* if_false = NULL;
3255 Label* fall_through = NULL;
3256 context()->PrepareTest(&materialize_true, &materialize_false,
3257 &if_true, &if_false, &fall_through);
3258
3259 __ JumpIfSmi(r0, if_false);
3260 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
3261 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3262 Split(eq, if_true, if_false, fall_through);
3263
3264 context()->Plug(if_true, if_false);
3265 }
3266
3267
EmitIsRegExp(CallRuntime * expr)3268 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3269 ZoneList<Expression*>* args = expr->arguments();
3270 DCHECK(args->length() == 1);
3271
3272 VisitForAccumulatorValue(args->at(0));
3273
3274 Label materialize_true, materialize_false;
3275 Label* if_true = NULL;
3276 Label* if_false = NULL;
3277 Label* fall_through = NULL;
3278 context()->PrepareTest(&materialize_true, &materialize_false,
3279 &if_true, &if_false, &fall_through);
3280
3281 __ JumpIfSmi(r0, if_false);
3282 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
3283 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3284 Split(eq, if_true, if_false, fall_through);
3285
3286 context()->Plug(if_true, if_false);
3287 }
3288
3289
3290
EmitIsConstructCall(CallRuntime * expr)3291 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3292 DCHECK(expr->arguments()->length() == 0);
3293
3294 Label materialize_true, materialize_false;
3295 Label* if_true = NULL;
3296 Label* if_false = NULL;
3297 Label* fall_through = NULL;
3298 context()->PrepareTest(&materialize_true, &materialize_false,
3299 &if_true, &if_false, &fall_through);
3300
3301 // Get the frame pointer for the calling frame.
3302 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3303
3304 // Skip the arguments adaptor frame if it exists.
3305 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
3306 __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3307 __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset), eq);
3308
3309 // Check the marker in the calling frame.
3310 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
3311 __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3312 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3313 Split(eq, if_true, if_false, fall_through);
3314
3315 context()->Plug(if_true, if_false);
3316 }
3317
3318
EmitObjectEquals(CallRuntime * expr)3319 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3320 ZoneList<Expression*>* args = expr->arguments();
3321 DCHECK(args->length() == 2);
3322
3323 // Load the two objects into registers and perform the comparison.
3324 VisitForStackValue(args->at(0));
3325 VisitForAccumulatorValue(args->at(1));
3326
3327 Label materialize_true, materialize_false;
3328 Label* if_true = NULL;
3329 Label* if_false = NULL;
3330 Label* fall_through = NULL;
3331 context()->PrepareTest(&materialize_true, &materialize_false,
3332 &if_true, &if_false, &fall_through);
3333
3334 __ pop(r1);
3335 __ cmp(r0, r1);
3336 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3337 Split(eq, if_true, if_false, fall_through);
3338
3339 context()->Plug(if_true, if_false);
3340 }
3341
3342
EmitArguments(CallRuntime * expr)3343 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3344 ZoneList<Expression*>* args = expr->arguments();
3345 DCHECK(args->length() == 1);
3346
3347 // ArgumentsAccessStub expects the key in edx and the formal
3348 // parameter count in r0.
3349 VisitForAccumulatorValue(args->at(0));
3350 __ mov(r1, r0);
3351 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
3352 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3353 __ CallStub(&stub);
3354 context()->Plug(r0);
3355 }
3356
3357
EmitArgumentsLength(CallRuntime * expr)3358 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3359 DCHECK(expr->arguments()->length() == 0);
3360
3361 // Get the number of formal parameters.
3362 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
3363
3364 // Check if the calling frame is an arguments adaptor frame.
3365 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3366 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
3367 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3368
3369 // Arguments adaptor case: Read the arguments length from the
3370 // adaptor frame.
3371 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset), eq);
3372
3373 context()->Plug(r0);
3374 }
3375
3376
EmitClassOf(CallRuntime * expr)3377 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3378 ZoneList<Expression*>* args = expr->arguments();
3379 DCHECK(args->length() == 1);
3380 Label done, null, function, non_function_constructor;
3381
3382 VisitForAccumulatorValue(args->at(0));
3383
3384 // If the object is a smi, we return null.
3385 __ JumpIfSmi(r0, &null);
3386
3387 // Check that the object is a JS object but take special care of JS
3388 // functions to make sure they have 'Function' as their class.
3389 // Assume that there are only two callable types, and one of them is at
3390 // either end of the type range for JS object types. Saves extra comparisons.
3391 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3392 __ CompareObjectType(r0, r0, r1, FIRST_SPEC_OBJECT_TYPE);
3393 // Map is now in r0.
3394 __ b(lt, &null);
3395 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3396 FIRST_SPEC_OBJECT_TYPE + 1);
3397 __ b(eq, &function);
3398
3399 __ cmp(r1, Operand(LAST_SPEC_OBJECT_TYPE));
3400 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3401 LAST_SPEC_OBJECT_TYPE - 1);
3402 __ b(eq, &function);
3403 // Assume that there is no larger type.
3404 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3405
3406 // Check if the constructor in the map is a JS function.
3407 __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
3408 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
3409 __ b(ne, &non_function_constructor);
3410
3411 // r0 now contains the constructor function. Grab the
3412 // instance class name from there.
3413 __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
3414 __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
3415 __ b(&done);
3416
3417 // Functions have class 'Function'.
3418 __ bind(&function);
3419 __ LoadRoot(r0, Heap::kFunction_stringRootIndex);
3420 __ jmp(&done);
3421
3422 // Objects with a non-function constructor have class 'Object'.
3423 __ bind(&non_function_constructor);
3424 __ LoadRoot(r0, Heap::kObject_stringRootIndex);
3425 __ jmp(&done);
3426
3427 // Non-JS objects have class null.
3428 __ bind(&null);
3429 __ LoadRoot(r0, Heap::kNullValueRootIndex);
3430
3431 // All done.
3432 __ bind(&done);
3433
3434 context()->Plug(r0);
3435 }
3436
3437
EmitSubString(CallRuntime * expr)3438 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3439 // Load the arguments on the stack and call the stub.
3440 SubStringStub stub(isolate());
3441 ZoneList<Expression*>* args = expr->arguments();
3442 DCHECK(args->length() == 3);
3443 VisitForStackValue(args->at(0));
3444 VisitForStackValue(args->at(1));
3445 VisitForStackValue(args->at(2));
3446 __ CallStub(&stub);
3447 context()->Plug(r0);
3448 }
3449
3450
EmitRegExpExec(CallRuntime * expr)3451 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3452 // Load the arguments on the stack and call the stub.
3453 RegExpExecStub stub(isolate());
3454 ZoneList<Expression*>* args = expr->arguments();
3455 DCHECK(args->length() == 4);
3456 VisitForStackValue(args->at(0));
3457 VisitForStackValue(args->at(1));
3458 VisitForStackValue(args->at(2));
3459 VisitForStackValue(args->at(3));
3460 __ CallStub(&stub);
3461 context()->Plug(r0);
3462 }
3463
3464
EmitValueOf(CallRuntime * expr)3465 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3466 ZoneList<Expression*>* args = expr->arguments();
3467 DCHECK(args->length() == 1);
3468 VisitForAccumulatorValue(args->at(0)); // Load the object.
3469
3470 Label done;
3471 // If the object is a smi return the object.
3472 __ JumpIfSmi(r0, &done);
3473 // If the object is not a value type, return the object.
3474 __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
3475 __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset), eq);
3476
3477 __ bind(&done);
3478 context()->Plug(r0);
3479 }
3480
3481
EmitDateField(CallRuntime * expr)3482 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3483 ZoneList<Expression*>* args = expr->arguments();
3484 DCHECK(args->length() == 2);
3485 DCHECK_NE(NULL, args->at(1)->AsLiteral());
3486 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3487
3488 VisitForAccumulatorValue(args->at(0)); // Load the object.
3489
3490 Label runtime, done, not_date_object;
3491 Register object = r0;
3492 Register result = r0;
3493 Register scratch0 = r9;
3494 Register scratch1 = r1;
3495
3496 __ JumpIfSmi(object, ¬_date_object);
3497 __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
3498 __ b(ne, ¬_date_object);
3499
3500 if (index->value() == 0) {
3501 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
3502 __ jmp(&done);
3503 } else {
3504 if (index->value() < JSDate::kFirstUncachedField) {
3505 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3506 __ mov(scratch1, Operand(stamp));
3507 __ ldr(scratch1, MemOperand(scratch1));
3508 __ ldr(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
3509 __ cmp(scratch1, scratch0);
3510 __ b(ne, &runtime);
3511 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
3512 kPointerSize * index->value()));
3513 __ jmp(&done);
3514 }
3515 __ bind(&runtime);
3516 __ PrepareCallCFunction(2, scratch1);
3517 __ mov(r1, Operand(index));
3518 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3519 __ jmp(&done);
3520 }
3521
3522 __ bind(¬_date_object);
3523 __ CallRuntime(Runtime::kThrowNotDateError, 0);
3524 __ bind(&done);
3525 context()->Plug(r0);
3526 }
3527
3528
EmitOneByteSeqStringSetChar(CallRuntime * expr)3529 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3530 ZoneList<Expression*>* args = expr->arguments();
3531 DCHECK_EQ(3, args->length());
3532
3533 Register string = r0;
3534 Register index = r1;
3535 Register value = r2;
3536
3537 VisitForStackValue(args->at(0)); // index
3538 VisitForStackValue(args->at(1)); // value
3539 VisitForAccumulatorValue(args->at(2)); // string
3540 __ Pop(index, value);
3541
3542 if (FLAG_debug_code) {
3543 __ SmiTst(value);
3544 __ Check(eq, kNonSmiValue);
3545 __ SmiTst(index);
3546 __ Check(eq, kNonSmiIndex);
3547 __ SmiUntag(index, index);
3548 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3549 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3550 __ SmiTag(index, index);
3551 }
3552
3553 __ SmiUntag(value, value);
3554 __ add(ip,
3555 string,
3556 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3557 __ strb(value, MemOperand(ip, index, LSR, kSmiTagSize));
3558 context()->Plug(string);
3559 }
3560
3561
EmitTwoByteSeqStringSetChar(CallRuntime * expr)3562 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3563 ZoneList<Expression*>* args = expr->arguments();
3564 DCHECK_EQ(3, args->length());
3565
3566 Register string = r0;
3567 Register index = r1;
3568 Register value = r2;
3569
3570 VisitForStackValue(args->at(0)); // index
3571 VisitForStackValue(args->at(1)); // value
3572 VisitForAccumulatorValue(args->at(2)); // string
3573 __ Pop(index, value);
3574
3575 if (FLAG_debug_code) {
3576 __ SmiTst(value);
3577 __ Check(eq, kNonSmiValue);
3578 __ SmiTst(index);
3579 __ Check(eq, kNonSmiIndex);
3580 __ SmiUntag(index, index);
3581 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3582 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3583 __ SmiTag(index, index);
3584 }
3585
3586 __ SmiUntag(value, value);
3587 __ add(ip,
3588 string,
3589 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3590 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3591 __ strh(value, MemOperand(ip, index));
3592 context()->Plug(string);
3593 }
3594
3595
3596
EmitMathPow(CallRuntime * expr)3597 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3598 // Load the arguments on the stack and call the runtime function.
3599 ZoneList<Expression*>* args = expr->arguments();
3600 DCHECK(args->length() == 2);
3601 VisitForStackValue(args->at(0));
3602 VisitForStackValue(args->at(1));
3603 MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3604 __ CallStub(&stub);
3605 context()->Plug(r0);
3606 }
3607
3608
EmitSetValueOf(CallRuntime * expr)3609 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3610 ZoneList<Expression*>* args = expr->arguments();
3611 DCHECK(args->length() == 2);
3612 VisitForStackValue(args->at(0)); // Load the object.
3613 VisitForAccumulatorValue(args->at(1)); // Load the value.
3614 __ pop(r1); // r0 = value. r1 = object.
3615
3616 Label done;
3617 // If the object is a smi, return the value.
3618 __ JumpIfSmi(r1, &done);
3619
3620 // If the object is not a value type, return the value.
3621 __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
3622 __ b(ne, &done);
3623
3624 // Store the value.
3625 __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
3626 // Update the write barrier. Save the value as it will be
3627 // overwritten by the write barrier code and is needed afterward.
3628 __ mov(r2, r0);
3629 __ RecordWriteField(
3630 r1, JSValue::kValueOffset, r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
3631
3632 __ bind(&done);
3633 context()->Plug(r0);
3634 }
3635
3636
EmitNumberToString(CallRuntime * expr)3637 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3638 ZoneList<Expression*>* args = expr->arguments();
3639 DCHECK_EQ(args->length(), 1);
3640 // Load the argument into r0 and call the stub.
3641 VisitForAccumulatorValue(args->at(0));
3642
3643 NumberToStringStub stub(isolate());
3644 __ CallStub(&stub);
3645 context()->Plug(r0);
3646 }
3647
3648
EmitStringCharFromCode(CallRuntime * expr)3649 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3650 ZoneList<Expression*>* args = expr->arguments();
3651 DCHECK(args->length() == 1);
3652 VisitForAccumulatorValue(args->at(0));
3653
3654 Label done;
3655 StringCharFromCodeGenerator generator(r0, r1);
3656 generator.GenerateFast(masm_);
3657 __ jmp(&done);
3658
3659 NopRuntimeCallHelper call_helper;
3660 generator.GenerateSlow(masm_, call_helper);
3661
3662 __ bind(&done);
3663 context()->Plug(r1);
3664 }
3665
3666
EmitStringCharCodeAt(CallRuntime * expr)3667 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3668 ZoneList<Expression*>* args = expr->arguments();
3669 DCHECK(args->length() == 2);
3670 VisitForStackValue(args->at(0));
3671 VisitForAccumulatorValue(args->at(1));
3672
3673 Register object = r1;
3674 Register index = r0;
3675 Register result = r3;
3676
3677 __ pop(object);
3678
3679 Label need_conversion;
3680 Label index_out_of_range;
3681 Label done;
3682 StringCharCodeAtGenerator generator(object,
3683 index,
3684 result,
3685 &need_conversion,
3686 &need_conversion,
3687 &index_out_of_range,
3688 STRING_INDEX_IS_NUMBER);
3689 generator.GenerateFast(masm_);
3690 __ jmp(&done);
3691
3692 __ bind(&index_out_of_range);
3693 // When the index is out of range, the spec requires us to return
3694 // NaN.
3695 __ LoadRoot(result, Heap::kNanValueRootIndex);
3696 __ jmp(&done);
3697
3698 __ bind(&need_conversion);
3699 // Load the undefined value into the result register, which will
3700 // trigger conversion.
3701 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3702 __ jmp(&done);
3703
3704 NopRuntimeCallHelper call_helper;
3705 generator.GenerateSlow(masm_, call_helper);
3706
3707 __ bind(&done);
3708 context()->Plug(result);
3709 }
3710
3711
EmitStringCharAt(CallRuntime * expr)3712 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3713 ZoneList<Expression*>* args = expr->arguments();
3714 DCHECK(args->length() == 2);
3715 VisitForStackValue(args->at(0));
3716 VisitForAccumulatorValue(args->at(1));
3717
3718 Register object = r1;
3719 Register index = r0;
3720 Register scratch = r3;
3721 Register result = r0;
3722
3723 __ pop(object);
3724
3725 Label need_conversion;
3726 Label index_out_of_range;
3727 Label done;
3728 StringCharAtGenerator generator(object,
3729 index,
3730 scratch,
3731 result,
3732 &need_conversion,
3733 &need_conversion,
3734 &index_out_of_range,
3735 STRING_INDEX_IS_NUMBER);
3736 generator.GenerateFast(masm_);
3737 __ jmp(&done);
3738
3739 __ bind(&index_out_of_range);
3740 // When the index is out of range, the spec requires us to return
3741 // the empty string.
3742 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3743 __ jmp(&done);
3744
3745 __ bind(&need_conversion);
3746 // Move smi zero into the result register, which will trigger
3747 // conversion.
3748 __ mov(result, Operand(Smi::FromInt(0)));
3749 __ jmp(&done);
3750
3751 NopRuntimeCallHelper call_helper;
3752 generator.GenerateSlow(masm_, call_helper);
3753
3754 __ bind(&done);
3755 context()->Plug(result);
3756 }
3757
3758
EmitStringAdd(CallRuntime * expr)3759 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3760 ZoneList<Expression*>* args = expr->arguments();
3761 DCHECK_EQ(2, args->length());
3762 VisitForStackValue(args->at(0));
3763 VisitForAccumulatorValue(args->at(1));
3764
3765 __ pop(r1);
3766 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3767 __ CallStub(&stub);
3768 context()->Plug(r0);
3769 }
3770
3771
EmitStringCompare(CallRuntime * expr)3772 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3773 ZoneList<Expression*>* args = expr->arguments();
3774 DCHECK_EQ(2, args->length());
3775 VisitForStackValue(args->at(0));
3776 VisitForStackValue(args->at(1));
3777
3778 StringCompareStub stub(isolate());
3779 __ CallStub(&stub);
3780 context()->Plug(r0);
3781 }
3782
3783
EmitCallFunction(CallRuntime * expr)3784 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3785 ZoneList<Expression*>* args = expr->arguments();
3786 DCHECK(args->length() >= 2);
3787
3788 int arg_count = args->length() - 2; // 2 ~ receiver and function.
3789 for (int i = 0; i < arg_count + 1; i++) {
3790 VisitForStackValue(args->at(i));
3791 }
3792 VisitForAccumulatorValue(args->last()); // Function.
3793
3794 Label runtime, done;
3795 // Check for non-function argument (including proxy).
3796 __ JumpIfSmi(r0, &runtime);
3797 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
3798 __ b(ne, &runtime);
3799
3800 // InvokeFunction requires the function in r1. Move it in there.
3801 __ mov(r1, result_register());
3802 ParameterCount count(arg_count);
3803 __ InvokeFunction(r1, count, CALL_FUNCTION, NullCallWrapper());
3804 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3805 __ jmp(&done);
3806
3807 __ bind(&runtime);
3808 __ push(r0);
3809 __ CallRuntime(Runtime::kCall, args->length());
3810 __ bind(&done);
3811
3812 context()->Plug(r0);
3813 }
3814
3815
EmitRegExpConstructResult(CallRuntime * expr)3816 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3817 RegExpConstructResultStub stub(isolate());
3818 ZoneList<Expression*>* args = expr->arguments();
3819 DCHECK(args->length() == 3);
3820 VisitForStackValue(args->at(0));
3821 VisitForStackValue(args->at(1));
3822 VisitForAccumulatorValue(args->at(2));
3823 __ pop(r1);
3824 __ pop(r2);
3825 __ CallStub(&stub);
3826 context()->Plug(r0);
3827 }
3828
3829
EmitGetFromCache(CallRuntime * expr)3830 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3831 ZoneList<Expression*>* args = expr->arguments();
3832 DCHECK_EQ(2, args->length());
3833 DCHECK_NE(NULL, args->at(0)->AsLiteral());
3834 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3835
3836 Handle<FixedArray> jsfunction_result_caches(
3837 isolate()->native_context()->jsfunction_result_caches());
3838 if (jsfunction_result_caches->length() <= cache_id) {
3839 __ Abort(kAttemptToUseUndefinedCache);
3840 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
3841 context()->Plug(r0);
3842 return;
3843 }
3844
3845 VisitForAccumulatorValue(args->at(1));
3846
3847 Register key = r0;
3848 Register cache = r1;
3849 __ ldr(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3850 __ ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3851 __ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3852 __ ldr(cache,
3853 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3854
3855
3856 Label done, not_found;
3857 __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
3858 // r2 now holds finger offset as a smi.
3859 __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3860 // r3 now points to the start of fixed array elements.
3861 __ ldr(r2, MemOperand::PointerAddressFromSmiKey(r3, r2, PreIndex));
3862 // Note side effect of PreIndex: r3 now points to the key of the pair.
3863 __ cmp(key, r2);
3864 __ b(ne, ¬_found);
3865
3866 __ ldr(r0, MemOperand(r3, kPointerSize));
3867 __ b(&done);
3868
3869 __ bind(¬_found);
3870 // Call runtime to perform the lookup.
3871 __ Push(cache, key);
3872 __ CallRuntime(Runtime::kGetFromCache, 2);
3873
3874 __ bind(&done);
3875 context()->Plug(r0);
3876 }
3877
3878
EmitHasCachedArrayIndex(CallRuntime * expr)3879 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3880 ZoneList<Expression*>* args = expr->arguments();
3881 VisitForAccumulatorValue(args->at(0));
3882
3883 Label materialize_true, materialize_false;
3884 Label* if_true = NULL;
3885 Label* if_false = NULL;
3886 Label* fall_through = NULL;
3887 context()->PrepareTest(&materialize_true, &materialize_false,
3888 &if_true, &if_false, &fall_through);
3889
3890 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
3891 __ tst(r0, Operand(String::kContainsCachedArrayIndexMask));
3892 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3893 Split(eq, if_true, if_false, fall_through);
3894
3895 context()->Plug(if_true, if_false);
3896 }
3897
3898
EmitGetCachedArrayIndex(CallRuntime * expr)3899 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3900 ZoneList<Expression*>* args = expr->arguments();
3901 DCHECK(args->length() == 1);
3902 VisitForAccumulatorValue(args->at(0));
3903
3904 __ AssertString(r0);
3905
3906 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
3907 __ IndexFromHash(r0, r0);
3908
3909 context()->Plug(r0);
3910 }
3911
3912
EmitFastOneByteArrayJoin(CallRuntime * expr)3913 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3914 Label bailout, done, one_char_separator, long_separator, non_trivial_array,
3915 not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
3916 one_char_separator_loop_entry, long_separator_loop;
3917 ZoneList<Expression*>* args = expr->arguments();
3918 DCHECK(args->length() == 2);
3919 VisitForStackValue(args->at(1));
3920 VisitForAccumulatorValue(args->at(0));
3921
3922 // All aliases of the same register have disjoint lifetimes.
3923 Register array = r0;
3924 Register elements = no_reg; // Will be r0.
3925 Register result = no_reg; // Will be r0.
3926 Register separator = r1;
3927 Register array_length = r2;
3928 Register result_pos = no_reg; // Will be r2
3929 Register string_length = r3;
3930 Register string = r4;
3931 Register element = r5;
3932 Register elements_end = r6;
3933 Register scratch = r9;
3934
3935 // Separator operand is on the stack.
3936 __ pop(separator);
3937
3938 // Check that the array is a JSArray.
3939 __ JumpIfSmi(array, &bailout);
3940 __ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE);
3941 __ b(ne, &bailout);
3942
3943 // Check that the array has fast elements.
3944 __ CheckFastElements(scratch, array_length, &bailout);
3945
3946 // If the array has length zero, return the empty string.
3947 __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
3948 __ SmiUntag(array_length, SetCC);
3949 __ b(ne, &non_trivial_array);
3950 __ LoadRoot(r0, Heap::kempty_stringRootIndex);
3951 __ b(&done);
3952
3953 __ bind(&non_trivial_array);
3954
3955 // Get the FixedArray containing array's elements.
3956 elements = array;
3957 __ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3958 array = no_reg; // End of array's live range.
3959
3960 // Check that all array elements are sequential one-byte strings, and
3961 // accumulate the sum of their lengths, as a smi-encoded value.
3962 __ mov(string_length, Operand::Zero());
3963 __ add(element,
3964 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3965 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3966 // Loop condition: while (element < elements_end).
3967 // Live values in registers:
3968 // elements: Fixed array of strings.
3969 // array_length: Length of the fixed array of strings (not smi)
3970 // separator: Separator string
3971 // string_length: Accumulated sum of string lengths (smi).
3972 // element: Current array element.
3973 // elements_end: Array end.
3974 if (generate_debug_code_) {
3975 __ cmp(array_length, Operand::Zero());
3976 __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3977 }
3978 __ bind(&loop);
3979 __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
3980 __ JumpIfSmi(string, &bailout);
3981 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3982 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3983 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch, scratch, &bailout);
3984 __ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
3985 __ add(string_length, string_length, Operand(scratch), SetCC);
3986 __ b(vs, &bailout);
3987 __ cmp(element, elements_end);
3988 __ b(lt, &loop);
3989
3990 // If array_length is 1, return elements[0], a string.
3991 __ cmp(array_length, Operand(1));
3992 __ b(ne, ¬_size_one_array);
3993 __ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize));
3994 __ b(&done);
3995
3996 __ bind(¬_size_one_array);
3997
3998 // Live values in registers:
3999 // separator: Separator string
4000 // array_length: Length of the array.
4001 // string_length: Sum of string lengths (smi).
4002 // elements: FixedArray of strings.
4003
4004 // Check that the separator is a flat one-byte string.
4005 __ JumpIfSmi(separator, &bailout);
4006 __ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset));
4007 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4008 __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch, scratch, &bailout);
4009
4010 // Add (separator length times array_length) - separator length to the
4011 // string_length to get the length of the result string. array_length is not
4012 // smi but the other values are, so the result is a smi
4013 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
4014 __ sub(string_length, string_length, Operand(scratch));
4015 __ smull(scratch, ip, array_length, scratch);
4016 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
4017 // zero.
4018 __ cmp(ip, Operand::Zero());
4019 __ b(ne, &bailout);
4020 __ tst(scratch, Operand(0x80000000));
4021 __ b(ne, &bailout);
4022 __ add(string_length, string_length, Operand(scratch), SetCC);
4023 __ b(vs, &bailout);
4024 __ SmiUntag(string_length);
4025
4026 // Get first element in the array to free up the elements register to be used
4027 // for the result.
4028 __ add(element,
4029 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4030 result = elements; // End of live range for elements.
4031 elements = no_reg;
4032 // Live values in registers:
4033 // element: First array element
4034 // separator: Separator string
4035 // string_length: Length of result string (not smi)
4036 // array_length: Length of the array.
4037 __ AllocateOneByteString(result, string_length, scratch,
4038 string, // used as scratch
4039 elements_end, // used as scratch
4040 &bailout);
4041 // Prepare for looping. Set up elements_end to end of the array. Set
4042 // result_pos to the position of the result where to write the first
4043 // character.
4044 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
4045 result_pos = array_length; // End of live range for array_length.
4046 array_length = no_reg;
4047 __ add(result_pos,
4048 result,
4049 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4050
4051 // Check the length of the separator.
4052 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
4053 __ cmp(scratch, Operand(Smi::FromInt(1)));
4054 __ b(eq, &one_char_separator);
4055 __ b(gt, &long_separator);
4056
4057 // Empty separator case
4058 __ bind(&empty_separator_loop);
4059 // Live values in registers:
4060 // result_pos: the position to which we are currently copying characters.
4061 // element: Current array element.
4062 // elements_end: Array end.
4063
4064 // Copy next array element to the result.
4065 __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4066 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4067 __ SmiUntag(string_length);
4068 __ add(string,
4069 string,
4070 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4071 __ CopyBytes(string, result_pos, string_length, scratch);
4072 __ cmp(element, elements_end);
4073 __ b(lt, &empty_separator_loop); // End while (element < elements_end).
4074 DCHECK(result.is(r0));
4075 __ b(&done);
4076
4077 // One-character separator case
4078 __ bind(&one_char_separator);
4079 // Replace separator with its one-byte character value.
4080 __ ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
4081 // Jump into the loop after the code that copies the separator, so the first
4082 // element is not preceded by a separator
4083 __ jmp(&one_char_separator_loop_entry);
4084
4085 __ bind(&one_char_separator_loop);
4086 // Live values in registers:
4087 // result_pos: the position to which we are currently copying characters.
4088 // element: Current array element.
4089 // elements_end: Array end.
4090 // separator: Single separator one-byte char (in lower byte).
4091
4092 // Copy the separator character to the result.
4093 __ strb(separator, MemOperand(result_pos, 1, PostIndex));
4094
4095 // Copy next array element to the result.
4096 __ bind(&one_char_separator_loop_entry);
4097 __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4098 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4099 __ SmiUntag(string_length);
4100 __ add(string,
4101 string,
4102 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4103 __ CopyBytes(string, result_pos, string_length, scratch);
4104 __ cmp(element, elements_end);
4105 __ b(lt, &one_char_separator_loop); // End while (element < elements_end).
4106 DCHECK(result.is(r0));
4107 __ b(&done);
4108
4109 // Long separator case (separator is more than one character). Entry is at the
4110 // label long_separator below.
4111 __ bind(&long_separator_loop);
4112 // Live values in registers:
4113 // result_pos: the position to which we are currently copying characters.
4114 // element: Current array element.
4115 // elements_end: Array end.
4116 // separator: Separator string.
4117
4118 // Copy the separator to the result.
4119 __ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset));
4120 __ SmiUntag(string_length);
4121 __ add(string,
4122 separator,
4123 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4124 __ CopyBytes(string, result_pos, string_length, scratch);
4125
4126 __ bind(&long_separator);
4127 __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4128 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4129 __ SmiUntag(string_length);
4130 __ add(string,
4131 string,
4132 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4133 __ CopyBytes(string, result_pos, string_length, scratch);
4134 __ cmp(element, elements_end);
4135 __ b(lt, &long_separator_loop); // End while (element < elements_end).
4136 DCHECK(result.is(r0));
4137 __ b(&done);
4138
4139 __ bind(&bailout);
4140 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
4141 __ bind(&done);
4142 context()->Plug(r0);
4143 }
4144
4145
EmitDebugIsActive(CallRuntime * expr)4146 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4147 DCHECK(expr->arguments()->length() == 0);
4148 ExternalReference debug_is_active =
4149 ExternalReference::debug_is_active_address(isolate());
4150 __ mov(ip, Operand(debug_is_active));
4151 __ ldrb(r0, MemOperand(ip));
4152 __ SmiTag(r0);
4153 context()->Plug(r0);
4154 }
4155
4156
VisitCallRuntime(CallRuntime * expr)4157 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4158 if (expr->function() != NULL &&
4159 expr->function()->intrinsic_type == Runtime::INLINE) {
4160 Comment cmnt(masm_, "[ InlineRuntimeCall");
4161 EmitInlineRuntimeCall(expr);
4162 return;
4163 }
4164
4165 Comment cmnt(masm_, "[ CallRuntime");
4166 ZoneList<Expression*>* args = expr->arguments();
4167 int arg_count = args->length();
4168
4169 if (expr->is_jsruntime()) {
4170 // Push the builtins object as the receiver.
4171 Register receiver = LoadDescriptor::ReceiverRegister();
4172 __ ldr(receiver, GlobalObjectOperand());
4173 __ ldr(receiver, FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
4174 __ push(receiver);
4175
4176 // Load the function from the receiver.
4177 __ mov(LoadDescriptor::NameRegister(), Operand(expr->name()));
4178 if (FLAG_vector_ics) {
4179 __ mov(VectorLoadICDescriptor::SlotRegister(),
4180 Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot())));
4181 CallLoadIC(NOT_CONTEXTUAL);
4182 } else {
4183 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
4184 }
4185
4186 // Push the target function under the receiver.
4187 __ ldr(ip, MemOperand(sp, 0));
4188 __ push(ip);
4189 __ str(r0, MemOperand(sp, kPointerSize));
4190
4191 // Push the arguments ("left-to-right").
4192 int arg_count = args->length();
4193 for (int i = 0; i < arg_count; i++) {
4194 VisitForStackValue(args->at(i));
4195 }
4196
4197 // Record source position of the IC call.
4198 SetSourcePosition(expr->position());
4199 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4200 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
4201 __ CallStub(&stub);
4202
4203 // Restore context register.
4204 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4205
4206 context()->DropAndPlug(1, r0);
4207 } else {
4208 // Push the arguments ("left-to-right").
4209 for (int i = 0; i < arg_count; i++) {
4210 VisitForStackValue(args->at(i));
4211 }
4212
4213 // Call the C runtime function.
4214 __ CallRuntime(expr->function(), arg_count);
4215 context()->Plug(r0);
4216 }
4217 }
4218
4219
VisitUnaryOperation(UnaryOperation * expr)4220 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4221 switch (expr->op()) {
4222 case Token::DELETE: {
4223 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4224 Property* property = expr->expression()->AsProperty();
4225 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4226
4227 if (property != NULL) {
4228 VisitForStackValue(property->obj());
4229 VisitForStackValue(property->key());
4230 __ mov(r1, Operand(Smi::FromInt(strict_mode())));
4231 __ push(r1);
4232 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4233 context()->Plug(r0);
4234 } else if (proxy != NULL) {
4235 Variable* var = proxy->var();
4236 // Delete of an unqualified identifier is disallowed in strict mode
4237 // but "delete this" is allowed.
4238 DCHECK(strict_mode() == SLOPPY || var->is_this());
4239 if (var->IsUnallocated()) {
4240 __ ldr(r2, GlobalObjectOperand());
4241 __ mov(r1, Operand(var->name()));
4242 __ mov(r0, Operand(Smi::FromInt(SLOPPY)));
4243 __ Push(r2, r1, r0);
4244 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4245 context()->Plug(r0);
4246 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4247 // Result of deleting non-global, non-dynamic variables is false.
4248 // The subexpression does not have side effects.
4249 context()->Plug(var->is_this());
4250 } else {
4251 // Non-global variable. Call the runtime to try to delete from the
4252 // context where the variable was introduced.
4253 DCHECK(!context_register().is(r2));
4254 __ mov(r2, Operand(var->name()));
4255 __ Push(context_register(), r2);
4256 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4257 context()->Plug(r0);
4258 }
4259 } else {
4260 // Result of deleting non-property, non-variable reference is true.
4261 // The subexpression may have side effects.
4262 VisitForEffect(expr->expression());
4263 context()->Plug(true);
4264 }
4265 break;
4266 }
4267
4268 case Token::VOID: {
4269 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4270 VisitForEffect(expr->expression());
4271 context()->Plug(Heap::kUndefinedValueRootIndex);
4272 break;
4273 }
4274
4275 case Token::NOT: {
4276 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4277 if (context()->IsEffect()) {
4278 // Unary NOT has no side effects so it's only necessary to visit the
4279 // subexpression. Match the optimizing compiler by not branching.
4280 VisitForEffect(expr->expression());
4281 } else if (context()->IsTest()) {
4282 const TestContext* test = TestContext::cast(context());
4283 // The labels are swapped for the recursive call.
4284 VisitForControl(expr->expression(),
4285 test->false_label(),
4286 test->true_label(),
4287 test->fall_through());
4288 context()->Plug(test->true_label(), test->false_label());
4289 } else {
4290 // We handle value contexts explicitly rather than simply visiting
4291 // for control and plugging the control flow into the context,
4292 // because we need to prepare a pair of extra administrative AST ids
4293 // for the optimizing compiler.
4294 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4295 Label materialize_true, materialize_false, done;
4296 VisitForControl(expr->expression(),
4297 &materialize_false,
4298 &materialize_true,
4299 &materialize_true);
4300 __ bind(&materialize_true);
4301 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4302 __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4303 if (context()->IsStackValue()) __ push(r0);
4304 __ jmp(&done);
4305 __ bind(&materialize_false);
4306 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4307 __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4308 if (context()->IsStackValue()) __ push(r0);
4309 __ bind(&done);
4310 }
4311 break;
4312 }
4313
4314 case Token::TYPEOF: {
4315 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4316 { StackValueContext context(this);
4317 VisitForTypeofValue(expr->expression());
4318 }
4319 __ CallRuntime(Runtime::kTypeof, 1);
4320 context()->Plug(r0);
4321 break;
4322 }
4323
4324 default:
4325 UNREACHABLE();
4326 }
4327 }
4328
4329
VisitCountOperation(CountOperation * expr)4330 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4331 DCHECK(expr->expression()->IsValidReferenceExpression());
4332
4333 Comment cmnt(masm_, "[ CountOperation");
4334 SetSourcePosition(expr->position());
4335
4336 // Expression can only be a property, a global or a (parameter or local)
4337 // slot.
4338 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
4339 LhsKind assign_type = VARIABLE;
4340 Property* prop = expr->expression()->AsProperty();
4341 // In case of a property we use the uninitialized expression context
4342 // of the key to detect a named property.
4343 if (prop != NULL) {
4344 assign_type =
4345 (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
4346 }
4347
4348 // Evaluate expression and get value.
4349 if (assign_type == VARIABLE) {
4350 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4351 AccumulatorValueContext context(this);
4352 EmitVariableLoad(expr->expression()->AsVariableProxy());
4353 } else {
4354 // Reserve space for result of postfix operation.
4355 if (expr->is_postfix() && !context()->IsEffect()) {
4356 __ mov(ip, Operand(Smi::FromInt(0)));
4357 __ push(ip);
4358 }
4359 if (assign_type == NAMED_PROPERTY) {
4360 // Put the object both on the stack and in the register.
4361 VisitForStackValue(prop->obj());
4362 __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
4363 EmitNamedPropertyLoad(prop);
4364 } else {
4365 VisitForStackValue(prop->obj());
4366 VisitForStackValue(prop->key());
4367 __ ldr(LoadDescriptor::ReceiverRegister(),
4368 MemOperand(sp, 1 * kPointerSize));
4369 __ ldr(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
4370 EmitKeyedPropertyLoad(prop);
4371 }
4372 }
4373
4374 // We need a second deoptimization point after loading the value
4375 // in case evaluating the property load my have a side effect.
4376 if (assign_type == VARIABLE) {
4377 PrepareForBailout(expr->expression(), TOS_REG);
4378 } else {
4379 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4380 }
4381
4382 // Inline smi case if we are in a loop.
4383 Label stub_call, done;
4384 JumpPatchSite patch_site(masm_);
4385
4386 int count_value = expr->op() == Token::INC ? 1 : -1;
4387 if (ShouldInlineSmiCase(expr->op())) {
4388 Label slow;
4389 patch_site.EmitJumpIfNotSmi(r0, &slow);
4390
4391 // Save result for postfix expressions.
4392 if (expr->is_postfix()) {
4393 if (!context()->IsEffect()) {
4394 // Save the result on the stack. If we have a named or keyed property
4395 // we store the result under the receiver that is currently on top
4396 // of the stack.
4397 switch (assign_type) {
4398 case VARIABLE:
4399 __ push(r0);
4400 break;
4401 case NAMED_PROPERTY:
4402 __ str(r0, MemOperand(sp, kPointerSize));
4403 break;
4404 case KEYED_PROPERTY:
4405 __ str(r0, MemOperand(sp, 2 * kPointerSize));
4406 break;
4407 }
4408 }
4409 }
4410
4411 __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC);
4412 __ b(vc, &done);
4413 // Call stub. Undo operation first.
4414 __ sub(r0, r0, Operand(Smi::FromInt(count_value)));
4415 __ jmp(&stub_call);
4416 __ bind(&slow);
4417 }
4418 ToNumberStub convert_stub(isolate());
4419 __ CallStub(&convert_stub);
4420
4421 // Save result for postfix expressions.
4422 if (expr->is_postfix()) {
4423 if (!context()->IsEffect()) {
4424 // Save the result on the stack. If we have a named or keyed property
4425 // we store the result under the receiver that is currently on top
4426 // of the stack.
4427 switch (assign_type) {
4428 case VARIABLE:
4429 __ push(r0);
4430 break;
4431 case NAMED_PROPERTY:
4432 __ str(r0, MemOperand(sp, kPointerSize));
4433 break;
4434 case KEYED_PROPERTY:
4435 __ str(r0, MemOperand(sp, 2 * kPointerSize));
4436 break;
4437 }
4438 }
4439 }
4440
4441
4442 __ bind(&stub_call);
4443 __ mov(r1, r0);
4444 __ mov(r0, Operand(Smi::FromInt(count_value)));
4445
4446 // Record position before stub call.
4447 SetSourcePosition(expr->position());
4448
4449 Handle<Code> code =
4450 CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
4451 CallIC(code, expr->CountBinOpFeedbackId());
4452 patch_site.EmitPatchInfo();
4453 __ bind(&done);
4454
4455 // Store the value returned in r0.
4456 switch (assign_type) {
4457 case VARIABLE:
4458 if (expr->is_postfix()) {
4459 { EffectContext context(this);
4460 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4461 Token::ASSIGN);
4462 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4463 context.Plug(r0);
4464 }
4465 // For all contexts except EffectConstant We have the result on
4466 // top of the stack.
4467 if (!context()->IsEffect()) {
4468 context()->PlugTOS();
4469 }
4470 } else {
4471 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4472 Token::ASSIGN);
4473 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4474 context()->Plug(r0);
4475 }
4476 break;
4477 case NAMED_PROPERTY: {
4478 __ mov(StoreDescriptor::NameRegister(),
4479 Operand(prop->key()->AsLiteral()->value()));
4480 __ pop(StoreDescriptor::ReceiverRegister());
4481 CallStoreIC(expr->CountStoreFeedbackId());
4482 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4483 if (expr->is_postfix()) {
4484 if (!context()->IsEffect()) {
4485 context()->PlugTOS();
4486 }
4487 } else {
4488 context()->Plug(r0);
4489 }
4490 break;
4491 }
4492 case KEYED_PROPERTY: {
4493 __ Pop(StoreDescriptor::ReceiverRegister(),
4494 StoreDescriptor::NameRegister());
4495 Handle<Code> ic =
4496 CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
4497 CallIC(ic, expr->CountStoreFeedbackId());
4498 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4499 if (expr->is_postfix()) {
4500 if (!context()->IsEffect()) {
4501 context()->PlugTOS();
4502 }
4503 } else {
4504 context()->Plug(r0);
4505 }
4506 break;
4507 }
4508 }
4509 }
4510
4511
VisitForTypeofValue(Expression * expr)4512 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4513 DCHECK(!context()->IsEffect());
4514 DCHECK(!context()->IsTest());
4515 VariableProxy* proxy = expr->AsVariableProxy();
4516 if (proxy != NULL && proxy->var()->IsUnallocated()) {
4517 Comment cmnt(masm_, "[ Global variable");
4518 __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
4519 __ mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
4520 if (FLAG_vector_ics) {
4521 __ mov(VectorLoadICDescriptor::SlotRegister(),
4522 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
4523 }
4524 // Use a regular load, not a contextual load, to avoid a reference
4525 // error.
4526 CallLoadIC(NOT_CONTEXTUAL);
4527 PrepareForBailout(expr, TOS_REG);
4528 context()->Plug(r0);
4529 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4530 Comment cmnt(masm_, "[ Lookup slot");
4531 Label done, slow;
4532
4533 // Generate code for loading from variables potentially shadowed
4534 // by eval-introduced variables.
4535 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4536
4537 __ bind(&slow);
4538 __ mov(r0, Operand(proxy->name()));
4539 __ Push(cp, r0);
4540 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4541 PrepareForBailout(expr, TOS_REG);
4542 __ bind(&done);
4543
4544 context()->Plug(r0);
4545 } else {
4546 // This expression cannot throw a reference error at the top level.
4547 VisitInDuplicateContext(expr);
4548 }
4549 }
4550
4551
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4552 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4553 Expression* sub_expr,
4554 Handle<String> check) {
4555 Label materialize_true, materialize_false;
4556 Label* if_true = NULL;
4557 Label* if_false = NULL;
4558 Label* fall_through = NULL;
4559 context()->PrepareTest(&materialize_true, &materialize_false,
4560 &if_true, &if_false, &fall_through);
4561
4562 { AccumulatorValueContext context(this);
4563 VisitForTypeofValue(sub_expr);
4564 }
4565 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4566
4567 Factory* factory = isolate()->factory();
4568 if (String::Equals(check, factory->number_string())) {
4569 __ JumpIfSmi(r0, if_true);
4570 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
4571 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4572 __ cmp(r0, ip);
4573 Split(eq, if_true, if_false, fall_through);
4574 } else if (String::Equals(check, factory->string_string())) {
4575 __ JumpIfSmi(r0, if_false);
4576 // Check for undetectable objects => false.
4577 __ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE);
4578 __ b(ge, if_false);
4579 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4580 __ tst(r1, Operand(1 << Map::kIsUndetectable));
4581 Split(eq, if_true, if_false, fall_through);
4582 } else if (String::Equals(check, factory->symbol_string())) {
4583 __ JumpIfSmi(r0, if_false);
4584 __ CompareObjectType(r0, r0, r1, SYMBOL_TYPE);
4585 Split(eq, if_true, if_false, fall_through);
4586 } else if (String::Equals(check, factory->boolean_string())) {
4587 __ CompareRoot(r0, Heap::kTrueValueRootIndex);
4588 __ b(eq, if_true);
4589 __ CompareRoot(r0, Heap::kFalseValueRootIndex);
4590 Split(eq, if_true, if_false, fall_through);
4591 } else if (String::Equals(check, factory->undefined_string())) {
4592 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
4593 __ b(eq, if_true);
4594 __ JumpIfSmi(r0, if_false);
4595 // Check for undetectable objects => true.
4596 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
4597 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4598 __ tst(r1, Operand(1 << Map::kIsUndetectable));
4599 Split(ne, if_true, if_false, fall_through);
4600
4601 } else if (String::Equals(check, factory->function_string())) {
4602 __ JumpIfSmi(r0, if_false);
4603 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4604 __ CompareObjectType(r0, r0, r1, JS_FUNCTION_TYPE);
4605 __ b(eq, if_true);
4606 __ cmp(r1, Operand(JS_FUNCTION_PROXY_TYPE));
4607 Split(eq, if_true, if_false, fall_through);
4608 } else if (String::Equals(check, factory->object_string())) {
4609 __ JumpIfSmi(r0, if_false);
4610 __ CompareRoot(r0, Heap::kNullValueRootIndex);
4611 __ b(eq, if_true);
4612 // Check for JS objects => true.
4613 __ CompareObjectType(r0, r0, r1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
4614 __ b(lt, if_false);
4615 __ CompareInstanceType(r0, r1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4616 __ b(gt, if_false);
4617 // Check for undetectable objects => false.
4618 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4619 __ tst(r1, Operand(1 << Map::kIsUndetectable));
4620 Split(eq, if_true, if_false, fall_through);
4621 } else {
4622 if (if_false != fall_through) __ jmp(if_false);
4623 }
4624 context()->Plug(if_true, if_false);
4625 }
4626
4627
VisitCompareOperation(CompareOperation * expr)4628 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4629 Comment cmnt(masm_, "[ CompareOperation");
4630 SetSourcePosition(expr->position());
4631
4632 // First we try a fast inlined version of the compare when one of
4633 // the operands is a literal.
4634 if (TryLiteralCompare(expr)) return;
4635
4636 // Always perform the comparison for its control flow. Pack the result
4637 // into the expression's context after the comparison is performed.
4638 Label materialize_true, materialize_false;
4639 Label* if_true = NULL;
4640 Label* if_false = NULL;
4641 Label* fall_through = NULL;
4642 context()->PrepareTest(&materialize_true, &materialize_false,
4643 &if_true, &if_false, &fall_through);
4644
4645 Token::Value op = expr->op();
4646 VisitForStackValue(expr->left());
4647 switch (op) {
4648 case Token::IN:
4649 VisitForStackValue(expr->right());
4650 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4651 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4652 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4653 __ cmp(r0, ip);
4654 Split(eq, if_true, if_false, fall_through);
4655 break;
4656
4657 case Token::INSTANCEOF: {
4658 VisitForStackValue(expr->right());
4659 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4660 __ CallStub(&stub);
4661 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4662 // The stub returns 0 for true.
4663 __ tst(r0, r0);
4664 Split(eq, if_true, if_false, fall_through);
4665 break;
4666 }
4667
4668 default: {
4669 VisitForAccumulatorValue(expr->right());
4670 Condition cond = CompareIC::ComputeCondition(op);
4671 __ pop(r1);
4672
4673 bool inline_smi_code = ShouldInlineSmiCase(op);
4674 JumpPatchSite patch_site(masm_);
4675 if (inline_smi_code) {
4676 Label slow_case;
4677 __ orr(r2, r0, Operand(r1));
4678 patch_site.EmitJumpIfNotSmi(r2, &slow_case);
4679 __ cmp(r1, r0);
4680 Split(cond, if_true, if_false, NULL);
4681 __ bind(&slow_case);
4682 }
4683
4684 // Record position and call the compare IC.
4685 SetSourcePosition(expr->position());
4686 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
4687 CallIC(ic, expr->CompareOperationFeedbackId());
4688 patch_site.EmitPatchInfo();
4689 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4690 __ cmp(r0, Operand::Zero());
4691 Split(cond, if_true, if_false, fall_through);
4692 }
4693 }
4694
4695 // Convert the result of the comparison into one expected for this
4696 // expression's context.
4697 context()->Plug(if_true, if_false);
4698 }
4699
4700
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4701 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4702 Expression* sub_expr,
4703 NilValue nil) {
4704 Label materialize_true, materialize_false;
4705 Label* if_true = NULL;
4706 Label* if_false = NULL;
4707 Label* fall_through = NULL;
4708 context()->PrepareTest(&materialize_true, &materialize_false,
4709 &if_true, &if_false, &fall_through);
4710
4711 VisitForAccumulatorValue(sub_expr);
4712 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4713 if (expr->op() == Token::EQ_STRICT) {
4714 Heap::RootListIndex nil_value = nil == kNullValue ?
4715 Heap::kNullValueRootIndex :
4716 Heap::kUndefinedValueRootIndex;
4717 __ LoadRoot(r1, nil_value);
4718 __ cmp(r0, r1);
4719 Split(eq, if_true, if_false, fall_through);
4720 } else {
4721 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4722 CallIC(ic, expr->CompareOperationFeedbackId());
4723 __ cmp(r0, Operand(0));
4724 Split(ne, if_true, if_false, fall_through);
4725 }
4726 context()->Plug(if_true, if_false);
4727 }
4728
4729
VisitThisFunction(ThisFunction * expr)4730 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4731 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4732 context()->Plug(r0);
4733 }
4734
4735
result_register()4736 Register FullCodeGenerator::result_register() {
4737 return r0;
4738 }
4739
4740
context_register()4741 Register FullCodeGenerator::context_register() {
4742 return cp;
4743 }
4744
4745
StoreToFrameField(int frame_offset,Register value)4746 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4747 DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
4748 __ str(value, MemOperand(fp, frame_offset));
4749 }
4750
4751
LoadContextField(Register dst,int context_index)4752 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4753 __ ldr(dst, ContextOperand(cp, context_index));
4754 }
4755
4756
PushFunctionArgumentForContextAllocation()4757 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4758 Scope* declaration_scope = scope()->DeclarationScope();
4759 if (declaration_scope->is_global_scope() ||
4760 declaration_scope->is_module_scope()) {
4761 // Contexts nested in the native context have a canonical empty function
4762 // as their closure, not the anonymous closure containing the global
4763 // code. Pass a smi sentinel and let the runtime look up the empty
4764 // function.
4765 __ mov(ip, Operand(Smi::FromInt(0)));
4766 } else if (declaration_scope->is_eval_scope()) {
4767 // Contexts created by a call to eval have the same closure as the
4768 // context calling eval, not the anonymous closure containing the eval
4769 // code. Fetch it from the context.
4770 __ ldr(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
4771 } else {
4772 DCHECK(declaration_scope->is_function_scope());
4773 __ ldr(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4774 }
4775 __ push(ip);
4776 }
4777
4778
4779 // ----------------------------------------------------------------------------
4780 // Non-local control flow support.
4781
EnterFinallyBlock()4782 void FullCodeGenerator::EnterFinallyBlock() {
4783 DCHECK(!result_register().is(r1));
4784 // Store result register while executing finally block.
4785 __ push(result_register());
4786 // Cook return address in link register to stack (smi encoded Code* delta)
4787 __ sub(r1, lr, Operand(masm_->CodeObject()));
4788 __ SmiTag(r1);
4789
4790 // Store result register while executing finally block.
4791 __ push(r1);
4792
4793 // Store pending message while executing finally block.
4794 ExternalReference pending_message_obj =
4795 ExternalReference::address_of_pending_message_obj(isolate());
4796 __ mov(ip, Operand(pending_message_obj));
4797 __ ldr(r1, MemOperand(ip));
4798 __ push(r1);
4799
4800 ExternalReference has_pending_message =
4801 ExternalReference::address_of_has_pending_message(isolate());
4802 __ mov(ip, Operand(has_pending_message));
4803 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
4804 __ ldrb(r1, MemOperand(ip));
4805 __ SmiTag(r1);
4806 __ push(r1);
4807
4808 ExternalReference pending_message_script =
4809 ExternalReference::address_of_pending_message_script(isolate());
4810 __ mov(ip, Operand(pending_message_script));
4811 __ ldr(r1, MemOperand(ip));
4812 __ push(r1);
4813 }
4814
4815
ExitFinallyBlock()4816 void FullCodeGenerator::ExitFinallyBlock() {
4817 DCHECK(!result_register().is(r1));
4818 // Restore pending message from stack.
4819 __ pop(r1);
4820 ExternalReference pending_message_script =
4821 ExternalReference::address_of_pending_message_script(isolate());
4822 __ mov(ip, Operand(pending_message_script));
4823 __ str(r1, MemOperand(ip));
4824
4825 __ pop(r1);
4826 __ SmiUntag(r1);
4827 ExternalReference has_pending_message =
4828 ExternalReference::address_of_has_pending_message(isolate());
4829 __ mov(ip, Operand(has_pending_message));
4830 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof)
4831 __ strb(r1, MemOperand(ip));
4832
4833 __ pop(r1);
4834 ExternalReference pending_message_obj =
4835 ExternalReference::address_of_pending_message_obj(isolate());
4836 __ mov(ip, Operand(pending_message_obj));
4837 __ str(r1, MemOperand(ip));
4838
4839 // Restore result register from stack.
4840 __ pop(r1);
4841
4842 // Uncook return address and return.
4843 __ pop(result_register());
4844 __ SmiUntag(r1);
4845 __ add(pc, r1, Operand(masm_->CodeObject()));
4846 }
4847
4848
4849 #undef __
4850
4851 #define __ ACCESS_MASM(masm())
4852
Exit(int * stack_depth,int * context_length)4853 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4854 int* stack_depth,
4855 int* context_length) {
4856 // The macros used here must preserve the result register.
4857
4858 // Because the handler block contains the context of the finally
4859 // code, we can restore it directly from there for the finally code
4860 // rather than iteratively unwinding contexts via their previous
4861 // links.
4862 __ Drop(*stack_depth); // Down to the handler block.
4863 if (*context_length > 0) {
4864 // Restore the context to its dedicated register and the stack.
4865 __ ldr(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
4866 __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4867 }
4868 __ PopTryHandler();
4869 __ bl(finally_entry_);
4870
4871 *stack_depth = 0;
4872 *context_length = 0;
4873 return previous_;
4874 }
4875
4876
4877 #undef __
4878
4879
GetInterruptImmediateLoadAddress(Address pc)4880 static Address GetInterruptImmediateLoadAddress(Address pc) {
4881 Address load_address = pc - 2 * Assembler::kInstrSize;
4882 if (!FLAG_enable_ool_constant_pool) {
4883 DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(load_address)));
4884 } else if (Assembler::IsLdrPpRegOffset(Memory::int32_at(load_address))) {
4885 // This is an extended constant pool lookup.
4886 if (CpuFeatures::IsSupported(ARMv7)) {
4887 load_address -= 2 * Assembler::kInstrSize;
4888 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4889 DCHECK(Assembler::IsMovT(
4890 Memory::int32_at(load_address + Assembler::kInstrSize)));
4891 } else {
4892 load_address -= 4 * Assembler::kInstrSize;
4893 DCHECK(Assembler::IsMovImmed(Memory::int32_at(load_address)));
4894 DCHECK(Assembler::IsOrrImmed(
4895 Memory::int32_at(load_address + Assembler::kInstrSize)));
4896 DCHECK(Assembler::IsOrrImmed(
4897 Memory::int32_at(load_address + 2 * Assembler::kInstrSize)));
4898 DCHECK(Assembler::IsOrrImmed(
4899 Memory::int32_at(load_address + 3 * Assembler::kInstrSize)));
4900 }
4901 } else if (CpuFeatures::IsSupported(ARMv7) &&
4902 Assembler::IsMovT(Memory::int32_at(load_address))) {
4903 // This is a movw / movt immediate load.
4904 load_address -= Assembler::kInstrSize;
4905 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4906 } else if (!CpuFeatures::IsSupported(ARMv7) &&
4907 Assembler::IsOrrImmed(Memory::int32_at(load_address))) {
4908 // This is a mov / orr immediate load.
4909 load_address -= 3 * Assembler::kInstrSize;
4910 DCHECK(Assembler::IsMovImmed(Memory::int32_at(load_address)));
4911 DCHECK(Assembler::IsOrrImmed(
4912 Memory::int32_at(load_address + Assembler::kInstrSize)));
4913 DCHECK(Assembler::IsOrrImmed(
4914 Memory::int32_at(load_address + 2 * Assembler::kInstrSize)));
4915 } else {
4916 // This is a small constant pool lookup.
4917 DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
4918 }
4919 return load_address;
4920 }
4921
4922
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)4923 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4924 Address pc,
4925 BackEdgeState target_state,
4926 Code* replacement_code) {
4927 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
4928 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize;
4929 CodePatcher patcher(branch_address, 1);
4930 switch (target_state) {
4931 case INTERRUPT:
4932 {
4933 // <decrement profiling counter>
4934 // bpl ok
4935 // ; load interrupt stub address into ip - either of (for ARMv7):
4936 // ; <small cp load> | <extended cp load> | <immediate load>
4937 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm
4938 // | movt ip, #imm | movw ip, #imm
4939 // | ldr ip, [pp, ip]
4940 // ; or (for ARMv6):
4941 // ; <small cp load> | <extended cp load> | <immediate load>
4942 // ldr ip, [pc/pp, #imm] | mov ip, #imm | mov ip, #imm
4943 // | orr ip, ip, #imm> | orr ip, ip, #imm
4944 // | orr ip, ip, #imm> | orr ip, ip, #imm
4945 // | orr ip, ip, #imm> | orr ip, ip, #imm
4946 // blx ip
4947 // <reset profiling counter>
4948 // ok-label
4949
4950 // Calculate branch offset to the ok-label - this is the difference
4951 // between the branch address and |pc| (which points at <blx ip>) plus
4952 // kProfileCounterResetSequence instructions
4953 int branch_offset = pc - Instruction::kPCReadOffset - branch_address +
4954 kProfileCounterResetSequenceLength;
4955 patcher.masm()->b(branch_offset, pl);
4956 break;
4957 }
4958 case ON_STACK_REPLACEMENT:
4959 case OSR_AFTER_STACK_CHECK:
4960 // <decrement profiling counter>
4961 // mov r0, r0 (NOP)
4962 // ; load on-stack replacement address into ip - either of (for ARMv7):
4963 // ; <small cp load> | <extended cp load> | <immediate load>
4964 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm
4965 // | movt ip, #imm> | movw ip, #imm
4966 // | ldr ip, [pp, ip]
4967 // ; or (for ARMv6):
4968 // ; <small cp load> | <extended cp load> | <immediate load>
4969 // ldr ip, [pc/pp, #imm] | mov ip, #imm | mov ip, #imm
4970 // | orr ip, ip, #imm> | orr ip, ip, #imm
4971 // | orr ip, ip, #imm> | orr ip, ip, #imm
4972 // | orr ip, ip, #imm> | orr ip, ip, #imm
4973 // blx ip
4974 // <reset profiling counter>
4975 // ok-label
4976 patcher.masm()->nop();
4977 break;
4978 }
4979
4980 // Replace the call address.
4981 Assembler::set_target_address_at(pc_immediate_load_address, unoptimized_code,
4982 replacement_code->entry());
4983
4984 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4985 unoptimized_code, pc_immediate_load_address, replacement_code);
4986 }
4987
4988
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)4989 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4990 Isolate* isolate,
4991 Code* unoptimized_code,
4992 Address pc) {
4993 DCHECK(Assembler::IsBlxIp(Memory::int32_at(pc - Assembler::kInstrSize)));
4994
4995 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
4996 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize;
4997 Address interrupt_address = Assembler::target_address_at(
4998 pc_immediate_load_address, unoptimized_code);
4999
5000 if (Assembler::IsBranch(Assembler::instr_at(branch_address))) {
5001 DCHECK(interrupt_address ==
5002 isolate->builtins()->InterruptCheck()->entry());
5003 return INTERRUPT;
5004 }
5005
5006 DCHECK(Assembler::IsNop(Assembler::instr_at(branch_address)));
5007
5008 if (interrupt_address ==
5009 isolate->builtins()->OnStackReplacement()->entry()) {
5010 return ON_STACK_REPLACEMENT;
5011 }
5012
5013 DCHECK(interrupt_address ==
5014 isolate->builtins()->OsrAfterStackCheck()->entry());
5015 return OSR_AFTER_STACK_CHECK;
5016 }
5017
5018
5019 } } // namespace v8::internal
5020
5021 #endif // V8_TARGET_ARCH_ARM
5022