1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #if V8_TARGET_ARCH_ARM
8 
9 #include "src/code-factory.h"
10 #include "src/code-stubs.h"
11 #include "src/codegen.h"
12 #include "src/compiler.h"
13 #include "src/debug.h"
14 #include "src/full-codegen.h"
15 #include "src/ic/ic.h"
16 #include "src/isolate-inl.h"
17 #include "src/parser.h"
18 #include "src/scopes.h"
19 
20 #include "src/arm/code-stubs-arm.h"
21 #include "src/arm/macro-assembler-arm.h"
22 
23 namespace v8 {
24 namespace internal {
25 
26 #define __ ACCESS_MASM(masm_)
27 
28 
29 // A patch site is a location in the code which it is possible to patch. This
30 // class has a number of methods to emit the code which is patchable and the
31 // method EmitPatchInfo to record a marker back to the patchable code. This
32 // marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit
33 // immediate value is used) is the delta from the pc to the first instruction of
34 // the patchable code.
35 class JumpPatchSite BASE_EMBEDDED {
36  public:
JumpPatchSite(MacroAssembler * masm)37   explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
38 #ifdef DEBUG
39     info_emitted_ = false;
40 #endif
41   }
42 
~JumpPatchSite()43   ~JumpPatchSite() {
44     DCHECK(patch_site_.is_bound() == info_emitted_);
45   }
46 
47   // When initially emitting this ensure that a jump is always generated to skip
48   // the inlined smi code.
EmitJumpIfNotSmi(Register reg,Label * target)49   void EmitJumpIfNotSmi(Register reg, Label* target) {
50     DCHECK(!patch_site_.is_bound() && !info_emitted_);
51     Assembler::BlockConstPoolScope block_const_pool(masm_);
52     __ bind(&patch_site_);
53     __ cmp(reg, Operand(reg));
54     __ b(eq, target);  // Always taken before patched.
55   }
56 
57   // When initially emitting this ensure that a jump is never generated to skip
58   // the inlined smi code.
EmitJumpIfSmi(Register reg,Label * target)59   void EmitJumpIfSmi(Register reg, Label* target) {
60     DCHECK(!patch_site_.is_bound() && !info_emitted_);
61     Assembler::BlockConstPoolScope block_const_pool(masm_);
62     __ bind(&patch_site_);
63     __ cmp(reg, Operand(reg));
64     __ b(ne, target);  // Never taken before patched.
65   }
66 
EmitPatchInfo()67   void EmitPatchInfo() {
68     // Block literal pool emission whilst recording patch site information.
69     Assembler::BlockConstPoolScope block_const_pool(masm_);
70     if (patch_site_.is_bound()) {
71       int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
72       Register reg;
73       reg.set_code(delta_to_patch_site / kOff12Mask);
74       __ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask);
75 #ifdef DEBUG
76       info_emitted_ = true;
77 #endif
78     } else {
79       __ nop();  // Signals no inlined code.
80     }
81   }
82 
83  private:
84   MacroAssembler* masm_;
85   Label patch_site_;
86 #ifdef DEBUG
87   bool info_emitted_;
88 #endif
89 };
90 
91 
92 // Generate code for a JS function.  On entry to the function the receiver
93 // and arguments have been pushed on the stack left to right.  The actual
94 // argument count matches the formal parameter count expected by the
95 // function.
96 //
97 // The live registers are:
98 //   o r1: the JS function object being called (i.e., ourselves)
99 //   o cp: our context
100 //   o pp: our caller's constant pool pointer (if FLAG_enable_ool_constant_pool)
101 //   o fp: our caller's frame pointer
102 //   o sp: stack pointer
103 //   o lr: return address
104 //
105 // The function builds a JS frame.  Please see JavaScriptFrameConstants in
106 // frames-arm.h for its layout.
Generate()107 void FullCodeGenerator::Generate() {
108   CompilationInfo* info = info_;
109   handler_table_ =
110       isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
111 
112   profiling_counter_ = isolate()->factory()->NewCell(
113       Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
114   SetFunctionPosition(function());
115   Comment cmnt(masm_, "[ function compiled by full code generator");
116 
117   ProfileEntryHookStub::MaybeCallEntryHook(masm_);
118 
119 #ifdef DEBUG
120   if (strlen(FLAG_stop_at) > 0 &&
121       info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
122     __ stop("stop-at");
123   }
124 #endif
125 
126   // Sloppy mode functions and builtins need to replace the receiver with the
127   // global proxy when called as functions (without an explicit receiver
128   // object).
129   if (info->strict_mode() == SLOPPY && !info->is_native()) {
130     Label ok;
131     int receiver_offset = info->scope()->num_parameters() * kPointerSize;
132     __ ldr(r2, MemOperand(sp, receiver_offset));
133     __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
134     __ b(ne, &ok);
135 
136     __ ldr(r2, GlobalObjectOperand());
137     __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset));
138 
139     __ str(r2, MemOperand(sp, receiver_offset));
140 
141     __ bind(&ok);
142   }
143 
144   // Open a frame scope to indicate that there is a frame on the stack.  The
145   // MANUAL indicates that the scope shouldn't actually generate code to set up
146   // the frame (that is done below).
147   FrameScope frame_scope(masm_, StackFrame::MANUAL);
148 
149   info->set_prologue_offset(masm_->pc_offset());
150   __ Prologue(info->IsCodePreAgingActive());
151   info->AddNoFrameRange(0, masm_->pc_offset());
152 
153   { Comment cmnt(masm_, "[ Allocate locals");
154     int locals_count = info->scope()->num_stack_slots();
155     // Generators allocate locals, if any, in context slots.
156     DCHECK(!info->function()->is_generator() || locals_count == 0);
157     if (locals_count > 0) {
158       if (locals_count >= 128) {
159         Label ok;
160         __ sub(r9, sp, Operand(locals_count * kPointerSize));
161         __ LoadRoot(r2, Heap::kRealStackLimitRootIndex);
162         __ cmp(r9, Operand(r2));
163         __ b(hs, &ok);
164         __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
165         __ bind(&ok);
166       }
167       __ LoadRoot(r9, Heap::kUndefinedValueRootIndex);
168       int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
169       if (locals_count >= kMaxPushes) {
170         int loop_iterations = locals_count / kMaxPushes;
171         __ mov(r2, Operand(loop_iterations));
172         Label loop_header;
173         __ bind(&loop_header);
174         // Do pushes.
175         for (int i = 0; i < kMaxPushes; i++) {
176           __ push(r9);
177         }
178         // Continue loop if not done.
179         __ sub(r2, r2, Operand(1), SetCC);
180         __ b(&loop_header, ne);
181       }
182       int remaining = locals_count % kMaxPushes;
183       // Emit the remaining pushes.
184       for (int i  = 0; i < remaining; i++) {
185         __ push(r9);
186       }
187     }
188   }
189 
190   bool function_in_register = true;
191 
192   // Possibly allocate a local context.
193   int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
194   if (heap_slots > 0) {
195     // Argument to NewContext is the function, which is still in r1.
196     Comment cmnt(masm_, "[ Allocate context");
197     bool need_write_barrier = true;
198     if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
199       __ push(r1);
200       __ Push(info->scope()->GetScopeInfo());
201       __ CallRuntime(Runtime::kNewGlobalContext, 2);
202     } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
203       FastNewContextStub stub(isolate(), heap_slots);
204       __ CallStub(&stub);
205       // Result of FastNewContextStub is always in new space.
206       need_write_barrier = false;
207     } else {
208       __ push(r1);
209       __ CallRuntime(Runtime::kNewFunctionContext, 1);
210     }
211     function_in_register = false;
212     // Context is returned in r0.  It replaces the context passed to us.
213     // It's saved in the stack and kept live in cp.
214     __ mov(cp, r0);
215     __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset));
216     // Copy any necessary parameters into the context.
217     int num_parameters = info->scope()->num_parameters();
218     for (int i = 0; i < num_parameters; i++) {
219       Variable* var = scope()->parameter(i);
220       if (var->IsContextSlot()) {
221         int parameter_offset = StandardFrameConstants::kCallerSPOffset +
222             (num_parameters - 1 - i) * kPointerSize;
223         // Load parameter from stack.
224         __ ldr(r0, MemOperand(fp, parameter_offset));
225         // Store it in the context.
226         MemOperand target = ContextOperand(cp, var->index());
227         __ str(r0, target);
228 
229         // Update the write barrier.
230         if (need_write_barrier) {
231           __ RecordWriteContextSlot(
232               cp, target.offset(), r0, r3, kLRHasBeenSaved, kDontSaveFPRegs);
233         } else if (FLAG_debug_code) {
234           Label done;
235           __ JumpIfInNewSpace(cp, r0, &done);
236           __ Abort(kExpectedNewSpaceObject);
237           __ bind(&done);
238         }
239       }
240     }
241   }
242 
243   Variable* arguments = scope()->arguments();
244   if (arguments != NULL) {
245     // Function uses arguments object.
246     Comment cmnt(masm_, "[ Allocate arguments object");
247     if (!function_in_register) {
248       // Load this again, if it's used by the local context below.
249       __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
250     } else {
251       __ mov(r3, r1);
252     }
253     // Receiver is just before the parameters on the caller's stack.
254     int num_parameters = info->scope()->num_parameters();
255     int offset = num_parameters * kPointerSize;
256     __ add(r2, fp,
257            Operand(StandardFrameConstants::kCallerSPOffset + offset));
258     __ mov(r1, Operand(Smi::FromInt(num_parameters)));
259     __ Push(r3, r2, r1);
260 
261     // Arguments to ArgumentsAccessStub:
262     //   function, receiver address, parameter count.
263     // The stub will rewrite receiever and parameter count if the previous
264     // stack frame was an arguments adapter frame.
265     ArgumentsAccessStub::Type type;
266     if (strict_mode() == STRICT) {
267       type = ArgumentsAccessStub::NEW_STRICT;
268     } else if (function()->has_duplicate_parameters()) {
269       type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
270     } else {
271       type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
272     }
273     ArgumentsAccessStub stub(isolate(), type);
274     __ CallStub(&stub);
275 
276     SetVar(arguments, r0, r1, r2);
277   }
278 
279   if (FLAG_trace) {
280     __ CallRuntime(Runtime::kTraceEnter, 0);
281   }
282 
283   // Visit the declarations and body unless there is an illegal
284   // redeclaration.
285   if (scope()->HasIllegalRedeclaration()) {
286     Comment cmnt(masm_, "[ Declarations");
287     scope()->VisitIllegalRedeclaration(this);
288 
289   } else {
290     PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
291     { Comment cmnt(masm_, "[ Declarations");
292       // For named function expressions, declare the function name as a
293       // constant.
294       if (scope()->is_function_scope() && scope()->function() != NULL) {
295         VariableDeclaration* function = scope()->function();
296         DCHECK(function->proxy()->var()->mode() == CONST ||
297                function->proxy()->var()->mode() == CONST_LEGACY);
298         DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
299         VisitVariableDeclaration(function);
300       }
301       VisitDeclarations(scope()->declarations());
302     }
303 
304     { Comment cmnt(masm_, "[ Stack check");
305       PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
306       Label ok;
307       __ LoadRoot(ip, Heap::kStackLimitRootIndex);
308       __ cmp(sp, Operand(ip));
309       __ b(hs, &ok);
310       Handle<Code> stack_check = isolate()->builtins()->StackCheck();
311       PredictableCodeSizeScope predictable(masm_,
312           masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
313       __ Call(stack_check, RelocInfo::CODE_TARGET);
314       __ bind(&ok);
315     }
316 
317     { Comment cmnt(masm_, "[ Body");
318       DCHECK(loop_depth() == 0);
319       VisitStatements(function()->body());
320       DCHECK(loop_depth() == 0);
321     }
322   }
323 
324   // Always emit a 'return undefined' in case control fell off the end of
325   // the body.
326   { Comment cmnt(masm_, "[ return <undefined>;");
327     __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
328   }
329   EmitReturnSequence();
330 
331   // Force emit the constant pool, so it doesn't get emitted in the middle
332   // of the back edge table.
333   masm()->CheckConstPool(true, false);
334 }
335 
336 
ClearAccumulator()337 void FullCodeGenerator::ClearAccumulator() {
338   __ mov(r0, Operand(Smi::FromInt(0)));
339 }
340 
341 
EmitProfilingCounterDecrement(int delta)342 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
343   __ mov(r2, Operand(profiling_counter_));
344   __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset));
345   __ sub(r3, r3, Operand(Smi::FromInt(delta)), SetCC);
346   __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
347 }
348 
349 
350 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
351 static const int kProfileCounterResetSequenceLength = 5 * Assembler::kInstrSize;
352 #else
353 static const int kProfileCounterResetSequenceLength = 7 * Assembler::kInstrSize;
354 #endif
355 
356 
EmitProfilingCounterReset()357 void FullCodeGenerator::EmitProfilingCounterReset() {
358   Assembler::BlockConstPoolScope block_const_pool(masm_);
359   PredictableCodeSizeScope predictable_code_size_scope(
360       masm_, kProfileCounterResetSequenceLength);
361   Label start;
362   __ bind(&start);
363   int reset_value = FLAG_interrupt_budget;
364   if (info_->is_debug()) {
365     // Detect debug break requests as soon as possible.
366     reset_value = FLAG_interrupt_budget >> 4;
367   }
368   __ mov(r2, Operand(profiling_counter_));
369   // The mov instruction above can be either 1 to 3 (for ARMv7) or 1 to 5
370   // instructions (for ARMv6) depending upon whether it is an extended constant
371   // pool - insert nop to compensate.
372   int expected_instr_count =
373       (kProfileCounterResetSequenceLength / Assembler::kInstrSize) - 2;
374   DCHECK(masm_->InstructionsGeneratedSince(&start) <= expected_instr_count);
375   while (masm_->InstructionsGeneratedSince(&start) != expected_instr_count) {
376     __ nop();
377   }
378   __ mov(r3, Operand(Smi::FromInt(reset_value)));
379   __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
380 }
381 
382 
EmitBackEdgeBookkeeping(IterationStatement * stmt,Label * back_edge_target)383 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
384                                                 Label* back_edge_target) {
385   Comment cmnt(masm_, "[ Back edge bookkeeping");
386   // Block literal pools whilst emitting back edge code.
387   Assembler::BlockConstPoolScope block_const_pool(masm_);
388   Label ok;
389 
390   DCHECK(back_edge_target->is_bound());
391   int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
392   int weight = Min(kMaxBackEdgeWeight,
393                    Max(1, distance / kCodeSizeMultiplier));
394   EmitProfilingCounterDecrement(weight);
395   __ b(pl, &ok);
396   __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
397 
398   // Record a mapping of this PC offset to the OSR id.  This is used to find
399   // the AST id from the unoptimized code in order to use it as a key into
400   // the deoptimization input data found in the optimized code.
401   RecordBackEdge(stmt->OsrEntryId());
402 
403   EmitProfilingCounterReset();
404 
405   __ bind(&ok);
406   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
407   // Record a mapping of the OSR id to this PC.  This is used if the OSR
408   // entry becomes the target of a bailout.  We don't expect it to be, but
409   // we want it to work if it is.
410   PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
411 }
412 
413 
EmitReturnSequence()414 void FullCodeGenerator::EmitReturnSequence() {
415   Comment cmnt(masm_, "[ Return sequence");
416   if (return_label_.is_bound()) {
417     __ b(&return_label_);
418   } else {
419     __ bind(&return_label_);
420     if (FLAG_trace) {
421       // Push the return value on the stack as the parameter.
422       // Runtime::TraceExit returns its parameter in r0.
423       __ push(r0);
424       __ CallRuntime(Runtime::kTraceExit, 1);
425     }
426     // Pretend that the exit is a backwards jump to the entry.
427     int weight = 1;
428     if (info_->ShouldSelfOptimize()) {
429       weight = FLAG_interrupt_budget / FLAG_self_opt_count;
430     } else {
431       int distance = masm_->pc_offset();
432       weight = Min(kMaxBackEdgeWeight,
433                    Max(1, distance / kCodeSizeMultiplier));
434     }
435     EmitProfilingCounterDecrement(weight);
436     Label ok;
437     __ b(pl, &ok);
438     __ push(r0);
439     __ Call(isolate()->builtins()->InterruptCheck(),
440             RelocInfo::CODE_TARGET);
441     __ pop(r0);
442     EmitProfilingCounterReset();
443     __ bind(&ok);
444 
445 #ifdef DEBUG
446     // Add a label for checking the size of the code used for returning.
447     Label check_exit_codesize;
448     __ bind(&check_exit_codesize);
449 #endif
450     // Make sure that the constant pool is not emitted inside of the return
451     // sequence.
452     { Assembler::BlockConstPoolScope block_const_pool(masm_);
453       int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
454       CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
455       // TODO(svenpanne) The code below is sometimes 4 words, sometimes 5!
456       PredictableCodeSizeScope predictable(masm_, -1);
457       __ RecordJSReturn();
458       int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT);
459       { ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
460         __ add(sp, sp, Operand(sp_delta));
461         __ Jump(lr);
462         info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
463       }
464     }
465 
466 #ifdef DEBUG
467     // Check that the size of the code used for returning is large enough
468     // for the debugger's requirements.
469     DCHECK(Assembler::kJSReturnSequenceInstructions <=
470            masm_->InstructionsGeneratedSince(&check_exit_codesize));
471 #endif
472   }
473 }
474 
475 
Plug(Variable * var) const476 void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
477   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
478 }
479 
480 
Plug(Variable * var) const481 void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
482   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
483   codegen()->GetVar(result_register(), var);
484 }
485 
486 
Plug(Variable * var) const487 void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
488   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
489   codegen()->GetVar(result_register(), var);
490   __ push(result_register());
491 }
492 
493 
Plug(Variable * var) const494 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
495   DCHECK(var->IsStackAllocated() || var->IsContextSlot());
496   // For simplicity we always test the accumulator register.
497   codegen()->GetVar(result_register(), var);
498   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
499   codegen()->DoTest(this);
500 }
501 
502 
Plug(Heap::RootListIndex index) const503 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
504 }
505 
506 
Plug(Heap::RootListIndex index) const507 void FullCodeGenerator::AccumulatorValueContext::Plug(
508     Heap::RootListIndex index) const {
509   __ LoadRoot(result_register(), index);
510 }
511 
512 
Plug(Heap::RootListIndex index) const513 void FullCodeGenerator::StackValueContext::Plug(
514     Heap::RootListIndex index) const {
515   __ LoadRoot(result_register(), index);
516   __ push(result_register());
517 }
518 
519 
Plug(Heap::RootListIndex index) const520 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
521   codegen()->PrepareForBailoutBeforeSplit(condition(),
522                                           true,
523                                           true_label_,
524                                           false_label_);
525   if (index == Heap::kUndefinedValueRootIndex ||
526       index == Heap::kNullValueRootIndex ||
527       index == Heap::kFalseValueRootIndex) {
528     if (false_label_ != fall_through_) __ b(false_label_);
529   } else if (index == Heap::kTrueValueRootIndex) {
530     if (true_label_ != fall_through_) __ b(true_label_);
531   } else {
532     __ LoadRoot(result_register(), index);
533     codegen()->DoTest(this);
534   }
535 }
536 
537 
Plug(Handle<Object> lit) const538 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
539 }
540 
541 
Plug(Handle<Object> lit) const542 void FullCodeGenerator::AccumulatorValueContext::Plug(
543     Handle<Object> lit) const {
544   __ mov(result_register(), Operand(lit));
545 }
546 
547 
Plug(Handle<Object> lit) const548 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
549   // Immediates cannot be pushed directly.
550   __ mov(result_register(), Operand(lit));
551   __ push(result_register());
552 }
553 
554 
Plug(Handle<Object> lit) const555 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
556   codegen()->PrepareForBailoutBeforeSplit(condition(),
557                                           true,
558                                           true_label_,
559                                           false_label_);
560   DCHECK(!lit->IsUndetectableObject());  // There are no undetectable literals.
561   if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
562     if (false_label_ != fall_through_) __ b(false_label_);
563   } else if (lit->IsTrue() || lit->IsJSObject()) {
564     if (true_label_ != fall_through_) __ b(true_label_);
565   } else if (lit->IsString()) {
566     if (String::cast(*lit)->length() == 0) {
567       if (false_label_ != fall_through_) __ b(false_label_);
568     } else {
569       if (true_label_ != fall_through_) __ b(true_label_);
570     }
571   } else if (lit->IsSmi()) {
572     if (Smi::cast(*lit)->value() == 0) {
573       if (false_label_ != fall_through_) __ b(false_label_);
574     } else {
575       if (true_label_ != fall_through_) __ b(true_label_);
576     }
577   } else {
578     // For simplicity we always test the accumulator register.
579     __ mov(result_register(), Operand(lit));
580     codegen()->DoTest(this);
581   }
582 }
583 
584 
DropAndPlug(int count,Register reg) const585 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
586                                                    Register reg) const {
587   DCHECK(count > 0);
588   __ Drop(count);
589 }
590 
591 
DropAndPlug(int count,Register reg) const592 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
593     int count,
594     Register reg) const {
595   DCHECK(count > 0);
596   __ Drop(count);
597   __ Move(result_register(), reg);
598 }
599 
600 
DropAndPlug(int count,Register reg) const601 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
602                                                        Register reg) const {
603   DCHECK(count > 0);
604   if (count > 1) __ Drop(count - 1);
605   __ str(reg, MemOperand(sp, 0));
606 }
607 
608 
DropAndPlug(int count,Register reg) const609 void FullCodeGenerator::TestContext::DropAndPlug(int count,
610                                                  Register reg) const {
611   DCHECK(count > 0);
612   // For simplicity we always test the accumulator register.
613   __ Drop(count);
614   __ Move(result_register(), reg);
615   codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
616   codegen()->DoTest(this);
617 }
618 
619 
Plug(Label * materialize_true,Label * materialize_false) const620 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
621                                             Label* materialize_false) const {
622   DCHECK(materialize_true == materialize_false);
623   __ bind(materialize_true);
624 }
625 
626 
Plug(Label * materialize_true,Label * materialize_false) const627 void FullCodeGenerator::AccumulatorValueContext::Plug(
628     Label* materialize_true,
629     Label* materialize_false) const {
630   Label done;
631   __ bind(materialize_true);
632   __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
633   __ jmp(&done);
634   __ bind(materialize_false);
635   __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
636   __ bind(&done);
637 }
638 
639 
Plug(Label * materialize_true,Label * materialize_false) const640 void FullCodeGenerator::StackValueContext::Plug(
641     Label* materialize_true,
642     Label* materialize_false) const {
643   Label done;
644   __ bind(materialize_true);
645   __ LoadRoot(ip, Heap::kTrueValueRootIndex);
646   __ jmp(&done);
647   __ bind(materialize_false);
648   __ LoadRoot(ip, Heap::kFalseValueRootIndex);
649   __ bind(&done);
650   __ push(ip);
651 }
652 
653 
Plug(Label * materialize_true,Label * materialize_false) const654 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
655                                           Label* materialize_false) const {
656   DCHECK(materialize_true == true_label_);
657   DCHECK(materialize_false == false_label_);
658 }
659 
660 
Plug(bool flag) const661 void FullCodeGenerator::EffectContext::Plug(bool flag) const {
662 }
663 
664 
Plug(bool flag) const665 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
666   Heap::RootListIndex value_root_index =
667       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
668   __ LoadRoot(result_register(), value_root_index);
669 }
670 
671 
Plug(bool flag) const672 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
673   Heap::RootListIndex value_root_index =
674       flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
675   __ LoadRoot(ip, value_root_index);
676   __ push(ip);
677 }
678 
679 
Plug(bool flag) const680 void FullCodeGenerator::TestContext::Plug(bool flag) const {
681   codegen()->PrepareForBailoutBeforeSplit(condition(),
682                                           true,
683                                           true_label_,
684                                           false_label_);
685   if (flag) {
686     if (true_label_ != fall_through_) __ b(true_label_);
687   } else {
688     if (false_label_ != fall_through_) __ b(false_label_);
689   }
690 }
691 
692 
DoTest(Expression * condition,Label * if_true,Label * if_false,Label * fall_through)693 void FullCodeGenerator::DoTest(Expression* condition,
694                                Label* if_true,
695                                Label* if_false,
696                                Label* fall_through) {
697   Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
698   CallIC(ic, condition->test_id());
699   __ tst(result_register(), result_register());
700   Split(ne, if_true, if_false, fall_through);
701 }
702 
703 
Split(Condition cond,Label * if_true,Label * if_false,Label * fall_through)704 void FullCodeGenerator::Split(Condition cond,
705                               Label* if_true,
706                               Label* if_false,
707                               Label* fall_through) {
708   if (if_false == fall_through) {
709     __ b(cond, if_true);
710   } else if (if_true == fall_through) {
711     __ b(NegateCondition(cond), if_false);
712   } else {
713     __ b(cond, if_true);
714     __ b(if_false);
715   }
716 }
717 
718 
StackOperand(Variable * var)719 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
720   DCHECK(var->IsStackAllocated());
721   // Offset is negative because higher indexes are at lower addresses.
722   int offset = -var->index() * kPointerSize;
723   // Adjust by a (parameter or local) base offset.
724   if (var->IsParameter()) {
725     offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
726   } else {
727     offset += JavaScriptFrameConstants::kLocal0Offset;
728   }
729   return MemOperand(fp, offset);
730 }
731 
732 
VarOperand(Variable * var,Register scratch)733 MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
734   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
735   if (var->IsContextSlot()) {
736     int context_chain_length = scope()->ContextChainLength(var->scope());
737     __ LoadContext(scratch, context_chain_length);
738     return ContextOperand(scratch, var->index());
739   } else {
740     return StackOperand(var);
741   }
742 }
743 
744 
GetVar(Register dest,Variable * var)745 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
746   // Use destination as scratch.
747   MemOperand location = VarOperand(var, dest);
748   __ ldr(dest, location);
749 }
750 
751 
SetVar(Variable * var,Register src,Register scratch0,Register scratch1)752 void FullCodeGenerator::SetVar(Variable* var,
753                                Register src,
754                                Register scratch0,
755                                Register scratch1) {
756   DCHECK(var->IsContextSlot() || var->IsStackAllocated());
757   DCHECK(!scratch0.is(src));
758   DCHECK(!scratch0.is(scratch1));
759   DCHECK(!scratch1.is(src));
760   MemOperand location = VarOperand(var, scratch0);
761   __ str(src, location);
762 
763   // Emit the write barrier code if the location is in the heap.
764   if (var->IsContextSlot()) {
765     __ RecordWriteContextSlot(scratch0,
766                               location.offset(),
767                               src,
768                               scratch1,
769                               kLRHasBeenSaved,
770                               kDontSaveFPRegs);
771   }
772 }
773 
774 
PrepareForBailoutBeforeSplit(Expression * expr,bool should_normalize,Label * if_true,Label * if_false)775 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
776                                                      bool should_normalize,
777                                                      Label* if_true,
778                                                      Label* if_false) {
779   // Only prepare for bailouts before splits if we're in a test
780   // context. Otherwise, we let the Visit function deal with the
781   // preparation to avoid preparing with the same AST id twice.
782   if (!context()->IsTest() || !info_->IsOptimizable()) return;
783 
784   Label skip;
785   if (should_normalize) __ b(&skip);
786   PrepareForBailout(expr, TOS_REG);
787   if (should_normalize) {
788     __ LoadRoot(ip, Heap::kTrueValueRootIndex);
789     __ cmp(r0, ip);
790     Split(eq, if_true, if_false, NULL);
791     __ bind(&skip);
792   }
793 }
794 
795 
EmitDebugCheckDeclarationContext(Variable * variable)796 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
797   // The variable in the declaration always resides in the current function
798   // context.
799   DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
800   if (generate_debug_code_) {
801     // Check that we're not inside a with or catch context.
802     __ ldr(r1, FieldMemOperand(cp, HeapObject::kMapOffset));
803     __ CompareRoot(r1, Heap::kWithContextMapRootIndex);
804     __ Check(ne, kDeclarationInWithContext);
805     __ CompareRoot(r1, Heap::kCatchContextMapRootIndex);
806     __ Check(ne, kDeclarationInCatchContext);
807   }
808 }
809 
810 
VisitVariableDeclaration(VariableDeclaration * declaration)811 void FullCodeGenerator::VisitVariableDeclaration(
812     VariableDeclaration* declaration) {
813   // If it was not possible to allocate the variable at compile time, we
814   // need to "declare" it at runtime to make sure it actually exists in the
815   // local context.
816   VariableProxy* proxy = declaration->proxy();
817   VariableMode mode = declaration->mode();
818   Variable* variable = proxy->var();
819   bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
820   switch (variable->location()) {
821     case Variable::UNALLOCATED:
822       globals_->Add(variable->name(), zone());
823       globals_->Add(variable->binding_needs_init()
824                         ? isolate()->factory()->the_hole_value()
825                         : isolate()->factory()->undefined_value(),
826                     zone());
827       break;
828 
829     case Variable::PARAMETER:
830     case Variable::LOCAL:
831       if (hole_init) {
832         Comment cmnt(masm_, "[ VariableDeclaration");
833         __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
834         __ str(ip, StackOperand(variable));
835       }
836       break;
837 
838     case Variable::CONTEXT:
839       if (hole_init) {
840         Comment cmnt(masm_, "[ VariableDeclaration");
841         EmitDebugCheckDeclarationContext(variable);
842         __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
843         __ str(ip, ContextOperand(cp, variable->index()));
844         // No write barrier since the_hole_value is in old space.
845         PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
846       }
847       break;
848 
849     case Variable::LOOKUP: {
850       Comment cmnt(masm_, "[ VariableDeclaration");
851       __ mov(r2, Operand(variable->name()));
852       // Declaration nodes are always introduced in one of four modes.
853       DCHECK(IsDeclaredVariableMode(mode));
854       PropertyAttributes attr =
855           IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
856       __ mov(r1, Operand(Smi::FromInt(attr)));
857       // Push initial value, if any.
858       // Note: For variables we must not push an initial value (such as
859       // 'undefined') because we may have a (legal) redeclaration and we
860       // must not destroy the current value.
861       if (hole_init) {
862         __ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
863         __ Push(cp, r2, r1, r0);
864       } else {
865         __ mov(r0, Operand(Smi::FromInt(0)));  // Indicates no initial value.
866         __ Push(cp, r2, r1, r0);
867       }
868       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
869       break;
870     }
871   }
872 }
873 
874 
VisitFunctionDeclaration(FunctionDeclaration * declaration)875 void FullCodeGenerator::VisitFunctionDeclaration(
876     FunctionDeclaration* declaration) {
877   VariableProxy* proxy = declaration->proxy();
878   Variable* variable = proxy->var();
879   switch (variable->location()) {
880     case Variable::UNALLOCATED: {
881       globals_->Add(variable->name(), zone());
882       Handle<SharedFunctionInfo> function =
883           Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
884       // Check for stack-overflow exception.
885       if (function.is_null()) return SetStackOverflow();
886       globals_->Add(function, zone());
887       break;
888     }
889 
890     case Variable::PARAMETER:
891     case Variable::LOCAL: {
892       Comment cmnt(masm_, "[ FunctionDeclaration");
893       VisitForAccumulatorValue(declaration->fun());
894       __ str(result_register(), StackOperand(variable));
895       break;
896     }
897 
898     case Variable::CONTEXT: {
899       Comment cmnt(masm_, "[ FunctionDeclaration");
900       EmitDebugCheckDeclarationContext(variable);
901       VisitForAccumulatorValue(declaration->fun());
902       __ str(result_register(), ContextOperand(cp, variable->index()));
903       int offset = Context::SlotOffset(variable->index());
904       // We know that we have written a function, which is not a smi.
905       __ RecordWriteContextSlot(cp,
906                                 offset,
907                                 result_register(),
908                                 r2,
909                                 kLRHasBeenSaved,
910                                 kDontSaveFPRegs,
911                                 EMIT_REMEMBERED_SET,
912                                 OMIT_SMI_CHECK);
913       PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
914       break;
915     }
916 
917     case Variable::LOOKUP: {
918       Comment cmnt(masm_, "[ FunctionDeclaration");
919       __ mov(r2, Operand(variable->name()));
920       __ mov(r1, Operand(Smi::FromInt(NONE)));
921       __ Push(cp, r2, r1);
922       // Push initial value for function declaration.
923       VisitForStackValue(declaration->fun());
924       __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
925       break;
926     }
927   }
928 }
929 
930 
VisitModuleDeclaration(ModuleDeclaration * declaration)931 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
932   Variable* variable = declaration->proxy()->var();
933   DCHECK(variable->location() == Variable::CONTEXT);
934   DCHECK(variable->interface()->IsFrozen());
935 
936   Comment cmnt(masm_, "[ ModuleDeclaration");
937   EmitDebugCheckDeclarationContext(variable);
938 
939   // Load instance object.
940   __ LoadContext(r1, scope_->ContextChainLength(scope_->GlobalScope()));
941   __ ldr(r1, ContextOperand(r1, variable->interface()->Index()));
942   __ ldr(r1, ContextOperand(r1, Context::EXTENSION_INDEX));
943 
944   // Assign it.
945   __ str(r1, ContextOperand(cp, variable->index()));
946   // We know that we have written a module, which is not a smi.
947   __ RecordWriteContextSlot(cp,
948                             Context::SlotOffset(variable->index()),
949                             r1,
950                             r3,
951                             kLRHasBeenSaved,
952                             kDontSaveFPRegs,
953                             EMIT_REMEMBERED_SET,
954                             OMIT_SMI_CHECK);
955   PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
956 
957   // Traverse into body.
958   Visit(declaration->module());
959 }
960 
961 
VisitImportDeclaration(ImportDeclaration * declaration)962 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
963   VariableProxy* proxy = declaration->proxy();
964   Variable* variable = proxy->var();
965   switch (variable->location()) {
966     case Variable::UNALLOCATED:
967       // TODO(rossberg)
968       break;
969 
970     case Variable::CONTEXT: {
971       Comment cmnt(masm_, "[ ImportDeclaration");
972       EmitDebugCheckDeclarationContext(variable);
973       // TODO(rossberg)
974       break;
975     }
976 
977     case Variable::PARAMETER:
978     case Variable::LOCAL:
979     case Variable::LOOKUP:
980       UNREACHABLE();
981   }
982 }
983 
984 
VisitExportDeclaration(ExportDeclaration * declaration)985 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
986   // TODO(rossberg)
987 }
988 
989 
DeclareGlobals(Handle<FixedArray> pairs)990 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
991   // Call the runtime to declare the globals.
992   // The context is the first argument.
993   __ mov(r1, Operand(pairs));
994   __ mov(r0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
995   __ Push(cp, r1, r0);
996   __ CallRuntime(Runtime::kDeclareGlobals, 3);
997   // Return value is ignored.
998 }
999 
1000 
DeclareModules(Handle<FixedArray> descriptions)1001 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
1002   // Call the runtime to declare the modules.
1003   __ Push(descriptions);
1004   __ CallRuntime(Runtime::kDeclareModules, 1);
1005   // Return value is ignored.
1006 }
1007 
1008 
VisitSwitchStatement(SwitchStatement * stmt)1009 void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
1010   Comment cmnt(masm_, "[ SwitchStatement");
1011   Breakable nested_statement(this, stmt);
1012   SetStatementPosition(stmt);
1013 
1014   // Keep the switch value on the stack until a case matches.
1015   VisitForStackValue(stmt->tag());
1016   PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
1017 
1018   ZoneList<CaseClause*>* clauses = stmt->cases();
1019   CaseClause* default_clause = NULL;  // Can occur anywhere in the list.
1020 
1021   Label next_test;  // Recycled for each test.
1022   // Compile all the tests with branches to their bodies.
1023   for (int i = 0; i < clauses->length(); i++) {
1024     CaseClause* clause = clauses->at(i);
1025     clause->body_target()->Unuse();
1026 
1027     // The default is not a test, but remember it as final fall through.
1028     if (clause->is_default()) {
1029       default_clause = clause;
1030       continue;
1031     }
1032 
1033     Comment cmnt(masm_, "[ Case comparison");
1034     __ bind(&next_test);
1035     next_test.Unuse();
1036 
1037     // Compile the label expression.
1038     VisitForAccumulatorValue(clause->label());
1039 
1040     // Perform the comparison as if via '==='.
1041     __ ldr(r1, MemOperand(sp, 0));  // Switch value.
1042     bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
1043     JumpPatchSite patch_site(masm_);
1044     if (inline_smi_code) {
1045       Label slow_case;
1046       __ orr(r2, r1, r0);
1047       patch_site.EmitJumpIfNotSmi(r2, &slow_case);
1048 
1049       __ cmp(r1, r0);
1050       __ b(ne, &next_test);
1051       __ Drop(1);  // Switch value is no longer needed.
1052       __ b(clause->body_target());
1053       __ bind(&slow_case);
1054     }
1055 
1056     // Record position before stub call for type feedback.
1057     SetSourcePosition(clause->position());
1058     Handle<Code> ic =
1059         CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code();
1060     CallIC(ic, clause->CompareId());
1061     patch_site.EmitPatchInfo();
1062 
1063     Label skip;
1064     __ b(&skip);
1065     PrepareForBailout(clause, TOS_REG);
1066     __ LoadRoot(ip, Heap::kTrueValueRootIndex);
1067     __ cmp(r0, ip);
1068     __ b(ne, &next_test);
1069     __ Drop(1);
1070     __ jmp(clause->body_target());
1071     __ bind(&skip);
1072 
1073     __ cmp(r0, Operand::Zero());
1074     __ b(ne, &next_test);
1075     __ Drop(1);  // Switch value is no longer needed.
1076     __ b(clause->body_target());
1077   }
1078 
1079   // Discard the test value and jump to the default if present, otherwise to
1080   // the end of the statement.
1081   __ bind(&next_test);
1082   __ Drop(1);  // Switch value is no longer needed.
1083   if (default_clause == NULL) {
1084     __ b(nested_statement.break_label());
1085   } else {
1086     __ b(default_clause->body_target());
1087   }
1088 
1089   // Compile all the case bodies.
1090   for (int i = 0; i < clauses->length(); i++) {
1091     Comment cmnt(masm_, "[ Case body");
1092     CaseClause* clause = clauses->at(i);
1093     __ bind(clause->body_target());
1094     PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
1095     VisitStatements(clause->statements());
1096   }
1097 
1098   __ bind(nested_statement.break_label());
1099   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1100 }
1101 
1102 
VisitForInStatement(ForInStatement * stmt)1103 void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
1104   Comment cmnt(masm_, "[ ForInStatement");
1105   int slot = stmt->ForInFeedbackSlot();
1106   SetStatementPosition(stmt);
1107 
1108   Label loop, exit;
1109   ForIn loop_statement(this, stmt);
1110   increment_loop_depth();
1111 
1112   // Get the object to enumerate over. If the object is null or undefined, skip
1113   // over the loop.  See ECMA-262 version 5, section 12.6.4.
1114   VisitForAccumulatorValue(stmt->enumerable());
1115   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1116   __ cmp(r0, ip);
1117   __ b(eq, &exit);
1118   Register null_value = r5;
1119   __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1120   __ cmp(r0, null_value);
1121   __ b(eq, &exit);
1122 
1123   PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1124 
1125   // Convert the object to a JS object.
1126   Label convert, done_convert;
1127   __ JumpIfSmi(r0, &convert);
1128   __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
1129   __ b(ge, &done_convert);
1130   __ bind(&convert);
1131   __ push(r0);
1132   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1133   __ bind(&done_convert);
1134   __ push(r0);
1135 
1136   // Check for proxies.
1137   Label call_runtime;
1138   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1139   __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE);
1140   __ b(le, &call_runtime);
1141 
1142   // Check cache validity in generated code. This is a fast case for
1143   // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1144   // guarantee cache validity, call the runtime system to check cache
1145   // validity or get the property names in a fixed array.
1146   __ CheckEnumCache(null_value, &call_runtime);
1147 
1148   // The enum cache is valid.  Load the map of the object being
1149   // iterated over and use the cache for the iteration.
1150   Label use_cache;
1151   __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
1152   __ b(&use_cache);
1153 
1154   // Get the set of properties to enumerate.
1155   __ bind(&call_runtime);
1156   __ push(r0);  // Duplicate the enumerable object on the stack.
1157   __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1158 
1159   // If we got a map from the runtime call, we can do a fast
1160   // modification check. Otherwise, we got a fixed array, and we have
1161   // to do a slow check.
1162   Label fixed_array;
1163   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
1164   __ LoadRoot(ip, Heap::kMetaMapRootIndex);
1165   __ cmp(r2, ip);
1166   __ b(ne, &fixed_array);
1167 
1168   // We got a map in register r0. Get the enumeration cache from it.
1169   Label no_descriptors;
1170   __ bind(&use_cache);
1171 
1172   __ EnumLength(r1, r0);
1173   __ cmp(r1, Operand(Smi::FromInt(0)));
1174   __ b(eq, &no_descriptors);
1175 
1176   __ LoadInstanceDescriptors(r0, r2);
1177   __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheOffset));
1178   __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset));
1179 
1180   // Set up the four remaining stack slots.
1181   __ push(r0);  // Map.
1182   __ mov(r0, Operand(Smi::FromInt(0)));
1183   // Push enumeration cache, enumeration cache length (as smi) and zero.
1184   __ Push(r2, r1, r0);
1185   __ jmp(&loop);
1186 
1187   __ bind(&no_descriptors);
1188   __ Drop(1);
1189   __ jmp(&exit);
1190 
1191   // We got a fixed array in register r0. Iterate through that.
1192   Label non_proxy;
1193   __ bind(&fixed_array);
1194 
1195   __ Move(r1, FeedbackVector());
1196   __ mov(r2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate())));
1197   __ str(r2, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(slot)));
1198 
1199   __ mov(r1, Operand(Smi::FromInt(1)));  // Smi indicates slow check
1200   __ ldr(r2, MemOperand(sp, 0 * kPointerSize));  // Get enumerated object
1201   STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1202   __ CompareObjectType(r2, r3, r3, LAST_JS_PROXY_TYPE);
1203   __ b(gt, &non_proxy);
1204   __ mov(r1, Operand(Smi::FromInt(0)));  // Zero indicates proxy
1205   __ bind(&non_proxy);
1206   __ Push(r1, r0);  // Smi and array
1207   __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset));
1208   __ mov(r0, Operand(Smi::FromInt(0)));
1209   __ Push(r1, r0);  // Fixed array length (as smi) and initial index.
1210 
1211   // Generate code for doing the condition check.
1212   PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1213   __ bind(&loop);
1214   // Load the current count to r0, load the length to r1.
1215   __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize));
1216   __ cmp(r0, r1);  // Compare to the array length.
1217   __ b(hs, loop_statement.break_label());
1218 
1219   // Get the current entry of the array into register r3.
1220   __ ldr(r2, MemOperand(sp, 2 * kPointerSize));
1221   __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1222   __ ldr(r3, MemOperand::PointerAddressFromSmiKey(r2, r0));
1223 
1224   // Get the expected map from the stack or a smi in the
1225   // permanent slow case into register r2.
1226   __ ldr(r2, MemOperand(sp, 3 * kPointerSize));
1227 
1228   // Check if the expected map still matches that of the enumerable.
1229   // If not, we may have to filter the key.
1230   Label update_each;
1231   __ ldr(r1, MemOperand(sp, 4 * kPointerSize));
1232   __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset));
1233   __ cmp(r4, Operand(r2));
1234   __ b(eq, &update_each);
1235 
1236   // For proxies, no filtering is done.
1237   // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1238   __ cmp(r2, Operand(Smi::FromInt(0)));
1239   __ b(eq, &update_each);
1240 
1241   // Convert the entry to a string or (smi) 0 if it isn't a property
1242   // any more. If the property has been removed while iterating, we
1243   // just skip it.
1244   __ push(r1);  // Enumerable.
1245   __ push(r3);  // Current entry.
1246   __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1247   __ mov(r3, Operand(r0), SetCC);
1248   __ b(eq, loop_statement.continue_label());
1249 
1250   // Update the 'each' property or variable from the possibly filtered
1251   // entry in register r3.
1252   __ bind(&update_each);
1253   __ mov(result_register(), r3);
1254   // Perform the assignment as if via '='.
1255   { EffectContext context(this);
1256     EmitAssignment(stmt->each());
1257   }
1258 
1259   // Generate code for the body of the loop.
1260   Visit(stmt->body());
1261 
1262   // Generate code for the going to the next element by incrementing
1263   // the index (smi) stored on top of the stack.
1264   __ bind(loop_statement.continue_label());
1265   __ pop(r0);
1266   __ add(r0, r0, Operand(Smi::FromInt(1)));
1267   __ push(r0);
1268 
1269   EmitBackEdgeBookkeeping(stmt, &loop);
1270   __ b(&loop);
1271 
1272   // Remove the pointers stored on the stack.
1273   __ bind(loop_statement.break_label());
1274   __ Drop(5);
1275 
1276   // Exit and decrement the loop depth.
1277   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1278   __ bind(&exit);
1279   decrement_loop_depth();
1280 }
1281 
1282 
VisitForOfStatement(ForOfStatement * stmt)1283 void FullCodeGenerator::VisitForOfStatement(ForOfStatement* stmt) {
1284   Comment cmnt(masm_, "[ ForOfStatement");
1285   SetStatementPosition(stmt);
1286 
1287   Iteration loop_statement(this, stmt);
1288   increment_loop_depth();
1289 
1290   // var iterator = iterable[Symbol.iterator]();
1291   VisitForEffect(stmt->assign_iterator());
1292 
1293   // Loop entry.
1294   __ bind(loop_statement.continue_label());
1295 
1296   // result = iterator.next()
1297   VisitForEffect(stmt->next_result());
1298 
1299   // if (result.done) break;
1300   Label result_not_done;
1301   VisitForControl(stmt->result_done(),
1302                   loop_statement.break_label(),
1303                   &result_not_done,
1304                   &result_not_done);
1305   __ bind(&result_not_done);
1306 
1307   // each = result.value
1308   VisitForEffect(stmt->assign_each());
1309 
1310   // Generate code for the body of the loop.
1311   Visit(stmt->body());
1312 
1313   // Check stack before looping.
1314   PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1315   EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1316   __ jmp(loop_statement.continue_label());
1317 
1318   // Exit and decrement the loop depth.
1319   PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1320   __ bind(loop_statement.break_label());
1321   decrement_loop_depth();
1322 }
1323 
1324 
EmitNewClosure(Handle<SharedFunctionInfo> info,bool pretenure)1325 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1326                                        bool pretenure) {
1327   // Use the fast case closure allocation code that allocates in new
1328   // space for nested functions that don't need literals cloning. If
1329   // we're running with the --always-opt or the --prepare-always-opt
1330   // flag, we need to use the runtime function so that the new function
1331   // we are creating here gets a chance to have its code optimized and
1332   // doesn't just get a copy of the existing unoptimized code.
1333   if (!FLAG_always_opt &&
1334       !FLAG_prepare_always_opt &&
1335       !pretenure &&
1336       scope()->is_function_scope() &&
1337       info->num_literals() == 0) {
1338     FastNewClosureStub stub(isolate(), info->strict_mode(), info->kind());
1339     __ mov(r2, Operand(info));
1340     __ CallStub(&stub);
1341   } else {
1342     __ mov(r0, Operand(info));
1343     __ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex
1344                               : Heap::kFalseValueRootIndex);
1345     __ Push(cp, r0, r1);
1346     __ CallRuntime(Runtime::kNewClosure, 3);
1347   }
1348   context()->Plug(r0);
1349 }
1350 
1351 
VisitVariableProxy(VariableProxy * expr)1352 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1353   Comment cmnt(masm_, "[ VariableProxy");
1354   EmitVariableLoad(expr);
1355 }
1356 
1357 
EmitLoadHomeObject(SuperReference * expr)1358 void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) {
1359   Comment cnmt(masm_, "[ SuperReference ");
1360 
1361   __ ldr(LoadDescriptor::ReceiverRegister(),
1362          MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1363 
1364   Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol());
1365   __ Move(LoadDescriptor::NameRegister(), home_object_symbol);
1366 
1367   CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId());
1368 
1369   __ cmp(r0, Operand(isolate()->factory()->undefined_value()));
1370   Label done;
1371   __ b(ne, &done);
1372   __ CallRuntime(Runtime::kThrowNonMethodError, 0);
1373   __ bind(&done);
1374 }
1375 
1376 
EmitLoadGlobalCheckExtensions(VariableProxy * proxy,TypeofState typeof_state,Label * slow)1377 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1378                                                       TypeofState typeof_state,
1379                                                       Label* slow) {
1380   Register current = cp;
1381   Register next = r1;
1382   Register temp = r2;
1383 
1384   Scope* s = scope();
1385   while (s != NULL) {
1386     if (s->num_heap_slots() > 0) {
1387       if (s->calls_sloppy_eval()) {
1388         // Check that extension is NULL.
1389         __ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX));
1390         __ tst(temp, temp);
1391         __ b(ne, slow);
1392       }
1393       // Load next context in chain.
1394       __ ldr(next, ContextOperand(current, Context::PREVIOUS_INDEX));
1395       // Walk the rest of the chain without clobbering cp.
1396       current = next;
1397     }
1398     // If no outer scope calls eval, we do not need to check more
1399     // context extensions.
1400     if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1401     s = s->outer_scope();
1402   }
1403 
1404   if (s->is_eval_scope()) {
1405     Label loop, fast;
1406     if (!current.is(next)) {
1407       __ Move(next, current);
1408     }
1409     __ bind(&loop);
1410     // Terminate at native context.
1411     __ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1412     __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1413     __ cmp(temp, ip);
1414     __ b(eq, &fast);
1415     // Check that extension is NULL.
1416     __ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX));
1417     __ tst(temp, temp);
1418     __ b(ne, slow);
1419     // Load next context in chain.
1420     __ ldr(next, ContextOperand(next, Context::PREVIOUS_INDEX));
1421     __ b(&loop);
1422     __ bind(&fast);
1423   }
1424 
1425   __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1426   __ mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name()));
1427   if (FLAG_vector_ics) {
1428     __ mov(VectorLoadICDescriptor::SlotRegister(),
1429            Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1430   }
1431 
1432   ContextualMode mode = (typeof_state == INSIDE_TYPEOF)
1433       ? NOT_CONTEXTUAL
1434       : CONTEXTUAL;
1435   CallLoadIC(mode);
1436 }
1437 
1438 
ContextSlotOperandCheckExtensions(Variable * var,Label * slow)1439 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1440                                                                 Label* slow) {
1441   DCHECK(var->IsContextSlot());
1442   Register context = cp;
1443   Register next = r3;
1444   Register temp = r4;
1445 
1446   for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1447     if (s->num_heap_slots() > 0) {
1448       if (s->calls_sloppy_eval()) {
1449         // Check that extension is NULL.
1450         __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1451         __ tst(temp, temp);
1452         __ b(ne, slow);
1453       }
1454       __ ldr(next, ContextOperand(context, Context::PREVIOUS_INDEX));
1455       // Walk the rest of the chain without clobbering cp.
1456       context = next;
1457     }
1458   }
1459   // Check that last extension is NULL.
1460   __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1461   __ tst(temp, temp);
1462   __ b(ne, slow);
1463 
1464   // This function is used only for loads, not stores, so it's safe to
1465   // return an cp-based operand (the write barrier cannot be allowed to
1466   // destroy the cp register).
1467   return ContextOperand(context, var->index());
1468 }
1469 
1470 
EmitDynamicLookupFastCase(VariableProxy * proxy,TypeofState typeof_state,Label * slow,Label * done)1471 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1472                                                   TypeofState typeof_state,
1473                                                   Label* slow,
1474                                                   Label* done) {
1475   // Generate fast-case code for variables that might be shadowed by
1476   // eval-introduced variables.  Eval is used a lot without
1477   // introducing variables.  In those cases, we do not want to
1478   // perform a runtime call for all variables in the scope
1479   // containing the eval.
1480   Variable* var = proxy->var();
1481   if (var->mode() == DYNAMIC_GLOBAL) {
1482     EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1483     __ jmp(done);
1484   } else if (var->mode() == DYNAMIC_LOCAL) {
1485     Variable* local = var->local_if_not_shadowed();
1486     __ ldr(r0, ContextSlotOperandCheckExtensions(local, slow));
1487     if (local->mode() == LET || local->mode() == CONST ||
1488         local->mode() == CONST_LEGACY) {
1489       __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
1490       if (local->mode() == CONST_LEGACY) {
1491         __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1492       } else {  // LET || CONST
1493         __ b(ne, done);
1494         __ mov(r0, Operand(var->name()));
1495         __ push(r0);
1496         __ CallRuntime(Runtime::kThrowReferenceError, 1);
1497       }
1498     }
1499     __ jmp(done);
1500   }
1501 }
1502 
1503 
EmitVariableLoad(VariableProxy * proxy)1504 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1505   // Record position before possible IC call.
1506   SetSourcePosition(proxy->position());
1507   Variable* var = proxy->var();
1508 
1509   // Three cases: global variables, lookup variables, and all other types of
1510   // variables.
1511   switch (var->location()) {
1512     case Variable::UNALLOCATED: {
1513       Comment cmnt(masm_, "[ Global variable");
1514       __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
1515       __ mov(LoadDescriptor::NameRegister(), Operand(var->name()));
1516       if (FLAG_vector_ics) {
1517         __ mov(VectorLoadICDescriptor::SlotRegister(),
1518                Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1519       }
1520       CallLoadIC(CONTEXTUAL);
1521       context()->Plug(r0);
1522       break;
1523     }
1524 
1525     case Variable::PARAMETER:
1526     case Variable::LOCAL:
1527     case Variable::CONTEXT: {
1528       Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1529                                                : "[ Stack variable");
1530       if (var->binding_needs_init()) {
1531         // var->scope() may be NULL when the proxy is located in eval code and
1532         // refers to a potential outside binding. Currently those bindings are
1533         // always looked up dynamically, i.e. in that case
1534         //     var->location() == LOOKUP.
1535         // always holds.
1536         DCHECK(var->scope() != NULL);
1537 
1538         // Check if the binding really needs an initialization check. The check
1539         // can be skipped in the following situation: we have a LET or CONST
1540         // binding in harmony mode, both the Variable and the VariableProxy have
1541         // the same declaration scope (i.e. they are both in global code, in the
1542         // same function or in the same eval code) and the VariableProxy is in
1543         // the source physically located after the initializer of the variable.
1544         //
1545         // We cannot skip any initialization checks for CONST in non-harmony
1546         // mode because const variables may be declared but never initialized:
1547         //   if (false) { const x; }; var y = x;
1548         //
1549         // The condition on the declaration scopes is a conservative check for
1550         // nested functions that access a binding and are called before the
1551         // binding is initialized:
1552         //   function() { f(); let x = 1; function f() { x = 2; } }
1553         //
1554         bool skip_init_check;
1555         if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1556           skip_init_check = false;
1557         } else {
1558           // Check that we always have valid source position.
1559           DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1560           DCHECK(proxy->position() != RelocInfo::kNoPosition);
1561           skip_init_check = var->mode() != CONST_LEGACY &&
1562               var->initializer_position() < proxy->position();
1563         }
1564 
1565         if (!skip_init_check) {
1566           // Let and const need a read barrier.
1567           GetVar(r0, var);
1568           __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
1569           if (var->mode() == LET || var->mode() == CONST) {
1570             // Throw a reference error when using an uninitialized let/const
1571             // binding in harmony mode.
1572             Label done;
1573             __ b(ne, &done);
1574             __ mov(r0, Operand(var->name()));
1575             __ push(r0);
1576             __ CallRuntime(Runtime::kThrowReferenceError, 1);
1577             __ bind(&done);
1578           } else {
1579             // Uninitalized const bindings outside of harmony mode are unholed.
1580             DCHECK(var->mode() == CONST_LEGACY);
1581             __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq);
1582           }
1583           context()->Plug(r0);
1584           break;
1585         }
1586       }
1587       context()->Plug(var);
1588       break;
1589     }
1590 
1591     case Variable::LOOKUP: {
1592       Comment cmnt(masm_, "[ Lookup variable");
1593       Label done, slow;
1594       // Generate code for loading from variables potentially shadowed
1595       // by eval-introduced variables.
1596       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1597       __ bind(&slow);
1598       __ mov(r1, Operand(var->name()));
1599       __ Push(cp, r1);  // Context and name.
1600       __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1601       __ bind(&done);
1602       context()->Plug(r0);
1603     }
1604   }
1605 }
1606 
1607 
VisitRegExpLiteral(RegExpLiteral * expr)1608 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1609   Comment cmnt(masm_, "[ RegExpLiteral");
1610   Label materialized;
1611   // Registers will be used as follows:
1612   // r5 = materialized value (RegExp literal)
1613   // r4 = JS function, literals array
1614   // r3 = literal index
1615   // r2 = RegExp pattern
1616   // r1 = RegExp flags
1617   // r0 = RegExp literal clone
1618   __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1619   __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset));
1620   int literal_offset =
1621       FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1622   __ ldr(r5, FieldMemOperand(r4, literal_offset));
1623   __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1624   __ cmp(r5, ip);
1625   __ b(ne, &materialized);
1626 
1627   // Create regexp literal using runtime function.
1628   // Result will be in r0.
1629   __ mov(r3, Operand(Smi::FromInt(expr->literal_index())));
1630   __ mov(r2, Operand(expr->pattern()));
1631   __ mov(r1, Operand(expr->flags()));
1632   __ Push(r4, r3, r2, r1);
1633   __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1634   __ mov(r5, r0);
1635 
1636   __ bind(&materialized);
1637   int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1638   Label allocated, runtime_allocate;
1639   __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT);
1640   __ jmp(&allocated);
1641 
1642   __ bind(&runtime_allocate);
1643   __ mov(r0, Operand(Smi::FromInt(size)));
1644   __ Push(r5, r0);
1645   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1646   __ pop(r5);
1647 
1648   __ bind(&allocated);
1649   // After this, registers are used as follows:
1650   // r0: Newly allocated regexp.
1651   // r5: Materialized regexp.
1652   // r2: temp.
1653   __ CopyFields(r0, r5, d0, size / kPointerSize);
1654   context()->Plug(r0);
1655 }
1656 
1657 
EmitAccessor(Expression * expression)1658 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1659   if (expression == NULL) {
1660     __ LoadRoot(r1, Heap::kNullValueRootIndex);
1661     __ push(r1);
1662   } else {
1663     VisitForStackValue(expression);
1664   }
1665 }
1666 
1667 
VisitObjectLiteral(ObjectLiteral * expr)1668 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1669   Comment cmnt(masm_, "[ ObjectLiteral");
1670 
1671   expr->BuildConstantProperties(isolate());
1672   Handle<FixedArray> constant_properties = expr->constant_properties();
1673   __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1674   __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1675   __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
1676   __ mov(r1, Operand(constant_properties));
1677   int flags = expr->fast_elements()
1678       ? ObjectLiteral::kFastElements
1679       : ObjectLiteral::kNoFlags;
1680   flags |= expr->has_function()
1681       ? ObjectLiteral::kHasFunction
1682       : ObjectLiteral::kNoFlags;
1683   __ mov(r0, Operand(Smi::FromInt(flags)));
1684   int properties_count = constant_properties->length() / 2;
1685   if (expr->may_store_doubles() || expr->depth() > 1 ||
1686       masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1687       properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1688     __ Push(r3, r2, r1, r0);
1689     __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1690   } else {
1691     FastCloneShallowObjectStub stub(isolate(), properties_count);
1692     __ CallStub(&stub);
1693   }
1694 
1695   // If result_saved is true the result is on top of the stack.  If
1696   // result_saved is false the result is in r0.
1697   bool result_saved = false;
1698 
1699   // Mark all computed expressions that are bound to a key that
1700   // is shadowed by a later occurrence of the same key. For the
1701   // marked expressions, no store code is emitted.
1702   expr->CalculateEmitStore(zone());
1703 
1704   AccessorTable accessor_table(zone());
1705   for (int i = 0; i < expr->properties()->length(); i++) {
1706     ObjectLiteral::Property* property = expr->properties()->at(i);
1707     if (property->IsCompileTimeValue()) continue;
1708 
1709     Literal* key = property->key();
1710     Expression* value = property->value();
1711     if (!result_saved) {
1712       __ push(r0);  // Save result on stack
1713       result_saved = true;
1714     }
1715     switch (property->kind()) {
1716       case ObjectLiteral::Property::CONSTANT:
1717         UNREACHABLE();
1718       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1719         DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1720         // Fall through.
1721       case ObjectLiteral::Property::COMPUTED:
1722         if (key->value()->IsInternalizedString()) {
1723           if (property->emit_store()) {
1724             VisitForAccumulatorValue(value);
1725             DCHECK(StoreDescriptor::ValueRegister().is(r0));
1726             __ mov(StoreDescriptor::NameRegister(), Operand(key->value()));
1727             __ ldr(StoreDescriptor::ReceiverRegister(), MemOperand(sp));
1728             CallStoreIC(key->LiteralFeedbackId());
1729             PrepareForBailoutForId(key->id(), NO_REGISTERS);
1730           } else {
1731             VisitForEffect(value);
1732           }
1733           break;
1734         }
1735         // Duplicate receiver on stack.
1736         __ ldr(r0, MemOperand(sp));
1737         __ push(r0);
1738         VisitForStackValue(key);
1739         VisitForStackValue(value);
1740         if (property->emit_store()) {
1741           __ mov(r0, Operand(Smi::FromInt(SLOPPY)));  // PropertyAttributes
1742           __ push(r0);
1743           __ CallRuntime(Runtime::kSetProperty, 4);
1744         } else {
1745           __ Drop(3);
1746         }
1747         break;
1748       case ObjectLiteral::Property::PROTOTYPE:
1749         // Duplicate receiver on stack.
1750         __ ldr(r0, MemOperand(sp));
1751         __ push(r0);
1752         VisitForStackValue(value);
1753         if (property->emit_store()) {
1754           __ CallRuntime(Runtime::kSetPrototype, 2);
1755         } else {
1756           __ Drop(2);
1757         }
1758         break;
1759 
1760       case ObjectLiteral::Property::GETTER:
1761         accessor_table.lookup(key)->second->getter = value;
1762         break;
1763       case ObjectLiteral::Property::SETTER:
1764         accessor_table.lookup(key)->second->setter = value;
1765         break;
1766     }
1767   }
1768 
1769   // Emit code to define accessors, using only a single call to the runtime for
1770   // each pair of corresponding getters and setters.
1771   for (AccessorTable::Iterator it = accessor_table.begin();
1772        it != accessor_table.end();
1773        ++it) {
1774     __ ldr(r0, MemOperand(sp));  // Duplicate receiver.
1775     __ push(r0);
1776     VisitForStackValue(it->first);
1777     EmitAccessor(it->second->getter);
1778     EmitAccessor(it->second->setter);
1779     __ mov(r0, Operand(Smi::FromInt(NONE)));
1780     __ push(r0);
1781     __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1782   }
1783 
1784   if (expr->has_function()) {
1785     DCHECK(result_saved);
1786     __ ldr(r0, MemOperand(sp));
1787     __ push(r0);
1788     __ CallRuntime(Runtime::kToFastProperties, 1);
1789   }
1790 
1791   if (result_saved) {
1792     context()->PlugTOS();
1793   } else {
1794     context()->Plug(r0);
1795   }
1796 }
1797 
1798 
VisitArrayLiteral(ArrayLiteral * expr)1799 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1800   Comment cmnt(masm_, "[ ArrayLiteral");
1801 
1802   expr->BuildConstantElements(isolate());
1803   int flags = expr->depth() == 1
1804       ? ArrayLiteral::kShallowElements
1805       : ArrayLiteral::kNoFlags;
1806 
1807   ZoneList<Expression*>* subexprs = expr->values();
1808   int length = subexprs->length();
1809   Handle<FixedArray> constant_elements = expr->constant_elements();
1810   DCHECK_EQ(2, constant_elements->length());
1811   ElementsKind constant_elements_kind =
1812       static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1813   bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1814   Handle<FixedArrayBase> constant_elements_values(
1815       FixedArrayBase::cast(constant_elements->get(1)));
1816 
1817   AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1818   if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1819     // If the only customer of allocation sites is transitioning, then
1820     // we can turn it off if we don't have anywhere else to transition to.
1821     allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1822   }
1823 
1824   __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1825   __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1826   __ mov(r2, Operand(Smi::FromInt(expr->literal_index())));
1827   __ mov(r1, Operand(constant_elements));
1828   if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1829     __ mov(r0, Operand(Smi::FromInt(flags)));
1830     __ Push(r3, r2, r1, r0);
1831     __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1832   } else {
1833     FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1834     __ CallStub(&stub);
1835   }
1836 
1837   bool result_saved = false;  // Is the result saved to the stack?
1838 
1839   // Emit code to evaluate all the non-constant subexpressions and to store
1840   // them into the newly cloned array.
1841   for (int i = 0; i < length; i++) {
1842     Expression* subexpr = subexprs->at(i);
1843     // If the subexpression is a literal or a simple materialized literal it
1844     // is already set in the cloned array.
1845     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1846 
1847     if (!result_saved) {
1848       __ push(r0);
1849       __ Push(Smi::FromInt(expr->literal_index()));
1850       result_saved = true;
1851     }
1852     VisitForAccumulatorValue(subexpr);
1853 
1854     if (IsFastObjectElementsKind(constant_elements_kind)) {
1855       int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1856       __ ldr(r6, MemOperand(sp, kPointerSize));  // Copy of array literal.
1857       __ ldr(r1, FieldMemOperand(r6, JSObject::kElementsOffset));
1858       __ str(result_register(), FieldMemOperand(r1, offset));
1859       // Update the write barrier for the array store.
1860       __ RecordWriteField(r1, offset, result_register(), r2,
1861                           kLRHasBeenSaved, kDontSaveFPRegs,
1862                           EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1863     } else {
1864       __ mov(r3, Operand(Smi::FromInt(i)));
1865       StoreArrayLiteralElementStub stub(isolate());
1866       __ CallStub(&stub);
1867     }
1868 
1869     PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1870   }
1871 
1872   if (result_saved) {
1873     __ pop();  // literal index
1874     context()->PlugTOS();
1875   } else {
1876     context()->Plug(r0);
1877   }
1878 }
1879 
1880 
VisitAssignment(Assignment * expr)1881 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1882   DCHECK(expr->target()->IsValidReferenceExpression());
1883 
1884   Comment cmnt(masm_, "[ Assignment");
1885 
1886   // Left-hand side can only be a property, a global or a (parameter or local)
1887   // slot.
1888   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1889   LhsKind assign_type = VARIABLE;
1890   Property* property = expr->target()->AsProperty();
1891   if (property != NULL) {
1892     assign_type = (property->key()->IsPropertyName())
1893         ? NAMED_PROPERTY
1894         : KEYED_PROPERTY;
1895   }
1896 
1897   // Evaluate LHS expression.
1898   switch (assign_type) {
1899     case VARIABLE:
1900       // Nothing to do here.
1901       break;
1902     case NAMED_PROPERTY:
1903       if (expr->is_compound()) {
1904         // We need the receiver both on the stack and in the register.
1905         VisitForStackValue(property->obj());
1906         __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
1907       } else {
1908         VisitForStackValue(property->obj());
1909       }
1910       break;
1911     case KEYED_PROPERTY:
1912       if (expr->is_compound()) {
1913         VisitForStackValue(property->obj());
1914         VisitForStackValue(property->key());
1915         __ ldr(LoadDescriptor::ReceiverRegister(),
1916                MemOperand(sp, 1 * kPointerSize));
1917         __ ldr(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
1918       } else {
1919         VisitForStackValue(property->obj());
1920         VisitForStackValue(property->key());
1921       }
1922       break;
1923   }
1924 
1925   // For compound assignments we need another deoptimization point after the
1926   // variable/property load.
1927   if (expr->is_compound()) {
1928     { AccumulatorValueContext context(this);
1929       switch (assign_type) {
1930         case VARIABLE:
1931           EmitVariableLoad(expr->target()->AsVariableProxy());
1932           PrepareForBailout(expr->target(), TOS_REG);
1933           break;
1934         case NAMED_PROPERTY:
1935           EmitNamedPropertyLoad(property);
1936           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1937           break;
1938         case KEYED_PROPERTY:
1939           EmitKeyedPropertyLoad(property);
1940           PrepareForBailoutForId(property->LoadId(), TOS_REG);
1941           break;
1942       }
1943     }
1944 
1945     Token::Value op = expr->binary_op();
1946     __ push(r0);  // Left operand goes on the stack.
1947     VisitForAccumulatorValue(expr->value());
1948 
1949     OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1950         ? OVERWRITE_RIGHT
1951         : NO_OVERWRITE;
1952     SetSourcePosition(expr->position() + 1);
1953     AccumulatorValueContext context(this);
1954     if (ShouldInlineSmiCase(op)) {
1955       EmitInlineSmiBinaryOp(expr->binary_operation(),
1956                             op,
1957                             mode,
1958                             expr->target(),
1959                             expr->value());
1960     } else {
1961       EmitBinaryOp(expr->binary_operation(), op, mode);
1962     }
1963 
1964     // Deoptimization point in case the binary operation may have side effects.
1965     PrepareForBailout(expr->binary_operation(), TOS_REG);
1966   } else {
1967     VisitForAccumulatorValue(expr->value());
1968   }
1969 
1970   // Record source position before possible IC call.
1971   SetSourcePosition(expr->position());
1972 
1973   // Store the value.
1974   switch (assign_type) {
1975     case VARIABLE:
1976       EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1977                              expr->op());
1978       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1979       context()->Plug(r0);
1980       break;
1981     case NAMED_PROPERTY:
1982       EmitNamedPropertyAssignment(expr);
1983       break;
1984     case KEYED_PROPERTY:
1985       EmitKeyedPropertyAssignment(expr);
1986       break;
1987   }
1988 }
1989 
1990 
VisitYield(Yield * expr)1991 void FullCodeGenerator::VisitYield(Yield* expr) {
1992   Comment cmnt(masm_, "[ Yield");
1993   // Evaluate yielded value first; the initial iterator definition depends on
1994   // this.  It stays on the stack while we update the iterator.
1995   VisitForStackValue(expr->expression());
1996 
1997   switch (expr->yield_kind()) {
1998     case Yield::kSuspend:
1999       // Pop value from top-of-stack slot; box result into result register.
2000       EmitCreateIteratorResult(false);
2001       __ push(result_register());
2002       // Fall through.
2003     case Yield::kInitial: {
2004       Label suspend, continuation, post_runtime, resume;
2005 
2006       __ jmp(&suspend);
2007 
2008       __ bind(&continuation);
2009       __ jmp(&resume);
2010 
2011       __ bind(&suspend);
2012       VisitForAccumulatorValue(expr->generator_object());
2013       DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
2014       __ mov(r1, Operand(Smi::FromInt(continuation.pos())));
2015       __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
2016       __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
2017       __ mov(r1, cp);
2018       __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
2019                           kLRHasBeenSaved, kDontSaveFPRegs);
2020       __ add(r1, fp, Operand(StandardFrameConstants::kExpressionsOffset));
2021       __ cmp(sp, r1);
2022       __ b(eq, &post_runtime);
2023       __ push(r0);  // generator object
2024       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2025       __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2026       __ bind(&post_runtime);
2027       __ pop(result_register());
2028       EmitReturnSequence();
2029 
2030       __ bind(&resume);
2031       context()->Plug(result_register());
2032       break;
2033     }
2034 
2035     case Yield::kFinal: {
2036       VisitForAccumulatorValue(expr->generator_object());
2037       __ mov(r1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed)));
2038       __ str(r1, FieldMemOperand(result_register(),
2039                                  JSGeneratorObject::kContinuationOffset));
2040       // Pop value from top-of-stack slot, box result into result register.
2041       EmitCreateIteratorResult(true);
2042       EmitUnwindBeforeReturn();
2043       EmitReturnSequence();
2044       break;
2045     }
2046 
2047     case Yield::kDelegating: {
2048       VisitForStackValue(expr->generator_object());
2049 
2050       // Initial stack layout is as follows:
2051       // [sp + 1 * kPointerSize] iter
2052       // [sp + 0 * kPointerSize] g
2053 
2054       Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2055       Label l_next, l_call, l_loop;
2056       Register load_receiver = LoadDescriptor::ReceiverRegister();
2057       Register load_name = LoadDescriptor::NameRegister();
2058 
2059       // Initial send value is undefined.
2060       __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
2061       __ b(&l_next);
2062 
2063       // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2064       __ bind(&l_catch);
2065       handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
2066       __ LoadRoot(load_name, Heap::kthrow_stringRootIndex);  // "throw"
2067       __ ldr(r3, MemOperand(sp, 1 * kPointerSize));          // iter
2068       __ Push(load_name, r3, r0);                       // "throw", iter, except
2069       __ jmp(&l_call);
2070 
2071       // try { received = %yield result }
2072       // Shuffle the received result above a try handler and yield it without
2073       // re-boxing.
2074       __ bind(&l_try);
2075       __ pop(r0);                                        // result
2076       __ PushTryHandler(StackHandler::CATCH, expr->index());
2077       const int handler_size = StackHandlerConstants::kSize;
2078       __ push(r0);                                       // result
2079       __ jmp(&l_suspend);
2080       __ bind(&l_continuation);
2081       __ jmp(&l_resume);
2082       __ bind(&l_suspend);
2083       const int generator_object_depth = kPointerSize + handler_size;
2084       __ ldr(r0, MemOperand(sp, generator_object_depth));
2085       __ push(r0);                                       // g
2086       DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2087       __ mov(r1, Operand(Smi::FromInt(l_continuation.pos())));
2088       __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset));
2089       __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset));
2090       __ mov(r1, cp);
2091       __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2,
2092                           kLRHasBeenSaved, kDontSaveFPRegs);
2093       __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2094       __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2095       __ pop(r0);                                      // result
2096       EmitReturnSequence();
2097       __ bind(&l_resume);                              // received in r0
2098       __ PopTryHandler();
2099 
2100       // receiver = iter; f = 'next'; arg = received;
2101       __ bind(&l_next);
2102 
2103       __ LoadRoot(load_name, Heap::knext_stringRootIndex);  // "next"
2104       __ ldr(r3, MemOperand(sp, 1 * kPointerSize));         // iter
2105       __ Push(load_name, r3, r0);                      // "next", iter, received
2106 
2107       // result = receiver[f](arg);
2108       __ bind(&l_call);
2109       __ ldr(load_receiver, MemOperand(sp, kPointerSize));
2110       __ ldr(load_name, MemOperand(sp, 2 * kPointerSize));
2111       if (FLAG_vector_ics) {
2112         __ mov(VectorLoadICDescriptor::SlotRegister(),
2113                Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot())));
2114       }
2115       Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2116       CallIC(ic, TypeFeedbackId::None());
2117       __ mov(r1, r0);
2118       __ str(r1, MemOperand(sp, 2 * kPointerSize));
2119       CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2120       __ CallStub(&stub);
2121 
2122       __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2123       __ Drop(1);  // The function is still on the stack; drop it.
2124 
2125       // if (!result.done) goto l_try;
2126       __ bind(&l_loop);
2127       __ Move(load_receiver, r0);
2128 
2129       __ push(load_receiver);                               // save result
2130       __ LoadRoot(load_name, Heap::kdone_stringRootIndex);  // "done"
2131       if (FLAG_vector_ics) {
2132         __ mov(VectorLoadICDescriptor::SlotRegister(),
2133                Operand(Smi::FromInt(expr->DoneFeedbackSlot())));
2134       }
2135       CallLoadIC(NOT_CONTEXTUAL);                           // r0=result.done
2136       Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2137       CallIC(bool_ic);
2138       __ cmp(r0, Operand(0));
2139       __ b(eq, &l_try);
2140 
2141       // result.value
2142       __ pop(load_receiver);                                 // result
2143       __ LoadRoot(load_name, Heap::kvalue_stringRootIndex);  // "value"
2144       if (FLAG_vector_ics) {
2145         __ mov(VectorLoadICDescriptor::SlotRegister(),
2146                Operand(Smi::FromInt(expr->ValueFeedbackSlot())));
2147       }
2148       CallLoadIC(NOT_CONTEXTUAL);                            // r0=result.value
2149       context()->DropAndPlug(2, r0);                         // drop iter and g
2150       break;
2151     }
2152   }
2153 }
2154 
2155 
EmitGeneratorResume(Expression * generator,Expression * value,JSGeneratorObject::ResumeMode resume_mode)2156 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2157     Expression *value,
2158     JSGeneratorObject::ResumeMode resume_mode) {
2159   // The value stays in r0, and is ultimately read by the resumed generator, as
2160   // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2161   // is read to throw the value when the resumed generator is already closed.
2162   // r1 will hold the generator object until the activation has been resumed.
2163   VisitForStackValue(generator);
2164   VisitForAccumulatorValue(value);
2165   __ pop(r1);
2166 
2167   // Check generator state.
2168   Label wrong_state, closed_state, done;
2169   __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2170   STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
2171   STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
2172   __ cmp(r3, Operand(Smi::FromInt(0)));
2173   __ b(eq, &closed_state);
2174   __ b(lt, &wrong_state);
2175 
2176   // Load suspended function and context.
2177   __ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset));
2178   __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
2179 
2180   // Load receiver and store as the first argument.
2181   __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
2182   __ push(r2);
2183 
2184   // Push holes for the rest of the arguments to the generator function.
2185   __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2186   __ ldr(r3,
2187          FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
2188   __ LoadRoot(r2, Heap::kTheHoleValueRootIndex);
2189   Label push_argument_holes, push_frame;
2190   __ bind(&push_argument_holes);
2191   __ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC);
2192   __ b(mi, &push_frame);
2193   __ push(r2);
2194   __ jmp(&push_argument_holes);
2195 
2196   // Enter a new JavaScript frame, and initialize its slots as they were when
2197   // the generator was suspended.
2198   Label resume_frame;
2199   __ bind(&push_frame);
2200   __ bl(&resume_frame);
2201   __ jmp(&done);
2202   __ bind(&resume_frame);
2203   // lr = return address.
2204   // fp = caller's frame pointer.
2205   // pp = caller's constant pool (if FLAG_enable_ool_constant_pool),
2206   // cp = callee's context,
2207   // r4 = callee's JS function.
2208   __ PushFixedFrame(r4);
2209   // Adjust FP to point to saved FP.
2210   __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
2211 
2212   // Load the operand stack size.
2213   __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kOperandStackOffset));
2214   __ ldr(r3, FieldMemOperand(r3, FixedArray::kLengthOffset));
2215   __ SmiUntag(r3);
2216 
2217   // If we are sending a value and there is no operand stack, we can jump back
2218   // in directly.
2219   if (resume_mode == JSGeneratorObject::NEXT) {
2220     Label slow_resume;
2221     __ cmp(r3, Operand(0));
2222     __ b(ne, &slow_resume);
2223     __ ldr(r3, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
2224 
2225     { ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
2226       if (FLAG_enable_ool_constant_pool) {
2227         // Load the new code object's constant pool pointer.
2228         __ ldr(pp,
2229                MemOperand(r3, Code::kConstantPoolOffset - Code::kHeaderSize));
2230       }
2231 
2232       __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2233       __ SmiUntag(r2);
2234       __ add(r3, r3, r2);
2235       __ mov(r2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)));
2236       __ str(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset));
2237       __ Jump(r3);
2238     }
2239     __ bind(&slow_resume);
2240   }
2241 
2242   // Otherwise, we push holes for the operand stack and call the runtime to fix
2243   // up the stack and the handlers.
2244   Label push_operand_holes, call_resume;
2245   __ bind(&push_operand_holes);
2246   __ sub(r3, r3, Operand(1), SetCC);
2247   __ b(mi, &call_resume);
2248   __ push(r2);
2249   __ b(&push_operand_holes);
2250   __ bind(&call_resume);
2251   DCHECK(!result_register().is(r1));
2252   __ Push(r1, result_register());
2253   __ Push(Smi::FromInt(resume_mode));
2254   __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2255   // Not reached: the runtime call returns elsewhere.
2256   __ stop("not-reached");
2257 
2258   // Reach here when generator is closed.
2259   __ bind(&closed_state);
2260   if (resume_mode == JSGeneratorObject::NEXT) {
2261     // Return completed iterator result when generator is closed.
2262     __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2263     __ push(r2);
2264     // Pop value from top-of-stack slot; box result into result register.
2265     EmitCreateIteratorResult(true);
2266   } else {
2267     // Throw the provided value.
2268     __ push(r0);
2269     __ CallRuntime(Runtime::kThrow, 1);
2270   }
2271   __ jmp(&done);
2272 
2273   // Throw error if we attempt to operate on a running generator.
2274   __ bind(&wrong_state);
2275   __ push(r1);
2276   __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
2277 
2278   __ bind(&done);
2279   context()->Plug(result_register());
2280 }
2281 
2282 
EmitCreateIteratorResult(bool done)2283 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2284   Label gc_required;
2285   Label allocated;
2286 
2287   Handle<Map> map(isolate()->native_context()->iterator_result_map());
2288 
2289   __ Allocate(map->instance_size(), r0, r2, r3, &gc_required, TAG_OBJECT);
2290   __ jmp(&allocated);
2291 
2292   __ bind(&gc_required);
2293   __ Push(Smi::FromInt(map->instance_size()));
2294   __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2295   __ ldr(context_register(),
2296          MemOperand(fp, StandardFrameConstants::kContextOffset));
2297 
2298   __ bind(&allocated);
2299   __ mov(r1, Operand(map));
2300   __ pop(r2);
2301   __ mov(r3, Operand(isolate()->factory()->ToBoolean(done)));
2302   __ mov(r4, Operand(isolate()->factory()->empty_fixed_array()));
2303   DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
2304   __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
2305   __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset));
2306   __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
2307   __ str(r2,
2308          FieldMemOperand(r0, JSGeneratorObject::kResultValuePropertyOffset));
2309   __ str(r3,
2310          FieldMemOperand(r0, JSGeneratorObject::kResultDonePropertyOffset));
2311 
2312   // Only the value field needs a write barrier, as the other values are in the
2313   // root set.
2314   __ RecordWriteField(r0, JSGeneratorObject::kResultValuePropertyOffset,
2315                       r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
2316 }
2317 
2318 
EmitNamedPropertyLoad(Property * prop)2319 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2320   SetSourcePosition(prop->position());
2321   Literal* key = prop->key()->AsLiteral();
2322 
2323   __ mov(LoadDescriptor::NameRegister(), Operand(key->value()));
2324   if (FLAG_vector_ics) {
2325     __ mov(VectorLoadICDescriptor::SlotRegister(),
2326            Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2327     CallLoadIC(NOT_CONTEXTUAL);
2328   } else {
2329     CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
2330   }
2331 }
2332 
2333 
EmitNamedSuperPropertyLoad(Property * prop)2334 void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) {
2335   SetSourcePosition(prop->position());
2336   Literal* key = prop->key()->AsLiteral();
2337   DCHECK(!key->value()->IsSmi());
2338   DCHECK(prop->IsSuperAccess());
2339 
2340   SuperReference* super_ref = prop->obj()->AsSuperReference();
2341   EmitLoadHomeObject(super_ref);
2342   __ Push(r0);
2343   VisitForStackValue(super_ref->this_var());
2344   __ Push(key->value());
2345   __ CallRuntime(Runtime::kLoadFromSuper, 3);
2346 }
2347 
2348 
EmitKeyedPropertyLoad(Property * prop)2349 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2350   SetSourcePosition(prop->position());
2351   Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code();
2352   if (FLAG_vector_ics) {
2353     __ mov(VectorLoadICDescriptor::SlotRegister(),
2354            Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2355     CallIC(ic);
2356   } else {
2357     CallIC(ic, prop->PropertyFeedbackId());
2358   }
2359 }
2360 
2361 
EmitInlineSmiBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode,Expression * left_expr,Expression * right_expr)2362 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2363                                               Token::Value op,
2364                                               OverwriteMode mode,
2365                                               Expression* left_expr,
2366                                               Expression* right_expr) {
2367   Label done, smi_case, stub_call;
2368 
2369   Register scratch1 = r2;
2370   Register scratch2 = r3;
2371 
2372   // Get the arguments.
2373   Register left = r1;
2374   Register right = r0;
2375   __ pop(left);
2376 
2377   // Perform combined smi check on both operands.
2378   __ orr(scratch1, left, Operand(right));
2379   STATIC_ASSERT(kSmiTag == 0);
2380   JumpPatchSite patch_site(masm_);
2381   patch_site.EmitJumpIfSmi(scratch1, &smi_case);
2382 
2383   __ bind(&stub_call);
2384   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2385   CallIC(code, expr->BinaryOperationFeedbackId());
2386   patch_site.EmitPatchInfo();
2387   __ jmp(&done);
2388 
2389   __ bind(&smi_case);
2390   // Smi case. This code works the same way as the smi-smi case in the type
2391   // recording binary operation stub, see
2392   switch (op) {
2393     case Token::SAR:
2394       __ GetLeastBitsFromSmi(scratch1, right, 5);
2395       __ mov(right, Operand(left, ASR, scratch1));
2396       __ bic(right, right, Operand(kSmiTagMask));
2397       break;
2398     case Token::SHL: {
2399       __ SmiUntag(scratch1, left);
2400       __ GetLeastBitsFromSmi(scratch2, right, 5);
2401       __ mov(scratch1, Operand(scratch1, LSL, scratch2));
2402       __ TrySmiTag(right, scratch1, &stub_call);
2403       break;
2404     }
2405     case Token::SHR: {
2406       __ SmiUntag(scratch1, left);
2407       __ GetLeastBitsFromSmi(scratch2, right, 5);
2408       __ mov(scratch1, Operand(scratch1, LSR, scratch2));
2409       __ tst(scratch1, Operand(0xc0000000));
2410       __ b(ne, &stub_call);
2411       __ SmiTag(right, scratch1);
2412       break;
2413     }
2414     case Token::ADD:
2415       __ add(scratch1, left, Operand(right), SetCC);
2416       __ b(vs, &stub_call);
2417       __ mov(right, scratch1);
2418       break;
2419     case Token::SUB:
2420       __ sub(scratch1, left, Operand(right), SetCC);
2421       __ b(vs, &stub_call);
2422       __ mov(right, scratch1);
2423       break;
2424     case Token::MUL: {
2425       __ SmiUntag(ip, right);
2426       __ smull(scratch1, scratch2, left, ip);
2427       __ mov(ip, Operand(scratch1, ASR, 31));
2428       __ cmp(ip, Operand(scratch2));
2429       __ b(ne, &stub_call);
2430       __ cmp(scratch1, Operand::Zero());
2431       __ mov(right, Operand(scratch1), LeaveCC, ne);
2432       __ b(ne, &done);
2433       __ add(scratch2, right, Operand(left), SetCC);
2434       __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl);
2435       __ b(mi, &stub_call);
2436       break;
2437     }
2438     case Token::BIT_OR:
2439       __ orr(right, left, Operand(right));
2440       break;
2441     case Token::BIT_AND:
2442       __ and_(right, left, Operand(right));
2443       break;
2444     case Token::BIT_XOR:
2445       __ eor(right, left, Operand(right));
2446       break;
2447     default:
2448       UNREACHABLE();
2449   }
2450 
2451   __ bind(&done);
2452   context()->Plug(r0);
2453 }
2454 
2455 
EmitBinaryOp(BinaryOperation * expr,Token::Value op,OverwriteMode mode)2456 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2457                                      Token::Value op,
2458                                      OverwriteMode mode) {
2459   __ pop(r1);
2460   Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op, mode).code();
2461   JumpPatchSite patch_site(masm_);    // unbound, signals no inlined smi code.
2462   CallIC(code, expr->BinaryOperationFeedbackId());
2463   patch_site.EmitPatchInfo();
2464   context()->Plug(r0);
2465 }
2466 
2467 
EmitAssignment(Expression * expr)2468 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2469   DCHECK(expr->IsValidReferenceExpression());
2470 
2471   // Left-hand side can only be a property, a global or a (parameter or local)
2472   // slot.
2473   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2474   LhsKind assign_type = VARIABLE;
2475   Property* prop = expr->AsProperty();
2476   if (prop != NULL) {
2477     assign_type = (prop->key()->IsPropertyName())
2478         ? NAMED_PROPERTY
2479         : KEYED_PROPERTY;
2480   }
2481 
2482   switch (assign_type) {
2483     case VARIABLE: {
2484       Variable* var = expr->AsVariableProxy()->var();
2485       EffectContext context(this);
2486       EmitVariableAssignment(var, Token::ASSIGN);
2487       break;
2488     }
2489     case NAMED_PROPERTY: {
2490       __ push(r0);  // Preserve value.
2491       VisitForAccumulatorValue(prop->obj());
2492       __ Move(StoreDescriptor::ReceiverRegister(), r0);
2493       __ pop(StoreDescriptor::ValueRegister());  // Restore value.
2494       __ mov(StoreDescriptor::NameRegister(),
2495              Operand(prop->key()->AsLiteral()->value()));
2496       CallStoreIC();
2497       break;
2498     }
2499     case KEYED_PROPERTY: {
2500       __ push(r0);  // Preserve value.
2501       VisitForStackValue(prop->obj());
2502       VisitForAccumulatorValue(prop->key());
2503       __ Move(StoreDescriptor::NameRegister(), r0);
2504       __ Pop(StoreDescriptor::ValueRegister(),
2505              StoreDescriptor::ReceiverRegister());
2506       Handle<Code> ic =
2507           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2508       CallIC(ic);
2509       break;
2510     }
2511   }
2512   context()->Plug(r0);
2513 }
2514 
2515 
EmitStoreToStackLocalOrContextSlot(Variable * var,MemOperand location)2516 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2517     Variable* var, MemOperand location) {
2518   __ str(result_register(), location);
2519   if (var->IsContextSlot()) {
2520     // RecordWrite may destroy all its register arguments.
2521     __ mov(r3, result_register());
2522     int offset = Context::SlotOffset(var->index());
2523     __ RecordWriteContextSlot(
2524         r1, offset, r3, r2, kLRHasBeenSaved, kDontSaveFPRegs);
2525   }
2526 }
2527 
2528 
EmitVariableAssignment(Variable * var,Token::Value op)2529 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
2530   if (var->IsUnallocated()) {
2531     // Global var, const, or let.
2532     __ mov(StoreDescriptor::NameRegister(), Operand(var->name()));
2533     __ ldr(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand());
2534     CallStoreIC();
2535 
2536   } else if (op == Token::INIT_CONST_LEGACY) {
2537     // Const initializers need a write barrier.
2538     DCHECK(!var->IsParameter());  // No const parameters.
2539     if (var->IsLookupSlot()) {
2540       __ push(r0);
2541       __ mov(r0, Operand(var->name()));
2542       __ Push(cp, r0);  // Context and name.
2543       __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2544     } else {
2545       DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2546       Label skip;
2547       MemOperand location = VarOperand(var, r1);
2548       __ ldr(r2, location);
2549       __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
2550       __ b(ne, &skip);
2551       EmitStoreToStackLocalOrContextSlot(var, location);
2552       __ bind(&skip);
2553     }
2554 
2555   } else if (var->mode() == LET && op != Token::INIT_LET) {
2556     // Non-initializing assignment to let variable needs a write barrier.
2557     DCHECK(!var->IsLookupSlot());
2558     DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2559     Label assign;
2560     MemOperand location = VarOperand(var, r1);
2561     __ ldr(r3, location);
2562     __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
2563     __ b(ne, &assign);
2564     __ mov(r3, Operand(var->name()));
2565     __ push(r3);
2566     __ CallRuntime(Runtime::kThrowReferenceError, 1);
2567     // Perform the assignment.
2568     __ bind(&assign);
2569     EmitStoreToStackLocalOrContextSlot(var, location);
2570 
2571   } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2572     if (var->IsLookupSlot()) {
2573       // Assignment to var.
2574       __ push(r0);  // Value.
2575       __ mov(r1, Operand(var->name()));
2576       __ mov(r0, Operand(Smi::FromInt(strict_mode())));
2577       __ Push(cp, r1, r0);  // Context, name, strict mode.
2578       __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2579     } else {
2580       // Assignment to var or initializing assignment to let/const in harmony
2581       // mode.
2582       DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
2583       MemOperand location = VarOperand(var, r1);
2584       if (generate_debug_code_ && op == Token::INIT_LET) {
2585         // Check for an uninitialized let binding.
2586         __ ldr(r2, location);
2587         __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
2588         __ Check(eq, kLetBindingReInitialization);
2589       }
2590       EmitStoreToStackLocalOrContextSlot(var, location);
2591     }
2592   }
2593   // Non-initializing assignments to consts are ignored.
2594 }
2595 
2596 
EmitNamedPropertyAssignment(Assignment * expr)2597 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2598   // Assignment to a property, using a named store IC.
2599   Property* prop = expr->target()->AsProperty();
2600   DCHECK(prop != NULL);
2601   DCHECK(prop->key()->IsLiteral());
2602 
2603   // Record source code position before IC call.
2604   SetSourcePosition(expr->position());
2605   __ mov(StoreDescriptor::NameRegister(),
2606          Operand(prop->key()->AsLiteral()->value()));
2607   __ pop(StoreDescriptor::ReceiverRegister());
2608   CallStoreIC(expr->AssignmentFeedbackId());
2609 
2610   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2611   context()->Plug(r0);
2612 }
2613 
2614 
EmitKeyedPropertyAssignment(Assignment * expr)2615 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2616   // Assignment to a property, using a keyed store IC.
2617 
2618   // Record source code position before IC call.
2619   SetSourcePosition(expr->position());
2620   __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister());
2621   DCHECK(StoreDescriptor::ValueRegister().is(r0));
2622 
2623   Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
2624   CallIC(ic, expr->AssignmentFeedbackId());
2625 
2626   PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2627   context()->Plug(r0);
2628 }
2629 
2630 
VisitProperty(Property * expr)2631 void FullCodeGenerator::VisitProperty(Property* expr) {
2632   Comment cmnt(masm_, "[ Property");
2633   Expression* key = expr->key();
2634 
2635   if (key->IsPropertyName()) {
2636     if (!expr->IsSuperAccess()) {
2637       VisitForAccumulatorValue(expr->obj());
2638       __ Move(LoadDescriptor::ReceiverRegister(), r0);
2639       EmitNamedPropertyLoad(expr);
2640     } else {
2641       EmitNamedSuperPropertyLoad(expr);
2642     }
2643     PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2644     context()->Plug(r0);
2645   } else {
2646     VisitForStackValue(expr->obj());
2647     VisitForAccumulatorValue(expr->key());
2648     __ Move(LoadDescriptor::NameRegister(), r0);
2649     __ pop(LoadDescriptor::ReceiverRegister());
2650     EmitKeyedPropertyLoad(expr);
2651     context()->Plug(r0);
2652   }
2653 }
2654 
2655 
CallIC(Handle<Code> code,TypeFeedbackId ast_id)2656 void FullCodeGenerator::CallIC(Handle<Code> code,
2657                                TypeFeedbackId ast_id) {
2658   ic_total_count_++;
2659   // All calls must have a predictable size in full-codegen code to ensure that
2660   // the debugger can patch them correctly.
2661   __ Call(code, RelocInfo::CODE_TARGET, ast_id, al,
2662           NEVER_INLINE_TARGET_ADDRESS);
2663 }
2664 
2665 
2666 // Code common for calls using the IC.
EmitCallWithLoadIC(Call * expr)2667 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2668   Expression* callee = expr->expression();
2669 
2670   CallICState::CallType call_type =
2671       callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD;
2672 
2673   // Get the target function.
2674   if (call_type == CallICState::FUNCTION) {
2675     { StackValueContext context(this);
2676       EmitVariableLoad(callee->AsVariableProxy());
2677       PrepareForBailout(callee, NO_REGISTERS);
2678     }
2679     // Push undefined as receiver. This is patched in the method prologue if it
2680     // is a sloppy mode method.
2681     __ Push(isolate()->factory()->undefined_value());
2682   } else {
2683     // Load the function from the receiver.
2684     DCHECK(callee->IsProperty());
2685     DCHECK(!callee->AsProperty()->IsSuperAccess());
2686     __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2687     EmitNamedPropertyLoad(callee->AsProperty());
2688     PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2689     // Push the target function under the receiver.
2690     __ ldr(ip, MemOperand(sp, 0));
2691     __ push(ip);
2692     __ str(r0, MemOperand(sp, kPointerSize));
2693   }
2694 
2695   EmitCall(expr, call_type);
2696 }
2697 
2698 
EmitSuperCallWithLoadIC(Call * expr)2699 void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) {
2700   Expression* callee = expr->expression();
2701   DCHECK(callee->IsProperty());
2702   Property* prop = callee->AsProperty();
2703   DCHECK(prop->IsSuperAccess());
2704 
2705   SetSourcePosition(prop->position());
2706   Literal* key = prop->key()->AsLiteral();
2707   DCHECK(!key->value()->IsSmi());
2708   // Load the function from the receiver.
2709   const Register scratch = r1;
2710   SuperReference* super_ref = prop->obj()->AsSuperReference();
2711   EmitLoadHomeObject(super_ref);
2712   __ Push(r0);
2713   VisitForAccumulatorValue(super_ref->this_var());
2714   __ Push(r0);
2715   __ ldr(scratch, MemOperand(sp, kPointerSize));
2716   __ Push(scratch);
2717   __ Push(r0);
2718   __ Push(key->value());
2719 
2720   // Stack here:
2721   //  - home_object
2722   //  - this (receiver)
2723   //  - home_object <-- LoadFromSuper will pop here and below.
2724   //  - this (receiver)
2725   //  - key
2726   __ CallRuntime(Runtime::kLoadFromSuper, 3);
2727 
2728   // Replace home_object with target function.
2729   __ str(r0, MemOperand(sp, kPointerSize));
2730 
2731   // Stack here:
2732   // - target function
2733   // - this (receiver)
2734   EmitCall(expr, CallICState::METHOD);
2735 }
2736 
2737 
2738 // Code common for calls using the IC.
EmitKeyedCallWithLoadIC(Call * expr,Expression * key)2739 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2740                                                 Expression* key) {
2741   // Load the key.
2742   VisitForAccumulatorValue(key);
2743 
2744   Expression* callee = expr->expression();
2745 
2746   // Load the function from the receiver.
2747   DCHECK(callee->IsProperty());
2748   __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
2749   __ Move(LoadDescriptor::NameRegister(), r0);
2750   EmitKeyedPropertyLoad(callee->AsProperty());
2751   PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2752 
2753   // Push the target function under the receiver.
2754   __ ldr(ip, MemOperand(sp, 0));
2755   __ push(ip);
2756   __ str(r0, MemOperand(sp, kPointerSize));
2757 
2758   EmitCall(expr, CallICState::METHOD);
2759 }
2760 
2761 
EmitCall(Call * expr,CallICState::CallType call_type)2762 void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) {
2763   // Load the arguments.
2764   ZoneList<Expression*>* args = expr->arguments();
2765   int arg_count = args->length();
2766   { PreservePositionScope scope(masm()->positions_recorder());
2767     for (int i = 0; i < arg_count; i++) {
2768       VisitForStackValue(args->at(i));
2769     }
2770   }
2771 
2772   // Record source position of the IC call.
2773   SetSourcePosition(expr->position());
2774   Handle<Code> ic = CallIC::initialize_stub(
2775       isolate(), arg_count, call_type);
2776   __ mov(r3, Operand(Smi::FromInt(expr->CallFeedbackSlot())));
2777   __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2778   // Don't assign a type feedback id to the IC, since type feedback is provided
2779   // by the vector above.
2780   CallIC(ic);
2781 
2782   RecordJSReturnSite(expr);
2783   // Restore context register.
2784   __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2785   context()->DropAndPlug(1, r0);
2786 }
2787 
2788 
EmitResolvePossiblyDirectEval(int arg_count)2789 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2790   // r5: copy of the first argument or undefined if it doesn't exist.
2791   if (arg_count > 0) {
2792     __ ldr(r5, MemOperand(sp, arg_count * kPointerSize));
2793   } else {
2794     __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2795   }
2796 
2797   // r4: the receiver of the enclosing function.
2798   __ ldr(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2799 
2800   // r3: the receiver of the enclosing function.
2801   int receiver_offset = 2 + info_->scope()->num_parameters();
2802   __ ldr(r3, MemOperand(fp, receiver_offset * kPointerSize));
2803 
2804   // r2: strict mode.
2805   __ mov(r2, Operand(Smi::FromInt(strict_mode())));
2806 
2807   // r1: the start position of the scope the calls resides in.
2808   __ mov(r1, Operand(Smi::FromInt(scope()->start_position())));
2809 
2810   // Do the runtime call.
2811   __ Push(r5);
2812   __ Push(r4, r3, r2, r1);
2813   __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6);
2814 }
2815 
2816 
VisitCall(Call * expr)2817 void FullCodeGenerator::VisitCall(Call* expr) {
2818 #ifdef DEBUG
2819   // We want to verify that RecordJSReturnSite gets called on all paths
2820   // through this function.  Avoid early returns.
2821   expr->return_is_recorded_ = false;
2822 #endif
2823 
2824   Comment cmnt(masm_, "[ Call");
2825   Expression* callee = expr->expression();
2826   Call::CallType call_type = expr->GetCallType(isolate());
2827 
2828   if (call_type == Call::POSSIBLY_EVAL_CALL) {
2829     // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2830     // to resolve the function we need to call and the receiver of the
2831     // call.  Then we call the resolved function using the given
2832     // arguments.
2833     ZoneList<Expression*>* args = expr->arguments();
2834     int arg_count = args->length();
2835 
2836     { PreservePositionScope pos_scope(masm()->positions_recorder());
2837       VisitForStackValue(callee);
2838       __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
2839       __ push(r2);  // Reserved receiver slot.
2840 
2841       // Push the arguments.
2842       for (int i = 0; i < arg_count; i++) {
2843         VisitForStackValue(args->at(i));
2844       }
2845 
2846       // Push a copy of the function (found below the arguments) and
2847       // resolve eval.
2848       __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2849       __ push(r1);
2850       EmitResolvePossiblyDirectEval(arg_count);
2851 
2852       // The runtime call returns a pair of values in r0 (function) and
2853       // r1 (receiver). Touch up the stack with the right values.
2854       __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize));
2855       __ str(r1, MemOperand(sp, arg_count * kPointerSize));
2856     }
2857 
2858     // Record source position for debugger.
2859     SetSourcePosition(expr->position());
2860     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2861     __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2862     __ CallStub(&stub);
2863     RecordJSReturnSite(expr);
2864     // Restore context register.
2865     __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2866     context()->DropAndPlug(1, r0);
2867   } else if (call_type == Call::GLOBAL_CALL) {
2868     EmitCallWithLoadIC(expr);
2869 
2870   } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2871     // Call to a lookup slot (dynamically introduced variable).
2872     VariableProxy* proxy = callee->AsVariableProxy();
2873     Label slow, done;
2874 
2875     { PreservePositionScope scope(masm()->positions_recorder());
2876       // Generate code for loading from variables potentially shadowed
2877       // by eval-introduced variables.
2878       EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2879     }
2880 
2881     __ bind(&slow);
2882     // Call the runtime to find the function to call (returned in r0)
2883     // and the object holding it (returned in edx).
2884     DCHECK(!context_register().is(r2));
2885     __ mov(r2, Operand(proxy->name()));
2886     __ Push(context_register(), r2);
2887     __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2888     __ Push(r0, r1);  // Function, receiver.
2889 
2890     // If fast case code has been generated, emit code to push the
2891     // function and receiver and have the slow path jump around this
2892     // code.
2893     if (done.is_linked()) {
2894       Label call;
2895       __ b(&call);
2896       __ bind(&done);
2897       // Push function.
2898       __ push(r0);
2899       // The receiver is implicitly the global receiver. Indicate this
2900       // by passing the hole to the call function stub.
2901       __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
2902       __ push(r1);
2903       __ bind(&call);
2904     }
2905 
2906     // The receiver is either the global receiver or an object found
2907     // by LoadContextSlot.
2908     EmitCall(expr);
2909   } else if (call_type == Call::PROPERTY_CALL) {
2910     Property* property = callee->AsProperty();
2911     bool is_named_call = property->key()->IsPropertyName();
2912     // super.x() is handled in EmitCallWithLoadIC.
2913     if (property->IsSuperAccess() && is_named_call) {
2914       EmitSuperCallWithLoadIC(expr);
2915     } else {
2916       {
2917         PreservePositionScope scope(masm()->positions_recorder());
2918         VisitForStackValue(property->obj());
2919       }
2920       if (is_named_call) {
2921         EmitCallWithLoadIC(expr);
2922       } else {
2923         EmitKeyedCallWithLoadIC(expr, property->key());
2924       }
2925     }
2926   } else {
2927     DCHECK(call_type == Call::OTHER_CALL);
2928     // Call to an arbitrary expression not handled specially above.
2929     { PreservePositionScope scope(masm()->positions_recorder());
2930       VisitForStackValue(callee);
2931     }
2932     __ LoadRoot(r1, Heap::kUndefinedValueRootIndex);
2933     __ push(r1);
2934     // Emit function call.
2935     EmitCall(expr);
2936   }
2937 
2938 #ifdef DEBUG
2939   // RecordJSReturnSite should have been called.
2940   DCHECK(expr->return_is_recorded_);
2941 #endif
2942 }
2943 
2944 
VisitCallNew(CallNew * expr)2945 void FullCodeGenerator::VisitCallNew(CallNew* expr) {
2946   Comment cmnt(masm_, "[ CallNew");
2947   // According to ECMA-262, section 11.2.2, page 44, the function
2948   // expression in new calls must be evaluated before the
2949   // arguments.
2950 
2951   // Push constructor on the stack.  If it's not a function it's used as
2952   // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
2953   // ignored.
2954   VisitForStackValue(expr->expression());
2955 
2956   // Push the arguments ("left-to-right") on the stack.
2957   ZoneList<Expression*>* args = expr->arguments();
2958   int arg_count = args->length();
2959   for (int i = 0; i < arg_count; i++) {
2960     VisitForStackValue(args->at(i));
2961   }
2962 
2963   // Call the construct call builtin that handles allocation and
2964   // constructor invocation.
2965   SetSourcePosition(expr->position());
2966 
2967   // Load function and argument count into r1 and r0.
2968   __ mov(r0, Operand(arg_count));
2969   __ ldr(r1, MemOperand(sp, arg_count * kPointerSize));
2970 
2971   // Record call targets in unoptimized code.
2972   if (FLAG_pretenuring_call_new) {
2973     EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2974     DCHECK(expr->AllocationSiteFeedbackSlot() ==
2975            expr->CallNewFeedbackSlot() + 1);
2976   }
2977 
2978   __ Move(r2, FeedbackVector());
2979   __ mov(r3, Operand(Smi::FromInt(expr->CallNewFeedbackSlot())));
2980 
2981   CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2982   __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2983   PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2984   context()->Plug(r0);
2985 }
2986 
2987 
EmitIsSmi(CallRuntime * expr)2988 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2989   ZoneList<Expression*>* args = expr->arguments();
2990   DCHECK(args->length() == 1);
2991 
2992   VisitForAccumulatorValue(args->at(0));
2993 
2994   Label materialize_true, materialize_false;
2995   Label* if_true = NULL;
2996   Label* if_false = NULL;
2997   Label* fall_through = NULL;
2998   context()->PrepareTest(&materialize_true, &materialize_false,
2999                          &if_true, &if_false, &fall_through);
3000 
3001   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3002   __ SmiTst(r0);
3003   Split(eq, if_true, if_false, fall_through);
3004 
3005   context()->Plug(if_true, if_false);
3006 }
3007 
3008 
EmitIsNonNegativeSmi(CallRuntime * expr)3009 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
3010   ZoneList<Expression*>* args = expr->arguments();
3011   DCHECK(args->length() == 1);
3012 
3013   VisitForAccumulatorValue(args->at(0));
3014 
3015   Label materialize_true, materialize_false;
3016   Label* if_true = NULL;
3017   Label* if_false = NULL;
3018   Label* fall_through = NULL;
3019   context()->PrepareTest(&materialize_true, &materialize_false,
3020                          &if_true, &if_false, &fall_through);
3021 
3022   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3023   __ NonNegativeSmiTst(r0);
3024   Split(eq, if_true, if_false, fall_through);
3025 
3026   context()->Plug(if_true, if_false);
3027 }
3028 
3029 
EmitIsObject(CallRuntime * expr)3030 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
3031   ZoneList<Expression*>* args = expr->arguments();
3032   DCHECK(args->length() == 1);
3033 
3034   VisitForAccumulatorValue(args->at(0));
3035 
3036   Label materialize_true, materialize_false;
3037   Label* if_true = NULL;
3038   Label* if_false = NULL;
3039   Label* fall_through = NULL;
3040   context()->PrepareTest(&materialize_true, &materialize_false,
3041                          &if_true, &if_false, &fall_through);
3042 
3043   __ JumpIfSmi(r0, if_false);
3044   __ LoadRoot(ip, Heap::kNullValueRootIndex);
3045   __ cmp(r0, ip);
3046   __ b(eq, if_true);
3047   __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
3048   // Undetectable objects behave like undefined when tested with typeof.
3049   __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset));
3050   __ tst(r1, Operand(1 << Map::kIsUndetectable));
3051   __ b(ne, if_false);
3052   __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset));
3053   __ cmp(r1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
3054   __ b(lt, if_false);
3055   __ cmp(r1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
3056   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3057   Split(le, if_true, if_false, fall_through);
3058 
3059   context()->Plug(if_true, if_false);
3060 }
3061 
3062 
EmitIsSpecObject(CallRuntime * expr)3063 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
3064   ZoneList<Expression*>* args = expr->arguments();
3065   DCHECK(args->length() == 1);
3066 
3067   VisitForAccumulatorValue(args->at(0));
3068 
3069   Label materialize_true, materialize_false;
3070   Label* if_true = NULL;
3071   Label* if_false = NULL;
3072   Label* fall_through = NULL;
3073   context()->PrepareTest(&materialize_true, &materialize_false,
3074                          &if_true, &if_false, &fall_through);
3075 
3076   __ JumpIfSmi(r0, if_false);
3077   __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE);
3078   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3079   Split(ge, if_true, if_false, fall_through);
3080 
3081   context()->Plug(if_true, if_false);
3082 }
3083 
3084 
EmitIsUndetectableObject(CallRuntime * expr)3085 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
3086   ZoneList<Expression*>* args = expr->arguments();
3087   DCHECK(args->length() == 1);
3088 
3089   VisitForAccumulatorValue(args->at(0));
3090 
3091   Label materialize_true, materialize_false;
3092   Label* if_true = NULL;
3093   Label* if_false = NULL;
3094   Label* fall_through = NULL;
3095   context()->PrepareTest(&materialize_true, &materialize_false,
3096                          &if_true, &if_false, &fall_through);
3097 
3098   __ JumpIfSmi(r0, if_false);
3099   __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3100   __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset));
3101   __ tst(r1, Operand(1 << Map::kIsUndetectable));
3102   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3103   Split(ne, if_true, if_false, fall_through);
3104 
3105   context()->Plug(if_true, if_false);
3106 }
3107 
3108 
EmitIsStringWrapperSafeForDefaultValueOf(CallRuntime * expr)3109 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3110     CallRuntime* expr) {
3111   ZoneList<Expression*>* args = expr->arguments();
3112   DCHECK(args->length() == 1);
3113 
3114   VisitForAccumulatorValue(args->at(0));
3115 
3116   Label materialize_true, materialize_false, skip_lookup;
3117   Label* if_true = NULL;
3118   Label* if_false = NULL;
3119   Label* fall_through = NULL;
3120   context()->PrepareTest(&materialize_true, &materialize_false,
3121                          &if_true, &if_false, &fall_through);
3122 
3123   __ AssertNotSmi(r0);
3124 
3125   __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset));
3126   __ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset));
3127   __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3128   __ b(ne, &skip_lookup);
3129 
3130   // Check for fast case object. Generate false result for slow case object.
3131   __ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset));
3132   __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3133   __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
3134   __ cmp(r2, ip);
3135   __ b(eq, if_false);
3136 
3137   // Look for valueOf name in the descriptor array, and indicate false if
3138   // found. Since we omit an enumeration index check, if it is added via a
3139   // transition that shares its descriptor array, this is a false positive.
3140   Label entry, loop, done;
3141 
3142   // Skip loop if no descriptors are valid.
3143   __ NumberOfOwnDescriptors(r3, r1);
3144   __ cmp(r3, Operand::Zero());
3145   __ b(eq, &done);
3146 
3147   __ LoadInstanceDescriptors(r1, r4);
3148   // r4: descriptor array.
3149   // r3: valid entries in the descriptor array.
3150   __ mov(ip, Operand(DescriptorArray::kDescriptorSize));
3151   __ mul(r3, r3, ip);
3152   // Calculate location of the first key name.
3153   __ add(r4, r4, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
3154   // Calculate the end of the descriptor array.
3155   __ mov(r2, r4);
3156   __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2));
3157 
3158   // Loop through all the keys in the descriptor array. If one of these is the
3159   // string "valueOf" the result is false.
3160   // The use of ip to store the valueOf string assumes that it is not otherwise
3161   // used in the loop below.
3162   __ mov(ip, Operand(isolate()->factory()->value_of_string()));
3163   __ jmp(&entry);
3164   __ bind(&loop);
3165   __ ldr(r3, MemOperand(r4, 0));
3166   __ cmp(r3, ip);
3167   __ b(eq, if_false);
3168   __ add(r4, r4, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
3169   __ bind(&entry);
3170   __ cmp(r4, Operand(r2));
3171   __ b(ne, &loop);
3172 
3173   __ bind(&done);
3174 
3175   // Set the bit in the map to indicate that there is no local valueOf field.
3176   __ ldrb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
3177   __ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3178   __ strb(r2, FieldMemOperand(r1, Map::kBitField2Offset));
3179 
3180   __ bind(&skip_lookup);
3181 
3182   // If a valueOf property is not found on the object check that its
3183   // prototype is the un-modified String prototype. If not result is false.
3184   __ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset));
3185   __ JumpIfSmi(r2, if_false);
3186   __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
3187   __ ldr(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3188   __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset));
3189   __ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3190   __ cmp(r2, r3);
3191   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3192   Split(eq, if_true, if_false, fall_through);
3193 
3194   context()->Plug(if_true, if_false);
3195 }
3196 
3197 
EmitIsFunction(CallRuntime * expr)3198 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3199   ZoneList<Expression*>* args = expr->arguments();
3200   DCHECK(args->length() == 1);
3201 
3202   VisitForAccumulatorValue(args->at(0));
3203 
3204   Label materialize_true, materialize_false;
3205   Label* if_true = NULL;
3206   Label* if_false = NULL;
3207   Label* fall_through = NULL;
3208   context()->PrepareTest(&materialize_true, &materialize_false,
3209                          &if_true, &if_false, &fall_through);
3210 
3211   __ JumpIfSmi(r0, if_false);
3212   __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE);
3213   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3214   Split(eq, if_true, if_false, fall_through);
3215 
3216   context()->Plug(if_true, if_false);
3217 }
3218 
3219 
EmitIsMinusZero(CallRuntime * expr)3220 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3221   ZoneList<Expression*>* args = expr->arguments();
3222   DCHECK(args->length() == 1);
3223 
3224   VisitForAccumulatorValue(args->at(0));
3225 
3226   Label materialize_true, materialize_false;
3227   Label* if_true = NULL;
3228   Label* if_false = NULL;
3229   Label* fall_through = NULL;
3230   context()->PrepareTest(&materialize_true, &materialize_false,
3231                          &if_true, &if_false, &fall_through);
3232 
3233   __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
3234   __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
3235   __ ldr(r1, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
3236   __ cmp(r2, Operand(0x80000000));
3237   __ cmp(r1, Operand(0x00000000), eq);
3238 
3239   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3240   Split(eq, if_true, if_false, fall_through);
3241 
3242   context()->Plug(if_true, if_false);
3243 }
3244 
3245 
EmitIsArray(CallRuntime * expr)3246 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3247   ZoneList<Expression*>* args = expr->arguments();
3248   DCHECK(args->length() == 1);
3249 
3250   VisitForAccumulatorValue(args->at(0));
3251 
3252   Label materialize_true, materialize_false;
3253   Label* if_true = NULL;
3254   Label* if_false = NULL;
3255   Label* fall_through = NULL;
3256   context()->PrepareTest(&materialize_true, &materialize_false,
3257                          &if_true, &if_false, &fall_through);
3258 
3259   __ JumpIfSmi(r0, if_false);
3260   __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE);
3261   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3262   Split(eq, if_true, if_false, fall_through);
3263 
3264   context()->Plug(if_true, if_false);
3265 }
3266 
3267 
EmitIsRegExp(CallRuntime * expr)3268 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3269   ZoneList<Expression*>* args = expr->arguments();
3270   DCHECK(args->length() == 1);
3271 
3272   VisitForAccumulatorValue(args->at(0));
3273 
3274   Label materialize_true, materialize_false;
3275   Label* if_true = NULL;
3276   Label* if_false = NULL;
3277   Label* fall_through = NULL;
3278   context()->PrepareTest(&materialize_true, &materialize_false,
3279                          &if_true, &if_false, &fall_through);
3280 
3281   __ JumpIfSmi(r0, if_false);
3282   __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
3283   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3284   Split(eq, if_true, if_false, fall_through);
3285 
3286   context()->Plug(if_true, if_false);
3287 }
3288 
3289 
3290 
EmitIsConstructCall(CallRuntime * expr)3291 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3292   DCHECK(expr->arguments()->length() == 0);
3293 
3294   Label materialize_true, materialize_false;
3295   Label* if_true = NULL;
3296   Label* if_false = NULL;
3297   Label* fall_through = NULL;
3298   context()->PrepareTest(&materialize_true, &materialize_false,
3299                          &if_true, &if_false, &fall_through);
3300 
3301   // Get the frame pointer for the calling frame.
3302   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3303 
3304   // Skip the arguments adaptor frame if it exists.
3305   __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset));
3306   __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3307   __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset), eq);
3308 
3309   // Check the marker in the calling frame.
3310   __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset));
3311   __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3312   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3313   Split(eq, if_true, if_false, fall_through);
3314 
3315   context()->Plug(if_true, if_false);
3316 }
3317 
3318 
EmitObjectEquals(CallRuntime * expr)3319 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3320   ZoneList<Expression*>* args = expr->arguments();
3321   DCHECK(args->length() == 2);
3322 
3323   // Load the two objects into registers and perform the comparison.
3324   VisitForStackValue(args->at(0));
3325   VisitForAccumulatorValue(args->at(1));
3326 
3327   Label materialize_true, materialize_false;
3328   Label* if_true = NULL;
3329   Label* if_false = NULL;
3330   Label* fall_through = NULL;
3331   context()->PrepareTest(&materialize_true, &materialize_false,
3332                          &if_true, &if_false, &fall_through);
3333 
3334   __ pop(r1);
3335   __ cmp(r0, r1);
3336   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3337   Split(eq, if_true, if_false, fall_through);
3338 
3339   context()->Plug(if_true, if_false);
3340 }
3341 
3342 
EmitArguments(CallRuntime * expr)3343 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3344   ZoneList<Expression*>* args = expr->arguments();
3345   DCHECK(args->length() == 1);
3346 
3347   // ArgumentsAccessStub expects the key in edx and the formal
3348   // parameter count in r0.
3349   VisitForAccumulatorValue(args->at(0));
3350   __ mov(r1, r0);
3351   __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
3352   ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3353   __ CallStub(&stub);
3354   context()->Plug(r0);
3355 }
3356 
3357 
EmitArgumentsLength(CallRuntime * expr)3358 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3359   DCHECK(expr->arguments()->length() == 0);
3360 
3361   // Get the number of formal parameters.
3362   __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
3363 
3364   // Check if the calling frame is an arguments adaptor frame.
3365   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3366   __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
3367   __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3368 
3369   // Arguments adaptor case: Read the arguments length from the
3370   // adaptor frame.
3371   __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset), eq);
3372 
3373   context()->Plug(r0);
3374 }
3375 
3376 
EmitClassOf(CallRuntime * expr)3377 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3378   ZoneList<Expression*>* args = expr->arguments();
3379   DCHECK(args->length() == 1);
3380   Label done, null, function, non_function_constructor;
3381 
3382   VisitForAccumulatorValue(args->at(0));
3383 
3384   // If the object is a smi, we return null.
3385   __ JumpIfSmi(r0, &null);
3386 
3387   // Check that the object is a JS object but take special care of JS
3388   // functions to make sure they have 'Function' as their class.
3389   // Assume that there are only two callable types, and one of them is at
3390   // either end of the type range for JS object types. Saves extra comparisons.
3391   STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3392   __ CompareObjectType(r0, r0, r1, FIRST_SPEC_OBJECT_TYPE);
3393   // Map is now in r0.
3394   __ b(lt, &null);
3395   STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3396                 FIRST_SPEC_OBJECT_TYPE + 1);
3397   __ b(eq, &function);
3398 
3399   __ cmp(r1, Operand(LAST_SPEC_OBJECT_TYPE));
3400   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3401                 LAST_SPEC_OBJECT_TYPE - 1);
3402   __ b(eq, &function);
3403   // Assume that there is no larger type.
3404   STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3405 
3406   // Check if the constructor in the map is a JS function.
3407   __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset));
3408   __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
3409   __ b(ne, &non_function_constructor);
3410 
3411   // r0 now contains the constructor function. Grab the
3412   // instance class name from there.
3413   __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset));
3414   __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset));
3415   __ b(&done);
3416 
3417   // Functions have class 'Function'.
3418   __ bind(&function);
3419   __ LoadRoot(r0, Heap::kFunction_stringRootIndex);
3420   __ jmp(&done);
3421 
3422   // Objects with a non-function constructor have class 'Object'.
3423   __ bind(&non_function_constructor);
3424   __ LoadRoot(r0, Heap::kObject_stringRootIndex);
3425   __ jmp(&done);
3426 
3427   // Non-JS objects have class null.
3428   __ bind(&null);
3429   __ LoadRoot(r0, Heap::kNullValueRootIndex);
3430 
3431   // All done.
3432   __ bind(&done);
3433 
3434   context()->Plug(r0);
3435 }
3436 
3437 
EmitSubString(CallRuntime * expr)3438 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3439   // Load the arguments on the stack and call the stub.
3440   SubStringStub stub(isolate());
3441   ZoneList<Expression*>* args = expr->arguments();
3442   DCHECK(args->length() == 3);
3443   VisitForStackValue(args->at(0));
3444   VisitForStackValue(args->at(1));
3445   VisitForStackValue(args->at(2));
3446   __ CallStub(&stub);
3447   context()->Plug(r0);
3448 }
3449 
3450 
EmitRegExpExec(CallRuntime * expr)3451 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3452   // Load the arguments on the stack and call the stub.
3453   RegExpExecStub stub(isolate());
3454   ZoneList<Expression*>* args = expr->arguments();
3455   DCHECK(args->length() == 4);
3456   VisitForStackValue(args->at(0));
3457   VisitForStackValue(args->at(1));
3458   VisitForStackValue(args->at(2));
3459   VisitForStackValue(args->at(3));
3460   __ CallStub(&stub);
3461   context()->Plug(r0);
3462 }
3463 
3464 
EmitValueOf(CallRuntime * expr)3465 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3466   ZoneList<Expression*>* args = expr->arguments();
3467   DCHECK(args->length() == 1);
3468   VisitForAccumulatorValue(args->at(0));  // Load the object.
3469 
3470   Label done;
3471   // If the object is a smi return the object.
3472   __ JumpIfSmi(r0, &done);
3473   // If the object is not a value type, return the object.
3474   __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE);
3475   __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset), eq);
3476 
3477   __ bind(&done);
3478   context()->Plug(r0);
3479 }
3480 
3481 
EmitDateField(CallRuntime * expr)3482 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3483   ZoneList<Expression*>* args = expr->arguments();
3484   DCHECK(args->length() == 2);
3485   DCHECK_NE(NULL, args->at(1)->AsLiteral());
3486   Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3487 
3488   VisitForAccumulatorValue(args->at(0));  // Load the object.
3489 
3490   Label runtime, done, not_date_object;
3491   Register object = r0;
3492   Register result = r0;
3493   Register scratch0 = r9;
3494   Register scratch1 = r1;
3495 
3496   __ JumpIfSmi(object, &not_date_object);
3497   __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
3498   __ b(ne, &not_date_object);
3499 
3500   if (index->value() == 0) {
3501     __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
3502     __ jmp(&done);
3503   } else {
3504     if (index->value() < JSDate::kFirstUncachedField) {
3505       ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3506       __ mov(scratch1, Operand(stamp));
3507       __ ldr(scratch1, MemOperand(scratch1));
3508       __ ldr(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
3509       __ cmp(scratch1, scratch0);
3510       __ b(ne, &runtime);
3511       __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
3512                                              kPointerSize * index->value()));
3513       __ jmp(&done);
3514     }
3515     __ bind(&runtime);
3516     __ PrepareCallCFunction(2, scratch1);
3517     __ mov(r1, Operand(index));
3518     __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3519     __ jmp(&done);
3520   }
3521 
3522   __ bind(&not_date_object);
3523   __ CallRuntime(Runtime::kThrowNotDateError, 0);
3524   __ bind(&done);
3525   context()->Plug(r0);
3526 }
3527 
3528 
EmitOneByteSeqStringSetChar(CallRuntime * expr)3529 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3530   ZoneList<Expression*>* args = expr->arguments();
3531   DCHECK_EQ(3, args->length());
3532 
3533   Register string = r0;
3534   Register index = r1;
3535   Register value = r2;
3536 
3537   VisitForStackValue(args->at(0));        // index
3538   VisitForStackValue(args->at(1));        // value
3539   VisitForAccumulatorValue(args->at(2));  // string
3540   __ Pop(index, value);
3541 
3542   if (FLAG_debug_code) {
3543     __ SmiTst(value);
3544     __ Check(eq, kNonSmiValue);
3545     __ SmiTst(index);
3546     __ Check(eq, kNonSmiIndex);
3547     __ SmiUntag(index, index);
3548     static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3549     __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3550     __ SmiTag(index, index);
3551   }
3552 
3553   __ SmiUntag(value, value);
3554   __ add(ip,
3555          string,
3556          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3557   __ strb(value, MemOperand(ip, index, LSR, kSmiTagSize));
3558   context()->Plug(string);
3559 }
3560 
3561 
EmitTwoByteSeqStringSetChar(CallRuntime * expr)3562 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3563   ZoneList<Expression*>* args = expr->arguments();
3564   DCHECK_EQ(3, args->length());
3565 
3566   Register string = r0;
3567   Register index = r1;
3568   Register value = r2;
3569 
3570   VisitForStackValue(args->at(0));        // index
3571   VisitForStackValue(args->at(1));        // value
3572   VisitForAccumulatorValue(args->at(2));  // string
3573   __ Pop(index, value);
3574 
3575   if (FLAG_debug_code) {
3576     __ SmiTst(value);
3577     __ Check(eq, kNonSmiValue);
3578     __ SmiTst(index);
3579     __ Check(eq, kNonSmiIndex);
3580     __ SmiUntag(index, index);
3581     static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3582     __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3583     __ SmiTag(index, index);
3584   }
3585 
3586   __ SmiUntag(value, value);
3587   __ add(ip,
3588          string,
3589          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3590   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3591   __ strh(value, MemOperand(ip, index));
3592   context()->Plug(string);
3593 }
3594 
3595 
3596 
EmitMathPow(CallRuntime * expr)3597 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3598   // Load the arguments on the stack and call the runtime function.
3599   ZoneList<Expression*>* args = expr->arguments();
3600   DCHECK(args->length() == 2);
3601   VisitForStackValue(args->at(0));
3602   VisitForStackValue(args->at(1));
3603   MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3604   __ CallStub(&stub);
3605   context()->Plug(r0);
3606 }
3607 
3608 
EmitSetValueOf(CallRuntime * expr)3609 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3610   ZoneList<Expression*>* args = expr->arguments();
3611   DCHECK(args->length() == 2);
3612   VisitForStackValue(args->at(0));  // Load the object.
3613   VisitForAccumulatorValue(args->at(1));  // Load the value.
3614   __ pop(r1);  // r0 = value. r1 = object.
3615 
3616   Label done;
3617   // If the object is a smi, return the value.
3618   __ JumpIfSmi(r1, &done);
3619 
3620   // If the object is not a value type, return the value.
3621   __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE);
3622   __ b(ne, &done);
3623 
3624   // Store the value.
3625   __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset));
3626   // Update the write barrier.  Save the value as it will be
3627   // overwritten by the write barrier code and is needed afterward.
3628   __ mov(r2, r0);
3629   __ RecordWriteField(
3630       r1, JSValue::kValueOffset, r2, r3, kLRHasBeenSaved, kDontSaveFPRegs);
3631 
3632   __ bind(&done);
3633   context()->Plug(r0);
3634 }
3635 
3636 
EmitNumberToString(CallRuntime * expr)3637 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3638   ZoneList<Expression*>* args = expr->arguments();
3639   DCHECK_EQ(args->length(), 1);
3640   // Load the argument into r0 and call the stub.
3641   VisitForAccumulatorValue(args->at(0));
3642 
3643   NumberToStringStub stub(isolate());
3644   __ CallStub(&stub);
3645   context()->Plug(r0);
3646 }
3647 
3648 
EmitStringCharFromCode(CallRuntime * expr)3649 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3650   ZoneList<Expression*>* args = expr->arguments();
3651   DCHECK(args->length() == 1);
3652   VisitForAccumulatorValue(args->at(0));
3653 
3654   Label done;
3655   StringCharFromCodeGenerator generator(r0, r1);
3656   generator.GenerateFast(masm_);
3657   __ jmp(&done);
3658 
3659   NopRuntimeCallHelper call_helper;
3660   generator.GenerateSlow(masm_, call_helper);
3661 
3662   __ bind(&done);
3663   context()->Plug(r1);
3664 }
3665 
3666 
EmitStringCharCodeAt(CallRuntime * expr)3667 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3668   ZoneList<Expression*>* args = expr->arguments();
3669   DCHECK(args->length() == 2);
3670   VisitForStackValue(args->at(0));
3671   VisitForAccumulatorValue(args->at(1));
3672 
3673   Register object = r1;
3674   Register index = r0;
3675   Register result = r3;
3676 
3677   __ pop(object);
3678 
3679   Label need_conversion;
3680   Label index_out_of_range;
3681   Label done;
3682   StringCharCodeAtGenerator generator(object,
3683                                       index,
3684                                       result,
3685                                       &need_conversion,
3686                                       &need_conversion,
3687                                       &index_out_of_range,
3688                                       STRING_INDEX_IS_NUMBER);
3689   generator.GenerateFast(masm_);
3690   __ jmp(&done);
3691 
3692   __ bind(&index_out_of_range);
3693   // When the index is out of range, the spec requires us to return
3694   // NaN.
3695   __ LoadRoot(result, Heap::kNanValueRootIndex);
3696   __ jmp(&done);
3697 
3698   __ bind(&need_conversion);
3699   // Load the undefined value into the result register, which will
3700   // trigger conversion.
3701   __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3702   __ jmp(&done);
3703 
3704   NopRuntimeCallHelper call_helper;
3705   generator.GenerateSlow(masm_, call_helper);
3706 
3707   __ bind(&done);
3708   context()->Plug(result);
3709 }
3710 
3711 
EmitStringCharAt(CallRuntime * expr)3712 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3713   ZoneList<Expression*>* args = expr->arguments();
3714   DCHECK(args->length() == 2);
3715   VisitForStackValue(args->at(0));
3716   VisitForAccumulatorValue(args->at(1));
3717 
3718   Register object = r1;
3719   Register index = r0;
3720   Register scratch = r3;
3721   Register result = r0;
3722 
3723   __ pop(object);
3724 
3725   Label need_conversion;
3726   Label index_out_of_range;
3727   Label done;
3728   StringCharAtGenerator generator(object,
3729                                   index,
3730                                   scratch,
3731                                   result,
3732                                   &need_conversion,
3733                                   &need_conversion,
3734                                   &index_out_of_range,
3735                                   STRING_INDEX_IS_NUMBER);
3736   generator.GenerateFast(masm_);
3737   __ jmp(&done);
3738 
3739   __ bind(&index_out_of_range);
3740   // When the index is out of range, the spec requires us to return
3741   // the empty string.
3742   __ LoadRoot(result, Heap::kempty_stringRootIndex);
3743   __ jmp(&done);
3744 
3745   __ bind(&need_conversion);
3746   // Move smi zero into the result register, which will trigger
3747   // conversion.
3748   __ mov(result, Operand(Smi::FromInt(0)));
3749   __ jmp(&done);
3750 
3751   NopRuntimeCallHelper call_helper;
3752   generator.GenerateSlow(masm_, call_helper);
3753 
3754   __ bind(&done);
3755   context()->Plug(result);
3756 }
3757 
3758 
EmitStringAdd(CallRuntime * expr)3759 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3760   ZoneList<Expression*>* args = expr->arguments();
3761   DCHECK_EQ(2, args->length());
3762   VisitForStackValue(args->at(0));
3763   VisitForAccumulatorValue(args->at(1));
3764 
3765   __ pop(r1);
3766   StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3767   __ CallStub(&stub);
3768   context()->Plug(r0);
3769 }
3770 
3771 
EmitStringCompare(CallRuntime * expr)3772 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3773   ZoneList<Expression*>* args = expr->arguments();
3774   DCHECK_EQ(2, args->length());
3775   VisitForStackValue(args->at(0));
3776   VisitForStackValue(args->at(1));
3777 
3778   StringCompareStub stub(isolate());
3779   __ CallStub(&stub);
3780   context()->Plug(r0);
3781 }
3782 
3783 
EmitCallFunction(CallRuntime * expr)3784 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3785   ZoneList<Expression*>* args = expr->arguments();
3786   DCHECK(args->length() >= 2);
3787 
3788   int arg_count = args->length() - 2;  // 2 ~ receiver and function.
3789   for (int i = 0; i < arg_count + 1; i++) {
3790     VisitForStackValue(args->at(i));
3791   }
3792   VisitForAccumulatorValue(args->last());  // Function.
3793 
3794   Label runtime, done;
3795   // Check for non-function argument (including proxy).
3796   __ JumpIfSmi(r0, &runtime);
3797   __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE);
3798   __ b(ne, &runtime);
3799 
3800   // InvokeFunction requires the function in r1. Move it in there.
3801   __ mov(r1, result_register());
3802   ParameterCount count(arg_count);
3803   __ InvokeFunction(r1, count, CALL_FUNCTION, NullCallWrapper());
3804   __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3805   __ jmp(&done);
3806 
3807   __ bind(&runtime);
3808   __ push(r0);
3809   __ CallRuntime(Runtime::kCall, args->length());
3810   __ bind(&done);
3811 
3812   context()->Plug(r0);
3813 }
3814 
3815 
EmitRegExpConstructResult(CallRuntime * expr)3816 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3817   RegExpConstructResultStub stub(isolate());
3818   ZoneList<Expression*>* args = expr->arguments();
3819   DCHECK(args->length() == 3);
3820   VisitForStackValue(args->at(0));
3821   VisitForStackValue(args->at(1));
3822   VisitForAccumulatorValue(args->at(2));
3823   __ pop(r1);
3824   __ pop(r2);
3825   __ CallStub(&stub);
3826   context()->Plug(r0);
3827 }
3828 
3829 
EmitGetFromCache(CallRuntime * expr)3830 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3831   ZoneList<Expression*>* args = expr->arguments();
3832   DCHECK_EQ(2, args->length());
3833   DCHECK_NE(NULL, args->at(0)->AsLiteral());
3834   int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3835 
3836   Handle<FixedArray> jsfunction_result_caches(
3837       isolate()->native_context()->jsfunction_result_caches());
3838   if (jsfunction_result_caches->length() <= cache_id) {
3839     __ Abort(kAttemptToUseUndefinedCache);
3840     __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
3841     context()->Plug(r0);
3842     return;
3843   }
3844 
3845   VisitForAccumulatorValue(args->at(1));
3846 
3847   Register key = r0;
3848   Register cache = r1;
3849   __ ldr(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3850   __ ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3851   __ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3852   __ ldr(cache,
3853          FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
3854 
3855 
3856   Label done, not_found;
3857   __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
3858   // r2 now holds finger offset as a smi.
3859   __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3860   // r3 now points to the start of fixed array elements.
3861   __ ldr(r2, MemOperand::PointerAddressFromSmiKey(r3, r2, PreIndex));
3862   // Note side effect of PreIndex: r3 now points to the key of the pair.
3863   __ cmp(key, r2);
3864   __ b(ne, &not_found);
3865 
3866   __ ldr(r0, MemOperand(r3, kPointerSize));
3867   __ b(&done);
3868 
3869   __ bind(&not_found);
3870   // Call runtime to perform the lookup.
3871   __ Push(cache, key);
3872   __ CallRuntime(Runtime::kGetFromCache, 2);
3873 
3874   __ bind(&done);
3875   context()->Plug(r0);
3876 }
3877 
3878 
EmitHasCachedArrayIndex(CallRuntime * expr)3879 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3880   ZoneList<Expression*>* args = expr->arguments();
3881   VisitForAccumulatorValue(args->at(0));
3882 
3883   Label materialize_true, materialize_false;
3884   Label* if_true = NULL;
3885   Label* if_false = NULL;
3886   Label* fall_through = NULL;
3887   context()->PrepareTest(&materialize_true, &materialize_false,
3888                          &if_true, &if_false, &fall_through);
3889 
3890   __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
3891   __ tst(r0, Operand(String::kContainsCachedArrayIndexMask));
3892   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3893   Split(eq, if_true, if_false, fall_through);
3894 
3895   context()->Plug(if_true, if_false);
3896 }
3897 
3898 
EmitGetCachedArrayIndex(CallRuntime * expr)3899 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3900   ZoneList<Expression*>* args = expr->arguments();
3901   DCHECK(args->length() == 1);
3902   VisitForAccumulatorValue(args->at(0));
3903 
3904   __ AssertString(r0);
3905 
3906   __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset));
3907   __ IndexFromHash(r0, r0);
3908 
3909   context()->Plug(r0);
3910 }
3911 
3912 
EmitFastOneByteArrayJoin(CallRuntime * expr)3913 void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) {
3914   Label bailout, done, one_char_separator, long_separator, non_trivial_array,
3915       not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
3916       one_char_separator_loop_entry, long_separator_loop;
3917   ZoneList<Expression*>* args = expr->arguments();
3918   DCHECK(args->length() == 2);
3919   VisitForStackValue(args->at(1));
3920   VisitForAccumulatorValue(args->at(0));
3921 
3922   // All aliases of the same register have disjoint lifetimes.
3923   Register array = r0;
3924   Register elements = no_reg;  // Will be r0.
3925   Register result = no_reg;  // Will be r0.
3926   Register separator = r1;
3927   Register array_length = r2;
3928   Register result_pos = no_reg;  // Will be r2
3929   Register string_length = r3;
3930   Register string = r4;
3931   Register element = r5;
3932   Register elements_end = r6;
3933   Register scratch = r9;
3934 
3935   // Separator operand is on the stack.
3936   __ pop(separator);
3937 
3938   // Check that the array is a JSArray.
3939   __ JumpIfSmi(array, &bailout);
3940   __ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE);
3941   __ b(ne, &bailout);
3942 
3943   // Check that the array has fast elements.
3944   __ CheckFastElements(scratch, array_length, &bailout);
3945 
3946   // If the array has length zero, return the empty string.
3947   __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
3948   __ SmiUntag(array_length, SetCC);
3949   __ b(ne, &non_trivial_array);
3950   __ LoadRoot(r0, Heap::kempty_stringRootIndex);
3951   __ b(&done);
3952 
3953   __ bind(&non_trivial_array);
3954 
3955   // Get the FixedArray containing array's elements.
3956   elements = array;
3957   __ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3958   array = no_reg;  // End of array's live range.
3959 
3960   // Check that all array elements are sequential one-byte strings, and
3961   // accumulate the sum of their lengths, as a smi-encoded value.
3962   __ mov(string_length, Operand::Zero());
3963   __ add(element,
3964          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3965   __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
3966   // Loop condition: while (element < elements_end).
3967   // Live values in registers:
3968   //   elements: Fixed array of strings.
3969   //   array_length: Length of the fixed array of strings (not smi)
3970   //   separator: Separator string
3971   //   string_length: Accumulated sum of string lengths (smi).
3972   //   element: Current array element.
3973   //   elements_end: Array end.
3974   if (generate_debug_code_) {
3975     __ cmp(array_length, Operand::Zero());
3976     __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin);
3977   }
3978   __ bind(&loop);
3979   __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
3980   __ JumpIfSmi(string, &bailout);
3981   __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3982   __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3983   __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch, scratch, &bailout);
3984   __ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
3985   __ add(string_length, string_length, Operand(scratch), SetCC);
3986   __ b(vs, &bailout);
3987   __ cmp(element, elements_end);
3988   __ b(lt, &loop);
3989 
3990   // If array_length is 1, return elements[0], a string.
3991   __ cmp(array_length, Operand(1));
3992   __ b(ne, &not_size_one_array);
3993   __ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize));
3994   __ b(&done);
3995 
3996   __ bind(&not_size_one_array);
3997 
3998   // Live values in registers:
3999   //   separator: Separator string
4000   //   array_length: Length of the array.
4001   //   string_length: Sum of string lengths (smi).
4002   //   elements: FixedArray of strings.
4003 
4004   // Check that the separator is a flat one-byte string.
4005   __ JumpIfSmi(separator, &bailout);
4006   __ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset));
4007   __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
4008   __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch, scratch, &bailout);
4009 
4010   // Add (separator length times array_length) - separator length to the
4011   // string_length to get the length of the result string. array_length is not
4012   // smi but the other values are, so the result is a smi
4013   __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
4014   __ sub(string_length, string_length, Operand(scratch));
4015   __ smull(scratch, ip, array_length, scratch);
4016   // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
4017   // zero.
4018   __ cmp(ip, Operand::Zero());
4019   __ b(ne, &bailout);
4020   __ tst(scratch, Operand(0x80000000));
4021   __ b(ne, &bailout);
4022   __ add(string_length, string_length, Operand(scratch), SetCC);
4023   __ b(vs, &bailout);
4024   __ SmiUntag(string_length);
4025 
4026   // Get first element in the array to free up the elements register to be used
4027   // for the result.
4028   __ add(element,
4029          elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4030   result = elements;  // End of live range for elements.
4031   elements = no_reg;
4032   // Live values in registers:
4033   //   element: First array element
4034   //   separator: Separator string
4035   //   string_length: Length of result string (not smi)
4036   //   array_length: Length of the array.
4037   __ AllocateOneByteString(result, string_length, scratch,
4038                            string,        // used as scratch
4039                            elements_end,  // used as scratch
4040                            &bailout);
4041   // Prepare for looping. Set up elements_end to end of the array. Set
4042   // result_pos to the position of the result where to write the first
4043   // character.
4044   __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2));
4045   result_pos = array_length;  // End of live range for array_length.
4046   array_length = no_reg;
4047   __ add(result_pos,
4048          result,
4049          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4050 
4051   // Check the length of the separator.
4052   __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
4053   __ cmp(scratch, Operand(Smi::FromInt(1)));
4054   __ b(eq, &one_char_separator);
4055   __ b(gt, &long_separator);
4056 
4057   // Empty separator case
4058   __ bind(&empty_separator_loop);
4059   // Live values in registers:
4060   //   result_pos: the position to which we are currently copying characters.
4061   //   element: Current array element.
4062   //   elements_end: Array end.
4063 
4064   // Copy next array element to the result.
4065   __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4066   __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4067   __ SmiUntag(string_length);
4068   __ add(string,
4069          string,
4070          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4071   __ CopyBytes(string, result_pos, string_length, scratch);
4072   __ cmp(element, elements_end);
4073   __ b(lt, &empty_separator_loop);  // End while (element < elements_end).
4074   DCHECK(result.is(r0));
4075   __ b(&done);
4076 
4077   // One-character separator case
4078   __ bind(&one_char_separator);
4079   // Replace separator with its one-byte character value.
4080   __ ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
4081   // Jump into the loop after the code that copies the separator, so the first
4082   // element is not preceded by a separator
4083   __ jmp(&one_char_separator_loop_entry);
4084 
4085   __ bind(&one_char_separator_loop);
4086   // Live values in registers:
4087   //   result_pos: the position to which we are currently copying characters.
4088   //   element: Current array element.
4089   //   elements_end: Array end.
4090   //   separator: Single separator one-byte char (in lower byte).
4091 
4092   // Copy the separator character to the result.
4093   __ strb(separator, MemOperand(result_pos, 1, PostIndex));
4094 
4095   // Copy next array element to the result.
4096   __ bind(&one_char_separator_loop_entry);
4097   __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4098   __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4099   __ SmiUntag(string_length);
4100   __ add(string,
4101          string,
4102          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4103   __ CopyBytes(string, result_pos, string_length, scratch);
4104   __ cmp(element, elements_end);
4105   __ b(lt, &one_char_separator_loop);  // End while (element < elements_end).
4106   DCHECK(result.is(r0));
4107   __ b(&done);
4108 
4109   // Long separator case (separator is more than one character). Entry is at the
4110   // label long_separator below.
4111   __ bind(&long_separator_loop);
4112   // Live values in registers:
4113   //   result_pos: the position to which we are currently copying characters.
4114   //   element: Current array element.
4115   //   elements_end: Array end.
4116   //   separator: Separator string.
4117 
4118   // Copy the separator to the result.
4119   __ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset));
4120   __ SmiUntag(string_length);
4121   __ add(string,
4122          separator,
4123          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4124   __ CopyBytes(string, result_pos, string_length, scratch);
4125 
4126   __ bind(&long_separator);
4127   __ ldr(string, MemOperand(element, kPointerSize, PostIndex));
4128   __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset));
4129   __ SmiUntag(string_length);
4130   __ add(string,
4131          string,
4132          Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4133   __ CopyBytes(string, result_pos, string_length, scratch);
4134   __ cmp(element, elements_end);
4135   __ b(lt, &long_separator_loop);  // End while (element < elements_end).
4136   DCHECK(result.is(r0));
4137   __ b(&done);
4138 
4139   __ bind(&bailout);
4140   __ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
4141   __ bind(&done);
4142   context()->Plug(r0);
4143 }
4144 
4145 
EmitDebugIsActive(CallRuntime * expr)4146 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4147   DCHECK(expr->arguments()->length() == 0);
4148   ExternalReference debug_is_active =
4149       ExternalReference::debug_is_active_address(isolate());
4150   __ mov(ip, Operand(debug_is_active));
4151   __ ldrb(r0, MemOperand(ip));
4152   __ SmiTag(r0);
4153   context()->Plug(r0);
4154 }
4155 
4156 
VisitCallRuntime(CallRuntime * expr)4157 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4158   if (expr->function() != NULL &&
4159       expr->function()->intrinsic_type == Runtime::INLINE) {
4160     Comment cmnt(masm_, "[ InlineRuntimeCall");
4161     EmitInlineRuntimeCall(expr);
4162     return;
4163   }
4164 
4165   Comment cmnt(masm_, "[ CallRuntime");
4166   ZoneList<Expression*>* args = expr->arguments();
4167   int arg_count = args->length();
4168 
4169   if (expr->is_jsruntime()) {
4170     // Push the builtins object as the receiver.
4171     Register receiver = LoadDescriptor::ReceiverRegister();
4172     __ ldr(receiver, GlobalObjectOperand());
4173     __ ldr(receiver, FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
4174     __ push(receiver);
4175 
4176     // Load the function from the receiver.
4177     __ mov(LoadDescriptor::NameRegister(), Operand(expr->name()));
4178     if (FLAG_vector_ics) {
4179       __ mov(VectorLoadICDescriptor::SlotRegister(),
4180              Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot())));
4181       CallLoadIC(NOT_CONTEXTUAL);
4182     } else {
4183       CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
4184     }
4185 
4186     // Push the target function under the receiver.
4187     __ ldr(ip, MemOperand(sp, 0));
4188     __ push(ip);
4189     __ str(r0, MemOperand(sp, kPointerSize));
4190 
4191     // Push the arguments ("left-to-right").
4192     int arg_count = args->length();
4193     for (int i = 0; i < arg_count; i++) {
4194       VisitForStackValue(args->at(i));
4195     }
4196 
4197     // Record source position of the IC call.
4198     SetSourcePosition(expr->position());
4199     CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4200     __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
4201     __ CallStub(&stub);
4202 
4203     // Restore context register.
4204     __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4205 
4206     context()->DropAndPlug(1, r0);
4207   } else {
4208     // Push the arguments ("left-to-right").
4209     for (int i = 0; i < arg_count; i++) {
4210       VisitForStackValue(args->at(i));
4211     }
4212 
4213     // Call the C runtime function.
4214     __ CallRuntime(expr->function(), arg_count);
4215     context()->Plug(r0);
4216   }
4217 }
4218 
4219 
VisitUnaryOperation(UnaryOperation * expr)4220 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4221   switch (expr->op()) {
4222     case Token::DELETE: {
4223       Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4224       Property* property = expr->expression()->AsProperty();
4225       VariableProxy* proxy = expr->expression()->AsVariableProxy();
4226 
4227       if (property != NULL) {
4228         VisitForStackValue(property->obj());
4229         VisitForStackValue(property->key());
4230         __ mov(r1, Operand(Smi::FromInt(strict_mode())));
4231         __ push(r1);
4232         __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4233         context()->Plug(r0);
4234       } else if (proxy != NULL) {
4235         Variable* var = proxy->var();
4236         // Delete of an unqualified identifier is disallowed in strict mode
4237         // but "delete this" is allowed.
4238         DCHECK(strict_mode() == SLOPPY || var->is_this());
4239         if (var->IsUnallocated()) {
4240           __ ldr(r2, GlobalObjectOperand());
4241           __ mov(r1, Operand(var->name()));
4242           __ mov(r0, Operand(Smi::FromInt(SLOPPY)));
4243           __ Push(r2, r1, r0);
4244           __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4245           context()->Plug(r0);
4246         } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4247           // Result of deleting non-global, non-dynamic variables is false.
4248           // The subexpression does not have side effects.
4249           context()->Plug(var->is_this());
4250         } else {
4251           // Non-global variable.  Call the runtime to try to delete from the
4252           // context where the variable was introduced.
4253           DCHECK(!context_register().is(r2));
4254           __ mov(r2, Operand(var->name()));
4255           __ Push(context_register(), r2);
4256           __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4257           context()->Plug(r0);
4258         }
4259       } else {
4260         // Result of deleting non-property, non-variable reference is true.
4261         // The subexpression may have side effects.
4262         VisitForEffect(expr->expression());
4263         context()->Plug(true);
4264       }
4265       break;
4266     }
4267 
4268     case Token::VOID: {
4269       Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4270       VisitForEffect(expr->expression());
4271       context()->Plug(Heap::kUndefinedValueRootIndex);
4272       break;
4273     }
4274 
4275     case Token::NOT: {
4276       Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4277       if (context()->IsEffect()) {
4278         // Unary NOT has no side effects so it's only necessary to visit the
4279         // subexpression.  Match the optimizing compiler by not branching.
4280         VisitForEffect(expr->expression());
4281       } else if (context()->IsTest()) {
4282         const TestContext* test = TestContext::cast(context());
4283         // The labels are swapped for the recursive call.
4284         VisitForControl(expr->expression(),
4285                         test->false_label(),
4286                         test->true_label(),
4287                         test->fall_through());
4288         context()->Plug(test->true_label(), test->false_label());
4289       } else {
4290         // We handle value contexts explicitly rather than simply visiting
4291         // for control and plugging the control flow into the context,
4292         // because we need to prepare a pair of extra administrative AST ids
4293         // for the optimizing compiler.
4294         DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4295         Label materialize_true, materialize_false, done;
4296         VisitForControl(expr->expression(),
4297                         &materialize_false,
4298                         &materialize_true,
4299                         &materialize_true);
4300         __ bind(&materialize_true);
4301         PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4302         __ LoadRoot(r0, Heap::kTrueValueRootIndex);
4303         if (context()->IsStackValue()) __ push(r0);
4304         __ jmp(&done);
4305         __ bind(&materialize_false);
4306         PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4307         __ LoadRoot(r0, Heap::kFalseValueRootIndex);
4308         if (context()->IsStackValue()) __ push(r0);
4309         __ bind(&done);
4310       }
4311       break;
4312     }
4313 
4314     case Token::TYPEOF: {
4315       Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4316       { StackValueContext context(this);
4317         VisitForTypeofValue(expr->expression());
4318       }
4319       __ CallRuntime(Runtime::kTypeof, 1);
4320       context()->Plug(r0);
4321       break;
4322     }
4323 
4324     default:
4325       UNREACHABLE();
4326   }
4327 }
4328 
4329 
VisitCountOperation(CountOperation * expr)4330 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
4331   DCHECK(expr->expression()->IsValidReferenceExpression());
4332 
4333   Comment cmnt(masm_, "[ CountOperation");
4334   SetSourcePosition(expr->position());
4335 
4336   // Expression can only be a property, a global or a (parameter or local)
4337   // slot.
4338   enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
4339   LhsKind assign_type = VARIABLE;
4340   Property* prop = expr->expression()->AsProperty();
4341   // In case of a property we use the uninitialized expression context
4342   // of the key to detect a named property.
4343   if (prop != NULL) {
4344     assign_type =
4345         (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
4346   }
4347 
4348   // Evaluate expression and get value.
4349   if (assign_type == VARIABLE) {
4350     DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4351     AccumulatorValueContext context(this);
4352     EmitVariableLoad(expr->expression()->AsVariableProxy());
4353   } else {
4354     // Reserve space for result of postfix operation.
4355     if (expr->is_postfix() && !context()->IsEffect()) {
4356       __ mov(ip, Operand(Smi::FromInt(0)));
4357       __ push(ip);
4358     }
4359     if (assign_type == NAMED_PROPERTY) {
4360       // Put the object both on the stack and in the register.
4361       VisitForStackValue(prop->obj());
4362       __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0));
4363       EmitNamedPropertyLoad(prop);
4364     } else {
4365       VisitForStackValue(prop->obj());
4366       VisitForStackValue(prop->key());
4367       __ ldr(LoadDescriptor::ReceiverRegister(),
4368              MemOperand(sp, 1 * kPointerSize));
4369       __ ldr(LoadDescriptor::NameRegister(), MemOperand(sp, 0));
4370       EmitKeyedPropertyLoad(prop);
4371     }
4372   }
4373 
4374   // We need a second deoptimization point after loading the value
4375   // in case evaluating the property load my have a side effect.
4376   if (assign_type == VARIABLE) {
4377     PrepareForBailout(expr->expression(), TOS_REG);
4378   } else {
4379     PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4380   }
4381 
4382   // Inline smi case if we are in a loop.
4383   Label stub_call, done;
4384   JumpPatchSite patch_site(masm_);
4385 
4386   int count_value = expr->op() == Token::INC ? 1 : -1;
4387   if (ShouldInlineSmiCase(expr->op())) {
4388     Label slow;
4389     patch_site.EmitJumpIfNotSmi(r0, &slow);
4390 
4391     // Save result for postfix expressions.
4392     if (expr->is_postfix()) {
4393       if (!context()->IsEffect()) {
4394         // Save the result on the stack. If we have a named or keyed property
4395         // we store the result under the receiver that is currently on top
4396         // of the stack.
4397         switch (assign_type) {
4398           case VARIABLE:
4399             __ push(r0);
4400             break;
4401           case NAMED_PROPERTY:
4402             __ str(r0, MemOperand(sp, kPointerSize));
4403             break;
4404           case KEYED_PROPERTY:
4405             __ str(r0, MemOperand(sp, 2 * kPointerSize));
4406             break;
4407         }
4408       }
4409     }
4410 
4411     __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC);
4412     __ b(vc, &done);
4413     // Call stub. Undo operation first.
4414     __ sub(r0, r0, Operand(Smi::FromInt(count_value)));
4415     __ jmp(&stub_call);
4416     __ bind(&slow);
4417   }
4418   ToNumberStub convert_stub(isolate());
4419   __ CallStub(&convert_stub);
4420 
4421   // Save result for postfix expressions.
4422   if (expr->is_postfix()) {
4423     if (!context()->IsEffect()) {
4424       // Save the result on the stack. If we have a named or keyed property
4425       // we store the result under the receiver that is currently on top
4426       // of the stack.
4427       switch (assign_type) {
4428         case VARIABLE:
4429           __ push(r0);
4430           break;
4431         case NAMED_PROPERTY:
4432           __ str(r0, MemOperand(sp, kPointerSize));
4433           break;
4434         case KEYED_PROPERTY:
4435           __ str(r0, MemOperand(sp, 2 * kPointerSize));
4436           break;
4437       }
4438     }
4439   }
4440 
4441 
4442   __ bind(&stub_call);
4443   __ mov(r1, r0);
4444   __ mov(r0, Operand(Smi::FromInt(count_value)));
4445 
4446   // Record position before stub call.
4447   SetSourcePosition(expr->position());
4448 
4449   Handle<Code> code =
4450       CodeFactory::BinaryOpIC(isolate(), Token::ADD, NO_OVERWRITE).code();
4451   CallIC(code, expr->CountBinOpFeedbackId());
4452   patch_site.EmitPatchInfo();
4453   __ bind(&done);
4454 
4455   // Store the value returned in r0.
4456   switch (assign_type) {
4457     case VARIABLE:
4458       if (expr->is_postfix()) {
4459         { EffectContext context(this);
4460           EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4461                                  Token::ASSIGN);
4462           PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4463           context.Plug(r0);
4464         }
4465         // For all contexts except EffectConstant We have the result on
4466         // top of the stack.
4467         if (!context()->IsEffect()) {
4468           context()->PlugTOS();
4469         }
4470       } else {
4471         EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4472                                Token::ASSIGN);
4473         PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4474         context()->Plug(r0);
4475       }
4476       break;
4477     case NAMED_PROPERTY: {
4478       __ mov(StoreDescriptor::NameRegister(),
4479              Operand(prop->key()->AsLiteral()->value()));
4480       __ pop(StoreDescriptor::ReceiverRegister());
4481       CallStoreIC(expr->CountStoreFeedbackId());
4482       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4483       if (expr->is_postfix()) {
4484         if (!context()->IsEffect()) {
4485           context()->PlugTOS();
4486         }
4487       } else {
4488         context()->Plug(r0);
4489       }
4490       break;
4491     }
4492     case KEYED_PROPERTY: {
4493       __ Pop(StoreDescriptor::ReceiverRegister(),
4494              StoreDescriptor::NameRegister());
4495       Handle<Code> ic =
4496           CodeFactory::KeyedStoreIC(isolate(), strict_mode()).code();
4497       CallIC(ic, expr->CountStoreFeedbackId());
4498       PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4499       if (expr->is_postfix()) {
4500         if (!context()->IsEffect()) {
4501           context()->PlugTOS();
4502         }
4503       } else {
4504         context()->Plug(r0);
4505       }
4506       break;
4507     }
4508   }
4509 }
4510 
4511 
VisitForTypeofValue(Expression * expr)4512 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4513   DCHECK(!context()->IsEffect());
4514   DCHECK(!context()->IsTest());
4515   VariableProxy* proxy = expr->AsVariableProxy();
4516   if (proxy != NULL && proxy->var()->IsUnallocated()) {
4517     Comment cmnt(masm_, "[ Global variable");
4518     __ ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand());
4519     __ mov(LoadDescriptor::NameRegister(), Operand(proxy->name()));
4520     if (FLAG_vector_ics) {
4521       __ mov(VectorLoadICDescriptor::SlotRegister(),
4522              Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
4523     }
4524     // Use a regular load, not a contextual load, to avoid a reference
4525     // error.
4526     CallLoadIC(NOT_CONTEXTUAL);
4527     PrepareForBailout(expr, TOS_REG);
4528     context()->Plug(r0);
4529   } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4530     Comment cmnt(masm_, "[ Lookup slot");
4531     Label done, slow;
4532 
4533     // Generate code for loading from variables potentially shadowed
4534     // by eval-introduced variables.
4535     EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4536 
4537     __ bind(&slow);
4538     __ mov(r0, Operand(proxy->name()));
4539     __ Push(cp, r0);
4540     __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4541     PrepareForBailout(expr, TOS_REG);
4542     __ bind(&done);
4543 
4544     context()->Plug(r0);
4545   } else {
4546     // This expression cannot throw a reference error at the top level.
4547     VisitInDuplicateContext(expr);
4548   }
4549 }
4550 
4551 
EmitLiteralCompareTypeof(Expression * expr,Expression * sub_expr,Handle<String> check)4552 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4553                                                  Expression* sub_expr,
4554                                                  Handle<String> check) {
4555   Label materialize_true, materialize_false;
4556   Label* if_true = NULL;
4557   Label* if_false = NULL;
4558   Label* fall_through = NULL;
4559   context()->PrepareTest(&materialize_true, &materialize_false,
4560                          &if_true, &if_false, &fall_through);
4561 
4562   { AccumulatorValueContext context(this);
4563     VisitForTypeofValue(sub_expr);
4564   }
4565   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4566 
4567   Factory* factory = isolate()->factory();
4568   if (String::Equals(check, factory->number_string())) {
4569     __ JumpIfSmi(r0, if_true);
4570     __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
4571     __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4572     __ cmp(r0, ip);
4573     Split(eq, if_true, if_false, fall_through);
4574   } else if (String::Equals(check, factory->string_string())) {
4575     __ JumpIfSmi(r0, if_false);
4576     // Check for undetectable objects => false.
4577     __ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE);
4578     __ b(ge, if_false);
4579     __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4580     __ tst(r1, Operand(1 << Map::kIsUndetectable));
4581     Split(eq, if_true, if_false, fall_through);
4582   } else if (String::Equals(check, factory->symbol_string())) {
4583     __ JumpIfSmi(r0, if_false);
4584     __ CompareObjectType(r0, r0, r1, SYMBOL_TYPE);
4585     Split(eq, if_true, if_false, fall_through);
4586   } else if (String::Equals(check, factory->boolean_string())) {
4587     __ CompareRoot(r0, Heap::kTrueValueRootIndex);
4588     __ b(eq, if_true);
4589     __ CompareRoot(r0, Heap::kFalseValueRootIndex);
4590     Split(eq, if_true, if_false, fall_through);
4591   } else if (String::Equals(check, factory->undefined_string())) {
4592     __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
4593     __ b(eq, if_true);
4594     __ JumpIfSmi(r0, if_false);
4595     // Check for undetectable objects => true.
4596     __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset));
4597     __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4598     __ tst(r1, Operand(1 << Map::kIsUndetectable));
4599     Split(ne, if_true, if_false, fall_through);
4600 
4601   } else if (String::Equals(check, factory->function_string())) {
4602     __ JumpIfSmi(r0, if_false);
4603     STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4604     __ CompareObjectType(r0, r0, r1, JS_FUNCTION_TYPE);
4605     __ b(eq, if_true);
4606     __ cmp(r1, Operand(JS_FUNCTION_PROXY_TYPE));
4607     Split(eq, if_true, if_false, fall_through);
4608   } else if (String::Equals(check, factory->object_string())) {
4609     __ JumpIfSmi(r0, if_false);
4610     __ CompareRoot(r0, Heap::kNullValueRootIndex);
4611     __ b(eq, if_true);
4612     // Check for JS objects => true.
4613     __ CompareObjectType(r0, r0, r1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
4614     __ b(lt, if_false);
4615     __ CompareInstanceType(r0, r1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4616     __ b(gt, if_false);
4617     // Check for undetectable objects => false.
4618     __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset));
4619     __ tst(r1, Operand(1 << Map::kIsUndetectable));
4620     Split(eq, if_true, if_false, fall_through);
4621   } else {
4622     if (if_false != fall_through) __ jmp(if_false);
4623   }
4624   context()->Plug(if_true, if_false);
4625 }
4626 
4627 
VisitCompareOperation(CompareOperation * expr)4628 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4629   Comment cmnt(masm_, "[ CompareOperation");
4630   SetSourcePosition(expr->position());
4631 
4632   // First we try a fast inlined version of the compare when one of
4633   // the operands is a literal.
4634   if (TryLiteralCompare(expr)) return;
4635 
4636   // Always perform the comparison for its control flow.  Pack the result
4637   // into the expression's context after the comparison is performed.
4638   Label materialize_true, materialize_false;
4639   Label* if_true = NULL;
4640   Label* if_false = NULL;
4641   Label* fall_through = NULL;
4642   context()->PrepareTest(&materialize_true, &materialize_false,
4643                          &if_true, &if_false, &fall_through);
4644 
4645   Token::Value op = expr->op();
4646   VisitForStackValue(expr->left());
4647   switch (op) {
4648     case Token::IN:
4649       VisitForStackValue(expr->right());
4650       __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4651       PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4652       __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4653       __ cmp(r0, ip);
4654       Split(eq, if_true, if_false, fall_through);
4655       break;
4656 
4657     case Token::INSTANCEOF: {
4658       VisitForStackValue(expr->right());
4659       InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4660       __ CallStub(&stub);
4661       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4662       // The stub returns 0 for true.
4663       __ tst(r0, r0);
4664       Split(eq, if_true, if_false, fall_through);
4665       break;
4666     }
4667 
4668     default: {
4669       VisitForAccumulatorValue(expr->right());
4670       Condition cond = CompareIC::ComputeCondition(op);
4671       __ pop(r1);
4672 
4673       bool inline_smi_code = ShouldInlineSmiCase(op);
4674       JumpPatchSite patch_site(masm_);
4675       if (inline_smi_code) {
4676         Label slow_case;
4677         __ orr(r2, r0, Operand(r1));
4678         patch_site.EmitJumpIfNotSmi(r2, &slow_case);
4679         __ cmp(r1, r0);
4680         Split(cond, if_true, if_false, NULL);
4681         __ bind(&slow_case);
4682       }
4683 
4684       // Record position and call the compare IC.
4685       SetSourcePosition(expr->position());
4686       Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
4687       CallIC(ic, expr->CompareOperationFeedbackId());
4688       patch_site.EmitPatchInfo();
4689       PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4690       __ cmp(r0, Operand::Zero());
4691       Split(cond, if_true, if_false, fall_through);
4692     }
4693   }
4694 
4695   // Convert the result of the comparison into one expected for this
4696   // expression's context.
4697   context()->Plug(if_true, if_false);
4698 }
4699 
4700 
EmitLiteralCompareNil(CompareOperation * expr,Expression * sub_expr,NilValue nil)4701 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4702                                               Expression* sub_expr,
4703                                               NilValue nil) {
4704   Label materialize_true, materialize_false;
4705   Label* if_true = NULL;
4706   Label* if_false = NULL;
4707   Label* fall_through = NULL;
4708   context()->PrepareTest(&materialize_true, &materialize_false,
4709                          &if_true, &if_false, &fall_through);
4710 
4711   VisitForAccumulatorValue(sub_expr);
4712   PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4713   if (expr->op() == Token::EQ_STRICT) {
4714     Heap::RootListIndex nil_value = nil == kNullValue ?
4715         Heap::kNullValueRootIndex :
4716         Heap::kUndefinedValueRootIndex;
4717     __ LoadRoot(r1, nil_value);
4718     __ cmp(r0, r1);
4719     Split(eq, if_true, if_false, fall_through);
4720   } else {
4721     Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4722     CallIC(ic, expr->CompareOperationFeedbackId());
4723     __ cmp(r0, Operand(0));
4724     Split(ne, if_true, if_false, fall_through);
4725   }
4726   context()->Plug(if_true, if_false);
4727 }
4728 
4729 
VisitThisFunction(ThisFunction * expr)4730 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4731   __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4732   context()->Plug(r0);
4733 }
4734 
4735 
result_register()4736 Register FullCodeGenerator::result_register() {
4737   return r0;
4738 }
4739 
4740 
context_register()4741 Register FullCodeGenerator::context_register() {
4742   return cp;
4743 }
4744 
4745 
StoreToFrameField(int frame_offset,Register value)4746 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4747   DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
4748   __ str(value, MemOperand(fp, frame_offset));
4749 }
4750 
4751 
LoadContextField(Register dst,int context_index)4752 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4753   __ ldr(dst, ContextOperand(cp, context_index));
4754 }
4755 
4756 
PushFunctionArgumentForContextAllocation()4757 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4758   Scope* declaration_scope = scope()->DeclarationScope();
4759   if (declaration_scope->is_global_scope() ||
4760       declaration_scope->is_module_scope()) {
4761     // Contexts nested in the native context have a canonical empty function
4762     // as their closure, not the anonymous closure containing the global
4763     // code.  Pass a smi sentinel and let the runtime look up the empty
4764     // function.
4765     __ mov(ip, Operand(Smi::FromInt(0)));
4766   } else if (declaration_scope->is_eval_scope()) {
4767     // Contexts created by a call to eval have the same closure as the
4768     // context calling eval, not the anonymous closure containing the eval
4769     // code.  Fetch it from the context.
4770     __ ldr(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
4771   } else {
4772     DCHECK(declaration_scope->is_function_scope());
4773     __ ldr(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4774   }
4775   __ push(ip);
4776 }
4777 
4778 
4779 // ----------------------------------------------------------------------------
4780 // Non-local control flow support.
4781 
EnterFinallyBlock()4782 void FullCodeGenerator::EnterFinallyBlock() {
4783   DCHECK(!result_register().is(r1));
4784   // Store result register while executing finally block.
4785   __ push(result_register());
4786   // Cook return address in link register to stack (smi encoded Code* delta)
4787   __ sub(r1, lr, Operand(masm_->CodeObject()));
4788   __ SmiTag(r1);
4789 
4790   // Store result register while executing finally block.
4791   __ push(r1);
4792 
4793   // Store pending message while executing finally block.
4794   ExternalReference pending_message_obj =
4795       ExternalReference::address_of_pending_message_obj(isolate());
4796   __ mov(ip, Operand(pending_message_obj));
4797   __ ldr(r1, MemOperand(ip));
4798   __ push(r1);
4799 
4800   ExternalReference has_pending_message =
4801       ExternalReference::address_of_has_pending_message(isolate());
4802   __ mov(ip, Operand(has_pending_message));
4803   STATIC_ASSERT(sizeof(bool) == 1);   // NOLINT(runtime/sizeof)
4804   __ ldrb(r1, MemOperand(ip));
4805   __ SmiTag(r1);
4806   __ push(r1);
4807 
4808   ExternalReference pending_message_script =
4809       ExternalReference::address_of_pending_message_script(isolate());
4810   __ mov(ip, Operand(pending_message_script));
4811   __ ldr(r1, MemOperand(ip));
4812   __ push(r1);
4813 }
4814 
4815 
ExitFinallyBlock()4816 void FullCodeGenerator::ExitFinallyBlock() {
4817   DCHECK(!result_register().is(r1));
4818   // Restore pending message from stack.
4819   __ pop(r1);
4820   ExternalReference pending_message_script =
4821       ExternalReference::address_of_pending_message_script(isolate());
4822   __ mov(ip, Operand(pending_message_script));
4823   __ str(r1, MemOperand(ip));
4824 
4825   __ pop(r1);
4826   __ SmiUntag(r1);
4827   ExternalReference has_pending_message =
4828       ExternalReference::address_of_has_pending_message(isolate());
4829   __ mov(ip, Operand(has_pending_message));
4830   STATIC_ASSERT(sizeof(bool) == 1);   // NOLINT(runtime/sizeof)
4831   __ strb(r1, MemOperand(ip));
4832 
4833   __ pop(r1);
4834   ExternalReference pending_message_obj =
4835       ExternalReference::address_of_pending_message_obj(isolate());
4836   __ mov(ip, Operand(pending_message_obj));
4837   __ str(r1, MemOperand(ip));
4838 
4839   // Restore result register from stack.
4840   __ pop(r1);
4841 
4842   // Uncook return address and return.
4843   __ pop(result_register());
4844   __ SmiUntag(r1);
4845   __ add(pc, r1, Operand(masm_->CodeObject()));
4846 }
4847 
4848 
4849 #undef __
4850 
4851 #define __ ACCESS_MASM(masm())
4852 
Exit(int * stack_depth,int * context_length)4853 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4854     int* stack_depth,
4855     int* context_length) {
4856   // The macros used here must preserve the result register.
4857 
4858   // Because the handler block contains the context of the finally
4859   // code, we can restore it directly from there for the finally code
4860   // rather than iteratively unwinding contexts via their previous
4861   // links.
4862   __ Drop(*stack_depth);  // Down to the handler block.
4863   if (*context_length > 0) {
4864     // Restore the context to its dedicated register and the stack.
4865     __ ldr(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
4866     __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4867   }
4868   __ PopTryHandler();
4869   __ bl(finally_entry_);
4870 
4871   *stack_depth = 0;
4872   *context_length = 0;
4873   return previous_;
4874 }
4875 
4876 
4877 #undef __
4878 
4879 
GetInterruptImmediateLoadAddress(Address pc)4880 static Address GetInterruptImmediateLoadAddress(Address pc) {
4881   Address load_address = pc - 2 * Assembler::kInstrSize;
4882   if (!FLAG_enable_ool_constant_pool) {
4883     DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(load_address)));
4884   } else if (Assembler::IsLdrPpRegOffset(Memory::int32_at(load_address))) {
4885     // This is an extended constant pool lookup.
4886     if (CpuFeatures::IsSupported(ARMv7)) {
4887       load_address -= 2 * Assembler::kInstrSize;
4888       DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4889       DCHECK(Assembler::IsMovT(
4890           Memory::int32_at(load_address + Assembler::kInstrSize)));
4891     } else {
4892       load_address -= 4 * Assembler::kInstrSize;
4893       DCHECK(Assembler::IsMovImmed(Memory::int32_at(load_address)));
4894       DCHECK(Assembler::IsOrrImmed(
4895           Memory::int32_at(load_address + Assembler::kInstrSize)));
4896       DCHECK(Assembler::IsOrrImmed(
4897           Memory::int32_at(load_address + 2 * Assembler::kInstrSize)));
4898       DCHECK(Assembler::IsOrrImmed(
4899           Memory::int32_at(load_address + 3 * Assembler::kInstrSize)));
4900     }
4901   } else if (CpuFeatures::IsSupported(ARMv7) &&
4902              Assembler::IsMovT(Memory::int32_at(load_address))) {
4903     // This is a movw / movt immediate load.
4904     load_address -= Assembler::kInstrSize;
4905     DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4906   } else if (!CpuFeatures::IsSupported(ARMv7) &&
4907              Assembler::IsOrrImmed(Memory::int32_at(load_address))) {
4908     // This is a mov / orr immediate load.
4909     load_address -= 3 * Assembler::kInstrSize;
4910     DCHECK(Assembler::IsMovImmed(Memory::int32_at(load_address)));
4911     DCHECK(Assembler::IsOrrImmed(
4912         Memory::int32_at(load_address + Assembler::kInstrSize)));
4913     DCHECK(Assembler::IsOrrImmed(
4914         Memory::int32_at(load_address + 2 * Assembler::kInstrSize)));
4915   } else {
4916     // This is a small constant pool lookup.
4917     DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
4918   }
4919   return load_address;
4920 }
4921 
4922 
PatchAt(Code * unoptimized_code,Address pc,BackEdgeState target_state,Code * replacement_code)4923 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4924                             Address pc,
4925                             BackEdgeState target_state,
4926                             Code* replacement_code) {
4927   Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
4928   Address branch_address = pc_immediate_load_address - Assembler::kInstrSize;
4929   CodePatcher patcher(branch_address, 1);
4930   switch (target_state) {
4931     case INTERRUPT:
4932     {
4933       //  <decrement profiling counter>
4934       //   bpl ok
4935       //   ; load interrupt stub address into ip - either of (for ARMv7):
4936       //   ; <small cp load>      |  <extended cp load> |  <immediate load>
4937       //   ldr ip, [pc/pp, #imm]  |   movw ip, #imm     |   movw ip, #imm
4938       //                          |   movt ip, #imm     |   movw ip, #imm
4939       //                          |   ldr  ip, [pp, ip]
4940       //   ; or (for ARMv6):
4941       //   ; <small cp load>      |  <extended cp load> |  <immediate load>
4942       //   ldr ip, [pc/pp, #imm]  |   mov ip, #imm      |   mov ip, #imm
4943       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4944       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4945       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4946       //   blx ip
4947       //  <reset profiling counter>
4948       //  ok-label
4949 
4950       // Calculate branch offset to the ok-label - this is the difference
4951       // between the branch address and |pc| (which points at <blx ip>) plus
4952       // kProfileCounterResetSequence instructions
4953       int branch_offset = pc - Instruction::kPCReadOffset - branch_address +
4954                           kProfileCounterResetSequenceLength;
4955       patcher.masm()->b(branch_offset, pl);
4956       break;
4957     }
4958     case ON_STACK_REPLACEMENT:
4959     case OSR_AFTER_STACK_CHECK:
4960       //  <decrement profiling counter>
4961       //   mov r0, r0 (NOP)
4962       //   ; load on-stack replacement address into ip - either of (for ARMv7):
4963       //   ; <small cp load>      |  <extended cp load> |  <immediate load>
4964       //   ldr ip, [pc/pp, #imm]  |   movw ip, #imm     |   movw ip, #imm
4965       //                          |   movt ip, #imm>    |   movw ip, #imm
4966       //                          |   ldr  ip, [pp, ip]
4967       //   ; or (for ARMv6):
4968       //   ; <small cp load>      |  <extended cp load> |  <immediate load>
4969       //   ldr ip, [pc/pp, #imm]  |   mov ip, #imm      |   mov ip, #imm
4970       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4971       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4972       //                          |   orr ip, ip, #imm> |   orr ip, ip, #imm
4973       //   blx ip
4974       //  <reset profiling counter>
4975       //  ok-label
4976       patcher.masm()->nop();
4977       break;
4978   }
4979 
4980   // Replace the call address.
4981   Assembler::set_target_address_at(pc_immediate_load_address, unoptimized_code,
4982       replacement_code->entry());
4983 
4984   unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4985       unoptimized_code, pc_immediate_load_address, replacement_code);
4986 }
4987 
4988 
GetBackEdgeState(Isolate * isolate,Code * unoptimized_code,Address pc)4989 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4990     Isolate* isolate,
4991     Code* unoptimized_code,
4992     Address pc) {
4993   DCHECK(Assembler::IsBlxIp(Memory::int32_at(pc - Assembler::kInstrSize)));
4994 
4995   Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc);
4996   Address branch_address = pc_immediate_load_address - Assembler::kInstrSize;
4997   Address interrupt_address = Assembler::target_address_at(
4998       pc_immediate_load_address, unoptimized_code);
4999 
5000   if (Assembler::IsBranch(Assembler::instr_at(branch_address))) {
5001     DCHECK(interrupt_address ==
5002            isolate->builtins()->InterruptCheck()->entry());
5003     return INTERRUPT;
5004   }
5005 
5006   DCHECK(Assembler::IsNop(Assembler::instr_at(branch_address)));
5007 
5008   if (interrupt_address ==
5009       isolate->builtins()->OnStackReplacement()->entry()) {
5010     return ON_STACK_REPLACEMENT;
5011   }
5012 
5013   DCHECK(interrupt_address ==
5014          isolate->builtins()->OsrAfterStackCheck()->entry());
5015   return OSR_AFTER_STACK_CHECK;
5016 }
5017 
5018 
5019 } }  // namespace v8::internal
5020 
5021 #endif  // V8_TARGET_ARCH_ARM
5022