1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // ----------------------------------------------------------------------------
17 // Static helper functions
18 
19 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)20 inline MemOperand FieldMemOperand(Register object, int offset) {
21   return MemOperand(object, offset - kHeapObjectTag);
22 }
23 
24 
25 // Give alias names to registers
26 const Register cp = { kRegister_r7_Code };  // JavaScript context pointer.
27 const Register pp = { kRegister_r8_Code };  // Constant pool pointer.
28 const Register kRootRegister = { kRegister_r10_Code };  // Roots array pointer.
29 
30 // Flags used for AllocateHeapNumber
31 enum TaggingMode {
32   // Tag the result.
33   TAG_RESULT,
34   // Don't tag
35   DONT_TAG_RESULT
36 };
37 
38 
39 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
40 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
41 enum PointersToHereCheck {
42   kPointersToHereMaybeInteresting,
43   kPointersToHereAreAlwaysInteresting
44 };
45 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
46 
47 
48 Register GetRegisterThatIsNotOneOf(Register reg1,
49                                    Register reg2 = no_reg,
50                                    Register reg3 = no_reg,
51                                    Register reg4 = no_reg,
52                                    Register reg5 = no_reg,
53                                    Register reg6 = no_reg);
54 
55 
56 #ifdef DEBUG
57 bool AreAliased(Register reg1,
58                 Register reg2,
59                 Register reg3 = no_reg,
60                 Register reg4 = no_reg,
61                 Register reg5 = no_reg,
62                 Register reg6 = no_reg,
63                 Register reg7 = no_reg,
64                 Register reg8 = no_reg);
65 #endif
66 
67 
68 enum TargetAddressStorageMode {
69   CAN_INLINE_TARGET_ADDRESS,
70   NEVER_INLINE_TARGET_ADDRESS
71 };
72 
73 // MacroAssembler implements a collection of frequently used macros.
74 class MacroAssembler: public Assembler {
75  public:
76   // The isolate parameter can be NULL if the macro assembler should
77   // not use isolate-dependent functionality. In this case, it's the
78   // responsibility of the caller to never invoke such function on the
79   // macro assembler.
80   MacroAssembler(Isolate* isolate, void* buffer, int size);
81 
82 
83   // Returns the size of a call in instructions. Note, the value returned is
84   // only valid as long as no entries are added to the constant pool between
85   // checking the call size and emitting the actual call.
86   static int CallSize(Register target, Condition cond = al);
87   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
88   int CallStubSize(CodeStub* stub,
89                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
90                    Condition cond = al);
91   static int CallSizeNotPredictableCodeSize(Isolate* isolate,
92                                             Address target,
93                                             RelocInfo::Mode rmode,
94                                             Condition cond = al);
95 
96   // Jump, Call, and Ret pseudo instructions implementing inter-working.
97   void Jump(Register target, Condition cond = al);
98   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
99   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
100   void Call(Register target, Condition cond = al);
101   void Call(Address target, RelocInfo::Mode rmode,
102             Condition cond = al,
103             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
104   int CallSize(Handle<Code> code,
105                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
106                TypeFeedbackId ast_id = TypeFeedbackId::None(),
107                Condition cond = al);
108   void Call(Handle<Code> code,
109             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
110             TypeFeedbackId ast_id = TypeFeedbackId::None(),
111             Condition cond = al,
112             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
113   void Ret(Condition cond = al);
114 
115   // Emit code to discard a non-negative number of pointer-sized elements
116   // from the stack, clobbering only the sp register.
117   void Drop(int count, Condition cond = al);
118 
119   void Ret(int drop, Condition cond = al);
120 
121   // Swap two registers.  If the scratch register is omitted then a slightly
122   // less efficient form using xor instead of mov is emitted.
123   void Swap(Register reg1,
124             Register reg2,
125             Register scratch = no_reg,
126             Condition cond = al);
127 
128   void Mls(Register dst, Register src1, Register src2, Register srcA,
129            Condition cond = al);
130   void And(Register dst, Register src1, const Operand& src2,
131            Condition cond = al);
132   void Ubfx(Register dst, Register src, int lsb, int width,
133             Condition cond = al);
134   void Sbfx(Register dst, Register src, int lsb, int width,
135             Condition cond = al);
136   // The scratch register is not used for ARMv7.
137   // scratch can be the same register as src (in which case it is trashed), but
138   // not the same as dst.
139   void Bfi(Register dst,
140            Register src,
141            Register scratch,
142            int lsb,
143            int width,
144            Condition cond = al);
145   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
146   void Usat(Register dst, int satpos, const Operand& src,
147             Condition cond = al);
148 
149   void Call(Label* target);
Push(Register src)150   void Push(Register src) { push(src); }
Pop(Register dst)151   void Pop(Register dst) { pop(dst); }
152 
153   // Register move. May do nothing if the registers are identical.
154   void Move(Register dst, Handle<Object> value);
155   void Move(Register dst, Register src, Condition cond = al);
156   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
157             Condition cond = al) {
158     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
159       mov(dst, src, sbit, cond);
160     }
161   }
162   void Move(DwVfpRegister dst, DwVfpRegister src);
163 
164   void Load(Register dst, const MemOperand& src, Representation r);
165   void Store(Register src, const MemOperand& dst, Representation r);
166 
167   // Load an object from the root table.
168   void LoadRoot(Register destination,
169                 Heap::RootListIndex index,
170                 Condition cond = al);
171   // Store an object to the root table.
172   void StoreRoot(Register source,
173                  Heap::RootListIndex index,
174                  Condition cond = al);
175 
176   // ---------------------------------------------------------------------------
177   // GC Support
178 
179   void IncrementalMarkingRecordWriteHelper(Register object,
180                                            Register value,
181                                            Register address);
182 
183   enum RememberedSetFinalAction {
184     kReturnAtEnd,
185     kFallThroughAtEnd
186   };
187 
188   // Record in the remembered set the fact that we have a pointer to new space
189   // at the address pointed to by the addr register.  Only works if addr is not
190   // in new space.
191   void RememberedSetHelper(Register object,  // Used for debug code.
192                            Register addr,
193                            Register scratch,
194                            SaveFPRegsMode save_fp,
195                            RememberedSetFinalAction and_then);
196 
197   void CheckPageFlag(Register object,
198                      Register scratch,
199                      int mask,
200                      Condition cc,
201                      Label* condition_met);
202 
203   void CheckMapDeprecated(Handle<Map> map,
204                           Register scratch,
205                           Label* if_deprecated);
206 
207   // Check if object is in new space.  Jumps if the object is not in new space.
208   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)209   void JumpIfNotInNewSpace(Register object,
210                            Register scratch,
211                            Label* branch) {
212     InNewSpace(object, scratch, ne, branch);
213   }
214 
215   // Check if object is in new space.  Jumps if the object is in new space.
216   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)217   void JumpIfInNewSpace(Register object,
218                         Register scratch,
219                         Label* branch) {
220     InNewSpace(object, scratch, eq, branch);
221   }
222 
223   // Check if an object has a given incremental marking color.
224   void HasColor(Register object,
225                 Register scratch0,
226                 Register scratch1,
227                 Label* has_color,
228                 int first_bit,
229                 int second_bit);
230 
231   void JumpIfBlack(Register object,
232                    Register scratch0,
233                    Register scratch1,
234                    Label* on_black);
235 
236   // Checks the color of an object.  If the object is already grey or black
237   // then we just fall through, since it is already live.  If it is white and
238   // we can determine that it doesn't need to be scanned, then we just mark it
239   // black and fall through.  For the rest we jump to the label so the
240   // incremental marker can fix its assumptions.
241   void EnsureNotWhite(Register object,
242                       Register scratch1,
243                       Register scratch2,
244                       Register scratch3,
245                       Label* object_is_white_and_not_data);
246 
247   // Detects conservatively whether an object is data-only, i.e. it does need to
248   // be scanned by the garbage collector.
249   void JumpIfDataObject(Register value,
250                         Register scratch,
251                         Label* not_data_object);
252 
253   // Notify the garbage collector that we wrote a pointer into an object.
254   // |object| is the object being stored into, |value| is the object being
255   // stored.  value and scratch registers are clobbered by the operation.
256   // The offset is the offset from the start of the object, not the offset from
257   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
258   void RecordWriteField(
259       Register object,
260       int offset,
261       Register value,
262       Register scratch,
263       LinkRegisterStatus lr_status,
264       SaveFPRegsMode save_fp,
265       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
266       SmiCheck smi_check = INLINE_SMI_CHECK,
267       PointersToHereCheck pointers_to_here_check_for_value =
268           kPointersToHereMaybeInteresting);
269 
270   // As above, but the offset has the tag presubtracted.  For use with
271   // MemOperand(reg, off).
272   inline void RecordWriteContextSlot(
273       Register context,
274       int offset,
275       Register value,
276       Register scratch,
277       LinkRegisterStatus lr_status,
278       SaveFPRegsMode save_fp,
279       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
280       SmiCheck smi_check = INLINE_SMI_CHECK,
281       PointersToHereCheck pointers_to_here_check_for_value =
282           kPointersToHereMaybeInteresting) {
283     RecordWriteField(context,
284                      offset + kHeapObjectTag,
285                      value,
286                      scratch,
287                      lr_status,
288                      save_fp,
289                      remembered_set_action,
290                      smi_check,
291                      pointers_to_here_check_for_value);
292   }
293 
294   void RecordWriteForMap(
295       Register object,
296       Register map,
297       Register dst,
298       LinkRegisterStatus lr_status,
299       SaveFPRegsMode save_fp);
300 
301   // For a given |object| notify the garbage collector that the slot |address|
302   // has been written.  |value| is the object being stored. The value and
303   // address registers are clobbered by the operation.
304   void RecordWrite(
305       Register object,
306       Register address,
307       Register value,
308       LinkRegisterStatus lr_status,
309       SaveFPRegsMode save_fp,
310       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
311       SmiCheck smi_check = INLINE_SMI_CHECK,
312       PointersToHereCheck pointers_to_here_check_for_value =
313           kPointersToHereMaybeInteresting);
314 
315   // Push a handle.
316   void Push(Handle<Object> handle);
Push(Smi * smi)317   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
318 
319   // Push two registers.  Pushes leftmost register first (to highest address).
320   void Push(Register src1, Register src2, Condition cond = al) {
321     DCHECK(!src1.is(src2));
322     if (src1.code() > src2.code()) {
323       stm(db_w, sp, src1.bit() | src2.bit(), cond);
324     } else {
325       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
326       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
327     }
328   }
329 
330   // Push three registers.  Pushes leftmost register first (to highest address).
331   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
332     DCHECK(!src1.is(src2));
333     DCHECK(!src2.is(src3));
334     DCHECK(!src1.is(src3));
335     if (src1.code() > src2.code()) {
336       if (src2.code() > src3.code()) {
337         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
338       } else {
339         stm(db_w, sp, src1.bit() | src2.bit(), cond);
340         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
341       }
342     } else {
343       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
344       Push(src2, src3, cond);
345     }
346   }
347 
348   // Push four registers.  Pushes leftmost register first (to highest address).
349   void Push(Register src1,
350             Register src2,
351             Register src3,
352             Register src4,
353             Condition cond = al) {
354     DCHECK(!src1.is(src2));
355     DCHECK(!src2.is(src3));
356     DCHECK(!src1.is(src3));
357     DCHECK(!src1.is(src4));
358     DCHECK(!src2.is(src4));
359     DCHECK(!src3.is(src4));
360     if (src1.code() > src2.code()) {
361       if (src2.code() > src3.code()) {
362         if (src3.code() > src4.code()) {
363           stm(db_w,
364               sp,
365               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
366               cond);
367         } else {
368           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
369           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
370         }
371       } else {
372         stm(db_w, sp, src1.bit() | src2.bit(), cond);
373         Push(src3, src4, cond);
374       }
375     } else {
376       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
377       Push(src2, src3, src4, cond);
378     }
379   }
380 
381   // Pop two registers. Pops rightmost register first (from lower address).
382   void Pop(Register src1, Register src2, Condition cond = al) {
383     DCHECK(!src1.is(src2));
384     if (src1.code() > src2.code()) {
385       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
386     } else {
387       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
388       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
389     }
390   }
391 
392   // Pop three registers.  Pops rightmost register first (from lower address).
393   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
394     DCHECK(!src1.is(src2));
395     DCHECK(!src2.is(src3));
396     DCHECK(!src1.is(src3));
397     if (src1.code() > src2.code()) {
398       if (src2.code() > src3.code()) {
399         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
400       } else {
401         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
402         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
403       }
404     } else {
405       Pop(src2, src3, cond);
406       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
407     }
408   }
409 
410   // Pop four registers.  Pops rightmost register first (from lower address).
411   void Pop(Register src1,
412            Register src2,
413            Register src3,
414            Register src4,
415            Condition cond = al) {
416     DCHECK(!src1.is(src2));
417     DCHECK(!src2.is(src3));
418     DCHECK(!src1.is(src3));
419     DCHECK(!src1.is(src4));
420     DCHECK(!src2.is(src4));
421     DCHECK(!src3.is(src4));
422     if (src1.code() > src2.code()) {
423       if (src2.code() > src3.code()) {
424         if (src3.code() > src4.code()) {
425           ldm(ia_w,
426               sp,
427               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
428               cond);
429         } else {
430           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
431           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
432         }
433       } else {
434         Pop(src3, src4, cond);
435         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
436       }
437     } else {
438       Pop(src2, src3, src4, cond);
439       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
440     }
441   }
442 
443   // Push a fixed frame, consisting of lr, fp, constant pool (if
444   // FLAG_enable_ool_constant_pool), context and JS function / marker id if
445   // marker_reg is a valid register.
446   void PushFixedFrame(Register marker_reg = no_reg);
447   void PopFixedFrame(Register marker_reg = no_reg);
448 
449   // Push and pop the registers that can hold pointers, as defined by the
450   // RegList constant kSafepointSavedRegisters.
451   void PushSafepointRegisters();
452   void PopSafepointRegisters();
453   // Store value in register src in the safepoint stack slot for
454   // register dst.
455   void StoreToSafepointRegisterSlot(Register src, Register dst);
456   // Load the value of the src register from its safepoint stack slot
457   // into register dst.
458   void LoadFromSafepointRegisterSlot(Register dst, Register src);
459 
460   // Load two consecutive registers with two consecutive memory locations.
461   void Ldrd(Register dst1,
462             Register dst2,
463             const MemOperand& src,
464             Condition cond = al);
465 
466   // Store two consecutive registers to two consecutive memory locations.
467   void Strd(Register src1,
468             Register src2,
469             const MemOperand& dst,
470             Condition cond = al);
471 
472   // Ensure that FPSCR contains values needed by JavaScript.
473   // We need the NaNModeControlBit to be sure that operations like
474   // vadd and vsub generate the Canonical NaN (if a NaN must be generated).
475   // In VFP3 it will be always the Canonical NaN.
476   // In VFP2 it will be either the Canonical NaN or the negative version
477   // of the Canonical NaN. It doesn't matter if we have two values. The aim
478   // is to be sure to never generate the hole NaN.
479   void VFPEnsureFPSCRState(Register scratch);
480 
481   // If the value is a NaN, canonicalize the value else, do nothing.
482   void VFPCanonicalizeNaN(const DwVfpRegister dst,
483                           const DwVfpRegister src,
484                           const Condition cond = al);
485   void VFPCanonicalizeNaN(const DwVfpRegister value,
486                           const Condition cond = al) {
487     VFPCanonicalizeNaN(value, value, cond);
488   }
489 
490   // Compare double values and move the result to the normal condition flags.
491   void VFPCompareAndSetFlags(const DwVfpRegister src1,
492                              const DwVfpRegister src2,
493                              const Condition cond = al);
494   void VFPCompareAndSetFlags(const DwVfpRegister src1,
495                              const double src2,
496                              const Condition cond = al);
497 
498   // Compare double values and then load the fpscr flags to a register.
499   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
500                               const DwVfpRegister src2,
501                               const Register fpscr_flags,
502                               const Condition cond = al);
503   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
504                               const double src2,
505                               const Register fpscr_flags,
506                               const Condition cond = al);
507 
508   void Vmov(const DwVfpRegister dst,
509             const double imm,
510             const Register scratch = no_reg);
511 
512   void VmovHigh(Register dst, DwVfpRegister src);
513   void VmovHigh(DwVfpRegister dst, Register src);
514   void VmovLow(Register dst, DwVfpRegister src);
515   void VmovLow(DwVfpRegister dst, Register src);
516 
517   // Loads the number from object into dst register.
518   // If |object| is neither smi nor heap number, |not_number| is jumped to
519   // with |object| still intact.
520   void LoadNumber(Register object,
521                   LowDwVfpRegister dst,
522                   Register heap_number_map,
523                   Register scratch,
524                   Label* not_number);
525 
526   // Loads the number from object into double_dst in the double format.
527   // Control will jump to not_int32 if the value cannot be exactly represented
528   // by a 32-bit integer.
529   // Floating point value in the 32-bit integer range that are not exact integer
530   // won't be loaded.
531   void LoadNumberAsInt32Double(Register object,
532                                DwVfpRegister double_dst,
533                                Register heap_number_map,
534                                Register scratch,
535                                LowDwVfpRegister double_scratch,
536                                Label* not_int32);
537 
538   // Loads the number from object into dst as a 32-bit integer.
539   // Control will jump to not_int32 if the object cannot be exactly represented
540   // by a 32-bit integer.
541   // Floating point value in the 32-bit integer range that are not exact integer
542   // won't be converted.
543   void LoadNumberAsInt32(Register object,
544                          Register dst,
545                          Register heap_number_map,
546                          Register scratch,
547                          DwVfpRegister double_scratch0,
548                          LowDwVfpRegister double_scratch1,
549                          Label* not_int32);
550 
551   // Generates function and stub prologue code.
552   void StubPrologue();
553   void Prologue(bool code_pre_aging);
554 
555   // Enter exit frame.
556   // stack_space - extra stack space, used for alignment before call to C.
557   void EnterExitFrame(bool save_doubles, int stack_space = 0);
558 
559   // Leave the current exit frame. Expects the return value in r0.
560   // Expect the number of values, pushed prior to the exit frame, to
561   // remove in a register (or no_reg, if there is nothing to remove).
562   void LeaveExitFrame(bool save_doubles,
563                       Register argument_count,
564                       bool restore_context);
565 
566   // Get the actual activation frame alignment for target environment.
567   static int ActivationFrameAlignment();
568 
569   void LoadContext(Register dst, int context_chain_length);
570 
571   // Conditionally load the cached Array transitioned map of type
572   // transitioned_kind from the native context if the map in register
573   // map_in_out is the cached Array map in the native context of
574   // expected_kind.
575   void LoadTransitionedArrayMapConditional(
576       ElementsKind expected_kind,
577       ElementsKind transitioned_kind,
578       Register map_in_out,
579       Register scratch,
580       Label* no_map_match);
581 
582   void LoadGlobalFunction(int index, Register function);
583 
584   // Load the initial map from the global function. The registers
585   // function and map can be the same, function is then overwritten.
586   void LoadGlobalFunctionInitialMap(Register function,
587                                     Register map,
588                                     Register scratch);
589 
InitializeRootRegister()590   void InitializeRootRegister() {
591     ExternalReference roots_array_start =
592         ExternalReference::roots_array_start(isolate());
593     mov(kRootRegister, Operand(roots_array_start));
594   }
595 
596   // ---------------------------------------------------------------------------
597   // JavaScript invokes
598 
599   // Invoke the JavaScript function code by either calling or jumping.
600   void InvokeCode(Register code,
601                   const ParameterCount& expected,
602                   const ParameterCount& actual,
603                   InvokeFlag flag,
604                   const CallWrapper& call_wrapper);
605 
606   // Invoke the JavaScript function in the given register. Changes the
607   // current context to the context in the function before invoking.
608   void InvokeFunction(Register function,
609                       const ParameterCount& actual,
610                       InvokeFlag flag,
611                       const CallWrapper& call_wrapper);
612 
613   void InvokeFunction(Register function,
614                       const ParameterCount& expected,
615                       const ParameterCount& actual,
616                       InvokeFlag flag,
617                       const CallWrapper& call_wrapper);
618 
619   void InvokeFunction(Handle<JSFunction> function,
620                       const ParameterCount& expected,
621                       const ParameterCount& actual,
622                       InvokeFlag flag,
623                       const CallWrapper& call_wrapper);
624 
625   void IsObjectJSObjectType(Register heap_object,
626                             Register map,
627                             Register scratch,
628                             Label* fail);
629 
630   void IsInstanceJSObjectType(Register map,
631                               Register scratch,
632                               Label* fail);
633 
634   void IsObjectJSStringType(Register object,
635                             Register scratch,
636                             Label* fail);
637 
638   void IsObjectNameType(Register object,
639                         Register scratch,
640                         Label* fail);
641 
642   // ---------------------------------------------------------------------------
643   // Debugger Support
644 
645   void DebugBreak();
646 
647   // ---------------------------------------------------------------------------
648   // Exception handling
649 
650   // Push a new try handler and link into try handler chain.
651   void PushTryHandler(StackHandler::Kind kind, int handler_index);
652 
653   // Unlink the stack handler on top of the stack from the try handler chain.
654   // Must preserve the result register.
655   void PopTryHandler();
656 
657   // Passes thrown value to the handler of top of the try handler chain.
658   void Throw(Register value);
659 
660   // Propagates an uncatchable exception to the top of the current JS stack's
661   // handler chain.
662   void ThrowUncatchable(Register value);
663 
664   // ---------------------------------------------------------------------------
665   // Inline caching support
666 
667   // Generate code for checking access rights - used for security checks
668   // on access to global objects across environments. The holder register
669   // is left untouched, whereas both scratch registers are clobbered.
670   void CheckAccessGlobalProxy(Register holder_reg,
671                               Register scratch,
672                               Label* miss);
673 
674   void GetNumberHash(Register t0, Register scratch);
675 
676   void LoadFromNumberDictionary(Label* miss,
677                                 Register elements,
678                                 Register key,
679                                 Register result,
680                                 Register t0,
681                                 Register t1,
682                                 Register t2);
683 
684 
MarkCode(NopMarkerTypes type)685   inline void MarkCode(NopMarkerTypes type) {
686     nop(type);
687   }
688 
689   // Check if the given instruction is a 'type' marker.
690   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
691   // These instructions are generated to mark special location in the code,
692   // like some special IC code.
IsMarkedCode(Instr instr,int type)693   static inline bool IsMarkedCode(Instr instr, int type) {
694     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
695     return IsNop(instr, type);
696   }
697 
698 
GetCodeMarker(Instr instr)699   static inline int GetCodeMarker(Instr instr) {
700     int dst_reg_offset = 12;
701     int dst_mask = 0xf << dst_reg_offset;
702     int src_mask = 0xf;
703     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
704     int src_reg = instr & src_mask;
705     uint32_t non_register_mask = ~(dst_mask | src_mask);
706     uint32_t mov_mask = al | 13 << 21;
707 
708     // Return <n> if we have a mov rn rn, else return -1.
709     int type = ((instr & non_register_mask) == mov_mask) &&
710                (dst_reg == src_reg) &&
711                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
712                    ? src_reg
713                    : -1;
714     DCHECK((type == -1) ||
715            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
716     return type;
717   }
718 
719 
720   // ---------------------------------------------------------------------------
721   // Allocation support
722 
723   // Allocate an object in new space or old pointer space. The object_size is
724   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
725   // is passed. If the space is exhausted control continues at the gc_required
726   // label. The allocated object is returned in result. If the flag
727   // tag_allocated_object is true the result is tagged as as a heap object.
728   // All registers are clobbered also when control continues at the gc_required
729   // label.
730   void Allocate(int object_size,
731                 Register result,
732                 Register scratch1,
733                 Register scratch2,
734                 Label* gc_required,
735                 AllocationFlags flags);
736 
737   void Allocate(Register object_size,
738                 Register result,
739                 Register scratch1,
740                 Register scratch2,
741                 Label* gc_required,
742                 AllocationFlags flags);
743 
744   // Undo allocation in new space. The object passed and objects allocated after
745   // it will no longer be allocated. The caller must make sure that no pointers
746   // are left to the object(s) no longer allocated as they would be invalid when
747   // allocation is undone.
748   void UndoAllocationInNewSpace(Register object, Register scratch);
749 
750 
751   void AllocateTwoByteString(Register result,
752                              Register length,
753                              Register scratch1,
754                              Register scratch2,
755                              Register scratch3,
756                              Label* gc_required);
757   void AllocateOneByteString(Register result, Register length,
758                              Register scratch1, Register scratch2,
759                              Register scratch3, Label* gc_required);
760   void AllocateTwoByteConsString(Register result,
761                                  Register length,
762                                  Register scratch1,
763                                  Register scratch2,
764                                  Label* gc_required);
765   void AllocateOneByteConsString(Register result, Register length,
766                                  Register scratch1, Register scratch2,
767                                  Label* gc_required);
768   void AllocateTwoByteSlicedString(Register result,
769                                    Register length,
770                                    Register scratch1,
771                                    Register scratch2,
772                                    Label* gc_required);
773   void AllocateOneByteSlicedString(Register result, Register length,
774                                    Register scratch1, Register scratch2,
775                                    Label* gc_required);
776 
777   // Allocates a heap number or jumps to the gc_required label if the young
778   // space is full and a scavenge is needed. All registers are clobbered also
779   // when control continues at the gc_required label.
780   void AllocateHeapNumber(Register result,
781                           Register scratch1,
782                           Register scratch2,
783                           Register heap_number_map,
784                           Label* gc_required,
785                           TaggingMode tagging_mode = TAG_RESULT,
786                           MutableMode mode = IMMUTABLE);
787   void AllocateHeapNumberWithValue(Register result,
788                                    DwVfpRegister value,
789                                    Register scratch1,
790                                    Register scratch2,
791                                    Register heap_number_map,
792                                    Label* gc_required);
793 
794   // Copies a fixed number of fields of heap objects from src to dst.
795   void CopyFields(Register dst,
796                   Register src,
797                   LowDwVfpRegister double_scratch,
798                   int field_count);
799 
800   // Copies a number of bytes from src to dst. All registers are clobbered. On
801   // exit src and dst will point to the place just after where the last byte was
802   // read or written and length will be zero.
803   void CopyBytes(Register src,
804                  Register dst,
805                  Register length,
806                  Register scratch);
807 
808   // Initialize fields with filler values.  Fields starting at |start_offset|
809   // not including end_offset are overwritten with the value in |filler|.  At
810   // the end the loop, |start_offset| takes the value of |end_offset|.
811   void InitializeFieldsWithFiller(Register start_offset,
812                                   Register end_offset,
813                                   Register filler);
814 
815   // ---------------------------------------------------------------------------
816   // Support functions.
817 
818   // Try to get function prototype of a function and puts the value in
819   // the result register. Checks that the function really is a
820   // function and jumps to the miss label if the fast checks fail. The
821   // function register will be untouched; the other registers may be
822   // clobbered.
823   void TryGetFunctionPrototype(Register function,
824                                Register result,
825                                Register scratch,
826                                Label* miss,
827                                bool miss_on_bound_function = false);
828 
829   // Compare object type for heap object.  heap_object contains a non-Smi
830   // whose object type should be compared with the given type.  This both
831   // sets the flags and leaves the object type in the type_reg register.
832   // It leaves the map in the map register (unless the type_reg and map register
833   // are the same register).  It leaves the heap object in the heap_object
834   // register unless the heap_object register is the same register as one of the
835   // other registers.
836   // Type_reg can be no_reg. In that case ip is used.
837   void CompareObjectType(Register heap_object,
838                          Register map,
839                          Register type_reg,
840                          InstanceType type);
841 
842   // Compare object type for heap object. Branch to false_label if type
843   // is lower than min_type or greater than max_type.
844   // Load map into the register map.
845   void CheckObjectTypeRange(Register heap_object,
846                             Register map,
847                             InstanceType min_type,
848                             InstanceType max_type,
849                             Label* false_label);
850 
851   // Compare instance type in a map.  map contains a valid map object whose
852   // object type should be compared with the given type.  This both
853   // sets the flags and leaves the object type in the type_reg register.
854   void CompareInstanceType(Register map,
855                            Register type_reg,
856                            InstanceType type);
857 
858 
859   // Check if a map for a JSObject indicates that the object has fast elements.
860   // Jump to the specified label if it does not.
861   void CheckFastElements(Register map,
862                          Register scratch,
863                          Label* fail);
864 
865   // Check if a map for a JSObject indicates that the object can have both smi
866   // and HeapObject elements.  Jump to the specified label if it does not.
867   void CheckFastObjectElements(Register map,
868                                Register scratch,
869                                Label* fail);
870 
871   // Check if a map for a JSObject indicates that the object has fast smi only
872   // elements.  Jump to the specified label if it does not.
873   void CheckFastSmiElements(Register map,
874                             Register scratch,
875                             Label* fail);
876 
877   // Check to see if maybe_number can be stored as a double in
878   // FastDoubleElements. If it can, store it at the index specified by key in
879   // the FastDoubleElements array elements. Otherwise jump to fail.
880   void StoreNumberToDoubleElements(Register value_reg,
881                                    Register key_reg,
882                                    Register elements_reg,
883                                    Register scratch1,
884                                    LowDwVfpRegister double_scratch,
885                                    Label* fail,
886                                    int elements_offset = 0);
887 
888   // Compare an object's map with the specified map and its transitioned
889   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
890   // set with result of map compare. If multiple map compares are required, the
891   // compare sequences branches to early_success.
892   void CompareMap(Register obj,
893                   Register scratch,
894                   Handle<Map> map,
895                   Label* early_success);
896 
897   // As above, but the map of the object is already loaded into the register
898   // which is preserved by the code generated.
899   void CompareMap(Register obj_map,
900                   Handle<Map> map,
901                   Label* early_success);
902 
903   // Check if the map of an object is equal to a specified map and branch to
904   // label if not. Skip the smi check if not required (object is known to be a
905   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
906   // against maps that are ElementsKind transition maps of the specified map.
907   void CheckMap(Register obj,
908                 Register scratch,
909                 Handle<Map> map,
910                 Label* fail,
911                 SmiCheckType smi_check_type);
912 
913 
914   void CheckMap(Register obj,
915                 Register scratch,
916                 Heap::RootListIndex index,
917                 Label* fail,
918                 SmiCheckType smi_check_type);
919 
920 
921   // Check if the map of an object is equal to a specified map and branch to a
922   // specified target if equal. Skip the smi check if not required (object is
923   // known to be a heap object)
924   void DispatchMap(Register obj,
925                    Register scratch,
926                    Handle<Map> map,
927                    Handle<Code> success,
928                    SmiCheckType smi_check_type);
929 
930 
931   // Compare the object in a register to a value from the root list.
932   // Uses the ip register as scratch.
933   void CompareRoot(Register obj, Heap::RootListIndex index);
934 
935 
936   // Load and check the instance type of an object for being a string.
937   // Loads the type into the second argument register.
938   // Returns a condition that will be enabled if the object was a string
939   // and the passed-in condition passed. If the passed-in condition failed
940   // then flags remain unchanged.
941   Condition IsObjectStringType(Register obj,
942                                Register type,
943                                Condition cond = al) {
944     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
945     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
946     tst(type, Operand(kIsNotStringMask), cond);
947     DCHECK_EQ(0, kStringTag);
948     return eq;
949   }
950 
951 
952   // Picks out an array index from the hash field.
953   // Register use:
954   //   hash - holds the index's hash. Clobbered.
955   //   index - holds the overwritten index on exit.
956   void IndexFromHash(Register hash, Register index);
957 
958   // Get the number of least significant bits from a register
959   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
960   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
961 
962   // Load the value of a smi object into a double register.
963   // The register value must be between d0 and d15.
964   void SmiToDouble(LowDwVfpRegister value, Register smi);
965 
966   // Check if a double can be exactly represented as a signed 32-bit integer.
967   // Z flag set to one if true.
968   void TestDoubleIsInt32(DwVfpRegister double_input,
969                          LowDwVfpRegister double_scratch);
970 
971   // Try to convert a double to a signed 32-bit integer.
972   // Z flag set to one and result assigned if the conversion is exact.
973   void TryDoubleToInt32Exact(Register result,
974                              DwVfpRegister double_input,
975                              LowDwVfpRegister double_scratch);
976 
977   // Floor a double and writes the value to the result register.
978   // Go to exact if the conversion is exact (to be able to test -0),
979   // fall through calling code if an overflow occurred, else go to done.
980   // In return, input_high is loaded with high bits of input.
981   void TryInt32Floor(Register result,
982                      DwVfpRegister double_input,
983                      Register input_high,
984                      LowDwVfpRegister double_scratch,
985                      Label* done,
986                      Label* exact);
987 
988   // Performs a truncating conversion of a floating point number as used by
989   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
990   // succeeds, otherwise falls through if result is saturated. On return
991   // 'result' either holds answer, or is clobbered on fall through.
992   //
993   // Only public for the test code in test-code-stubs-arm.cc.
994   void TryInlineTruncateDoubleToI(Register result,
995                                   DwVfpRegister input,
996                                   Label* done);
997 
998   // Performs a truncating conversion of a floating point number as used by
999   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1000   // Exits with 'result' holding the answer.
1001   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
1002 
1003   // Performs a truncating conversion of a heap number as used by
1004   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1005   // must be different registers.  Exits with 'result' holding the answer.
1006   void TruncateHeapNumberToI(Register result, Register object);
1007 
1008   // Converts the smi or heap number in object to an int32 using the rules
1009   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1010   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1011   // different registers.
1012   void TruncateNumberToI(Register object,
1013                          Register result,
1014                          Register heap_number_map,
1015                          Register scratch1,
1016                          Label* not_int32);
1017 
1018   // Check whether d16-d31 are available on the CPU. The result is given by the
1019   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
1020   void CheckFor32DRegs(Register scratch);
1021 
1022   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
1023   // values to location, saving [d0..(d15|d31)].
1024   void SaveFPRegs(Register location, Register scratch);
1025 
1026   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
1027   // values to location, restoring [d0..(d15|d31)].
1028   void RestoreFPRegs(Register location, Register scratch);
1029 
1030   // ---------------------------------------------------------------------------
1031   // Runtime calls
1032 
1033   // Call a code stub.
1034   void CallStub(CodeStub* stub,
1035                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1036                 Condition cond = al);
1037 
1038   // Call a code stub.
1039   void TailCallStub(CodeStub* stub, Condition cond = al);
1040 
1041   // Call a runtime routine.
1042   void CallRuntime(const Runtime::Function* f,
1043                    int num_arguments,
1044                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId id)1045   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1046     const Runtime::Function* function = Runtime::FunctionForId(id);
1047     CallRuntime(function, function->nargs, kSaveFPRegs);
1048   }
1049 
1050   // Convenience function: Same as above, but takes the fid instead.
1051   void CallRuntime(Runtime::FunctionId id,
1052                    int num_arguments,
1053                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1054     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1055   }
1056 
1057   // Convenience function: call an external reference.
1058   void CallExternalReference(const ExternalReference& ext,
1059                              int num_arguments);
1060 
1061   // Tail call of a runtime routine (jump).
1062   // Like JumpToExternalReference, but also takes care of passing the number
1063   // of parameters.
1064   void TailCallExternalReference(const ExternalReference& ext,
1065                                  int num_arguments,
1066                                  int result_size);
1067 
1068   // Convenience function: tail call a runtime routine (jump).
1069   void TailCallRuntime(Runtime::FunctionId fid,
1070                        int num_arguments,
1071                        int result_size);
1072 
1073   int CalculateStackPassedWords(int num_reg_arguments,
1074                                 int num_double_arguments);
1075 
1076   // Before calling a C-function from generated code, align arguments on stack.
1077   // After aligning the frame, non-register arguments must be stored in
1078   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1079   // are word sized. If double arguments are used, this function assumes that
1080   // all double arguments are stored before core registers; otherwise the
1081   // correct alignment of the double values is not guaranteed.
1082   // Some compilers/platforms require the stack to be aligned when calling
1083   // C++ code.
1084   // Needs a scratch register to do some arithmetic. This register will be
1085   // trashed.
1086   void PrepareCallCFunction(int num_reg_arguments,
1087                             int num_double_registers,
1088                             Register scratch);
1089   void PrepareCallCFunction(int num_reg_arguments,
1090                             Register scratch);
1091 
1092   // There are two ways of passing double arguments on ARM, depending on
1093   // whether soft or hard floating point ABI is used. These functions
1094   // abstract parameter passing for the three different ways we call
1095   // C functions from generated code.
1096   void MovToFloatParameter(DwVfpRegister src);
1097   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
1098   void MovToFloatResult(DwVfpRegister src);
1099 
1100   // Calls a C function and cleans up the space for arguments allocated
1101   // by PrepareCallCFunction. The called function is not allowed to trigger a
1102   // garbage collection, since that might move the code and invalidate the
1103   // return address (unless this is somehow accounted for by the called
1104   // function).
1105   void CallCFunction(ExternalReference function, int num_arguments);
1106   void CallCFunction(Register function, int num_arguments);
1107   void CallCFunction(ExternalReference function,
1108                      int num_reg_arguments,
1109                      int num_double_arguments);
1110   void CallCFunction(Register function,
1111                      int num_reg_arguments,
1112                      int num_double_arguments);
1113 
1114   void MovFromFloatParameter(DwVfpRegister dst);
1115   void MovFromFloatResult(DwVfpRegister dst);
1116 
1117   // Calls an API function.  Allocates HandleScope, extracts returned value
1118   // from handle and propagates exceptions.  Restores context.  stack_space
1119   // - space to be unwound on exit (includes the call JS arguments space and
1120   // the additional space allocated for the fast call).
1121   void CallApiFunctionAndReturn(Register function_address,
1122                                 ExternalReference thunk_ref,
1123                                 int stack_space,
1124                                 MemOperand return_value_operand,
1125                                 MemOperand* context_restore_operand);
1126 
1127   // Jump to a runtime routine.
1128   void JumpToExternalReference(const ExternalReference& builtin);
1129 
1130   // Invoke specified builtin JavaScript function. Adds an entry to
1131   // the unresolved list if the name does not resolve.
1132   void InvokeBuiltin(Builtins::JavaScript id,
1133                      InvokeFlag flag,
1134                      const CallWrapper& call_wrapper = NullCallWrapper());
1135 
1136   // Store the code object for the given builtin in the target register and
1137   // setup the function in r1.
1138   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
1139 
1140   // Store the function for the given builtin in the target register.
1141   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1142 
CodeObject()1143   Handle<Object> CodeObject() {
1144     DCHECK(!code_object_.is_null());
1145     return code_object_;
1146   }
1147 
1148 
1149   // Emit code for a truncating division by a constant. The dividend register is
1150   // unchanged and ip gets clobbered. Dividend and result must be different.
1151   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1152 
1153   // ---------------------------------------------------------------------------
1154   // StatsCounter support
1155 
1156   void SetCounter(StatsCounter* counter, int value,
1157                   Register scratch1, Register scratch2);
1158   void IncrementCounter(StatsCounter* counter, int value,
1159                         Register scratch1, Register scratch2);
1160   void DecrementCounter(StatsCounter* counter, int value,
1161                         Register scratch1, Register scratch2);
1162 
1163 
1164   // ---------------------------------------------------------------------------
1165   // Debugging
1166 
1167   // Calls Abort(msg) if the condition cond is not satisfied.
1168   // Use --debug_code to enable.
1169   void Assert(Condition cond, BailoutReason reason);
1170   void AssertFastElements(Register elements);
1171 
1172   // Like Assert(), but always enabled.
1173   void Check(Condition cond, BailoutReason reason);
1174 
1175   // Print a message to stdout and abort execution.
1176   void Abort(BailoutReason msg);
1177 
1178   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1179   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1180   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1181   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1182   bool has_frame() { return has_frame_; }
1183   inline bool AllowThisStubCall(CodeStub* stub);
1184 
1185   // EABI variant for double arguments in use.
use_eabi_hardfloat()1186   bool use_eabi_hardfloat() {
1187 #ifdef __arm__
1188     return base::OS::ArmUsingHardFloat();
1189 #elif USE_EABI_HARDFLOAT
1190     return true;
1191 #else
1192     return false;
1193 #endif
1194   }
1195 
1196   // ---------------------------------------------------------------------------
1197   // Number utilities
1198 
1199   // Check whether the value of reg is a power of two and not zero. If not
1200   // control continues at the label not_power_of_two. If reg is a power of two
1201   // the register scratch contains the value of (reg - 1) when control falls
1202   // through.
1203   void JumpIfNotPowerOfTwoOrZero(Register reg,
1204                                  Register scratch,
1205                                  Label* not_power_of_two_or_zero);
1206   // Check whether the value of reg is a power of two and not zero.
1207   // Control falls through if it is, with scratch containing the mask
1208   // value (reg - 1).
1209   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1210   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1211   // strictly positive but not a power of two.
1212   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
1213                                        Register scratch,
1214                                        Label* zero_and_neg,
1215                                        Label* not_power_of_two);
1216 
1217   // ---------------------------------------------------------------------------
1218   // Smi utilities
1219 
1220   void SmiTag(Register reg, SBit s = LeaveCC) {
1221     add(reg, reg, Operand(reg), s);
1222   }
1223   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
1224     add(dst, src, Operand(src), s);
1225   }
1226 
1227   // Try to convert int32 to smi. If the value is to large, preserve
1228   // the original value and jump to not_a_smi. Destroys scratch and
1229   // sets flags.
TrySmiTag(Register reg,Label * not_a_smi)1230   void TrySmiTag(Register reg, Label* not_a_smi) {
1231     TrySmiTag(reg, reg, not_a_smi);
1232   }
TrySmiTag(Register reg,Register src,Label * not_a_smi)1233   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
1234     SmiTag(ip, src, SetCC);
1235     b(vs, not_a_smi);
1236     mov(reg, ip);
1237   }
1238 
1239 
1240   void SmiUntag(Register reg, SBit s = LeaveCC) {
1241     mov(reg, Operand::SmiUntag(reg), s);
1242   }
1243   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
1244     mov(dst, Operand::SmiUntag(src), s);
1245   }
1246 
1247   // Untag the source value into destination and jump if source is a smi.
1248   // Souce and destination can be the same register.
1249   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1250 
1251   // Untag the source value into destination and jump if source is not a smi.
1252   // Souce and destination can be the same register.
1253   void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);
1254 
1255   // Test if the register contains a smi (Z == 0 (eq) if true).
SmiTst(Register value)1256   inline void SmiTst(Register value) {
1257     tst(value, Operand(kSmiTagMask));
1258   }
NonNegativeSmiTst(Register value)1259   inline void NonNegativeSmiTst(Register value) {
1260     tst(value, Operand(kSmiTagMask | kSmiSignMask));
1261   }
1262   // Jump if the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1263   inline void JumpIfSmi(Register value, Label* smi_label) {
1264     tst(value, Operand(kSmiTagMask));
1265     b(eq, smi_label);
1266   }
1267   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1268   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1269     tst(value, Operand(kSmiTagMask));
1270     b(ne, not_smi_label);
1271   }
1272   // Jump if either of the registers contain a non-smi.
1273   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1274   // Jump if either of the registers contain a smi.
1275   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1276 
1277   // Abort execution if argument is a smi, enabled via --debug-code.
1278   void AssertNotSmi(Register object);
1279   void AssertSmi(Register object);
1280 
1281   // Abort execution if argument is not a string, enabled via --debug-code.
1282   void AssertString(Register object);
1283 
1284   // Abort execution if argument is not a name, enabled via --debug-code.
1285   void AssertName(Register object);
1286 
1287   // Abort execution if argument is not undefined or an AllocationSite, enabled
1288   // via --debug-code.
1289   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1290 
1291   // Abort execution if reg is not the root value with the given index,
1292   // enabled via --debug-code.
1293   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1294 
1295   // ---------------------------------------------------------------------------
1296   // HeapNumber utilities
1297 
1298   void JumpIfNotHeapNumber(Register object,
1299                            Register heap_number_map,
1300                            Register scratch,
1301                            Label* on_not_heap_number);
1302 
1303   // ---------------------------------------------------------------------------
1304   // String utilities
1305 
1306   // Generate code to do a lookup in the number string cache. If the number in
1307   // the register object is found in the cache the generated code falls through
1308   // with the result in the result register. The object and the result register
1309   // can be the same. If the number is not found in the cache the code jumps to
1310   // the label not_found with only the content of register object unchanged.
1311   void LookupNumberStringCache(Register object,
1312                                Register result,
1313                                Register scratch1,
1314                                Register scratch2,
1315                                Register scratch3,
1316                                Label* not_found);
1317 
1318   // Checks if both objects are sequential one-byte strings and jumps to label
1319   // if either is not. Assumes that neither object is a smi.
1320   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1321                                                     Register object2,
1322                                                     Register scratch1,
1323                                                     Register scratch2,
1324                                                     Label* failure);
1325 
1326   // Checks if both objects are sequential one-byte strings and jumps to label
1327   // if either is not.
1328   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1329                                              Register scratch1,
1330                                              Register scratch2,
1331                                              Label* not_flat_one_byte_strings);
1332 
1333   // Checks if both instance types are sequential one-byte strings and jumps to
1334   // label if either is not.
1335   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1336       Register first_object_instance_type, Register second_object_instance_type,
1337       Register scratch1, Register scratch2, Label* failure);
1338 
1339   // Check if instance type is sequential one-byte string and jump to label if
1340   // it is not.
1341   void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
1342                                                 Label* failure);
1343 
1344   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1345 
1346   void EmitSeqStringSetCharCheck(Register string,
1347                                  Register index,
1348                                  Register value,
1349                                  uint32_t encoding_mask);
1350 
1351   // ---------------------------------------------------------------------------
1352   // Patching helpers.
1353 
1354   // Get the location of a relocated constant (its address in the constant pool)
1355   // from its load site.
1356   void GetRelocatedValueLocation(Register ldr_location, Register result,
1357                                  Register scratch);
1358 
1359 
1360   void ClampUint8(Register output_reg, Register input_reg);
1361 
1362   void ClampDoubleToUint8(Register result_reg,
1363                           DwVfpRegister input_reg,
1364                           LowDwVfpRegister double_scratch);
1365 
1366 
1367   void LoadInstanceDescriptors(Register map, Register descriptors);
1368   void EnumLength(Register dst, Register map);
1369   void NumberOfOwnDescriptors(Register dst, Register map);
1370 
1371   template<typename Field>
DecodeField(Register dst,Register src)1372   void DecodeField(Register dst, Register src) {
1373     Ubfx(dst, src, Field::kShift, Field::kSize);
1374   }
1375 
1376   template<typename Field>
DecodeField(Register reg)1377   void DecodeField(Register reg) {
1378     DecodeField<Field>(reg, reg);
1379   }
1380 
1381   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1382   void DecodeFieldToSmi(Register dst, Register src) {
1383     static const int shift = Field::kShift;
1384     static const int mask = Field::kMask >> shift << kSmiTagSize;
1385     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1386     STATIC_ASSERT(kSmiTag == 0);
1387     if (shift < kSmiTagSize) {
1388       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
1389       and_(dst, dst, Operand(mask));
1390     } else if (shift > kSmiTagSize) {
1391       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
1392       and_(dst, dst, Operand(mask));
1393     } else {
1394       and_(dst, src, Operand(mask));
1395     }
1396   }
1397 
1398   template<typename Field>
DecodeFieldToSmi(Register reg)1399   void DecodeFieldToSmi(Register reg) {
1400     DecodeField<Field>(reg, reg);
1401   }
1402 
1403   // Activation support.
1404   void EnterFrame(StackFrame::Type type, bool load_constant_pool = false);
1405   // Returns the pc offset at which the frame ends.
1406   int LeaveFrame(StackFrame::Type type);
1407 
1408   // Expects object in r0 and returns map with validated enum cache
1409   // in r0.  Assumes that any other register can be used as a scratch.
1410   void CheckEnumCache(Register null_value, Label* call_runtime);
1411 
1412   // AllocationMemento support. Arrays may have an associated
1413   // AllocationMemento object that can be checked for in order to pretransition
1414   // to another type.
1415   // On entry, receiver_reg should point to the array object.
1416   // scratch_reg gets clobbered.
1417   // If allocation info is present, condition flags are set to eq.
1418   void TestJSArrayForAllocationMemento(Register receiver_reg,
1419                                        Register scratch_reg,
1420                                        Label* no_memento_found);
1421 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1422   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1423                                          Register scratch_reg,
1424                                          Label* memento_found) {
1425     Label no_memento_found;
1426     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1427                                     &no_memento_found);
1428     b(eq, memento_found);
1429     bind(&no_memento_found);
1430   }
1431 
1432   // Jumps to found label if a prototype map has dictionary elements.
1433   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1434                                         Register scratch1, Label* found);
1435 
1436  private:
1437   void CallCFunctionHelper(Register function,
1438                            int num_reg_arguments,
1439                            int num_double_arguments);
1440 
1441   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1442 
1443   // Helper functions for generating invokes.
1444   void InvokePrologue(const ParameterCount& expected,
1445                       const ParameterCount& actual,
1446                       Handle<Code> code_constant,
1447                       Register code_reg,
1448                       Label* done,
1449                       bool* definitely_mismatches,
1450                       InvokeFlag flag,
1451                       const CallWrapper& call_wrapper);
1452 
1453   void InitializeNewString(Register string,
1454                            Register length,
1455                            Heap::RootListIndex map_index,
1456                            Register scratch1,
1457                            Register scratch2);
1458 
1459   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1460   void InNewSpace(Register object,
1461                   Register scratch,
1462                   Condition cond,  // eq for new space, ne otherwise.
1463                   Label* branch);
1464 
1465   // Helper for finding the mark bits for an address.  Afterwards, the
1466   // bitmap register points at the word with the mark bits and the mask
1467   // the position of the first bit.  Leaves addr_reg unchanged.
1468   inline void GetMarkBits(Register addr_reg,
1469                           Register bitmap_reg,
1470                           Register mask_reg);
1471 
1472   // Helper for throwing exceptions.  Compute a handler address and jump to
1473   // it.  See the implementation for register usage.
1474   void JumpToHandlerEntry();
1475 
1476   // Compute memory operands for safepoint stack slots.
1477   static int SafepointRegisterStackIndex(int reg_code);
1478   MemOperand SafepointRegisterSlot(Register reg);
1479   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1480 
1481   // Loads the constant pool pointer (pp) register.
1482   void LoadConstantPoolPointerRegister();
1483 
1484   bool generating_stub_;
1485   bool has_frame_;
1486   // This handle will be patched with the code object on installation.
1487   Handle<Object> code_object_;
1488 
1489   // Needs access to SafepointRegisterStackIndex for compiled frame
1490   // traversal.
1491   friend class StandardFrame;
1492 };
1493 
1494 
1495 // The code patcher is used to patch (typically) small parts of code e.g. for
1496 // debugging and other types of instrumentation. When using the code patcher
1497 // the exact number of bytes specified must be emitted. It is not legal to emit
1498 // relocation information. If any of these constraints are violated it causes
1499 // an assertion to fail.
1500 class CodePatcher {
1501  public:
1502   enum FlushICache {
1503     FLUSH,
1504     DONT_FLUSH
1505   };
1506 
1507   CodePatcher(byte* address,
1508               int instructions,
1509               FlushICache flush_cache = FLUSH);
1510   virtual ~CodePatcher();
1511 
1512   // Macro assembler to emit code.
masm()1513   MacroAssembler* masm() { return &masm_; }
1514 
1515   // Emit an instruction directly.
1516   void Emit(Instr instr);
1517 
1518   // Emit an address directly.
1519   void Emit(Address addr);
1520 
1521   // Emit the condition part of an instruction leaving the rest of the current
1522   // instruction unchanged.
1523   void EmitCondition(Condition cond);
1524 
1525  private:
1526   byte* address_;  // The address of the code being patched.
1527   int size_;  // Number of bytes of the expected patch size.
1528   MacroAssembler masm_;  // Macro assembler used to generate the code.
1529   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1530 };
1531 
1532 
1533 class FrameAndConstantPoolScope {
1534  public:
FrameAndConstantPoolScope(MacroAssembler * masm,StackFrame::Type type)1535   FrameAndConstantPoolScope(MacroAssembler* masm, StackFrame::Type type)
1536       : masm_(masm),
1537         type_(type),
1538         old_has_frame_(masm->has_frame()),
1539         old_constant_pool_available_(masm->is_constant_pool_available())  {
1540     // We only want to enable constant pool access for non-manual frame scopes
1541     // to ensure the constant pool pointer is valid throughout the scope.
1542     DCHECK(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
1543     masm->set_has_frame(true);
1544     masm->set_constant_pool_available(true);
1545     masm->EnterFrame(type, !old_constant_pool_available_);
1546   }
1547 
~FrameAndConstantPoolScope()1548   ~FrameAndConstantPoolScope() {
1549     masm_->LeaveFrame(type_);
1550     masm_->set_has_frame(old_has_frame_);
1551     masm_->set_constant_pool_available(old_constant_pool_available_);
1552   }
1553 
1554   // Normally we generate the leave-frame code when this object goes
1555   // out of scope.  Sometimes we may need to generate the code somewhere else
1556   // in addition.  Calling this will achieve that, but the object stays in
1557   // scope, the MacroAssembler is still marked as being in a frame scope, and
1558   // the code will be generated again when it goes out of scope.
GenerateLeaveFrame()1559   void GenerateLeaveFrame() {
1560     DCHECK(type_ != StackFrame::MANUAL && type_ != StackFrame::NONE);
1561     masm_->LeaveFrame(type_);
1562   }
1563 
1564  private:
1565   MacroAssembler* masm_;
1566   StackFrame::Type type_;
1567   bool old_has_frame_;
1568   bool old_constant_pool_available_;
1569 
1570   DISALLOW_IMPLICIT_CONSTRUCTORS(FrameAndConstantPoolScope);
1571 };
1572 
1573 
1574 // Class for scoping the the unavailability of constant pool access.
1575 class ConstantPoolUnavailableScope {
1576  public:
ConstantPoolUnavailableScope(MacroAssembler * masm)1577   explicit ConstantPoolUnavailableScope(MacroAssembler* masm)
1578      : masm_(masm),
1579        old_constant_pool_available_(masm->is_constant_pool_available()) {
1580     if (FLAG_enable_ool_constant_pool) {
1581       masm_->set_constant_pool_available(false);
1582     }
1583   }
~ConstantPoolUnavailableScope()1584   ~ConstantPoolUnavailableScope() {
1585     if (FLAG_enable_ool_constant_pool) {
1586      masm_->set_constant_pool_available(old_constant_pool_available_);
1587     }
1588   }
1589 
1590  private:
1591   MacroAssembler* masm_;
1592   int old_constant_pool_available_;
1593 
1594   DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolUnavailableScope);
1595 };
1596 
1597 
1598 // -----------------------------------------------------------------------------
1599 // Static helper functions.
1600 
ContextOperand(Register context,int index)1601 inline MemOperand ContextOperand(Register context, int index) {
1602   return MemOperand(context, Context::SlotOffset(index));
1603 }
1604 
1605 
GlobalObjectOperand()1606 inline MemOperand GlobalObjectOperand()  {
1607   return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
1608 }
1609 
1610 
1611 #ifdef GENERATED_CODE_COVERAGE
1612 #define CODE_COVERAGE_STRINGIFY(x) #x
1613 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1614 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1615 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
1616 #else
1617 #define ACCESS_MASM(masm) masm->
1618 #endif
1619 
1620 
1621 } }  // namespace v8::internal
1622 
1623 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
1624