1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include <stdarg.h>
6 #include <stdlib.h>
7 #include <cmath>
8 
9 #include "src/v8.h"
10 
11 #if V8_TARGET_ARCH_ARM
12 
13 #include "src/arm/constants-arm.h"
14 #include "src/arm/simulator-arm.h"
15 #include "src/assembler.h"
16 #include "src/codegen.h"
17 #include "src/disasm.h"
18 
19 #if defined(USE_SIMULATOR)
20 
21 // Only build the simulator if not compiling for real ARM hardware.
22 namespace v8 {
23 namespace internal {
24 
25 // This macro provides a platform independent use of sscanf. The reason for
26 // SScanF not being implemented in a platform independent way through
27 // ::v8::internal::OS in the same way as SNPrintF is that the
28 // Windows C Run-Time Library does not provide vsscanf.
29 #define SScanF sscanf  // NOLINT
30 
31 // The ArmDebugger class is used by the simulator while debugging simulated ARM
32 // code.
33 class ArmDebugger {
34  public:
ArmDebugger(Simulator * sim)35   explicit ArmDebugger(Simulator* sim) : sim_(sim) { }
36   ~ArmDebugger();
37 
38   void Stop(Instruction* instr);
39   void Debug();
40 
41  private:
42   static const Instr kBreakpointInstr =
43       (al | (7*B25) | (1*B24) | kBreakpoint);
44   static const Instr kNopInstr = (al | (13*B21));
45 
46   Simulator* sim_;
47 
48   int32_t GetRegisterValue(int regnum);
49   double GetRegisterPairDoubleValue(int regnum);
50   double GetVFPDoubleRegisterValue(int regnum);
51   bool GetValue(const char* desc, int32_t* value);
52   bool GetVFPSingleValue(const char* desc, float* value);
53   bool GetVFPDoubleValue(const char* desc, double* value);
54 
55   // Set or delete a breakpoint. Returns true if successful.
56   bool SetBreakpoint(Instruction* breakpc);
57   bool DeleteBreakpoint(Instruction* breakpc);
58 
59   // Undo and redo all breakpoints. This is needed to bracket disassembly and
60   // execution to skip past breakpoints when run from the debugger.
61   void UndoBreakpoints();
62   void RedoBreakpoints();
63 };
64 
65 
~ArmDebugger()66 ArmDebugger::~ArmDebugger() {
67 }
68 
69 
70 
71 #ifdef GENERATED_CODE_COVERAGE
72 static FILE* coverage_log = NULL;
73 
74 
InitializeCoverage()75 static void InitializeCoverage() {
76   char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
77   if (file_name != NULL) {
78     coverage_log = fopen(file_name, "aw+");
79   }
80 }
81 
82 
Stop(Instruction * instr)83 void ArmDebugger::Stop(Instruction* instr) {
84   // Get the stop code.
85   uint32_t code = instr->SvcValue() & kStopCodeMask;
86   // Retrieve the encoded address, which comes just after this stop.
87   char** msg_address =
88     reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
89   char* msg = *msg_address;
90   DCHECK(msg != NULL);
91 
92   // Update this stop description.
93   if (isWatchedStop(code) && !watched_stops_[code].desc) {
94     watched_stops_[code].desc = msg;
95   }
96 
97   if (strlen(msg) > 0) {
98     if (coverage_log != NULL) {
99       fprintf(coverage_log, "%s\n", msg);
100       fflush(coverage_log);
101     }
102     // Overwrite the instruction and address with nops.
103     instr->SetInstructionBits(kNopInstr);
104     reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
105   }
106   sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
107 }
108 
109 #else  // ndef GENERATED_CODE_COVERAGE
110 
InitializeCoverage()111 static void InitializeCoverage() {
112 }
113 
114 
Stop(Instruction * instr)115 void ArmDebugger::Stop(Instruction* instr) {
116   // Get the stop code.
117   uint32_t code = instr->SvcValue() & kStopCodeMask;
118   // Retrieve the encoded address, which comes just after this stop.
119   char* msg = *reinterpret_cast<char**>(sim_->get_pc()
120                                         + Instruction::kInstrSize);
121   // Update this stop description.
122   if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
123     sim_->watched_stops_[code].desc = msg;
124   }
125   // Print the stop message and code if it is not the default code.
126   if (code != kMaxStopCode) {
127     PrintF("Simulator hit stop %u: %s\n", code, msg);
128   } else {
129     PrintF("Simulator hit %s\n", msg);
130   }
131   sim_->set_pc(sim_->get_pc() + 2 * Instruction::kInstrSize);
132   Debug();
133 }
134 #endif
135 
136 
GetRegisterValue(int regnum)137 int32_t ArmDebugger::GetRegisterValue(int regnum) {
138   if (regnum == kPCRegister) {
139     return sim_->get_pc();
140   } else {
141     return sim_->get_register(regnum);
142   }
143 }
144 
145 
GetRegisterPairDoubleValue(int regnum)146 double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
147   return sim_->get_double_from_register_pair(regnum);
148 }
149 
150 
GetVFPDoubleRegisterValue(int regnum)151 double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
152   return sim_->get_double_from_d_register(regnum);
153 }
154 
155 
GetValue(const char * desc,int32_t * value)156 bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
157   int regnum = Registers::Number(desc);
158   if (regnum != kNoRegister) {
159     *value = GetRegisterValue(regnum);
160     return true;
161   } else {
162     if (strncmp(desc, "0x", 2) == 0) {
163       return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
164     } else {
165       return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
166     }
167   }
168   return false;
169 }
170 
171 
GetVFPSingleValue(const char * desc,float * value)172 bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
173   bool is_double;
174   int regnum = VFPRegisters::Number(desc, &is_double);
175   if (regnum != kNoRegister && !is_double) {
176     *value = sim_->get_float_from_s_register(regnum);
177     return true;
178   }
179   return false;
180 }
181 
182 
GetVFPDoubleValue(const char * desc,double * value)183 bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
184   bool is_double;
185   int regnum = VFPRegisters::Number(desc, &is_double);
186   if (regnum != kNoRegister && is_double) {
187     *value = sim_->get_double_from_d_register(regnum);
188     return true;
189   }
190   return false;
191 }
192 
193 
SetBreakpoint(Instruction * breakpc)194 bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
195   // Check if a breakpoint can be set. If not return without any side-effects.
196   if (sim_->break_pc_ != NULL) {
197     return false;
198   }
199 
200   // Set the breakpoint.
201   sim_->break_pc_ = breakpc;
202   sim_->break_instr_ = breakpc->InstructionBits();
203   // Not setting the breakpoint instruction in the code itself. It will be set
204   // when the debugger shell continues.
205   return true;
206 }
207 
208 
DeleteBreakpoint(Instruction * breakpc)209 bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
210   if (sim_->break_pc_ != NULL) {
211     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
212   }
213 
214   sim_->break_pc_ = NULL;
215   sim_->break_instr_ = 0;
216   return true;
217 }
218 
219 
UndoBreakpoints()220 void ArmDebugger::UndoBreakpoints() {
221   if (sim_->break_pc_ != NULL) {
222     sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
223   }
224 }
225 
226 
RedoBreakpoints()227 void ArmDebugger::RedoBreakpoints() {
228   if (sim_->break_pc_ != NULL) {
229     sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
230   }
231 }
232 
233 
Debug()234 void ArmDebugger::Debug() {
235   intptr_t last_pc = -1;
236   bool done = false;
237 
238 #define COMMAND_SIZE 63
239 #define ARG_SIZE 255
240 
241 #define STR(a) #a
242 #define XSTR(a) STR(a)
243 
244   char cmd[COMMAND_SIZE + 1];
245   char arg1[ARG_SIZE + 1];
246   char arg2[ARG_SIZE + 1];
247   char* argv[3] = { cmd, arg1, arg2 };
248 
249   // make sure to have a proper terminating character if reaching the limit
250   cmd[COMMAND_SIZE] = 0;
251   arg1[ARG_SIZE] = 0;
252   arg2[ARG_SIZE] = 0;
253 
254   // Undo all set breakpoints while running in the debugger shell. This will
255   // make them invisible to all commands.
256   UndoBreakpoints();
257 
258   while (!done && !sim_->has_bad_pc()) {
259     if (last_pc != sim_->get_pc()) {
260       disasm::NameConverter converter;
261       disasm::Disassembler dasm(converter);
262       // use a reasonably large buffer
263       v8::internal::EmbeddedVector<char, 256> buffer;
264       dasm.InstructionDecode(buffer,
265                              reinterpret_cast<byte*>(sim_->get_pc()));
266       PrintF("  0x%08x  %s\n", sim_->get_pc(), buffer.start());
267       last_pc = sim_->get_pc();
268     }
269     char* line = ReadLine("sim> ");
270     if (line == NULL) {
271       break;
272     } else {
273       char* last_input = sim_->last_debugger_input();
274       if (strcmp(line, "\n") == 0 && last_input != NULL) {
275         line = last_input;
276       } else {
277         // Ownership is transferred to sim_;
278         sim_->set_last_debugger_input(line);
279       }
280       // Use sscanf to parse the individual parts of the command line. At the
281       // moment no command expects more than two parameters.
282       int argc = SScanF(line,
283                         "%" XSTR(COMMAND_SIZE) "s "
284                         "%" XSTR(ARG_SIZE) "s "
285                         "%" XSTR(ARG_SIZE) "s",
286                         cmd, arg1, arg2);
287       if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
288         sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
289       } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
290         // Execute the one instruction we broke at with breakpoints disabled.
291         sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
292         // Leave the debugger shell.
293         done = true;
294       } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
295         if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
296           int32_t value;
297           float svalue;
298           double dvalue;
299           if (strcmp(arg1, "all") == 0) {
300             for (int i = 0; i < kNumRegisters; i++) {
301               value = GetRegisterValue(i);
302               PrintF("%3s: 0x%08x %10d", Registers::Name(i), value, value);
303               if ((argc == 3 && strcmp(arg2, "fp") == 0) &&
304                   i < 8 &&
305                   (i % 2) == 0) {
306                 dvalue = GetRegisterPairDoubleValue(i);
307                 PrintF(" (%f)\n", dvalue);
308               } else {
309                 PrintF("\n");
310               }
311             }
312             for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) {
313               dvalue = GetVFPDoubleRegisterValue(i);
314               uint64_t as_words = bit_cast<uint64_t>(dvalue);
315               PrintF("%3s: %f 0x%08x %08x\n",
316                      VFPRegisters::Name(i, true),
317                      dvalue,
318                      static_cast<uint32_t>(as_words >> 32),
319                      static_cast<uint32_t>(as_words & 0xffffffff));
320             }
321           } else {
322             if (GetValue(arg1, &value)) {
323               PrintF("%s: 0x%08x %d \n", arg1, value, value);
324             } else if (GetVFPSingleValue(arg1, &svalue)) {
325               uint32_t as_word = bit_cast<uint32_t>(svalue);
326               PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
327             } else if (GetVFPDoubleValue(arg1, &dvalue)) {
328               uint64_t as_words = bit_cast<uint64_t>(dvalue);
329               PrintF("%s: %f 0x%08x %08x\n",
330                      arg1,
331                      dvalue,
332                      static_cast<uint32_t>(as_words >> 32),
333                      static_cast<uint32_t>(as_words & 0xffffffff));
334             } else {
335               PrintF("%s unrecognized\n", arg1);
336             }
337           }
338         } else {
339           PrintF("print <register>\n");
340         }
341       } else if ((strcmp(cmd, "po") == 0)
342                  || (strcmp(cmd, "printobject") == 0)) {
343         if (argc == 2) {
344           int32_t value;
345           OFStream os(stdout);
346           if (GetValue(arg1, &value)) {
347             Object* obj = reinterpret_cast<Object*>(value);
348             os << arg1 << ": \n";
349 #ifdef DEBUG
350             obj->Print(os);
351             os << "\n";
352 #else
353             os << Brief(obj) << "\n";
354 #endif
355           } else {
356             os << arg1 << " unrecognized\n";
357           }
358         } else {
359           PrintF("printobject <value>\n");
360         }
361       } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
362         int32_t* cur = NULL;
363         int32_t* end = NULL;
364         int next_arg = 1;
365 
366         if (strcmp(cmd, "stack") == 0) {
367           cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
368         } else {  // "mem"
369           int32_t value;
370           if (!GetValue(arg1, &value)) {
371             PrintF("%s unrecognized\n", arg1);
372             continue;
373           }
374           cur = reinterpret_cast<int32_t*>(value);
375           next_arg++;
376         }
377 
378         int32_t words;
379         if (argc == next_arg) {
380           words = 10;
381         } else {
382           if (!GetValue(argv[next_arg], &words)) {
383             words = 10;
384           }
385         }
386         end = cur + words;
387 
388         while (cur < end) {
389           PrintF("  0x%08x:  0x%08x %10d",
390                  reinterpret_cast<intptr_t>(cur), *cur, *cur);
391           HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
392           int value = *cur;
393           Heap* current_heap = v8::internal::Isolate::Current()->heap();
394           if (((value & 1) == 0) || current_heap->Contains(obj)) {
395             PrintF(" (");
396             if ((value & 1) == 0) {
397               PrintF("smi %d", value / 2);
398             } else {
399               obj->ShortPrint();
400             }
401             PrintF(")");
402           }
403           PrintF("\n");
404           cur++;
405         }
406       } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
407         disasm::NameConverter converter;
408         disasm::Disassembler dasm(converter);
409         // use a reasonably large buffer
410         v8::internal::EmbeddedVector<char, 256> buffer;
411 
412         byte* prev = NULL;
413         byte* cur = NULL;
414         byte* end = NULL;
415 
416         if (argc == 1) {
417           cur = reinterpret_cast<byte*>(sim_->get_pc());
418           end = cur + (10 * Instruction::kInstrSize);
419         } else if (argc == 2) {
420           int regnum = Registers::Number(arg1);
421           if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
422             // The argument is an address or a register name.
423             int32_t value;
424             if (GetValue(arg1, &value)) {
425               cur = reinterpret_cast<byte*>(value);
426               // Disassemble 10 instructions at <arg1>.
427               end = cur + (10 * Instruction::kInstrSize);
428             }
429           } else {
430             // The argument is the number of instructions.
431             int32_t value;
432             if (GetValue(arg1, &value)) {
433               cur = reinterpret_cast<byte*>(sim_->get_pc());
434               // Disassemble <arg1> instructions.
435               end = cur + (value * Instruction::kInstrSize);
436             }
437           }
438         } else {
439           int32_t value1;
440           int32_t value2;
441           if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
442             cur = reinterpret_cast<byte*>(value1);
443             end = cur + (value2 * Instruction::kInstrSize);
444           }
445         }
446 
447         while (cur < end) {
448           prev = cur;
449           cur += dasm.InstructionDecode(buffer, cur);
450           PrintF("  0x%08x  %s\n",
451                  reinterpret_cast<intptr_t>(prev), buffer.start());
452         }
453       } else if (strcmp(cmd, "gdb") == 0) {
454         PrintF("relinquishing control to gdb\n");
455         v8::base::OS::DebugBreak();
456         PrintF("regaining control from gdb\n");
457       } else if (strcmp(cmd, "break") == 0) {
458         if (argc == 2) {
459           int32_t value;
460           if (GetValue(arg1, &value)) {
461             if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
462               PrintF("setting breakpoint failed\n");
463             }
464           } else {
465             PrintF("%s unrecognized\n", arg1);
466           }
467         } else {
468           PrintF("break <address>\n");
469         }
470       } else if (strcmp(cmd, "del") == 0) {
471         if (!DeleteBreakpoint(NULL)) {
472           PrintF("deleting breakpoint failed\n");
473         }
474       } else if (strcmp(cmd, "flags") == 0) {
475         PrintF("N flag: %d; ", sim_->n_flag_);
476         PrintF("Z flag: %d; ", sim_->z_flag_);
477         PrintF("C flag: %d; ", sim_->c_flag_);
478         PrintF("V flag: %d\n", sim_->v_flag_);
479         PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
480         PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
481         PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
482         PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
483         PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
484       } else if (strcmp(cmd, "stop") == 0) {
485         int32_t value;
486         intptr_t stop_pc = sim_->get_pc() - 2 * Instruction::kInstrSize;
487         Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
488         Instruction* msg_address =
489           reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
490         if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
491           // Remove the current stop.
492           if (sim_->isStopInstruction(stop_instr)) {
493             stop_instr->SetInstructionBits(kNopInstr);
494             msg_address->SetInstructionBits(kNopInstr);
495           } else {
496             PrintF("Not at debugger stop.\n");
497           }
498         } else if (argc == 3) {
499           // Print information about all/the specified breakpoint(s).
500           if (strcmp(arg1, "info") == 0) {
501             if (strcmp(arg2, "all") == 0) {
502               PrintF("Stop information:\n");
503               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
504                 sim_->PrintStopInfo(i);
505               }
506             } else if (GetValue(arg2, &value)) {
507               sim_->PrintStopInfo(value);
508             } else {
509               PrintF("Unrecognized argument.\n");
510             }
511           } else if (strcmp(arg1, "enable") == 0) {
512             // Enable all/the specified breakpoint(s).
513             if (strcmp(arg2, "all") == 0) {
514               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
515                 sim_->EnableStop(i);
516               }
517             } else if (GetValue(arg2, &value)) {
518               sim_->EnableStop(value);
519             } else {
520               PrintF("Unrecognized argument.\n");
521             }
522           } else if (strcmp(arg1, "disable") == 0) {
523             // Disable all/the specified breakpoint(s).
524             if (strcmp(arg2, "all") == 0) {
525               for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
526                 sim_->DisableStop(i);
527               }
528             } else if (GetValue(arg2, &value)) {
529               sim_->DisableStop(value);
530             } else {
531               PrintF("Unrecognized argument.\n");
532             }
533           }
534         } else {
535           PrintF("Wrong usage. Use help command for more information.\n");
536         }
537       } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
538         ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
539         PrintF("Trace of executed instructions is %s\n",
540                ::v8::internal::FLAG_trace_sim ? "on" : "off");
541       } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
542         PrintF("cont\n");
543         PrintF("  continue execution (alias 'c')\n");
544         PrintF("stepi\n");
545         PrintF("  step one instruction (alias 'si')\n");
546         PrintF("print <register>\n");
547         PrintF("  print register content (alias 'p')\n");
548         PrintF("  use register name 'all' to print all registers\n");
549         PrintF("  add argument 'fp' to print register pair double values\n");
550         PrintF("printobject <register>\n");
551         PrintF("  print an object from a register (alias 'po')\n");
552         PrintF("flags\n");
553         PrintF("  print flags\n");
554         PrintF("stack [<words>]\n");
555         PrintF("  dump stack content, default dump 10 words)\n");
556         PrintF("mem <address> [<words>]\n");
557         PrintF("  dump memory content, default dump 10 words)\n");
558         PrintF("disasm [<instructions>]\n");
559         PrintF("disasm [<address/register>]\n");
560         PrintF("disasm [[<address/register>] <instructions>]\n");
561         PrintF("  disassemble code, default is 10 instructions\n");
562         PrintF("  from pc (alias 'di')\n");
563         PrintF("gdb\n");
564         PrintF("  enter gdb\n");
565         PrintF("break <address>\n");
566         PrintF("  set a break point on the address\n");
567         PrintF("del\n");
568         PrintF("  delete the breakpoint\n");
569         PrintF("trace (alias 't')\n");
570         PrintF("  toogle the tracing of all executed statements\n");
571         PrintF("stop feature:\n");
572         PrintF("  Description:\n");
573         PrintF("    Stops are debug instructions inserted by\n");
574         PrintF("    the Assembler::stop() function.\n");
575         PrintF("    When hitting a stop, the Simulator will\n");
576         PrintF("    stop and and give control to the ArmDebugger.\n");
577         PrintF("    The first %d stop codes are watched:\n",
578                Simulator::kNumOfWatchedStops);
579         PrintF("    - They can be enabled / disabled: the Simulator\n");
580         PrintF("      will / won't stop when hitting them.\n");
581         PrintF("    - The Simulator keeps track of how many times they \n");
582         PrintF("      are met. (See the info command.) Going over a\n");
583         PrintF("      disabled stop still increases its counter. \n");
584         PrintF("  Commands:\n");
585         PrintF("    stop info all/<code> : print infos about number <code>\n");
586         PrintF("      or all stop(s).\n");
587         PrintF("    stop enable/disable all/<code> : enables / disables\n");
588         PrintF("      all or number <code> stop(s)\n");
589         PrintF("    stop unstop\n");
590         PrintF("      ignore the stop instruction at the current location\n");
591         PrintF("      from now on\n");
592       } else {
593         PrintF("Unknown command: %s\n", cmd);
594       }
595     }
596   }
597 
598   // Add all the breakpoints back to stop execution and enter the debugger
599   // shell when hit.
600   RedoBreakpoints();
601 
602 #undef COMMAND_SIZE
603 #undef ARG_SIZE
604 
605 #undef STR
606 #undef XSTR
607 }
608 
609 
ICacheMatch(void * one,void * two)610 static bool ICacheMatch(void* one, void* two) {
611   DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
612   DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
613   return one == two;
614 }
615 
616 
ICacheHash(void * key)617 static uint32_t ICacheHash(void* key) {
618   return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
619 }
620 
621 
AllOnOnePage(uintptr_t start,int size)622 static bool AllOnOnePage(uintptr_t start, int size) {
623   intptr_t start_page = (start & ~CachePage::kPageMask);
624   intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
625   return start_page == end_page;
626 }
627 
628 
set_last_debugger_input(char * input)629 void Simulator::set_last_debugger_input(char* input) {
630   DeleteArray(last_debugger_input_);
631   last_debugger_input_ = input;
632 }
633 
634 
FlushICache(v8::internal::HashMap * i_cache,void * start_addr,size_t size)635 void Simulator::FlushICache(v8::internal::HashMap* i_cache,
636                             void* start_addr,
637                             size_t size) {
638   intptr_t start = reinterpret_cast<intptr_t>(start_addr);
639   int intra_line = (start & CachePage::kLineMask);
640   start -= intra_line;
641   size += intra_line;
642   size = ((size - 1) | CachePage::kLineMask) + 1;
643   int offset = (start & CachePage::kPageMask);
644   while (!AllOnOnePage(start, size - 1)) {
645     int bytes_to_flush = CachePage::kPageSize - offset;
646     FlushOnePage(i_cache, start, bytes_to_flush);
647     start += bytes_to_flush;
648     size -= bytes_to_flush;
649     DCHECK_EQ(0, start & CachePage::kPageMask);
650     offset = 0;
651   }
652   if (size != 0) {
653     FlushOnePage(i_cache, start, size);
654   }
655 }
656 
657 
GetCachePage(v8::internal::HashMap * i_cache,void * page)658 CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
659   v8::internal::HashMap::Entry* entry = i_cache->Lookup(page,
660                                                         ICacheHash(page),
661                                                         true);
662   if (entry->value == NULL) {
663     CachePage* new_page = new CachePage();
664     entry->value = new_page;
665   }
666   return reinterpret_cast<CachePage*>(entry->value);
667 }
668 
669 
670 // Flush from start up to and not including start + size.
FlushOnePage(v8::internal::HashMap * i_cache,intptr_t start,int size)671 void Simulator::FlushOnePage(v8::internal::HashMap* i_cache,
672                              intptr_t start,
673                              int size) {
674   DCHECK(size <= CachePage::kPageSize);
675   DCHECK(AllOnOnePage(start, size - 1));
676   DCHECK((start & CachePage::kLineMask) == 0);
677   DCHECK((size & CachePage::kLineMask) == 0);
678   void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
679   int offset = (start & CachePage::kPageMask);
680   CachePage* cache_page = GetCachePage(i_cache, page);
681   char* valid_bytemap = cache_page->ValidityByte(offset);
682   memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
683 }
684 
685 
CheckICache(v8::internal::HashMap * i_cache,Instruction * instr)686 void Simulator::CheckICache(v8::internal::HashMap* i_cache,
687                             Instruction* instr) {
688   intptr_t address = reinterpret_cast<intptr_t>(instr);
689   void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
690   void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
691   int offset = (address & CachePage::kPageMask);
692   CachePage* cache_page = GetCachePage(i_cache, page);
693   char* cache_valid_byte = cache_page->ValidityByte(offset);
694   bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
695   char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
696   if (cache_hit) {
697     // Check that the data in memory matches the contents of the I-cache.
698     CHECK_EQ(0,
699              memcmp(reinterpret_cast<void*>(instr),
700                     cache_page->CachedData(offset), Instruction::kInstrSize));
701   } else {
702     // Cache miss.  Load memory into the cache.
703     memcpy(cached_line, line, CachePage::kLineLength);
704     *cache_valid_byte = CachePage::LINE_VALID;
705   }
706 }
707 
708 
Initialize(Isolate * isolate)709 void Simulator::Initialize(Isolate* isolate) {
710   if (isolate->simulator_initialized()) return;
711   isolate->set_simulator_initialized(true);
712   ::v8::internal::ExternalReference::set_redirector(isolate,
713                                                     &RedirectExternalReference);
714 }
715 
716 
Simulator(Isolate * isolate)717 Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
718   i_cache_ = isolate_->simulator_i_cache();
719   if (i_cache_ == NULL) {
720     i_cache_ = new v8::internal::HashMap(&ICacheMatch);
721     isolate_->set_simulator_i_cache(i_cache_);
722   }
723   Initialize(isolate);
724   // Set up simulator support first. Some of this information is needed to
725   // setup the architecture state.
726   size_t stack_size = 1 * 1024*1024;  // allocate 1MB for stack
727   stack_ = reinterpret_cast<char*>(malloc(stack_size));
728   pc_modified_ = false;
729   icount_ = 0;
730   break_pc_ = NULL;
731   break_instr_ = 0;
732 
733   // Set up architecture state.
734   // All registers are initialized to zero to start with.
735   for (int i = 0; i < num_registers; i++) {
736     registers_[i] = 0;
737   }
738   n_flag_ = false;
739   z_flag_ = false;
740   c_flag_ = false;
741   v_flag_ = false;
742 
743   // Initializing VFP registers.
744   // All registers are initialized to zero to start with
745   // even though s_registers_ & d_registers_ share the same
746   // physical registers in the target.
747   for (int i = 0; i < num_d_registers * 2; i++) {
748     vfp_registers_[i] = 0;
749   }
750   n_flag_FPSCR_ = false;
751   z_flag_FPSCR_ = false;
752   c_flag_FPSCR_ = false;
753   v_flag_FPSCR_ = false;
754   FPSCR_rounding_mode_ = RN;
755   FPSCR_default_NaN_mode_ = false;
756 
757   inv_op_vfp_flag_ = false;
758   div_zero_vfp_flag_ = false;
759   overflow_vfp_flag_ = false;
760   underflow_vfp_flag_ = false;
761   inexact_vfp_flag_ = false;
762 
763   // The sp is initialized to point to the bottom (high address) of the
764   // allocated stack area. To be safe in potential stack underflows we leave
765   // some buffer below.
766   registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
767   // The lr and pc are initialized to a known bad value that will cause an
768   // access violation if the simulator ever tries to execute it.
769   registers_[pc] = bad_lr;
770   registers_[lr] = bad_lr;
771   InitializeCoverage();
772 
773   last_debugger_input_ = NULL;
774 }
775 
776 
~Simulator()777 Simulator::~Simulator() {
778 }
779 
780 
781 // When the generated code calls an external reference we need to catch that in
782 // the simulator.  The external reference will be a function compiled for the
783 // host architecture.  We need to call that function instead of trying to
784 // execute it with the simulator.  We do that by redirecting the external
785 // reference to a svc (Supervisor Call) instruction that is handled by
786 // the simulator.  We write the original destination of the jump just at a known
787 // offset from the svc instruction so the simulator knows what to call.
788 class Redirection {
789  public:
Redirection(void * external_function,ExternalReference::Type type)790   Redirection(void* external_function, ExternalReference::Type type)
791       : external_function_(external_function),
792         swi_instruction_(al | (0xf*B24) | kCallRtRedirected),
793         type_(type),
794         next_(NULL) {
795     Isolate* isolate = Isolate::Current();
796     next_ = isolate->simulator_redirection();
797     Simulator::current(isolate)->
798         FlushICache(isolate->simulator_i_cache(),
799                     reinterpret_cast<void*>(&swi_instruction_),
800                     Instruction::kInstrSize);
801     isolate->set_simulator_redirection(this);
802   }
803 
address_of_swi_instruction()804   void* address_of_swi_instruction() {
805     return reinterpret_cast<void*>(&swi_instruction_);
806   }
807 
external_function()808   void* external_function() { return external_function_; }
type()809   ExternalReference::Type type() { return type_; }
810 
Get(void * external_function,ExternalReference::Type type)811   static Redirection* Get(void* external_function,
812                           ExternalReference::Type type) {
813     Isolate* isolate = Isolate::Current();
814     Redirection* current = isolate->simulator_redirection();
815     for (; current != NULL; current = current->next_) {
816       if (current->external_function_ == external_function) {
817         DCHECK_EQ(current->type(), type);
818         return current;
819       }
820     }
821     return new Redirection(external_function, type);
822   }
823 
FromSwiInstruction(Instruction * swi_instruction)824   static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
825     char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
826     char* addr_of_redirection =
827         addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
828     return reinterpret_cast<Redirection*>(addr_of_redirection);
829   }
830 
ReverseRedirection(int32_t reg)831   static void* ReverseRedirection(int32_t reg) {
832     Redirection* redirection = FromSwiInstruction(
833         reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
834     return redirection->external_function();
835   }
836 
837  private:
838   void* external_function_;
839   uint32_t swi_instruction_;
840   ExternalReference::Type type_;
841   Redirection* next_;
842 };
843 
844 
RedirectExternalReference(void * external_function,ExternalReference::Type type)845 void* Simulator::RedirectExternalReference(void* external_function,
846                                            ExternalReference::Type type) {
847   Redirection* redirection = Redirection::Get(external_function, type);
848   return redirection->address_of_swi_instruction();
849 }
850 
851 
852 // Get the active Simulator for the current thread.
current(Isolate * isolate)853 Simulator* Simulator::current(Isolate* isolate) {
854   v8::internal::Isolate::PerIsolateThreadData* isolate_data =
855       isolate->FindOrAllocatePerThreadDataForThisThread();
856   DCHECK(isolate_data != NULL);
857 
858   Simulator* sim = isolate_data->simulator();
859   if (sim == NULL) {
860     // TODO(146): delete the simulator object when a thread/isolate goes away.
861     sim = new Simulator(isolate);
862     isolate_data->set_simulator(sim);
863   }
864   return sim;
865 }
866 
867 
868 // Sets the register in the architecture state. It will also deal with updating
869 // Simulator internal state for special registers such as PC.
set_register(int reg,int32_t value)870 void Simulator::set_register(int reg, int32_t value) {
871   DCHECK((reg >= 0) && (reg < num_registers));
872   if (reg == pc) {
873     pc_modified_ = true;
874   }
875   registers_[reg] = value;
876 }
877 
878 
879 // Get the register from the architecture state. This function does handle
880 // the special case of accessing the PC register.
get_register(int reg) const881 int32_t Simulator::get_register(int reg) const {
882   DCHECK((reg >= 0) && (reg < num_registers));
883   // Stupid code added to avoid bug in GCC.
884   // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
885   if (reg >= num_registers) return 0;
886   // End stupid code.
887   return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0);
888 }
889 
890 
get_double_from_register_pair(int reg)891 double Simulator::get_double_from_register_pair(int reg) {
892   DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
893 
894   double dm_val = 0.0;
895   // Read the bits from the unsigned integer register_[] array
896   // into the double precision floating point value and return it.
897   char buffer[2 * sizeof(vfp_registers_[0])];
898   memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
899   memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
900   return(dm_val);
901 }
902 
903 
set_register_pair_from_double(int reg,double * value)904 void Simulator::set_register_pair_from_double(int reg, double* value) {
905   DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
906   memcpy(registers_ + reg, value, sizeof(*value));
907 }
908 
909 
set_dw_register(int dreg,const int * dbl)910 void Simulator::set_dw_register(int dreg, const int* dbl) {
911   DCHECK((dreg >= 0) && (dreg < num_d_registers));
912   registers_[dreg] = dbl[0];
913   registers_[dreg + 1] = dbl[1];
914 }
915 
916 
get_d_register(int dreg,uint64_t * value)917 void Simulator::get_d_register(int dreg, uint64_t* value) {
918   DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
919   memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
920 }
921 
922 
set_d_register(int dreg,const uint64_t * value)923 void Simulator::set_d_register(int dreg, const uint64_t* value) {
924   DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
925   memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
926 }
927 
928 
get_d_register(int dreg,uint32_t * value)929 void Simulator::get_d_register(int dreg, uint32_t* value) {
930   DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
931   memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
932 }
933 
934 
set_d_register(int dreg,const uint32_t * value)935 void Simulator::set_d_register(int dreg, const uint32_t* value) {
936   DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
937   memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
938 }
939 
940 
get_q_register(int qreg,uint64_t * value)941 void Simulator::get_q_register(int qreg, uint64_t* value) {
942   DCHECK((qreg >= 0) && (qreg < num_q_registers));
943   memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 2);
944 }
945 
946 
set_q_register(int qreg,const uint64_t * value)947 void Simulator::set_q_register(int qreg, const uint64_t* value) {
948   DCHECK((qreg >= 0) && (qreg < num_q_registers));
949   memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 2);
950 }
951 
952 
get_q_register(int qreg,uint32_t * value)953 void Simulator::get_q_register(int qreg, uint32_t* value) {
954   DCHECK((qreg >= 0) && (qreg < num_q_registers));
955   memcpy(value, vfp_registers_ + qreg * 4, sizeof(*value) * 4);
956 }
957 
958 
set_q_register(int qreg,const uint32_t * value)959 void Simulator::set_q_register(int qreg, const uint32_t* value) {
960   DCHECK((qreg >= 0) && (qreg < num_q_registers));
961   memcpy(vfp_registers_ + qreg * 4, value, sizeof(*value) * 4);
962 }
963 
964 
965 // Raw access to the PC register.
set_pc(int32_t value)966 void Simulator::set_pc(int32_t value) {
967   pc_modified_ = true;
968   registers_[pc] = value;
969 }
970 
971 
has_bad_pc() const972 bool Simulator::has_bad_pc() const {
973   return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
974 }
975 
976 
977 // Raw access to the PC register without the special adjustment when reading.
get_pc() const978 int32_t Simulator::get_pc() const {
979   return registers_[pc];
980 }
981 
982 
983 // Getting from and setting into VFP registers.
set_s_register(int sreg,unsigned int value)984 void Simulator::set_s_register(int sreg, unsigned int value) {
985   DCHECK((sreg >= 0) && (sreg < num_s_registers));
986   vfp_registers_[sreg] = value;
987 }
988 
989 
get_s_register(int sreg) const990 unsigned int Simulator::get_s_register(int sreg) const {
991   DCHECK((sreg >= 0) && (sreg < num_s_registers));
992   return vfp_registers_[sreg];
993 }
994 
995 
996 template<class InputType, int register_size>
SetVFPRegister(int reg_index,const InputType & value)997 void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
998   DCHECK(reg_index >= 0);
999   if (register_size == 1) DCHECK(reg_index < num_s_registers);
1000   if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
1001 
1002   char buffer[register_size * sizeof(vfp_registers_[0])];
1003   memcpy(buffer, &value, register_size * sizeof(vfp_registers_[0]));
1004   memcpy(&vfp_registers_[reg_index * register_size], buffer,
1005          register_size * sizeof(vfp_registers_[0]));
1006 }
1007 
1008 
1009 template<class ReturnType, int register_size>
GetFromVFPRegister(int reg_index)1010 ReturnType Simulator::GetFromVFPRegister(int reg_index) {
1011   DCHECK(reg_index >= 0);
1012   if (register_size == 1) DCHECK(reg_index < num_s_registers);
1013   if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
1014 
1015   ReturnType value = 0;
1016   char buffer[register_size * sizeof(vfp_registers_[0])];
1017   memcpy(buffer, &vfp_registers_[register_size * reg_index],
1018          register_size * sizeof(vfp_registers_[0]));
1019   memcpy(&value, buffer, register_size * sizeof(vfp_registers_[0]));
1020   return value;
1021 }
1022 
1023 
1024 // Runtime FP routines take:
1025 // - two double arguments
1026 // - one double argument and zero or one integer arguments.
1027 // All are consructed here from r0-r3 or d0, d1 and r0.
GetFpArgs(double * x,double * y,int32_t * z)1028 void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
1029   if (use_eabi_hardfloat()) {
1030     *x = get_double_from_d_register(0);
1031     *y = get_double_from_d_register(1);
1032     *z = get_register(0);
1033   } else {
1034     // Registers 0 and 1 -> x.
1035     *x = get_double_from_register_pair(0);
1036     // Register 2 and 3 -> y.
1037     *y = get_double_from_register_pair(2);
1038     // Register 2 -> z
1039     *z = get_register(2);
1040   }
1041 }
1042 
1043 
1044 // The return value is either in r0/r1 or d0.
SetFpResult(const double & result)1045 void Simulator::SetFpResult(const double& result) {
1046   if (use_eabi_hardfloat()) {
1047     char buffer[2 * sizeof(vfp_registers_[0])];
1048     memcpy(buffer, &result, sizeof(buffer));
1049     // Copy result to d0.
1050     memcpy(vfp_registers_, buffer, sizeof(buffer));
1051   } else {
1052     char buffer[2 * sizeof(registers_[0])];
1053     memcpy(buffer, &result, sizeof(buffer));
1054     // Copy result to r0 and r1.
1055     memcpy(registers_, buffer, sizeof(buffer));
1056   }
1057 }
1058 
1059 
TrashCallerSaveRegisters()1060 void Simulator::TrashCallerSaveRegisters() {
1061   // We don't trash the registers with the return value.
1062   registers_[2] = 0x50Bad4U;
1063   registers_[3] = 0x50Bad4U;
1064   registers_[12] = 0x50Bad4U;
1065 }
1066 
1067 
1068 // Some Operating Systems allow unaligned access on ARMv7 targets. We
1069 // assume that unaligned accesses are not allowed unless the v8 build system
1070 // defines the CAN_USE_UNALIGNED_ACCESSES macro to be non-zero.
1071 // The following statements below describes the behavior of the ARM CPUs
1072 // that don't support unaligned access.
1073 // Some ARM platforms raise an interrupt on detecting unaligned access.
1074 // On others it does a funky rotation thing.  For now we
1075 // simply disallow unaligned reads.  Note that simulator runs have the runtime
1076 // system running directly on the host system and only generated code is
1077 // executed in the simulator.  Since the host is typically IA32 we will not
1078 // get the correct ARM-like behaviour on unaligned accesses for those ARM
1079 // targets that don't support unaligned loads and stores.
1080 
1081 
ReadW(int32_t addr,Instruction * instr)1082 int Simulator::ReadW(int32_t addr, Instruction* instr) {
1083   if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1084     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1085     return *ptr;
1086   } else {
1087     PrintF("Unaligned read at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1088            addr,
1089            reinterpret_cast<intptr_t>(instr));
1090     UNIMPLEMENTED();
1091     return 0;
1092   }
1093 }
1094 
1095 
WriteW(int32_t addr,int value,Instruction * instr)1096 void Simulator::WriteW(int32_t addr, int value, Instruction* instr) {
1097   if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1098     intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
1099     *ptr = value;
1100   } else {
1101     PrintF("Unaligned write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1102            addr,
1103            reinterpret_cast<intptr_t>(instr));
1104     UNIMPLEMENTED();
1105   }
1106 }
1107 
1108 
ReadHU(int32_t addr,Instruction * instr)1109 uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) {
1110   if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1111     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1112     return *ptr;
1113   } else {
1114     PrintF("Unaligned unsigned halfword read at 0x%08x, pc=0x%08"
1115            V8PRIxPTR "\n",
1116            addr,
1117            reinterpret_cast<intptr_t>(instr));
1118     UNIMPLEMENTED();
1119     return 0;
1120   }
1121 }
1122 
1123 
ReadH(int32_t addr,Instruction * instr)1124 int16_t Simulator::ReadH(int32_t addr, Instruction* instr) {
1125   if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1126     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1127     return *ptr;
1128   } else {
1129     PrintF("Unaligned signed halfword read at 0x%08x\n", addr);
1130     UNIMPLEMENTED();
1131     return 0;
1132   }
1133 }
1134 
1135 
WriteH(int32_t addr,uint16_t value,Instruction * instr)1136 void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) {
1137   if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1138     uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
1139     *ptr = value;
1140   } else {
1141     PrintF("Unaligned unsigned halfword write at 0x%08x, pc=0x%08"
1142            V8PRIxPTR "\n",
1143            addr,
1144            reinterpret_cast<intptr_t>(instr));
1145     UNIMPLEMENTED();
1146   }
1147 }
1148 
1149 
WriteH(int32_t addr,int16_t value,Instruction * instr)1150 void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) {
1151   if (FLAG_enable_unaligned_accesses || (addr & 1) == 0) {
1152     int16_t* ptr = reinterpret_cast<int16_t*>(addr);
1153     *ptr = value;
1154   } else {
1155     PrintF("Unaligned halfword write at 0x%08x, pc=0x%08" V8PRIxPTR "\n",
1156            addr,
1157            reinterpret_cast<intptr_t>(instr));
1158     UNIMPLEMENTED();
1159   }
1160 }
1161 
1162 
ReadBU(int32_t addr)1163 uint8_t Simulator::ReadBU(int32_t addr) {
1164   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1165   return *ptr;
1166 }
1167 
1168 
ReadB(int32_t addr)1169 int8_t Simulator::ReadB(int32_t addr) {
1170   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1171   return *ptr;
1172 }
1173 
1174 
WriteB(int32_t addr,uint8_t value)1175 void Simulator::WriteB(int32_t addr, uint8_t value) {
1176   uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
1177   *ptr = value;
1178 }
1179 
1180 
WriteB(int32_t addr,int8_t value)1181 void Simulator::WriteB(int32_t addr, int8_t value) {
1182   int8_t* ptr = reinterpret_cast<int8_t*>(addr);
1183   *ptr = value;
1184 }
1185 
1186 
ReadDW(int32_t addr)1187 int32_t* Simulator::ReadDW(int32_t addr) {
1188   if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1189     int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1190     return ptr;
1191   } else {
1192     PrintF("Unaligned read at 0x%08x\n", addr);
1193     UNIMPLEMENTED();
1194     return 0;
1195   }
1196 }
1197 
1198 
WriteDW(int32_t addr,int32_t value1,int32_t value2)1199 void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
1200   if (FLAG_enable_unaligned_accesses || (addr & 3) == 0) {
1201     int32_t* ptr = reinterpret_cast<int32_t*>(addr);
1202     *ptr++ = value1;
1203     *ptr = value2;
1204   } else {
1205     PrintF("Unaligned write at 0x%08x\n", addr);
1206     UNIMPLEMENTED();
1207   }
1208 }
1209 
1210 
1211 // Returns the limit of the stack area to enable checking for stack overflows.
StackLimit() const1212 uintptr_t Simulator::StackLimit() const {
1213   // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
1214   // pushing values.
1215   return reinterpret_cast<uintptr_t>(stack_) + 1024;
1216 }
1217 
1218 
1219 // Unsupported instructions use Format to print an error and stop execution.
Format(Instruction * instr,const char * format)1220 void Simulator::Format(Instruction* instr, const char* format) {
1221   PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n",
1222          reinterpret_cast<intptr_t>(instr), format);
1223   UNIMPLEMENTED();
1224 }
1225 
1226 
1227 // Checks if the current instruction should be executed based on its
1228 // condition bits.
ConditionallyExecute(Instruction * instr)1229 bool Simulator::ConditionallyExecute(Instruction* instr) {
1230   switch (instr->ConditionField()) {
1231     case eq: return z_flag_;
1232     case ne: return !z_flag_;
1233     case cs: return c_flag_;
1234     case cc: return !c_flag_;
1235     case mi: return n_flag_;
1236     case pl: return !n_flag_;
1237     case vs: return v_flag_;
1238     case vc: return !v_flag_;
1239     case hi: return c_flag_ && !z_flag_;
1240     case ls: return !c_flag_ || z_flag_;
1241     case ge: return n_flag_ == v_flag_;
1242     case lt: return n_flag_ != v_flag_;
1243     case gt: return !z_flag_ && (n_flag_ == v_flag_);
1244     case le: return z_flag_ || (n_flag_ != v_flag_);
1245     case al: return true;
1246     default: UNREACHABLE();
1247   }
1248   return false;
1249 }
1250 
1251 
1252 // Calculate and set the Negative and Zero flags.
SetNZFlags(int32_t val)1253 void Simulator::SetNZFlags(int32_t val) {
1254   n_flag_ = (val < 0);
1255   z_flag_ = (val == 0);
1256 }
1257 
1258 
1259 // Set the Carry flag.
SetCFlag(bool val)1260 void Simulator::SetCFlag(bool val) {
1261   c_flag_ = val;
1262 }
1263 
1264 
1265 // Set the oVerflow flag.
SetVFlag(bool val)1266 void Simulator::SetVFlag(bool val) {
1267   v_flag_ = val;
1268 }
1269 
1270 
1271 // Calculate C flag value for additions.
CarryFrom(int32_t left,int32_t right,int32_t carry)1272 bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
1273   uint32_t uleft = static_cast<uint32_t>(left);
1274   uint32_t uright = static_cast<uint32_t>(right);
1275   uint32_t urest  = 0xffffffffU - uleft;
1276 
1277   return (uright > urest) ||
1278          (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
1279 }
1280 
1281 
1282 // Calculate C flag value for subtractions.
BorrowFrom(int32_t left,int32_t right)1283 bool Simulator::BorrowFrom(int32_t left, int32_t right) {
1284   uint32_t uleft = static_cast<uint32_t>(left);
1285   uint32_t uright = static_cast<uint32_t>(right);
1286 
1287   return (uright > uleft);
1288 }
1289 
1290 
1291 // Calculate V flag value for additions and subtractions.
OverflowFrom(int32_t alu_out,int32_t left,int32_t right,bool addition)1292 bool Simulator::OverflowFrom(int32_t alu_out,
1293                              int32_t left, int32_t right, bool addition) {
1294   bool overflow;
1295   if (addition) {
1296                // operands have the same sign
1297     overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
1298                // and operands and result have different sign
1299                && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1300   } else {
1301                // operands have different signs
1302     overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
1303                // and first operand and result have different signs
1304                && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
1305   }
1306   return overflow;
1307 }
1308 
1309 
1310 // Support for VFP comparisons.
Compute_FPSCR_Flags(double val1,double val2)1311 void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
1312   if (std::isnan(val1) || std::isnan(val2)) {
1313     n_flag_FPSCR_ = false;
1314     z_flag_FPSCR_ = false;
1315     c_flag_FPSCR_ = true;
1316     v_flag_FPSCR_ = true;
1317   // All non-NaN cases.
1318   } else if (val1 == val2) {
1319     n_flag_FPSCR_ = false;
1320     z_flag_FPSCR_ = true;
1321     c_flag_FPSCR_ = true;
1322     v_flag_FPSCR_ = false;
1323   } else if (val1 < val2) {
1324     n_flag_FPSCR_ = true;
1325     z_flag_FPSCR_ = false;
1326     c_flag_FPSCR_ = false;
1327     v_flag_FPSCR_ = false;
1328   } else {
1329     // Case when (val1 > val2).
1330     n_flag_FPSCR_ = false;
1331     z_flag_FPSCR_ = false;
1332     c_flag_FPSCR_ = true;
1333     v_flag_FPSCR_ = false;
1334   }
1335 }
1336 
1337 
Copy_FPSCR_to_APSR()1338 void Simulator::Copy_FPSCR_to_APSR() {
1339   n_flag_ = n_flag_FPSCR_;
1340   z_flag_ = z_flag_FPSCR_;
1341   c_flag_ = c_flag_FPSCR_;
1342   v_flag_ = v_flag_FPSCR_;
1343 }
1344 
1345 
1346 // Addressing Mode 1 - Data-processing operands:
1347 // Get the value based on the shifter_operand with register.
GetShiftRm(Instruction * instr,bool * carry_out)1348 int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
1349   ShiftOp shift = instr->ShiftField();
1350   int shift_amount = instr->ShiftAmountValue();
1351   int32_t result = get_register(instr->RmValue());
1352   if (instr->Bit(4) == 0) {
1353     // by immediate
1354     if ((shift == ROR) && (shift_amount == 0)) {
1355       UNIMPLEMENTED();
1356       return result;
1357     } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
1358       shift_amount = 32;
1359     }
1360     switch (shift) {
1361       case ASR: {
1362         if (shift_amount == 0) {
1363           if (result < 0) {
1364             result = 0xffffffff;
1365             *carry_out = true;
1366           } else {
1367             result = 0;
1368             *carry_out = false;
1369           }
1370         } else {
1371           result >>= (shift_amount - 1);
1372           *carry_out = (result & 1) == 1;
1373           result >>= 1;
1374         }
1375         break;
1376       }
1377 
1378       case LSL: {
1379         if (shift_amount == 0) {
1380           *carry_out = c_flag_;
1381         } else {
1382           result <<= (shift_amount - 1);
1383           *carry_out = (result < 0);
1384           result <<= 1;
1385         }
1386         break;
1387       }
1388 
1389       case LSR: {
1390         if (shift_amount == 0) {
1391           result = 0;
1392           *carry_out = c_flag_;
1393         } else {
1394           uint32_t uresult = static_cast<uint32_t>(result);
1395           uresult >>= (shift_amount - 1);
1396           *carry_out = (uresult & 1) == 1;
1397           uresult >>= 1;
1398           result = static_cast<int32_t>(uresult);
1399         }
1400         break;
1401       }
1402 
1403       case ROR: {
1404         if (shift_amount == 0) {
1405           *carry_out = c_flag_;
1406         } else {
1407           uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1408           uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1409           result = right | left;
1410           *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1411         }
1412         break;
1413       }
1414 
1415       default: {
1416         UNREACHABLE();
1417         break;
1418       }
1419     }
1420   } else {
1421     // by register
1422     int rs = instr->RsValue();
1423     shift_amount = get_register(rs) &0xff;
1424     switch (shift) {
1425       case ASR: {
1426         if (shift_amount == 0) {
1427           *carry_out = c_flag_;
1428         } else if (shift_amount < 32) {
1429           result >>= (shift_amount - 1);
1430           *carry_out = (result & 1) == 1;
1431           result >>= 1;
1432         } else {
1433           DCHECK(shift_amount >= 32);
1434           if (result < 0) {
1435             *carry_out = true;
1436             result = 0xffffffff;
1437           } else {
1438             *carry_out = false;
1439             result = 0;
1440           }
1441         }
1442         break;
1443       }
1444 
1445       case LSL: {
1446         if (shift_amount == 0) {
1447           *carry_out = c_flag_;
1448         } else if (shift_amount < 32) {
1449           result <<= (shift_amount - 1);
1450           *carry_out = (result < 0);
1451           result <<= 1;
1452         } else if (shift_amount == 32) {
1453           *carry_out = (result & 1) == 1;
1454           result = 0;
1455         } else {
1456           DCHECK(shift_amount > 32);
1457           *carry_out = false;
1458           result = 0;
1459         }
1460         break;
1461       }
1462 
1463       case LSR: {
1464         if (shift_amount == 0) {
1465           *carry_out = c_flag_;
1466         } else if (shift_amount < 32) {
1467           uint32_t uresult = static_cast<uint32_t>(result);
1468           uresult >>= (shift_amount - 1);
1469           *carry_out = (uresult & 1) == 1;
1470           uresult >>= 1;
1471           result = static_cast<int32_t>(uresult);
1472         } else if (shift_amount == 32) {
1473           *carry_out = (result < 0);
1474           result = 0;
1475         } else {
1476           *carry_out = false;
1477           result = 0;
1478         }
1479         break;
1480       }
1481 
1482       case ROR: {
1483         if (shift_amount == 0) {
1484           *carry_out = c_flag_;
1485         } else {
1486           uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
1487           uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
1488           result = right | left;
1489           *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
1490         }
1491         break;
1492       }
1493 
1494       default: {
1495         UNREACHABLE();
1496         break;
1497       }
1498     }
1499   }
1500   return result;
1501 }
1502 
1503 
1504 // Addressing Mode 1 - Data-processing operands:
1505 // Get the value based on the shifter_operand with immediate.
GetImm(Instruction * instr,bool * carry_out)1506 int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
1507   int rotate = instr->RotateValue() * 2;
1508   int immed8 = instr->Immed8Value();
1509   int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
1510   *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
1511   return imm;
1512 }
1513 
1514 
count_bits(int bit_vector)1515 static int count_bits(int bit_vector) {
1516   int count = 0;
1517   while (bit_vector != 0) {
1518     if ((bit_vector & 1) != 0) {
1519       count++;
1520     }
1521     bit_vector >>= 1;
1522   }
1523   return count;
1524 }
1525 
1526 
ProcessPU(Instruction * instr,int num_regs,int reg_size,intptr_t * start_address,intptr_t * end_address)1527 int32_t Simulator::ProcessPU(Instruction* instr,
1528                              int num_regs,
1529                              int reg_size,
1530                              intptr_t* start_address,
1531                              intptr_t* end_address) {
1532   int rn = instr->RnValue();
1533   int32_t rn_val = get_register(rn);
1534   switch (instr->PUField()) {
1535     case da_x: {
1536       UNIMPLEMENTED();
1537       break;
1538     }
1539     case ia_x: {
1540       *start_address = rn_val;
1541       *end_address = rn_val + (num_regs * reg_size) - reg_size;
1542       rn_val = rn_val + (num_regs * reg_size);
1543       break;
1544     }
1545     case db_x: {
1546       *start_address = rn_val - (num_regs * reg_size);
1547       *end_address = rn_val - reg_size;
1548       rn_val = *start_address;
1549       break;
1550     }
1551     case ib_x: {
1552       *start_address = rn_val + reg_size;
1553       *end_address = rn_val + (num_regs * reg_size);
1554       rn_val = *end_address;
1555       break;
1556     }
1557     default: {
1558       UNREACHABLE();
1559       break;
1560     }
1561   }
1562   return rn_val;
1563 }
1564 
1565 
1566 // Addressing Mode 4 - Load and Store Multiple
HandleRList(Instruction * instr,bool load)1567 void Simulator::HandleRList(Instruction* instr, bool load) {
1568   int rlist = instr->RlistValue();
1569   int num_regs = count_bits(rlist);
1570 
1571   intptr_t start_address = 0;
1572   intptr_t end_address = 0;
1573   int32_t rn_val =
1574       ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
1575 
1576   intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1577   // Catch null pointers a little earlier.
1578   DCHECK(start_address > 8191 || start_address < 0);
1579   int reg = 0;
1580   while (rlist != 0) {
1581     if ((rlist & 1) != 0) {
1582       if (load) {
1583         set_register(reg, *address);
1584       } else {
1585         *address = get_register(reg);
1586       }
1587       address += 1;
1588     }
1589     reg++;
1590     rlist >>= 1;
1591   }
1592   DCHECK(end_address == ((intptr_t)address) - 4);
1593   if (instr->HasW()) {
1594     set_register(instr->RnValue(), rn_val);
1595   }
1596 }
1597 
1598 
1599 // Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
HandleVList(Instruction * instr)1600 void Simulator::HandleVList(Instruction* instr) {
1601   VFPRegPrecision precision =
1602       (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
1603   int operand_size = (precision == kSinglePrecision) ? 4 : 8;
1604 
1605   bool load = (instr->VLValue() == 0x1);
1606 
1607   int vd;
1608   int num_regs;
1609   vd = instr->VFPDRegValue(precision);
1610   if (precision == kSinglePrecision) {
1611     num_regs = instr->Immed8Value();
1612   } else {
1613     num_regs = instr->Immed8Value() / 2;
1614   }
1615 
1616   intptr_t start_address = 0;
1617   intptr_t end_address = 0;
1618   int32_t rn_val =
1619       ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
1620 
1621   intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
1622   for (int reg = vd; reg < vd + num_regs; reg++) {
1623     if (precision == kSinglePrecision) {
1624       if (load) {
1625         set_s_register_from_sinteger(
1626             reg, ReadW(reinterpret_cast<int32_t>(address), instr));
1627       } else {
1628         WriteW(reinterpret_cast<int32_t>(address),
1629                get_sinteger_from_s_register(reg), instr);
1630       }
1631       address += 1;
1632     } else {
1633       if (load) {
1634         int32_t data[] = {
1635           ReadW(reinterpret_cast<int32_t>(address), instr),
1636           ReadW(reinterpret_cast<int32_t>(address + 1), instr)
1637         };
1638         double d;
1639         memcpy(&d, data, 8);
1640         set_d_register_from_double(reg, d);
1641       } else {
1642         int32_t data[2];
1643         double d = get_double_from_d_register(reg);
1644         memcpy(data, &d, 8);
1645         WriteW(reinterpret_cast<int32_t>(address), data[0], instr);
1646         WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr);
1647       }
1648       address += 2;
1649     }
1650   }
1651   DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
1652   if (instr->HasW()) {
1653     set_register(instr->RnValue(), rn_val);
1654   }
1655 }
1656 
1657 
1658 // Calls into the V8 runtime are based on this very simple interface.
1659 // Note: To be able to return two values from some calls the code in runtime.cc
1660 // uses the ObjectPair which is essentially two 32-bit values stuffed into a
1661 // 64-bit value. With the code below we assume that all runtime calls return
1662 // 64 bits of result. If they don't, the r1 result register contains a bogus
1663 // value, which is fine because it is caller-saved.
1664 typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0,
1665                                         int32_t arg1,
1666                                         int32_t arg2,
1667                                         int32_t arg3,
1668                                         int32_t arg4,
1669                                         int32_t arg5);
1670 
1671 // These prototypes handle the four types of FP calls.
1672 typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
1673 typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
1674 typedef double (*SimulatorRuntimeFPCall)(double darg0);
1675 typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0);
1676 
1677 // This signature supports direct call in to API function native callback
1678 // (refer to InvocationCallback in v8.h).
1679 typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0);
1680 typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1);
1681 
1682 // This signature supports direct call to accessor getter callback.
1683 typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1);
1684 typedef void (*SimulatorRuntimeProfilingGetterCall)(
1685     int32_t arg0, int32_t arg1, void* arg2);
1686 
1687 // Software interrupt instructions are used by the simulator to call into the
1688 // C-based V8 runtime.
SoftwareInterrupt(Instruction * instr)1689 void Simulator::SoftwareInterrupt(Instruction* instr) {
1690   int svc = instr->SvcValue();
1691   switch (svc) {
1692     case kCallRtRedirected: {
1693       // Check if stack is aligned. Error if not aligned is reported below to
1694       // include information on the function called.
1695       bool stack_aligned =
1696           (get_register(sp)
1697            & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0;
1698       Redirection* redirection = Redirection::FromSwiInstruction(instr);
1699       int32_t arg0 = get_register(r0);
1700       int32_t arg1 = get_register(r1);
1701       int32_t arg2 = get_register(r2);
1702       int32_t arg3 = get_register(r3);
1703       int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
1704       int32_t arg4 = stack_pointer[0];
1705       int32_t arg5 = stack_pointer[1];
1706       bool fp_call =
1707          (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
1708          (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
1709          (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
1710          (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
1711       // This is dodgy but it works because the C entry stubs are never moved.
1712       // See comment in codegen-arm.cc and bug 1242173.
1713       int32_t saved_lr = get_register(lr);
1714       intptr_t external =
1715           reinterpret_cast<intptr_t>(redirection->external_function());
1716       if (fp_call) {
1717         double dval0, dval1;  // one or two double parameters
1718         int32_t ival;         // zero or one integer parameters
1719         int64_t iresult = 0;  // integer return value
1720         double dresult = 0;   // double return value
1721         GetFpArgs(&dval0, &dval1, &ival);
1722         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1723           SimulatorRuntimeCall generic_target =
1724             reinterpret_cast<SimulatorRuntimeCall>(external);
1725           switch (redirection->type()) {
1726           case ExternalReference::BUILTIN_FP_FP_CALL:
1727           case ExternalReference::BUILTIN_COMPARE_CALL:
1728             PrintF("Call to host function at %p with args %f, %f",
1729                    FUNCTION_ADDR(generic_target), dval0, dval1);
1730             break;
1731           case ExternalReference::BUILTIN_FP_CALL:
1732             PrintF("Call to host function at %p with arg %f",
1733                 FUNCTION_ADDR(generic_target), dval0);
1734             break;
1735           case ExternalReference::BUILTIN_FP_INT_CALL:
1736             PrintF("Call to host function at %p with args %f, %d",
1737                    FUNCTION_ADDR(generic_target), dval0, ival);
1738             break;
1739           default:
1740             UNREACHABLE();
1741             break;
1742           }
1743           if (!stack_aligned) {
1744             PrintF(" with unaligned stack %08x\n", get_register(sp));
1745           }
1746           PrintF("\n");
1747         }
1748         CHECK(stack_aligned);
1749         switch (redirection->type()) {
1750         case ExternalReference::BUILTIN_COMPARE_CALL: {
1751           SimulatorRuntimeCompareCall target =
1752             reinterpret_cast<SimulatorRuntimeCompareCall>(external);
1753           iresult = target(dval0, dval1);
1754           set_register(r0, static_cast<int32_t>(iresult));
1755           set_register(r1, static_cast<int32_t>(iresult >> 32));
1756           break;
1757         }
1758         case ExternalReference::BUILTIN_FP_FP_CALL: {
1759           SimulatorRuntimeFPFPCall target =
1760             reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
1761           dresult = target(dval0, dval1);
1762           SetFpResult(dresult);
1763           break;
1764         }
1765         case ExternalReference::BUILTIN_FP_CALL: {
1766           SimulatorRuntimeFPCall target =
1767             reinterpret_cast<SimulatorRuntimeFPCall>(external);
1768           dresult = target(dval0);
1769           SetFpResult(dresult);
1770           break;
1771         }
1772         case ExternalReference::BUILTIN_FP_INT_CALL: {
1773           SimulatorRuntimeFPIntCall target =
1774             reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
1775           dresult = target(dval0, ival);
1776           SetFpResult(dresult);
1777           break;
1778         }
1779         default:
1780           UNREACHABLE();
1781           break;
1782         }
1783         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1784           switch (redirection->type()) {
1785           case ExternalReference::BUILTIN_COMPARE_CALL:
1786             PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
1787             break;
1788           case ExternalReference::BUILTIN_FP_FP_CALL:
1789           case ExternalReference::BUILTIN_FP_CALL:
1790           case ExternalReference::BUILTIN_FP_INT_CALL:
1791             PrintF("Returned %f\n", dresult);
1792             break;
1793           default:
1794             UNREACHABLE();
1795             break;
1796           }
1797         }
1798       } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
1799         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1800           PrintF("Call to host function at %p args %08x",
1801               reinterpret_cast<void*>(external), arg0);
1802           if (!stack_aligned) {
1803             PrintF(" with unaligned stack %08x\n", get_register(sp));
1804           }
1805           PrintF("\n");
1806         }
1807         CHECK(stack_aligned);
1808         SimulatorRuntimeDirectApiCall target =
1809             reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
1810         target(arg0);
1811       } else if (
1812           redirection->type() == ExternalReference::PROFILING_API_CALL) {
1813         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1814           PrintF("Call to host function at %p args %08x %08x",
1815               reinterpret_cast<void*>(external), arg0, arg1);
1816           if (!stack_aligned) {
1817             PrintF(" with unaligned stack %08x\n", get_register(sp));
1818           }
1819           PrintF("\n");
1820         }
1821         CHECK(stack_aligned);
1822         SimulatorRuntimeProfilingApiCall target =
1823             reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
1824         target(arg0, Redirection::ReverseRedirection(arg1));
1825       } else if (
1826           redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
1827         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1828           PrintF("Call to host function at %p args %08x %08x",
1829               reinterpret_cast<void*>(external), arg0, arg1);
1830           if (!stack_aligned) {
1831             PrintF(" with unaligned stack %08x\n", get_register(sp));
1832           }
1833           PrintF("\n");
1834         }
1835         CHECK(stack_aligned);
1836         SimulatorRuntimeDirectGetterCall target =
1837             reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
1838         target(arg0, arg1);
1839       } else if (
1840           redirection->type() == ExternalReference::PROFILING_GETTER_CALL) {
1841         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1842           PrintF("Call to host function at %p args %08x %08x %08x",
1843               reinterpret_cast<void*>(external), arg0, arg1, arg2);
1844           if (!stack_aligned) {
1845             PrintF(" with unaligned stack %08x\n", get_register(sp));
1846           }
1847           PrintF("\n");
1848         }
1849         CHECK(stack_aligned);
1850         SimulatorRuntimeProfilingGetterCall target =
1851             reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(
1852                 external);
1853         target(arg0, arg1, Redirection::ReverseRedirection(arg2));
1854       } else {
1855         // builtin call.
1856         DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
1857         SimulatorRuntimeCall target =
1858             reinterpret_cast<SimulatorRuntimeCall>(external);
1859         if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
1860           PrintF(
1861               "Call to host function at %p "
1862               "args %08x, %08x, %08x, %08x, %08x, %08x",
1863               FUNCTION_ADDR(target),
1864               arg0,
1865               arg1,
1866               arg2,
1867               arg3,
1868               arg4,
1869               arg5);
1870           if (!stack_aligned) {
1871             PrintF(" with unaligned stack %08x\n", get_register(sp));
1872           }
1873           PrintF("\n");
1874         }
1875         CHECK(stack_aligned);
1876         int64_t result = target(arg0, arg1, arg2, arg3, arg4, arg5);
1877         int32_t lo_res = static_cast<int32_t>(result);
1878         int32_t hi_res = static_cast<int32_t>(result >> 32);
1879         if (::v8::internal::FLAG_trace_sim) {
1880           PrintF("Returned %08x\n", lo_res);
1881         }
1882         set_register(r0, lo_res);
1883         set_register(r1, hi_res);
1884       }
1885       set_register(lr, saved_lr);
1886       set_pc(get_register(lr));
1887       break;
1888     }
1889     case kBreakpoint: {
1890       ArmDebugger dbg(this);
1891       dbg.Debug();
1892       break;
1893     }
1894     // stop uses all codes greater than 1 << 23.
1895     default: {
1896       if (svc >= (1 << 23)) {
1897         uint32_t code = svc & kStopCodeMask;
1898         if (isWatchedStop(code)) {
1899           IncreaseStopCounter(code);
1900         }
1901         // Stop if it is enabled, otherwise go on jumping over the stop
1902         // and the message address.
1903         if (isEnabledStop(code)) {
1904           ArmDebugger dbg(this);
1905           dbg.Stop(instr);
1906         } else {
1907           set_pc(get_pc() + 2 * Instruction::kInstrSize);
1908         }
1909       } else {
1910         // This is not a valid svc code.
1911         UNREACHABLE();
1912         break;
1913       }
1914     }
1915   }
1916 }
1917 
1918 
canonicalizeNaN(double value)1919 double Simulator::canonicalizeNaN(double value) {
1920   return (FPSCR_default_NaN_mode_ && std::isnan(value)) ?
1921     FixedDoubleArray::canonical_not_the_hole_nan_as_double() : value;
1922 }
1923 
1924 
1925 // Stop helper functions.
isStopInstruction(Instruction * instr)1926 bool Simulator::isStopInstruction(Instruction* instr) {
1927   return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
1928 }
1929 
1930 
isWatchedStop(uint32_t code)1931 bool Simulator::isWatchedStop(uint32_t code) {
1932   DCHECK(code <= kMaxStopCode);
1933   return code < kNumOfWatchedStops;
1934 }
1935 
1936 
isEnabledStop(uint32_t code)1937 bool Simulator::isEnabledStop(uint32_t code) {
1938   DCHECK(code <= kMaxStopCode);
1939   // Unwatched stops are always enabled.
1940   return !isWatchedStop(code) ||
1941     !(watched_stops_[code].count & kStopDisabledBit);
1942 }
1943 
1944 
EnableStop(uint32_t code)1945 void Simulator::EnableStop(uint32_t code) {
1946   DCHECK(isWatchedStop(code));
1947   if (!isEnabledStop(code)) {
1948     watched_stops_[code].count &= ~kStopDisabledBit;
1949   }
1950 }
1951 
1952 
DisableStop(uint32_t code)1953 void Simulator::DisableStop(uint32_t code) {
1954   DCHECK(isWatchedStop(code));
1955   if (isEnabledStop(code)) {
1956     watched_stops_[code].count |= kStopDisabledBit;
1957   }
1958 }
1959 
1960 
IncreaseStopCounter(uint32_t code)1961 void Simulator::IncreaseStopCounter(uint32_t code) {
1962   DCHECK(code <= kMaxStopCode);
1963   DCHECK(isWatchedStop(code));
1964   if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
1965     PrintF("Stop counter for code %i has overflowed.\n"
1966            "Enabling this code and reseting the counter to 0.\n", code);
1967     watched_stops_[code].count = 0;
1968     EnableStop(code);
1969   } else {
1970     watched_stops_[code].count++;
1971   }
1972 }
1973 
1974 
1975 // Print a stop status.
PrintStopInfo(uint32_t code)1976 void Simulator::PrintStopInfo(uint32_t code) {
1977   DCHECK(code <= kMaxStopCode);
1978   if (!isWatchedStop(code)) {
1979     PrintF("Stop not watched.");
1980   } else {
1981     const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
1982     int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
1983     // Don't print the state of unused breakpoints.
1984     if (count != 0) {
1985       if (watched_stops_[code].desc) {
1986         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
1987                code, code, state, count, watched_stops_[code].desc);
1988       } else {
1989         PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
1990                code, code, state, count);
1991       }
1992     }
1993   }
1994 }
1995 
1996 
1997 // Handle execution based on instruction types.
1998 
1999 // Instruction types 0 and 1 are both rolled into one function because they
2000 // only differ in the handling of the shifter_operand.
DecodeType01(Instruction * instr)2001 void Simulator::DecodeType01(Instruction* instr) {
2002   int type = instr->TypeValue();
2003   if ((type == 0) && instr->IsSpecialType0()) {
2004     // multiply instruction or extra loads and stores
2005     if (instr->Bits(7, 4) == 9) {
2006       if (instr->Bit(24) == 0) {
2007         // Raw field decoding here. Multiply instructions have their Rd in
2008         // funny places.
2009         int rn = instr->RnValue();
2010         int rm = instr->RmValue();
2011         int rs = instr->RsValue();
2012         int32_t rs_val = get_register(rs);
2013         int32_t rm_val = get_register(rm);
2014         if (instr->Bit(23) == 0) {
2015           if (instr->Bit(21) == 0) {
2016             // The MUL instruction description (A 4.1.33) refers to Rd as being
2017             // the destination for the operation, but it confusingly uses the
2018             // Rn field to encode it.
2019             // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
2020             int rd = rn;  // Remap the rn field to the Rd register.
2021             int32_t alu_out = rm_val * rs_val;
2022             set_register(rd, alu_out);
2023             if (instr->HasS()) {
2024               SetNZFlags(alu_out);
2025             }
2026           } else {
2027             int rd = instr->RdValue();
2028             int32_t acc_value = get_register(rd);
2029             if (instr->Bit(22) == 0) {
2030               // The MLA instruction description (A 4.1.28) refers to the order
2031               // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
2032               // Rn field to encode the Rd register and the Rd field to encode
2033               // the Rn register.
2034               // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
2035               int32_t mul_out = rm_val * rs_val;
2036               int32_t result = acc_value + mul_out;
2037               set_register(rn, result);
2038             } else {
2039               // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
2040               int32_t mul_out = rm_val * rs_val;
2041               int32_t result = acc_value - mul_out;
2042               set_register(rn, result);
2043             }
2044           }
2045         } else {
2046           // The signed/long multiply instructions use the terms RdHi and RdLo
2047           // when referring to the target registers. They are mapped to the Rn
2048           // and Rd fields as follows:
2049           // RdLo == Rd
2050           // RdHi == Rn (This is confusingly stored in variable rd here
2051           //             because the mul instruction from above uses the
2052           //             Rn field to encode the Rd register. Good luck figuring
2053           //             this out without reading the ARM instruction manual
2054           //             at a very detailed level.)
2055           // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
2056           int rd_hi = rn;  // Remap the rn field to the RdHi register.
2057           int rd_lo = instr->RdValue();
2058           int32_t hi_res = 0;
2059           int32_t lo_res = 0;
2060           if (instr->Bit(22) == 1) {
2061             int64_t left_op  = static_cast<int32_t>(rm_val);
2062             int64_t right_op = static_cast<int32_t>(rs_val);
2063             uint64_t result = left_op * right_op;
2064             hi_res = static_cast<int32_t>(result >> 32);
2065             lo_res = static_cast<int32_t>(result & 0xffffffff);
2066           } else {
2067             // unsigned multiply
2068             uint64_t left_op  = static_cast<uint32_t>(rm_val);
2069             uint64_t right_op = static_cast<uint32_t>(rs_val);
2070             uint64_t result = left_op * right_op;
2071             hi_res = static_cast<int32_t>(result >> 32);
2072             lo_res = static_cast<int32_t>(result & 0xffffffff);
2073           }
2074           set_register(rd_lo, lo_res);
2075           set_register(rd_hi, hi_res);
2076           if (instr->HasS()) {
2077             UNIMPLEMENTED();
2078           }
2079         }
2080       } else {
2081         UNIMPLEMENTED();  // Not used by V8.
2082       }
2083     } else {
2084       // extra load/store instructions
2085       int rd = instr->RdValue();
2086       int rn = instr->RnValue();
2087       int32_t rn_val = get_register(rn);
2088       int32_t addr = 0;
2089       if (instr->Bit(22) == 0) {
2090         int rm = instr->RmValue();
2091         int32_t rm_val = get_register(rm);
2092         switch (instr->PUField()) {
2093           case da_x: {
2094             // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
2095             DCHECK(!instr->HasW());
2096             addr = rn_val;
2097             rn_val -= rm_val;
2098             set_register(rn, rn_val);
2099             break;
2100           }
2101           case ia_x: {
2102             // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
2103             DCHECK(!instr->HasW());
2104             addr = rn_val;
2105             rn_val += rm_val;
2106             set_register(rn, rn_val);
2107             break;
2108           }
2109           case db_x: {
2110             // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
2111             rn_val -= rm_val;
2112             addr = rn_val;
2113             if (instr->HasW()) {
2114               set_register(rn, rn_val);
2115             }
2116             break;
2117           }
2118           case ib_x: {
2119             // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
2120             rn_val += rm_val;
2121             addr = rn_val;
2122             if (instr->HasW()) {
2123               set_register(rn, rn_val);
2124             }
2125             break;
2126           }
2127           default: {
2128             // The PU field is a 2-bit field.
2129             UNREACHABLE();
2130             break;
2131           }
2132         }
2133       } else {
2134         int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
2135         switch (instr->PUField()) {
2136           case da_x: {
2137             // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
2138             DCHECK(!instr->HasW());
2139             addr = rn_val;
2140             rn_val -= imm_val;
2141             set_register(rn, rn_val);
2142             break;
2143           }
2144           case ia_x: {
2145             // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
2146             DCHECK(!instr->HasW());
2147             addr = rn_val;
2148             rn_val += imm_val;
2149             set_register(rn, rn_val);
2150             break;
2151           }
2152           case db_x: {
2153             // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
2154             rn_val -= imm_val;
2155             addr = rn_val;
2156             if (instr->HasW()) {
2157               set_register(rn, rn_val);
2158             }
2159             break;
2160           }
2161           case ib_x: {
2162             // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
2163             rn_val += imm_val;
2164             addr = rn_val;
2165             if (instr->HasW()) {
2166               set_register(rn, rn_val);
2167             }
2168             break;
2169           }
2170           default: {
2171             // The PU field is a 2-bit field.
2172             UNREACHABLE();
2173             break;
2174           }
2175         }
2176       }
2177       if (((instr->Bits(7, 4) & 0xd) == 0xd) && (instr->Bit(20) == 0)) {
2178         DCHECK((rd % 2) == 0);
2179         if (instr->HasH()) {
2180           // The strd instruction.
2181           int32_t value1 = get_register(rd);
2182           int32_t value2 = get_register(rd+1);
2183           WriteDW(addr, value1, value2);
2184         } else {
2185           // The ldrd instruction.
2186           int* rn_data = ReadDW(addr);
2187           set_dw_register(rd, rn_data);
2188         }
2189       } else if (instr->HasH()) {
2190         if (instr->HasSign()) {
2191           if (instr->HasL()) {
2192             int16_t val = ReadH(addr, instr);
2193             set_register(rd, val);
2194           } else {
2195             int16_t val = get_register(rd);
2196             WriteH(addr, val, instr);
2197           }
2198         } else {
2199           if (instr->HasL()) {
2200             uint16_t val = ReadHU(addr, instr);
2201             set_register(rd, val);
2202           } else {
2203             uint16_t val = get_register(rd);
2204             WriteH(addr, val, instr);
2205           }
2206         }
2207       } else {
2208         // signed byte loads
2209         DCHECK(instr->HasSign());
2210         DCHECK(instr->HasL());
2211         int8_t val = ReadB(addr);
2212         set_register(rd, val);
2213       }
2214       return;
2215     }
2216   } else if ((type == 0) && instr->IsMiscType0()) {
2217     if (instr->Bits(22, 21) == 1) {
2218       int rm = instr->RmValue();
2219       switch (instr->BitField(7, 4)) {
2220         case BX:
2221           set_pc(get_register(rm));
2222           break;
2223         case BLX: {
2224           uint32_t old_pc = get_pc();
2225           set_pc(get_register(rm));
2226           set_register(lr, old_pc + Instruction::kInstrSize);
2227           break;
2228         }
2229         case BKPT: {
2230           ArmDebugger dbg(this);
2231           PrintF("Simulator hit BKPT.\n");
2232           dbg.Debug();
2233           break;
2234         }
2235         default:
2236           UNIMPLEMENTED();
2237       }
2238     } else if (instr->Bits(22, 21) == 3) {
2239       int rm = instr->RmValue();
2240       int rd = instr->RdValue();
2241       switch (instr->BitField(7, 4)) {
2242         case CLZ: {
2243           uint32_t bits = get_register(rm);
2244           int leading_zeros = 0;
2245           if (bits == 0) {
2246             leading_zeros = 32;
2247           } else {
2248             while ((bits & 0x80000000u) == 0) {
2249               bits <<= 1;
2250               leading_zeros++;
2251             }
2252           }
2253           set_register(rd, leading_zeros);
2254           break;
2255         }
2256         default:
2257           UNIMPLEMENTED();
2258       }
2259     } else {
2260       PrintF("%08x\n", instr->InstructionBits());
2261       UNIMPLEMENTED();
2262     }
2263   } else if ((type == 1) && instr->IsNopType1()) {
2264     // NOP.
2265   } else {
2266     int rd = instr->RdValue();
2267     int rn = instr->RnValue();
2268     int32_t rn_val = get_register(rn);
2269     int32_t shifter_operand = 0;
2270     bool shifter_carry_out = 0;
2271     if (type == 0) {
2272       shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2273     } else {
2274       DCHECK(instr->TypeValue() == 1);
2275       shifter_operand = GetImm(instr, &shifter_carry_out);
2276     }
2277     int32_t alu_out;
2278 
2279     switch (instr->OpcodeField()) {
2280       case AND: {
2281         // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
2282         // Format(instr, "and'cond's 'rd, 'rn, 'imm");
2283         alu_out = rn_val & shifter_operand;
2284         set_register(rd, alu_out);
2285         if (instr->HasS()) {
2286           SetNZFlags(alu_out);
2287           SetCFlag(shifter_carry_out);
2288         }
2289         break;
2290       }
2291 
2292       case EOR: {
2293         // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
2294         // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
2295         alu_out = rn_val ^ shifter_operand;
2296         set_register(rd, alu_out);
2297         if (instr->HasS()) {
2298           SetNZFlags(alu_out);
2299           SetCFlag(shifter_carry_out);
2300         }
2301         break;
2302       }
2303 
2304       case SUB: {
2305         // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
2306         // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
2307         alu_out = rn_val - shifter_operand;
2308         set_register(rd, alu_out);
2309         if (instr->HasS()) {
2310           SetNZFlags(alu_out);
2311           SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2312           SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2313         }
2314         break;
2315       }
2316 
2317       case RSB: {
2318         // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
2319         // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
2320         alu_out = shifter_operand - rn_val;
2321         set_register(rd, alu_out);
2322         if (instr->HasS()) {
2323           SetNZFlags(alu_out);
2324           SetCFlag(!BorrowFrom(shifter_operand, rn_val));
2325           SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
2326         }
2327         break;
2328       }
2329 
2330       case ADD: {
2331         // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
2332         // Format(instr, "add'cond's 'rd, 'rn, 'imm");
2333         alu_out = rn_val + shifter_operand;
2334         set_register(rd, alu_out);
2335         if (instr->HasS()) {
2336           SetNZFlags(alu_out);
2337           SetCFlag(CarryFrom(rn_val, shifter_operand));
2338           SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2339         }
2340         break;
2341       }
2342 
2343       case ADC: {
2344         // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
2345         // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
2346         alu_out = rn_val + shifter_operand + GetCarry();
2347         set_register(rd, alu_out);
2348         if (instr->HasS()) {
2349           SetNZFlags(alu_out);
2350           SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
2351           SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2352         }
2353         break;
2354       }
2355 
2356       case SBC: {
2357         Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
2358         Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
2359         break;
2360       }
2361 
2362       case RSC: {
2363         Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
2364         Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
2365         break;
2366       }
2367 
2368       case TST: {
2369         if (instr->HasS()) {
2370           // Format(instr, "tst'cond 'rn, 'shift_rm");
2371           // Format(instr, "tst'cond 'rn, 'imm");
2372           alu_out = rn_val & shifter_operand;
2373           SetNZFlags(alu_out);
2374           SetCFlag(shifter_carry_out);
2375         } else {
2376           // Format(instr, "movw'cond 'rd, 'imm").
2377           alu_out = instr->ImmedMovwMovtValue();
2378           set_register(rd, alu_out);
2379         }
2380         break;
2381       }
2382 
2383       case TEQ: {
2384         if (instr->HasS()) {
2385           // Format(instr, "teq'cond 'rn, 'shift_rm");
2386           // Format(instr, "teq'cond 'rn, 'imm");
2387           alu_out = rn_val ^ shifter_operand;
2388           SetNZFlags(alu_out);
2389           SetCFlag(shifter_carry_out);
2390         } else {
2391           // Other instructions matching this pattern are handled in the
2392           // miscellaneous instructions part above.
2393           UNREACHABLE();
2394         }
2395         break;
2396       }
2397 
2398       case CMP: {
2399         if (instr->HasS()) {
2400           // Format(instr, "cmp'cond 'rn, 'shift_rm");
2401           // Format(instr, "cmp'cond 'rn, 'imm");
2402           alu_out = rn_val - shifter_operand;
2403           SetNZFlags(alu_out);
2404           SetCFlag(!BorrowFrom(rn_val, shifter_operand));
2405           SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
2406         } else {
2407           // Format(instr, "movt'cond 'rd, 'imm").
2408           alu_out = (get_register(rd) & 0xffff) |
2409               (instr->ImmedMovwMovtValue() << 16);
2410           set_register(rd, alu_out);
2411         }
2412         break;
2413       }
2414 
2415       case CMN: {
2416         if (instr->HasS()) {
2417           // Format(instr, "cmn'cond 'rn, 'shift_rm");
2418           // Format(instr, "cmn'cond 'rn, 'imm");
2419           alu_out = rn_val + shifter_operand;
2420           SetNZFlags(alu_out);
2421           SetCFlag(CarryFrom(rn_val, shifter_operand));
2422           SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
2423         } else {
2424           // Other instructions matching this pattern are handled in the
2425           // miscellaneous instructions part above.
2426           UNREACHABLE();
2427         }
2428         break;
2429       }
2430 
2431       case ORR: {
2432         // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
2433         // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
2434         alu_out = rn_val | shifter_operand;
2435         set_register(rd, alu_out);
2436         if (instr->HasS()) {
2437           SetNZFlags(alu_out);
2438           SetCFlag(shifter_carry_out);
2439         }
2440         break;
2441       }
2442 
2443       case MOV: {
2444         // Format(instr, "mov'cond's 'rd, 'shift_rm");
2445         // Format(instr, "mov'cond's 'rd, 'imm");
2446         alu_out = shifter_operand;
2447         set_register(rd, alu_out);
2448         if (instr->HasS()) {
2449           SetNZFlags(alu_out);
2450           SetCFlag(shifter_carry_out);
2451         }
2452         break;
2453       }
2454 
2455       case BIC: {
2456         // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
2457         // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
2458         alu_out = rn_val & ~shifter_operand;
2459         set_register(rd, alu_out);
2460         if (instr->HasS()) {
2461           SetNZFlags(alu_out);
2462           SetCFlag(shifter_carry_out);
2463         }
2464         break;
2465       }
2466 
2467       case MVN: {
2468         // Format(instr, "mvn'cond's 'rd, 'shift_rm");
2469         // Format(instr, "mvn'cond's 'rd, 'imm");
2470         alu_out = ~shifter_operand;
2471         set_register(rd, alu_out);
2472         if (instr->HasS()) {
2473           SetNZFlags(alu_out);
2474           SetCFlag(shifter_carry_out);
2475         }
2476         break;
2477       }
2478 
2479       default: {
2480         UNREACHABLE();
2481         break;
2482       }
2483     }
2484   }
2485 }
2486 
2487 
DecodeType2(Instruction * instr)2488 void Simulator::DecodeType2(Instruction* instr) {
2489   int rd = instr->RdValue();
2490   int rn = instr->RnValue();
2491   int32_t rn_val = get_register(rn);
2492   int32_t im_val = instr->Offset12Value();
2493   int32_t addr = 0;
2494   switch (instr->PUField()) {
2495     case da_x: {
2496       // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
2497       DCHECK(!instr->HasW());
2498       addr = rn_val;
2499       rn_val -= im_val;
2500       set_register(rn, rn_val);
2501       break;
2502     }
2503     case ia_x: {
2504       // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
2505       DCHECK(!instr->HasW());
2506       addr = rn_val;
2507       rn_val += im_val;
2508       set_register(rn, rn_val);
2509       break;
2510     }
2511     case db_x: {
2512       // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
2513       rn_val -= im_val;
2514       addr = rn_val;
2515       if (instr->HasW()) {
2516         set_register(rn, rn_val);
2517       }
2518       break;
2519     }
2520     case ib_x: {
2521       // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
2522       rn_val += im_val;
2523       addr = rn_val;
2524       if (instr->HasW()) {
2525         set_register(rn, rn_val);
2526       }
2527       break;
2528     }
2529     default: {
2530       UNREACHABLE();
2531       break;
2532     }
2533   }
2534   if (instr->HasB()) {
2535     if (instr->HasL()) {
2536       byte val = ReadBU(addr);
2537       set_register(rd, val);
2538     } else {
2539       byte val = get_register(rd);
2540       WriteB(addr, val);
2541     }
2542   } else {
2543     if (instr->HasL()) {
2544       set_register(rd, ReadW(addr, instr));
2545     } else {
2546       WriteW(addr, get_register(rd), instr);
2547     }
2548   }
2549 }
2550 
2551 
DecodeType3(Instruction * instr)2552 void Simulator::DecodeType3(Instruction* instr) {
2553   int rd = instr->RdValue();
2554   int rn = instr->RnValue();
2555   int32_t rn_val = get_register(rn);
2556   bool shifter_carry_out = 0;
2557   int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
2558   int32_t addr = 0;
2559   switch (instr->PUField()) {
2560     case da_x: {
2561       DCHECK(!instr->HasW());
2562       Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
2563       UNIMPLEMENTED();
2564       break;
2565     }
2566     case ia_x: {
2567       if (instr->Bit(4) == 0) {
2568         // Memop.
2569       } else {
2570         if (instr->Bit(5) == 0) {
2571           switch (instr->Bits(22, 21)) {
2572             case 0:
2573               if (instr->Bit(20) == 0) {
2574                 if (instr->Bit(6) == 0) {
2575                   // Pkhbt.
2576                   uint32_t rn_val = get_register(rn);
2577                   uint32_t rm_val = get_register(instr->RmValue());
2578                   int32_t shift = instr->Bits(11, 7);
2579                   rm_val <<= shift;
2580                   set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
2581                 } else {
2582                   // Pkhtb.
2583                   uint32_t rn_val = get_register(rn);
2584                   int32_t rm_val = get_register(instr->RmValue());
2585                   int32_t shift = instr->Bits(11, 7);
2586                   if (shift == 0) {
2587                     shift = 32;
2588                   }
2589                   rm_val >>= shift;
2590                   set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
2591                 }
2592               } else {
2593                 UNIMPLEMENTED();
2594               }
2595               break;
2596             case 1:
2597               UNIMPLEMENTED();
2598               break;
2599             case 2:
2600               UNIMPLEMENTED();
2601               break;
2602             case 3: {
2603               // Usat.
2604               int32_t sat_pos = instr->Bits(20, 16);
2605               int32_t sat_val = (1 << sat_pos) - 1;
2606               int32_t shift = instr->Bits(11, 7);
2607               int32_t shift_type = instr->Bit(6);
2608               int32_t rm_val = get_register(instr->RmValue());
2609               if (shift_type == 0) {  // LSL
2610                 rm_val <<= shift;
2611               } else {  // ASR
2612                 rm_val >>= shift;
2613               }
2614               // If saturation occurs, the Q flag should be set in the CPSR.
2615               // There is no Q flag yet, and no instruction (MRS) to read the
2616               // CPSR directly.
2617               if (rm_val > sat_val) {
2618                 rm_val = sat_val;
2619               } else if (rm_val < 0) {
2620                 rm_val = 0;
2621               }
2622               set_register(rd, rm_val);
2623               break;
2624             }
2625           }
2626         } else {
2627           switch (instr->Bits(22, 21)) {
2628             case 0:
2629               UNIMPLEMENTED();
2630               break;
2631             case 1:
2632               UNIMPLEMENTED();
2633               break;
2634             case 2:
2635               if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2636                 if (instr->Bits(19, 16) == 0xF) {
2637                   // Uxtb16.
2638                   uint32_t rm_val = get_register(instr->RmValue());
2639                   int32_t rotate = instr->Bits(11, 10);
2640                   switch (rotate) {
2641                     case 0:
2642                       break;
2643                     case 1:
2644                       rm_val = (rm_val >> 8) | (rm_val << 24);
2645                       break;
2646                     case 2:
2647                       rm_val = (rm_val >> 16) | (rm_val << 16);
2648                       break;
2649                     case 3:
2650                       rm_val = (rm_val >> 24) | (rm_val << 8);
2651                       break;
2652                   }
2653                   set_register(rd,
2654                                (rm_val & 0xFF) | (rm_val & 0xFF0000));
2655                 } else {
2656                   UNIMPLEMENTED();
2657                 }
2658               } else {
2659                 UNIMPLEMENTED();
2660               }
2661               break;
2662             case 3:
2663               if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
2664                 if (instr->Bits(19, 16) == 0xF) {
2665                   // Uxtb.
2666                   uint32_t rm_val = get_register(instr->RmValue());
2667                   int32_t rotate = instr->Bits(11, 10);
2668                   switch (rotate) {
2669                     case 0:
2670                       break;
2671                     case 1:
2672                       rm_val = (rm_val >> 8) | (rm_val << 24);
2673                       break;
2674                     case 2:
2675                       rm_val = (rm_val >> 16) | (rm_val << 16);
2676                       break;
2677                     case 3:
2678                       rm_val = (rm_val >> 24) | (rm_val << 8);
2679                       break;
2680                   }
2681                   set_register(rd, (rm_val & 0xFF));
2682                 } else {
2683                   // Uxtab.
2684                   uint32_t rn_val = get_register(rn);
2685                   uint32_t rm_val = get_register(instr->RmValue());
2686                   int32_t rotate = instr->Bits(11, 10);
2687                   switch (rotate) {
2688                     case 0:
2689                       break;
2690                     case 1:
2691                       rm_val = (rm_val >> 8) | (rm_val << 24);
2692                       break;
2693                     case 2:
2694                       rm_val = (rm_val >> 16) | (rm_val << 16);
2695                       break;
2696                     case 3:
2697                       rm_val = (rm_val >> 24) | (rm_val << 8);
2698                       break;
2699                   }
2700                   set_register(rd, rn_val + (rm_val & 0xFF));
2701                 }
2702               } else {
2703                 UNIMPLEMENTED();
2704               }
2705               break;
2706           }
2707         }
2708         return;
2709       }
2710       break;
2711     }
2712     case db_x: {
2713       if (FLAG_enable_sudiv) {
2714         if (instr->Bits(5, 4) == 0x1) {
2715           if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
2716             // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs
2717             // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs);
2718             int rm = instr->RmValue();
2719             int32_t rm_val = get_register(rm);
2720             int rs = instr->RsValue();
2721             int32_t rs_val = get_register(rs);
2722             int32_t ret_val = 0;
2723             DCHECK(rs_val != 0);
2724             // udiv
2725             if (instr->Bit(21) == 0x1) {
2726               ret_val = static_cast<int32_t>(static_cast<uint32_t>(rm_val) /
2727                                              static_cast<uint32_t>(rs_val));
2728             } else if ((rm_val == kMinInt) && (rs_val == -1)) {
2729               ret_val = kMinInt;
2730             } else {
2731               ret_val = rm_val / rs_val;
2732             }
2733             set_register(rn, ret_val);
2734             return;
2735           }
2736         }
2737       }
2738       // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
2739       addr = rn_val - shifter_operand;
2740       if (instr->HasW()) {
2741         set_register(rn, addr);
2742       }
2743       break;
2744     }
2745     case ib_x: {
2746       if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
2747         uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
2748         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2749         uint32_t msbit = widthminus1 + lsbit;
2750         if (msbit <= 31) {
2751           if (instr->Bit(22)) {
2752             // ubfx - unsigned bitfield extract.
2753             uint32_t rm_val =
2754                 static_cast<uint32_t>(get_register(instr->RmValue()));
2755             uint32_t extr_val = rm_val << (31 - msbit);
2756             extr_val = extr_val >> (31 - widthminus1);
2757             set_register(instr->RdValue(), extr_val);
2758           } else {
2759             // sbfx - signed bitfield extract.
2760             int32_t rm_val = get_register(instr->RmValue());
2761             int32_t extr_val = rm_val << (31 - msbit);
2762             extr_val = extr_val >> (31 - widthminus1);
2763             set_register(instr->RdValue(), extr_val);
2764           }
2765         } else {
2766           UNREACHABLE();
2767         }
2768         return;
2769       } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
2770         uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
2771         uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
2772         if (msbit >= lsbit) {
2773           // bfc or bfi - bitfield clear/insert.
2774           uint32_t rd_val =
2775               static_cast<uint32_t>(get_register(instr->RdValue()));
2776           uint32_t bitcount = msbit - lsbit + 1;
2777           uint32_t mask = 0xffffffffu >> (32 - bitcount);
2778           rd_val &= ~(mask << lsbit);
2779           if (instr->RmValue() != 15) {
2780             // bfi - bitfield insert.
2781             uint32_t rm_val =
2782                 static_cast<uint32_t>(get_register(instr->RmValue()));
2783             rm_val &= mask;
2784             rd_val |= rm_val << lsbit;
2785           }
2786           set_register(instr->RdValue(), rd_val);
2787         } else {
2788           UNREACHABLE();
2789         }
2790         return;
2791       } else {
2792         // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
2793         addr = rn_val + shifter_operand;
2794         if (instr->HasW()) {
2795           set_register(rn, addr);
2796         }
2797       }
2798       break;
2799     }
2800     default: {
2801       UNREACHABLE();
2802       break;
2803     }
2804   }
2805   if (instr->HasB()) {
2806     if (instr->HasL()) {
2807       uint8_t byte = ReadB(addr);
2808       set_register(rd, byte);
2809     } else {
2810       uint8_t byte = get_register(rd);
2811       WriteB(addr, byte);
2812     }
2813   } else {
2814     if (instr->HasL()) {
2815       set_register(rd, ReadW(addr, instr));
2816     } else {
2817       WriteW(addr, get_register(rd), instr);
2818     }
2819   }
2820 }
2821 
2822 
DecodeType4(Instruction * instr)2823 void Simulator::DecodeType4(Instruction* instr) {
2824   DCHECK(instr->Bit(22) == 0);  // only allowed to be set in privileged mode
2825   if (instr->HasL()) {
2826     // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
2827     HandleRList(instr, true);
2828   } else {
2829     // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
2830     HandleRList(instr, false);
2831   }
2832 }
2833 
2834 
DecodeType5(Instruction * instr)2835 void Simulator::DecodeType5(Instruction* instr) {
2836   // Format(instr, "b'l'cond 'target");
2837   int off = (instr->SImmed24Value() << 2);
2838   intptr_t pc_address = get_pc();
2839   if (instr->HasLink()) {
2840     set_register(lr, pc_address + Instruction::kInstrSize);
2841   }
2842   int pc_reg = get_register(pc);
2843   set_pc(pc_reg + off);
2844 }
2845 
2846 
DecodeType6(Instruction * instr)2847 void Simulator::DecodeType6(Instruction* instr) {
2848   DecodeType6CoprocessorIns(instr);
2849 }
2850 
2851 
DecodeType7(Instruction * instr)2852 void Simulator::DecodeType7(Instruction* instr) {
2853   if (instr->Bit(24) == 1) {
2854     SoftwareInterrupt(instr);
2855   } else {
2856     DecodeTypeVFP(instr);
2857   }
2858 }
2859 
2860 
2861 // void Simulator::DecodeTypeVFP(Instruction* instr)
2862 // The Following ARMv7 VFPv instructions are currently supported.
2863 // vmov :Sn = Rt
2864 // vmov :Rt = Sn
2865 // vcvt: Dd = Sm
2866 // vcvt: Sd = Dm
2867 // vcvt.f64.s32 Dd, Dd, #<fbits>
2868 // Dd = vabs(Dm)
2869 // Dd = vneg(Dm)
2870 // Dd = vadd(Dn, Dm)
2871 // Dd = vsub(Dn, Dm)
2872 // Dd = vmul(Dn, Dm)
2873 // Dd = vdiv(Dn, Dm)
2874 // vcmp(Dd, Dm)
2875 // vmrs
2876 // Dd = vsqrt(Dm)
DecodeTypeVFP(Instruction * instr)2877 void Simulator::DecodeTypeVFP(Instruction* instr) {
2878   DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) );
2879   DCHECK(instr->Bits(11, 9) == 0x5);
2880 
2881   // Obtain double precision register codes.
2882   int vm = instr->VFPMRegValue(kDoublePrecision);
2883   int vd = instr->VFPDRegValue(kDoublePrecision);
2884   int vn = instr->VFPNRegValue(kDoublePrecision);
2885 
2886   if (instr->Bit(4) == 0) {
2887     if (instr->Opc1Value() == 0x7) {
2888       // Other data processing instructions
2889       if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
2890         // vmov register to register.
2891         if (instr->SzValue() == 0x1) {
2892           int m = instr->VFPMRegValue(kDoublePrecision);
2893           int d = instr->VFPDRegValue(kDoublePrecision);
2894           set_d_register_from_double(d, get_double_from_d_register(m));
2895         } else {
2896           int m = instr->VFPMRegValue(kSinglePrecision);
2897           int d = instr->VFPDRegValue(kSinglePrecision);
2898           set_s_register_from_float(d, get_float_from_s_register(m));
2899         }
2900       } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
2901         // vabs
2902         double dm_value = get_double_from_d_register(vm);
2903         double dd_value = std::fabs(dm_value);
2904         dd_value = canonicalizeNaN(dd_value);
2905         set_d_register_from_double(vd, dd_value);
2906       } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
2907         // vneg
2908         double dm_value = get_double_from_d_register(vm);
2909         double dd_value = -dm_value;
2910         dd_value = canonicalizeNaN(dd_value);
2911         set_d_register_from_double(vd, dd_value);
2912       } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
2913         DecodeVCVTBetweenDoubleAndSingle(instr);
2914       } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
2915         DecodeVCVTBetweenFloatingPointAndInteger(instr);
2916       } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
2917                  (instr->Bit(8) == 1)) {
2918         // vcvt.f64.s32 Dd, Dd, #<fbits>
2919         int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
2920         int fixed_value = get_sinteger_from_s_register(vd * 2);
2921         double divide = 1 << fraction_bits;
2922         set_d_register_from_double(vd, fixed_value / divide);
2923       } else if (((instr->Opc2Value() >> 1) == 0x6) &&
2924                  (instr->Opc3Value() & 0x1)) {
2925         DecodeVCVTBetweenFloatingPointAndInteger(instr);
2926       } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
2927                  (instr->Opc3Value() & 0x1)) {
2928         DecodeVCMP(instr);
2929       } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
2930         // vsqrt
2931         double dm_value = get_double_from_d_register(vm);
2932         double dd_value = std::sqrt(dm_value);
2933         dd_value = canonicalizeNaN(dd_value);
2934         set_d_register_from_double(vd, dd_value);
2935       } else if (instr->Opc3Value() == 0x0) {
2936         // vmov immediate.
2937         if (instr->SzValue() == 0x1) {
2938           set_d_register_from_double(vd, instr->DoubleImmedVmov());
2939         } else {
2940           UNREACHABLE();  // Not used by v8.
2941         }
2942       } else {
2943         UNREACHABLE();  // Not used by V8.
2944       }
2945     } else if (instr->Opc1Value() == 0x3) {
2946       if (instr->SzValue() != 0x1) {
2947         UNREACHABLE();  // Not used by V8.
2948       }
2949 
2950       if (instr->Opc3Value() & 0x1) {
2951         // vsub
2952         double dn_value = get_double_from_d_register(vn);
2953         double dm_value = get_double_from_d_register(vm);
2954         double dd_value = dn_value - dm_value;
2955         dd_value = canonicalizeNaN(dd_value);
2956         set_d_register_from_double(vd, dd_value);
2957       } else {
2958         // vadd
2959         double dn_value = get_double_from_d_register(vn);
2960         double dm_value = get_double_from_d_register(vm);
2961         double dd_value = dn_value + dm_value;
2962         dd_value = canonicalizeNaN(dd_value);
2963         set_d_register_from_double(vd, dd_value);
2964       }
2965     } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
2966       // vmul
2967       if (instr->SzValue() != 0x1) {
2968         UNREACHABLE();  // Not used by V8.
2969       }
2970 
2971       double dn_value = get_double_from_d_register(vn);
2972       double dm_value = get_double_from_d_register(vm);
2973       double dd_value = dn_value * dm_value;
2974       dd_value = canonicalizeNaN(dd_value);
2975       set_d_register_from_double(vd, dd_value);
2976     } else if ((instr->Opc1Value() == 0x0)) {
2977       // vmla, vmls
2978       const bool is_vmls = (instr->Opc3Value() & 0x1);
2979 
2980       if (instr->SzValue() != 0x1) {
2981         UNREACHABLE();  // Not used by V8.
2982       }
2983 
2984       const double dd_val = get_double_from_d_register(vd);
2985       const double dn_val = get_double_from_d_register(vn);
2986       const double dm_val = get_double_from_d_register(vm);
2987 
2988       // Note: we do the mul and add/sub in separate steps to avoid getting a
2989       // result with too high precision.
2990       set_d_register_from_double(vd, dn_val * dm_val);
2991       if (is_vmls) {
2992         set_d_register_from_double(
2993           vd,
2994           canonicalizeNaN(dd_val - get_double_from_d_register(vd)));
2995       } else {
2996         set_d_register_from_double(
2997           vd,
2998           canonicalizeNaN(dd_val + get_double_from_d_register(vd)));
2999       }
3000     } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
3001       // vdiv
3002       if (instr->SzValue() != 0x1) {
3003         UNREACHABLE();  // Not used by V8.
3004       }
3005 
3006       double dn_value = get_double_from_d_register(vn);
3007       double dm_value = get_double_from_d_register(vm);
3008       double dd_value = dn_value / dm_value;
3009       div_zero_vfp_flag_ = (dm_value == 0);
3010       dd_value = canonicalizeNaN(dd_value);
3011       set_d_register_from_double(vd, dd_value);
3012     } else {
3013       UNIMPLEMENTED();  // Not used by V8.
3014     }
3015   } else {
3016     if ((instr->VCValue() == 0x0) &&
3017         (instr->VAValue() == 0x0)) {
3018       DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
3019     } else if ((instr->VLValue() == 0x0) &&
3020                (instr->VCValue() == 0x1) &&
3021                (instr->Bit(23) == 0x0)) {
3022       // vmov (ARM core register to scalar)
3023       int vd = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3024       double dd_value = get_double_from_d_register(vd);
3025       int32_t data[2];
3026       memcpy(data, &dd_value, 8);
3027       data[instr->Bit(21)] = get_register(instr->RtValue());
3028       memcpy(&dd_value, data, 8);
3029       set_d_register_from_double(vd, dd_value);
3030     } else if ((instr->VLValue() == 0x1) &&
3031                (instr->VCValue() == 0x1) &&
3032                (instr->Bit(23) == 0x0)) {
3033       // vmov (scalar to ARM core register)
3034       int vn = instr->Bits(19, 16) | (instr->Bit(7) << 4);
3035       double dn_value = get_double_from_d_register(vn);
3036       int32_t data[2];
3037       memcpy(data, &dn_value, 8);
3038       set_register(instr->RtValue(), data[instr->Bit(21)]);
3039     } else if ((instr->VLValue() == 0x1) &&
3040                (instr->VCValue() == 0x0) &&
3041                (instr->VAValue() == 0x7) &&
3042                (instr->Bits(19, 16) == 0x1)) {
3043       // vmrs
3044       uint32_t rt = instr->RtValue();
3045       if (rt == 0xF) {
3046         Copy_FPSCR_to_APSR();
3047       } else {
3048         // Emulate FPSCR from the Simulator flags.
3049         uint32_t fpscr = (n_flag_FPSCR_ << 31) |
3050                          (z_flag_FPSCR_ << 30) |
3051                          (c_flag_FPSCR_ << 29) |
3052                          (v_flag_FPSCR_ << 28) |
3053                          (FPSCR_default_NaN_mode_ << 25) |
3054                          (inexact_vfp_flag_ << 4) |
3055                          (underflow_vfp_flag_ << 3) |
3056                          (overflow_vfp_flag_ << 2) |
3057                          (div_zero_vfp_flag_ << 1) |
3058                          (inv_op_vfp_flag_ << 0) |
3059                          (FPSCR_rounding_mode_);
3060         set_register(rt, fpscr);
3061       }
3062     } else if ((instr->VLValue() == 0x0) &&
3063                (instr->VCValue() == 0x0) &&
3064                (instr->VAValue() == 0x7) &&
3065                (instr->Bits(19, 16) == 0x1)) {
3066       // vmsr
3067       uint32_t rt = instr->RtValue();
3068       if (rt == pc) {
3069         UNREACHABLE();
3070       } else {
3071         uint32_t rt_value = get_register(rt);
3072         n_flag_FPSCR_ = (rt_value >> 31) & 1;
3073         z_flag_FPSCR_ = (rt_value >> 30) & 1;
3074         c_flag_FPSCR_ = (rt_value >> 29) & 1;
3075         v_flag_FPSCR_ = (rt_value >> 28) & 1;
3076         FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
3077         inexact_vfp_flag_ = (rt_value >> 4) & 1;
3078         underflow_vfp_flag_ = (rt_value >> 3) & 1;
3079         overflow_vfp_flag_ = (rt_value >> 2) & 1;
3080         div_zero_vfp_flag_ = (rt_value >> 1) & 1;
3081         inv_op_vfp_flag_ = (rt_value >> 0) & 1;
3082         FPSCR_rounding_mode_ =
3083             static_cast<VFPRoundingMode>((rt_value) & kVFPRoundingModeMask);
3084       }
3085     } else {
3086       UNIMPLEMENTED();  // Not used by V8.
3087     }
3088   }
3089 }
3090 
3091 
DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction * instr)3092 void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
3093     Instruction* instr) {
3094   DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
3095          (instr->VAValue() == 0x0));
3096 
3097   int t = instr->RtValue();
3098   int n = instr->VFPNRegValue(kSinglePrecision);
3099   bool to_arm_register = (instr->VLValue() == 0x1);
3100 
3101   if (to_arm_register) {
3102     int32_t int_value = get_sinteger_from_s_register(n);
3103     set_register(t, int_value);
3104   } else {
3105     int32_t rs_val = get_register(t);
3106     set_s_register_from_sinteger(n, rs_val);
3107   }
3108 }
3109 
3110 
DecodeVCMP(Instruction * instr)3111 void Simulator::DecodeVCMP(Instruction* instr) {
3112   DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3113   DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
3114          (instr->Opc3Value() & 0x1));
3115   // Comparison.
3116 
3117   VFPRegPrecision precision = kSinglePrecision;
3118   if (instr->SzValue() == 1) {
3119     precision = kDoublePrecision;
3120   }
3121 
3122   int d = instr->VFPDRegValue(precision);
3123   int m = 0;
3124   if (instr->Opc2Value() == 0x4) {
3125     m = instr->VFPMRegValue(precision);
3126   }
3127 
3128   if (precision == kDoublePrecision) {
3129     double dd_value = get_double_from_d_register(d);
3130     double dm_value = 0.0;
3131     if (instr->Opc2Value() == 0x4) {
3132       dm_value = get_double_from_d_register(m);
3133     }
3134 
3135     // Raise exceptions for quiet NaNs if necessary.
3136     if (instr->Bit(7) == 1) {
3137       if (std::isnan(dd_value)) {
3138         inv_op_vfp_flag_ = true;
3139       }
3140     }
3141 
3142     Compute_FPSCR_Flags(dd_value, dm_value);
3143   } else {
3144     UNIMPLEMENTED();  // Not used by V8.
3145   }
3146 }
3147 
3148 
DecodeVCVTBetweenDoubleAndSingle(Instruction * instr)3149 void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
3150   DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
3151   DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
3152 
3153   VFPRegPrecision dst_precision = kDoublePrecision;
3154   VFPRegPrecision src_precision = kSinglePrecision;
3155   if (instr->SzValue() == 1) {
3156     dst_precision = kSinglePrecision;
3157     src_precision = kDoublePrecision;
3158   }
3159 
3160   int dst = instr->VFPDRegValue(dst_precision);
3161   int src = instr->VFPMRegValue(src_precision);
3162 
3163   if (dst_precision == kSinglePrecision) {
3164     double val = get_double_from_d_register(src);
3165     set_s_register_from_float(dst, static_cast<float>(val));
3166   } else {
3167     float val = get_float_from_s_register(src);
3168     set_d_register_from_double(dst, static_cast<double>(val));
3169   }
3170 }
3171 
get_inv_op_vfp_flag(VFPRoundingMode mode,double val,bool unsigned_)3172 bool get_inv_op_vfp_flag(VFPRoundingMode mode,
3173                          double val,
3174                          bool unsigned_) {
3175   DCHECK((mode == RN) || (mode == RM) || (mode == RZ));
3176   double max_uint = static_cast<double>(0xffffffffu);
3177   double max_int = static_cast<double>(kMaxInt);
3178   double min_int = static_cast<double>(kMinInt);
3179 
3180   // Check for NaN.
3181   if (val != val) {
3182     return true;
3183   }
3184 
3185   // Check for overflow. This code works because 32bit integers can be
3186   // exactly represented by ieee-754 64bit floating-point values.
3187   switch (mode) {
3188     case RN:
3189       return  unsigned_ ? (val >= (max_uint + 0.5)) ||
3190                           (val < -0.5)
3191                         : (val >= (max_int + 0.5)) ||
3192                           (val < (min_int - 0.5));
3193 
3194     case RM:
3195       return  unsigned_ ? (val >= (max_uint + 1.0)) ||
3196                           (val < 0)
3197                         : (val >= (max_int + 1.0)) ||
3198                           (val < min_int);
3199 
3200     case RZ:
3201       return  unsigned_ ? (val >= (max_uint + 1.0)) ||
3202                           (val <= -1)
3203                         : (val >= (max_int + 1.0)) ||
3204                           (val <= (min_int - 1.0));
3205     default:
3206       UNREACHABLE();
3207       return true;
3208   }
3209 }
3210 
3211 
3212 // We call this function only if we had a vfp invalid exception.
3213 // It returns the correct saturated value.
VFPConversionSaturate(double val,bool unsigned_res)3214 int VFPConversionSaturate(double val, bool unsigned_res) {
3215   if (val != val) {
3216     return 0;
3217   } else {
3218     if (unsigned_res) {
3219       return (val < 0) ? 0 : 0xffffffffu;
3220     } else {
3221       return (val < 0) ? kMinInt : kMaxInt;
3222     }
3223   }
3224 }
3225 
3226 
DecodeVCVTBetweenFloatingPointAndInteger(Instruction * instr)3227 void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
3228   DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
3229          (instr->Bits(27, 23) == 0x1D));
3230   DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
3231          (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
3232 
3233   // Conversion between floating-point and integer.
3234   bool to_integer = (instr->Bit(18) == 1);
3235 
3236   VFPRegPrecision src_precision = (instr->SzValue() == 1) ? kDoublePrecision
3237                                                           : kSinglePrecision;
3238 
3239   if (to_integer) {
3240     // We are playing with code close to the C++ standard's limits below,
3241     // hence the very simple code and heavy checks.
3242     //
3243     // Note:
3244     // C++ defines default type casting from floating point to integer as
3245     // (close to) rounding toward zero ("fractional part discarded").
3246 
3247     int dst = instr->VFPDRegValue(kSinglePrecision);
3248     int src = instr->VFPMRegValue(src_precision);
3249 
3250     // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
3251     // mode or the default Round to Zero mode.
3252     VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_
3253                                                 : RZ;
3254     DCHECK((mode == RM) || (mode == RZ) || (mode == RN));
3255 
3256     bool unsigned_integer = (instr->Bit(16) == 0);
3257     bool double_precision = (src_precision == kDoublePrecision);
3258 
3259     double val = double_precision ? get_double_from_d_register(src)
3260                                   : get_float_from_s_register(src);
3261 
3262     int temp = unsigned_integer ? static_cast<uint32_t>(val)
3263                                 : static_cast<int32_t>(val);
3264 
3265     inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
3266 
3267     double abs_diff =
3268       unsigned_integer ? std::fabs(val - static_cast<uint32_t>(temp))
3269                        : std::fabs(val - temp);
3270 
3271     inexact_vfp_flag_ = (abs_diff != 0);
3272 
3273     if (inv_op_vfp_flag_) {
3274       temp = VFPConversionSaturate(val, unsigned_integer);
3275     } else {
3276       switch (mode) {
3277         case RN: {
3278           int val_sign = (val > 0) ? 1 : -1;
3279           if (abs_diff > 0.5) {
3280             temp += val_sign;
3281           } else if (abs_diff == 0.5) {
3282             // Round to even if exactly halfway.
3283             temp = ((temp % 2) == 0) ? temp : temp + val_sign;
3284           }
3285           break;
3286         }
3287 
3288         case RM:
3289           temp = temp > val ? temp - 1 : temp;
3290           break;
3291 
3292         case RZ:
3293           // Nothing to do.
3294           break;
3295 
3296         default:
3297           UNREACHABLE();
3298       }
3299     }
3300 
3301     // Update the destination register.
3302     set_s_register_from_sinteger(dst, temp);
3303 
3304   } else {
3305     bool unsigned_integer = (instr->Bit(7) == 0);
3306 
3307     int dst = instr->VFPDRegValue(src_precision);
3308     int src = instr->VFPMRegValue(kSinglePrecision);
3309 
3310     int val = get_sinteger_from_s_register(src);
3311 
3312     if (src_precision == kDoublePrecision) {
3313       if (unsigned_integer) {
3314         set_d_register_from_double(
3315             dst, static_cast<double>(static_cast<uint32_t>(val)));
3316       } else {
3317         set_d_register_from_double(dst, static_cast<double>(val));
3318       }
3319     } else {
3320       if (unsigned_integer) {
3321         set_s_register_from_float(
3322             dst, static_cast<float>(static_cast<uint32_t>(val)));
3323       } else {
3324         set_s_register_from_float(dst, static_cast<float>(val));
3325       }
3326     }
3327   }
3328 }
3329 
3330 
3331 // void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
3332 // Decode Type 6 coprocessor instructions.
3333 // Dm = vmov(Rt, Rt2)
3334 // <Rt, Rt2> = vmov(Dm)
3335 // Ddst = MEM(Rbase + 4*offset).
3336 // MEM(Rbase + 4*offset) = Dsrc.
DecodeType6CoprocessorIns(Instruction * instr)3337 void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
3338   DCHECK((instr->TypeValue() == 6));
3339 
3340   if (instr->CoprocessorValue() == 0xA) {
3341     switch (instr->OpcodeValue()) {
3342       case 0x8:
3343       case 0xA:
3344       case 0xC:
3345       case 0xE: {  // Load and store single precision float to memory.
3346         int rn = instr->RnValue();
3347         int vd = instr->VFPDRegValue(kSinglePrecision);
3348         int offset = instr->Immed8Value();
3349         if (!instr->HasU()) {
3350           offset = -offset;
3351         }
3352 
3353         int32_t address = get_register(rn) + 4 * offset;
3354         if (instr->HasL()) {
3355           // Load double from memory: vldr.
3356           set_s_register_from_sinteger(vd, ReadW(address, instr));
3357         } else {
3358           // Store double to memory: vstr.
3359           WriteW(address, get_sinteger_from_s_register(vd), instr);
3360         }
3361         break;
3362       }
3363       case 0x4:
3364       case 0x5:
3365       case 0x6:
3366       case 0x7:
3367       case 0x9:
3368       case 0xB:
3369         // Load/store multiple single from memory: vldm/vstm.
3370         HandleVList(instr);
3371         break;
3372       default:
3373         UNIMPLEMENTED();  // Not used by V8.
3374     }
3375   } else if (instr->CoprocessorValue() == 0xB) {
3376     switch (instr->OpcodeValue()) {
3377       case 0x2:
3378         // Load and store double to two GP registers
3379         if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
3380           UNIMPLEMENTED();  // Not used by V8.
3381         } else {
3382           int rt = instr->RtValue();
3383           int rn = instr->RnValue();
3384           int vm = instr->VFPMRegValue(kDoublePrecision);
3385           if (instr->HasL()) {
3386             int32_t data[2];
3387             double d = get_double_from_d_register(vm);
3388             memcpy(data, &d, 8);
3389             set_register(rt, data[0]);
3390             set_register(rn, data[1]);
3391           } else {
3392             int32_t data[] = { get_register(rt), get_register(rn) };
3393             double d;
3394             memcpy(&d, data, 8);
3395             set_d_register_from_double(vm, d);
3396           }
3397         }
3398         break;
3399       case 0x8:
3400       case 0xA:
3401       case 0xC:
3402       case 0xE: {  // Load and store double to memory.
3403         int rn = instr->RnValue();
3404         int vd = instr->VFPDRegValue(kDoublePrecision);
3405         int offset = instr->Immed8Value();
3406         if (!instr->HasU()) {
3407           offset = -offset;
3408         }
3409         int32_t address = get_register(rn) + 4 * offset;
3410         if (instr->HasL()) {
3411           // Load double from memory: vldr.
3412           int32_t data[] = {
3413             ReadW(address, instr),
3414             ReadW(address + 4, instr)
3415           };
3416           double val;
3417           memcpy(&val, data, 8);
3418           set_d_register_from_double(vd, val);
3419         } else {
3420           // Store double to memory: vstr.
3421           int32_t data[2];
3422           double val = get_double_from_d_register(vd);
3423           memcpy(data, &val, 8);
3424           WriteW(address, data[0], instr);
3425           WriteW(address + 4, data[1], instr);
3426         }
3427         break;
3428       }
3429       case 0x4:
3430       case 0x5:
3431       case 0x6:
3432       case 0x7:
3433       case 0x9:
3434       case 0xB:
3435         // Load/store multiple double from memory: vldm/vstm.
3436         HandleVList(instr);
3437         break;
3438       default:
3439         UNIMPLEMENTED();  // Not used by V8.
3440     }
3441   } else {
3442     UNIMPLEMENTED();  // Not used by V8.
3443   }
3444 }
3445 
3446 
DecodeSpecialCondition(Instruction * instr)3447 void Simulator::DecodeSpecialCondition(Instruction* instr) {
3448   switch (instr->SpecialValue()) {
3449     case 5:
3450       if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3451           (instr->Bit(4) == 1)) {
3452         // vmovl signed
3453         if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3454         int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3455         int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3456         int imm3 = instr->Bits(21, 19);
3457         if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3458         int esize = 8 * imm3;
3459         int elements = 64 / esize;
3460         int8_t from[8];
3461         get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3462         int16_t to[8];
3463         int e = 0;
3464         while (e < elements) {
3465           to[e] = from[e];
3466           e++;
3467         }
3468         set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3469       } else {
3470         UNIMPLEMENTED();
3471       }
3472       break;
3473     case 7:
3474       if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
3475           (instr->Bit(4) == 1)) {
3476         // vmovl unsigned
3477         if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
3478         int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1);
3479         int Vm = (instr->Bit(5) << 4) | instr->VmValue();
3480         int imm3 = instr->Bits(21, 19);
3481         if ((imm3 != 1) && (imm3 != 2) && (imm3 != 4)) UNIMPLEMENTED();
3482         int esize = 8 * imm3;
3483         int elements = 64 / esize;
3484         uint8_t from[8];
3485         get_d_register(Vm, reinterpret_cast<uint64_t*>(from));
3486         uint16_t to[8];
3487         int e = 0;
3488         while (e < elements) {
3489           to[e] = from[e];
3490           e++;
3491         }
3492         set_q_register(Vd, reinterpret_cast<uint64_t*>(to));
3493       } else {
3494         UNIMPLEMENTED();
3495       }
3496       break;
3497     case 8:
3498       if (instr->Bits(21, 20) == 0) {
3499         // vst1
3500         int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3501         int Rn = instr->VnValue();
3502         int type = instr->Bits(11, 8);
3503         int Rm = instr->VmValue();
3504         int32_t address = get_register(Rn);
3505         int regs = 0;
3506         switch (type) {
3507           case nlt_1:
3508             regs = 1;
3509             break;
3510           case nlt_2:
3511             regs = 2;
3512             break;
3513           case nlt_3:
3514             regs = 3;
3515             break;
3516           case nlt_4:
3517             regs = 4;
3518             break;
3519           default:
3520             UNIMPLEMENTED();
3521             break;
3522         }
3523         int r = 0;
3524         while (r < regs) {
3525           uint32_t data[2];
3526           get_d_register(Vd + r, data);
3527           WriteW(address, data[0], instr);
3528           WriteW(address + 4, data[1], instr);
3529           address += 8;
3530           r++;
3531         }
3532         if (Rm != 15) {
3533           if (Rm == 13) {
3534             set_register(Rn, address);
3535           } else {
3536             set_register(Rn, get_register(Rn) + get_register(Rm));
3537           }
3538         }
3539       } else if (instr->Bits(21, 20) == 2) {
3540         // vld1
3541         int Vd = (instr->Bit(22) << 4) | instr->VdValue();
3542         int Rn = instr->VnValue();
3543         int type = instr->Bits(11, 8);
3544         int Rm = instr->VmValue();
3545         int32_t address = get_register(Rn);
3546         int regs = 0;
3547         switch (type) {
3548           case nlt_1:
3549             regs = 1;
3550             break;
3551           case nlt_2:
3552             regs = 2;
3553             break;
3554           case nlt_3:
3555             regs = 3;
3556             break;
3557           case nlt_4:
3558             regs = 4;
3559             break;
3560           default:
3561             UNIMPLEMENTED();
3562             break;
3563         }
3564         int r = 0;
3565         while (r < regs) {
3566           uint32_t data[2];
3567           data[0] = ReadW(address, instr);
3568           data[1] = ReadW(address + 4, instr);
3569           set_d_register(Vd + r, data);
3570           address += 8;
3571           r++;
3572         }
3573         if (Rm != 15) {
3574           if (Rm == 13) {
3575             set_register(Rn, address);
3576           } else {
3577             set_register(Rn, get_register(Rn) + get_register(Rm));
3578           }
3579         }
3580       } else {
3581         UNIMPLEMENTED();
3582       }
3583       break;
3584     case 0xA:
3585     case 0xB:
3586       if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xf)) {
3587         // pld: ignore instruction.
3588       } else {
3589         UNIMPLEMENTED();
3590       }
3591       break;
3592     default:
3593       UNIMPLEMENTED();
3594       break;
3595   }
3596 }
3597 
3598 
3599 // Executes the current instruction.
InstructionDecode(Instruction * instr)3600 void Simulator::InstructionDecode(Instruction* instr) {
3601   if (v8::internal::FLAG_check_icache) {
3602     CheckICache(isolate_->simulator_i_cache(), instr);
3603   }
3604   pc_modified_ = false;
3605   if (::v8::internal::FLAG_trace_sim) {
3606     disasm::NameConverter converter;
3607     disasm::Disassembler dasm(converter);
3608     // use a reasonably large buffer
3609     v8::internal::EmbeddedVector<char, 256> buffer;
3610     dasm.InstructionDecode(buffer,
3611                            reinterpret_cast<byte*>(instr));
3612     PrintF("  0x%08x  %s\n", reinterpret_cast<intptr_t>(instr), buffer.start());
3613   }
3614   if (instr->ConditionField() == kSpecialCondition) {
3615     DecodeSpecialCondition(instr);
3616   } else if (ConditionallyExecute(instr)) {
3617     switch (instr->TypeValue()) {
3618       case 0:
3619       case 1: {
3620         DecodeType01(instr);
3621         break;
3622       }
3623       case 2: {
3624         DecodeType2(instr);
3625         break;
3626       }
3627       case 3: {
3628         DecodeType3(instr);
3629         break;
3630       }
3631       case 4: {
3632         DecodeType4(instr);
3633         break;
3634       }
3635       case 5: {
3636         DecodeType5(instr);
3637         break;
3638       }
3639       case 6: {
3640         DecodeType6(instr);
3641         break;
3642       }
3643       case 7: {
3644         DecodeType7(instr);
3645         break;
3646       }
3647       default: {
3648         UNIMPLEMENTED();
3649         break;
3650       }
3651     }
3652   // If the instruction is a non taken conditional stop, we need to skip the
3653   // inlined message address.
3654   } else if (instr->IsStop()) {
3655     set_pc(get_pc() + 2 * Instruction::kInstrSize);
3656   }
3657   if (!pc_modified_) {
3658     set_register(pc, reinterpret_cast<int32_t>(instr)
3659                          + Instruction::kInstrSize);
3660   }
3661 }
3662 
3663 
Execute()3664 void Simulator::Execute() {
3665   // Get the PC to simulate. Cannot use the accessor here as we need the
3666   // raw PC value and not the one used as input to arithmetic instructions.
3667   int program_counter = get_pc();
3668 
3669   if (::v8::internal::FLAG_stop_sim_at == 0) {
3670     // Fast version of the dispatch loop without checking whether the simulator
3671     // should be stopping at a particular executed instruction.
3672     while (program_counter != end_sim_pc) {
3673       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3674       icount_++;
3675       InstructionDecode(instr);
3676       program_counter = get_pc();
3677     }
3678   } else {
3679     // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
3680     // we reach the particular instuction count.
3681     while (program_counter != end_sim_pc) {
3682       Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
3683       icount_++;
3684       if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
3685         ArmDebugger dbg(this);
3686         dbg.Debug();
3687       } else {
3688         InstructionDecode(instr);
3689       }
3690       program_counter = get_pc();
3691     }
3692   }
3693 }
3694 
3695 
CallInternal(byte * entry)3696 void Simulator::CallInternal(byte* entry) {
3697   // Prepare to execute the code at entry
3698   set_register(pc, reinterpret_cast<int32_t>(entry));
3699   // Put down marker for end of simulation. The simulator will stop simulation
3700   // when the PC reaches this value. By saving the "end simulation" value into
3701   // the LR the simulation stops when returning to this call point.
3702   set_register(lr, end_sim_pc);
3703 
3704   // Remember the values of callee-saved registers.
3705   // The code below assumes that r9 is not used as sb (static base) in
3706   // simulator code and therefore is regarded as a callee-saved register.
3707   int32_t r4_val = get_register(r4);
3708   int32_t r5_val = get_register(r5);
3709   int32_t r6_val = get_register(r6);
3710   int32_t r7_val = get_register(r7);
3711   int32_t r8_val = get_register(r8);
3712   int32_t r9_val = get_register(r9);
3713   int32_t r10_val = get_register(r10);
3714   int32_t r11_val = get_register(r11);
3715 
3716   // Set up the callee-saved registers with a known value. To be able to check
3717   // that they are preserved properly across JS execution.
3718   int32_t callee_saved_value = icount_;
3719   set_register(r4, callee_saved_value);
3720   set_register(r5, callee_saved_value);
3721   set_register(r6, callee_saved_value);
3722   set_register(r7, callee_saved_value);
3723   set_register(r8, callee_saved_value);
3724   set_register(r9, callee_saved_value);
3725   set_register(r10, callee_saved_value);
3726   set_register(r11, callee_saved_value);
3727 
3728   // Start the simulation
3729   Execute();
3730 
3731   // Check that the callee-saved registers have been preserved.
3732   CHECK_EQ(callee_saved_value, get_register(r4));
3733   CHECK_EQ(callee_saved_value, get_register(r5));
3734   CHECK_EQ(callee_saved_value, get_register(r6));
3735   CHECK_EQ(callee_saved_value, get_register(r7));
3736   CHECK_EQ(callee_saved_value, get_register(r8));
3737   CHECK_EQ(callee_saved_value, get_register(r9));
3738   CHECK_EQ(callee_saved_value, get_register(r10));
3739   CHECK_EQ(callee_saved_value, get_register(r11));
3740 
3741   // Restore callee-saved registers with the original value.
3742   set_register(r4, r4_val);
3743   set_register(r5, r5_val);
3744   set_register(r6, r6_val);
3745   set_register(r7, r7_val);
3746   set_register(r8, r8_val);
3747   set_register(r9, r9_val);
3748   set_register(r10, r10_val);
3749   set_register(r11, r11_val);
3750 }
3751 
3752 
Call(byte * entry,int argument_count,...)3753 int32_t Simulator::Call(byte* entry, int argument_count, ...) {
3754   va_list parameters;
3755   va_start(parameters, argument_count);
3756   // Set up arguments
3757 
3758   // First four arguments passed in registers.
3759   DCHECK(argument_count >= 4);
3760   set_register(r0, va_arg(parameters, int32_t));
3761   set_register(r1, va_arg(parameters, int32_t));
3762   set_register(r2, va_arg(parameters, int32_t));
3763   set_register(r3, va_arg(parameters, int32_t));
3764 
3765   // Remaining arguments passed on stack.
3766   int original_stack = get_register(sp);
3767   // Compute position of stack on entry to generated code.
3768   int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
3769   if (base::OS::ActivationFrameAlignment() != 0) {
3770     entry_stack &= -base::OS::ActivationFrameAlignment();
3771   }
3772   // Store remaining arguments on stack, from low to high memory.
3773   intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack);
3774   for (int i = 4; i < argument_count; i++) {
3775     stack_argument[i - 4] = va_arg(parameters, int32_t);
3776   }
3777   va_end(parameters);
3778   set_register(sp, entry_stack);
3779 
3780   CallInternal(entry);
3781 
3782   // Pop stack passed arguments.
3783   CHECK_EQ(entry_stack, get_register(sp));
3784   set_register(sp, original_stack);
3785 
3786   int32_t result = get_register(r0);
3787   return result;
3788 }
3789 
3790 
CallFP(byte * entry,double d0,double d1)3791 void Simulator::CallFP(byte* entry, double d0, double d1) {
3792   if (use_eabi_hardfloat()) {
3793     set_d_register_from_double(0, d0);
3794     set_d_register_from_double(1, d1);
3795   } else {
3796     set_register_pair_from_double(0, &d0);
3797     set_register_pair_from_double(2, &d1);
3798   }
3799   CallInternal(entry);
3800 }
3801 
3802 
CallFPReturnsInt(byte * entry,double d0,double d1)3803 int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
3804   CallFP(entry, d0, d1);
3805   int32_t result = get_register(r0);
3806   return result;
3807 }
3808 
3809 
CallFPReturnsDouble(byte * entry,double d0,double d1)3810 double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
3811   CallFP(entry, d0, d1);
3812   if (use_eabi_hardfloat()) {
3813     return get_double_from_d_register(0);
3814   } else {
3815     return get_double_from_register_pair(0);
3816   }
3817 }
3818 
3819 
PushAddress(uintptr_t address)3820 uintptr_t Simulator::PushAddress(uintptr_t address) {
3821   int new_sp = get_register(sp) - sizeof(uintptr_t);
3822   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
3823   *stack_slot = address;
3824   set_register(sp, new_sp);
3825   return new_sp;
3826 }
3827 
3828 
PopAddress()3829 uintptr_t Simulator::PopAddress() {
3830   int current_sp = get_register(sp);
3831   uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
3832   uintptr_t address = *stack_slot;
3833   set_register(sp, current_sp + sizeof(uintptr_t));
3834   return address;
3835 }
3836 
3837 } }  // namespace v8::internal
3838 
3839 #endif  // USE_SIMULATOR
3840 
3841 #endif  // V8_TARGET_ARCH_ARM
3842