1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/base/atomicops.h"
8 #include "src/base/bits.h"
9 #include "src/code-stubs.h"
10 #include "src/compilation-cache.h"
11 #include "src/cpu-profiler.h"
12 #include "src/deoptimizer.h"
13 #include "src/execution.h"
14 #include "src/gdb-jit.h"
15 #include "src/global-handles.h"
16 #include "src/heap/incremental-marking.h"
17 #include "src/heap/mark-compact.h"
18 #include "src/heap/objects-visiting.h"
19 #include "src/heap/objects-visiting-inl.h"
20 #include "src/heap/spaces-inl.h"
21 #include "src/heap/sweeper-thread.h"
22 #include "src/heap-profiler.h"
23 #include "src/ic/ic.h"
24 #include "src/ic/stub-cache.h"
25
26 namespace v8 {
27 namespace internal {
28
29
30 const char* Marking::kWhiteBitPattern = "00";
31 const char* Marking::kBlackBitPattern = "10";
32 const char* Marking::kGreyBitPattern = "11";
33 const char* Marking::kImpossibleBitPattern = "01";
34
35
36 // -------------------------------------------------------------------------
37 // MarkCompactCollector
38
MarkCompactCollector(Heap * heap)39 MarkCompactCollector::MarkCompactCollector(Heap* heap)
40 : // NOLINT
41 #ifdef DEBUG
42 state_(IDLE),
43 #endif
44 reduce_memory_footprint_(false),
45 abort_incremental_marking_(false),
46 marking_parity_(ODD_MARKING_PARITY),
47 compacting_(false),
48 was_marked_incrementally_(false),
49 sweeping_in_progress_(false),
50 pending_sweeper_jobs_semaphore_(0),
51 sequential_sweeping_(false),
52 migration_slots_buffer_(NULL),
53 heap_(heap),
54 code_flusher_(NULL),
55 have_code_to_deoptimize_(false) {
56 }
57
58 #ifdef VERIFY_HEAP
59 class VerifyMarkingVisitor : public ObjectVisitor {
60 public:
VerifyMarkingVisitor(Heap * heap)61 explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
62
VisitPointers(Object ** start,Object ** end)63 void VisitPointers(Object** start, Object** end) {
64 for (Object** current = start; current < end; current++) {
65 if ((*current)->IsHeapObject()) {
66 HeapObject* object = HeapObject::cast(*current);
67 CHECK(heap_->mark_compact_collector()->IsMarked(object));
68 }
69 }
70 }
71
VisitEmbeddedPointer(RelocInfo * rinfo)72 void VisitEmbeddedPointer(RelocInfo* rinfo) {
73 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
74 if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
75 Object* p = rinfo->target_object();
76 VisitPointer(&p);
77 }
78 }
79
VisitCell(RelocInfo * rinfo)80 void VisitCell(RelocInfo* rinfo) {
81 Code* code = rinfo->host();
82 DCHECK(rinfo->rmode() == RelocInfo::CELL);
83 if (!code->IsWeakObject(rinfo->target_cell())) {
84 ObjectVisitor::VisitCell(rinfo);
85 }
86 }
87
88 private:
89 Heap* heap_;
90 };
91
92
VerifyMarking(Heap * heap,Address bottom,Address top)93 static void VerifyMarking(Heap* heap, Address bottom, Address top) {
94 VerifyMarkingVisitor visitor(heap);
95 HeapObject* object;
96 Address next_object_must_be_here_or_later = bottom;
97
98 for (Address current = bottom; current < top; current += kPointerSize) {
99 object = HeapObject::FromAddress(current);
100 if (MarkCompactCollector::IsMarked(object)) {
101 CHECK(current >= next_object_must_be_here_or_later);
102 object->Iterate(&visitor);
103 next_object_must_be_here_or_later = current + object->Size();
104 }
105 }
106 }
107
108
VerifyMarking(NewSpace * space)109 static void VerifyMarking(NewSpace* space) {
110 Address end = space->top();
111 NewSpacePageIterator it(space->bottom(), end);
112 // The bottom position is at the start of its page. Allows us to use
113 // page->area_start() as start of range on all pages.
114 CHECK_EQ(space->bottom(),
115 NewSpacePage::FromAddress(space->bottom())->area_start());
116 while (it.has_next()) {
117 NewSpacePage* page = it.next();
118 Address limit = it.has_next() ? page->area_end() : end;
119 CHECK(limit == end || !page->Contains(end));
120 VerifyMarking(space->heap(), page->area_start(), limit);
121 }
122 }
123
124
VerifyMarking(PagedSpace * space)125 static void VerifyMarking(PagedSpace* space) {
126 PageIterator it(space);
127
128 while (it.has_next()) {
129 Page* p = it.next();
130 VerifyMarking(space->heap(), p->area_start(), p->area_end());
131 }
132 }
133
134
VerifyMarking(Heap * heap)135 static void VerifyMarking(Heap* heap) {
136 VerifyMarking(heap->old_pointer_space());
137 VerifyMarking(heap->old_data_space());
138 VerifyMarking(heap->code_space());
139 VerifyMarking(heap->cell_space());
140 VerifyMarking(heap->property_cell_space());
141 VerifyMarking(heap->map_space());
142 VerifyMarking(heap->new_space());
143
144 VerifyMarkingVisitor visitor(heap);
145
146 LargeObjectIterator it(heap->lo_space());
147 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
148 if (MarkCompactCollector::IsMarked(obj)) {
149 obj->Iterate(&visitor);
150 }
151 }
152
153 heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
154 }
155
156
157 class VerifyEvacuationVisitor : public ObjectVisitor {
158 public:
VisitPointers(Object ** start,Object ** end)159 void VisitPointers(Object** start, Object** end) {
160 for (Object** current = start; current < end; current++) {
161 if ((*current)->IsHeapObject()) {
162 HeapObject* object = HeapObject::cast(*current);
163 CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
164 }
165 }
166 }
167 };
168
169
VerifyEvacuation(Page * page)170 static void VerifyEvacuation(Page* page) {
171 VerifyEvacuationVisitor visitor;
172 HeapObjectIterator iterator(page, NULL);
173 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
174 heap_object = iterator.Next()) {
175 // We skip free space objects.
176 if (!heap_object->IsFiller()) {
177 heap_object->Iterate(&visitor);
178 }
179 }
180 }
181
182
VerifyEvacuation(NewSpace * space)183 static void VerifyEvacuation(NewSpace* space) {
184 NewSpacePageIterator it(space->bottom(), space->top());
185 VerifyEvacuationVisitor visitor;
186
187 while (it.has_next()) {
188 NewSpacePage* page = it.next();
189 Address current = page->area_start();
190 Address limit = it.has_next() ? page->area_end() : space->top();
191 CHECK(limit == space->top() || !page->Contains(space->top()));
192 while (current < limit) {
193 HeapObject* object = HeapObject::FromAddress(current);
194 object->Iterate(&visitor);
195 current += object->Size();
196 }
197 }
198 }
199
200
VerifyEvacuation(Heap * heap,PagedSpace * space)201 static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
202 if (FLAG_use_allocation_folding &&
203 (space == heap->old_pointer_space() || space == heap->old_data_space())) {
204 return;
205 }
206 PageIterator it(space);
207
208 while (it.has_next()) {
209 Page* p = it.next();
210 if (p->IsEvacuationCandidate()) continue;
211 VerifyEvacuation(p);
212 }
213 }
214
215
VerifyEvacuation(Heap * heap)216 static void VerifyEvacuation(Heap* heap) {
217 VerifyEvacuation(heap, heap->old_pointer_space());
218 VerifyEvacuation(heap, heap->old_data_space());
219 VerifyEvacuation(heap, heap->code_space());
220 VerifyEvacuation(heap, heap->cell_space());
221 VerifyEvacuation(heap, heap->property_cell_space());
222 VerifyEvacuation(heap, heap->map_space());
223 VerifyEvacuation(heap->new_space());
224
225 VerifyEvacuationVisitor visitor;
226 heap->IterateStrongRoots(&visitor, VISIT_ALL);
227 }
228 #endif // VERIFY_HEAP
229
230
231 #ifdef DEBUG
232 class VerifyNativeContextSeparationVisitor : public ObjectVisitor {
233 public:
VerifyNativeContextSeparationVisitor()234 VerifyNativeContextSeparationVisitor() : current_native_context_(NULL) {}
235
VisitPointers(Object ** start,Object ** end)236 void VisitPointers(Object** start, Object** end) {
237 for (Object** current = start; current < end; current++) {
238 if ((*current)->IsHeapObject()) {
239 HeapObject* object = HeapObject::cast(*current);
240 if (object->IsString()) continue;
241 switch (object->map()->instance_type()) {
242 case JS_FUNCTION_TYPE:
243 CheckContext(JSFunction::cast(object)->context());
244 break;
245 case JS_GLOBAL_PROXY_TYPE:
246 CheckContext(JSGlobalProxy::cast(object)->native_context());
247 break;
248 case JS_GLOBAL_OBJECT_TYPE:
249 case JS_BUILTINS_OBJECT_TYPE:
250 CheckContext(GlobalObject::cast(object)->native_context());
251 break;
252 case JS_ARRAY_TYPE:
253 case JS_DATE_TYPE:
254 case JS_OBJECT_TYPE:
255 case JS_REGEXP_TYPE:
256 VisitPointer(HeapObject::RawField(object, JSObject::kMapOffset));
257 break;
258 case MAP_TYPE:
259 VisitPointer(HeapObject::RawField(object, Map::kPrototypeOffset));
260 VisitPointer(HeapObject::RawField(object, Map::kConstructorOffset));
261 break;
262 case FIXED_ARRAY_TYPE:
263 if (object->IsContext()) {
264 CheckContext(object);
265 } else {
266 FixedArray* array = FixedArray::cast(object);
267 int length = array->length();
268 // Set array length to zero to prevent cycles while iterating
269 // over array bodies, this is easier than intrusive marking.
270 array->set_length(0);
271 array->IterateBody(FIXED_ARRAY_TYPE, FixedArray::SizeFor(length),
272 this);
273 array->set_length(length);
274 }
275 break;
276 case CELL_TYPE:
277 case JS_PROXY_TYPE:
278 case JS_VALUE_TYPE:
279 case TYPE_FEEDBACK_INFO_TYPE:
280 object->Iterate(this);
281 break;
282 case DECLARED_ACCESSOR_INFO_TYPE:
283 case EXECUTABLE_ACCESSOR_INFO_TYPE:
284 case BYTE_ARRAY_TYPE:
285 case CALL_HANDLER_INFO_TYPE:
286 case CODE_TYPE:
287 case FIXED_DOUBLE_ARRAY_TYPE:
288 case HEAP_NUMBER_TYPE:
289 case MUTABLE_HEAP_NUMBER_TYPE:
290 case INTERCEPTOR_INFO_TYPE:
291 case ODDBALL_TYPE:
292 case SCRIPT_TYPE:
293 case SHARED_FUNCTION_INFO_TYPE:
294 break;
295 default:
296 UNREACHABLE();
297 }
298 }
299 }
300 }
301
302 private:
CheckContext(Object * context)303 void CheckContext(Object* context) {
304 if (!context->IsContext()) return;
305 Context* native_context = Context::cast(context)->native_context();
306 if (current_native_context_ == NULL) {
307 current_native_context_ = native_context;
308 } else {
309 CHECK_EQ(current_native_context_, native_context);
310 }
311 }
312
313 Context* current_native_context_;
314 };
315
316
VerifyNativeContextSeparation(Heap * heap)317 static void VerifyNativeContextSeparation(Heap* heap) {
318 HeapObjectIterator it(heap->code_space());
319
320 for (Object* object = it.Next(); object != NULL; object = it.Next()) {
321 VerifyNativeContextSeparationVisitor visitor;
322 Code::cast(object)->CodeIterateBody(&visitor);
323 }
324 }
325 #endif
326
327
SetUp()328 void MarkCompactCollector::SetUp() {
329 free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
330 free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
331 }
332
333
TearDown()334 void MarkCompactCollector::TearDown() { AbortCompaction(); }
335
336
AddEvacuationCandidate(Page * p)337 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
338 p->MarkEvacuationCandidate();
339 evacuation_candidates_.Add(p);
340 }
341
342
TraceFragmentation(PagedSpace * space)343 static void TraceFragmentation(PagedSpace* space) {
344 int number_of_pages = space->CountTotalPages();
345 intptr_t reserved = (number_of_pages * space->AreaSize());
346 intptr_t free = reserved - space->SizeOfObjects();
347 PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
348 AllocationSpaceName(space->identity()), number_of_pages,
349 static_cast<int>(free), static_cast<double>(free) * 100 / reserved);
350 }
351
352
StartCompaction(CompactionMode mode)353 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
354 if (!compacting_) {
355 DCHECK(evacuation_candidates_.length() == 0);
356
357 #ifdef ENABLE_GDB_JIT_INTERFACE
358 // If GDBJIT interface is active disable compaction.
359 if (FLAG_gdbjit) return false;
360 #endif
361
362 CollectEvacuationCandidates(heap()->old_pointer_space());
363 CollectEvacuationCandidates(heap()->old_data_space());
364
365 if (FLAG_compact_code_space && (mode == NON_INCREMENTAL_COMPACTION ||
366 FLAG_incremental_code_compaction)) {
367 CollectEvacuationCandidates(heap()->code_space());
368 } else if (FLAG_trace_fragmentation) {
369 TraceFragmentation(heap()->code_space());
370 }
371
372 if (FLAG_trace_fragmentation) {
373 TraceFragmentation(heap()->map_space());
374 TraceFragmentation(heap()->cell_space());
375 TraceFragmentation(heap()->property_cell_space());
376 }
377
378 heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
379 heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
380 heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
381
382 compacting_ = evacuation_candidates_.length() > 0;
383 }
384
385 return compacting_;
386 }
387
388
CollectGarbage()389 void MarkCompactCollector::CollectGarbage() {
390 // Make sure that Prepare() has been called. The individual steps below will
391 // update the state as they proceed.
392 DCHECK(state_ == PREPARE_GC);
393
394 MarkLiveObjects();
395 DCHECK(heap_->incremental_marking()->IsStopped());
396
397 if (FLAG_collect_maps) ClearNonLiveReferences();
398
399 ClearWeakCollections();
400
401 #ifdef VERIFY_HEAP
402 if (FLAG_verify_heap) {
403 VerifyMarking(heap_);
404 }
405 #endif
406
407 SweepSpaces();
408
409 #ifdef DEBUG
410 if (FLAG_verify_native_context_separation) {
411 VerifyNativeContextSeparation(heap_);
412 }
413 #endif
414
415 #ifdef VERIFY_HEAP
416 if (heap()->weak_embedded_objects_verification_enabled()) {
417 VerifyWeakEmbeddedObjectsInCode();
418 }
419 if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
420 VerifyOmittedMapChecks();
421 }
422 #endif
423
424 Finish();
425
426 if (marking_parity_ == EVEN_MARKING_PARITY) {
427 marking_parity_ = ODD_MARKING_PARITY;
428 } else {
429 DCHECK(marking_parity_ == ODD_MARKING_PARITY);
430 marking_parity_ = EVEN_MARKING_PARITY;
431 }
432 }
433
434
435 #ifdef VERIFY_HEAP
VerifyMarkbitsAreClean(PagedSpace * space)436 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
437 PageIterator it(space);
438
439 while (it.has_next()) {
440 Page* p = it.next();
441 CHECK(p->markbits()->IsClean());
442 CHECK_EQ(0, p->LiveBytes());
443 }
444 }
445
446
VerifyMarkbitsAreClean(NewSpace * space)447 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
448 NewSpacePageIterator it(space->bottom(), space->top());
449
450 while (it.has_next()) {
451 NewSpacePage* p = it.next();
452 CHECK(p->markbits()->IsClean());
453 CHECK_EQ(0, p->LiveBytes());
454 }
455 }
456
457
VerifyMarkbitsAreClean()458 void MarkCompactCollector::VerifyMarkbitsAreClean() {
459 VerifyMarkbitsAreClean(heap_->old_pointer_space());
460 VerifyMarkbitsAreClean(heap_->old_data_space());
461 VerifyMarkbitsAreClean(heap_->code_space());
462 VerifyMarkbitsAreClean(heap_->cell_space());
463 VerifyMarkbitsAreClean(heap_->property_cell_space());
464 VerifyMarkbitsAreClean(heap_->map_space());
465 VerifyMarkbitsAreClean(heap_->new_space());
466
467 LargeObjectIterator it(heap_->lo_space());
468 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
469 MarkBit mark_bit = Marking::MarkBitFrom(obj);
470 CHECK(Marking::IsWhite(mark_bit));
471 CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
472 }
473 }
474
475
VerifyWeakEmbeddedObjectsInCode()476 void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
477 HeapObjectIterator code_iterator(heap()->code_space());
478 for (HeapObject* obj = code_iterator.Next(); obj != NULL;
479 obj = code_iterator.Next()) {
480 Code* code = Code::cast(obj);
481 if (!code->is_optimized_code() && !code->is_weak_stub()) continue;
482 if (WillBeDeoptimized(code)) continue;
483 code->VerifyEmbeddedObjectsDependency();
484 }
485 }
486
487
VerifyOmittedMapChecks()488 void MarkCompactCollector::VerifyOmittedMapChecks() {
489 HeapObjectIterator iterator(heap()->map_space());
490 for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) {
491 Map* map = Map::cast(obj);
492 map->VerifyOmittedMapChecks();
493 }
494 }
495 #endif // VERIFY_HEAP
496
497
ClearMarkbitsInPagedSpace(PagedSpace * space)498 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
499 PageIterator it(space);
500
501 while (it.has_next()) {
502 Bitmap::Clear(it.next());
503 }
504 }
505
506
ClearMarkbitsInNewSpace(NewSpace * space)507 static void ClearMarkbitsInNewSpace(NewSpace* space) {
508 NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
509
510 while (it.has_next()) {
511 Bitmap::Clear(it.next());
512 }
513 }
514
515
ClearMarkbits()516 void MarkCompactCollector::ClearMarkbits() {
517 ClearMarkbitsInPagedSpace(heap_->code_space());
518 ClearMarkbitsInPagedSpace(heap_->map_space());
519 ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
520 ClearMarkbitsInPagedSpace(heap_->old_data_space());
521 ClearMarkbitsInPagedSpace(heap_->cell_space());
522 ClearMarkbitsInPagedSpace(heap_->property_cell_space());
523 ClearMarkbitsInNewSpace(heap_->new_space());
524
525 LargeObjectIterator it(heap_->lo_space());
526 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
527 MarkBit mark_bit = Marking::MarkBitFrom(obj);
528 mark_bit.Clear();
529 mark_bit.Next().Clear();
530 Page::FromAddress(obj->address())->ResetProgressBar();
531 Page::FromAddress(obj->address())->ResetLiveBytes();
532 }
533 }
534
535
536 class MarkCompactCollector::SweeperTask : public v8::Task {
537 public:
SweeperTask(Heap * heap,PagedSpace * space)538 SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {}
539
~SweeperTask()540 virtual ~SweeperTask() {}
541
542 private:
543 // v8::Task overrides.
Run()544 virtual void Run() OVERRIDE {
545 heap_->mark_compact_collector()->SweepInParallel(space_, 0);
546 heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
547 }
548
549 Heap* heap_;
550 PagedSpace* space_;
551
552 DISALLOW_COPY_AND_ASSIGN(SweeperTask);
553 };
554
555
StartSweeperThreads()556 void MarkCompactCollector::StartSweeperThreads() {
557 DCHECK(free_list_old_pointer_space_.get()->IsEmpty());
558 DCHECK(free_list_old_data_space_.get()->IsEmpty());
559 sweeping_in_progress_ = true;
560 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
561 isolate()->sweeper_threads()[i]->StartSweeping();
562 }
563 if (FLAG_job_based_sweeping) {
564 V8::GetCurrentPlatform()->CallOnBackgroundThread(
565 new SweeperTask(heap(), heap()->old_data_space()),
566 v8::Platform::kShortRunningTask);
567 V8::GetCurrentPlatform()->CallOnBackgroundThread(
568 new SweeperTask(heap(), heap()->old_pointer_space()),
569 v8::Platform::kShortRunningTask);
570 }
571 }
572
573
EnsureSweepingCompleted()574 void MarkCompactCollector::EnsureSweepingCompleted() {
575 DCHECK(sweeping_in_progress_ == true);
576
577 // If sweeping is not completed, we try to complete it here. If we do not
578 // have sweeper threads we have to complete since we do not have a good
579 // indicator for a swept space in that case.
580 if (!AreSweeperThreadsActivated() || !IsSweepingCompleted()) {
581 SweepInParallel(heap()->paged_space(OLD_DATA_SPACE), 0);
582 SweepInParallel(heap()->paged_space(OLD_POINTER_SPACE), 0);
583 }
584
585 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
586 isolate()->sweeper_threads()[i]->WaitForSweeperThread();
587 }
588 if (FLAG_job_based_sweeping) {
589 // Wait twice for both jobs.
590 pending_sweeper_jobs_semaphore_.Wait();
591 pending_sweeper_jobs_semaphore_.Wait();
592 }
593 ParallelSweepSpacesComplete();
594 sweeping_in_progress_ = false;
595 RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
596 RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
597 heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
598 heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
599
600 #ifdef VERIFY_HEAP
601 if (FLAG_verify_heap) {
602 VerifyEvacuation(heap_);
603 }
604 #endif
605 }
606
607
IsSweepingCompleted()608 bool MarkCompactCollector::IsSweepingCompleted() {
609 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
610 if (!isolate()->sweeper_threads()[i]->SweepingCompleted()) {
611 return false;
612 }
613 }
614
615 if (FLAG_job_based_sweeping) {
616 if (!pending_sweeper_jobs_semaphore_.WaitFor(
617 base::TimeDelta::FromSeconds(0))) {
618 return false;
619 }
620 pending_sweeper_jobs_semaphore_.Signal();
621 }
622
623 return true;
624 }
625
626
RefillFreeList(PagedSpace * space)627 void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
628 FreeList* free_list;
629
630 if (space == heap()->old_pointer_space()) {
631 free_list = free_list_old_pointer_space_.get();
632 } else if (space == heap()->old_data_space()) {
633 free_list = free_list_old_data_space_.get();
634 } else {
635 // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
636 // to only refill them for old data and pointer spaces.
637 return;
638 }
639
640 intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
641 space->AddToAccountingStats(freed_bytes);
642 space->DecrementUnsweptFreeBytes(freed_bytes);
643 }
644
645
AreSweeperThreadsActivated()646 bool MarkCompactCollector::AreSweeperThreadsActivated() {
647 return isolate()->sweeper_threads() != NULL || FLAG_job_based_sweeping;
648 }
649
650
TransferMark(Address old_start,Address new_start)651 void Marking::TransferMark(Address old_start, Address new_start) {
652 // This is only used when resizing an object.
653 DCHECK(MemoryChunk::FromAddress(old_start) ==
654 MemoryChunk::FromAddress(new_start));
655
656 if (!heap_->incremental_marking()->IsMarking()) return;
657
658 // If the mark doesn't move, we don't check the color of the object.
659 // It doesn't matter whether the object is black, since it hasn't changed
660 // size, so the adjustment to the live data count will be zero anyway.
661 if (old_start == new_start) return;
662
663 MarkBit new_mark_bit = MarkBitFrom(new_start);
664 MarkBit old_mark_bit = MarkBitFrom(old_start);
665
666 #ifdef DEBUG
667 ObjectColor old_color = Color(old_mark_bit);
668 #endif
669
670 if (Marking::IsBlack(old_mark_bit)) {
671 old_mark_bit.Clear();
672 DCHECK(IsWhite(old_mark_bit));
673 Marking::MarkBlack(new_mark_bit);
674 return;
675 } else if (Marking::IsGrey(old_mark_bit)) {
676 old_mark_bit.Clear();
677 old_mark_bit.Next().Clear();
678 DCHECK(IsWhite(old_mark_bit));
679 heap_->incremental_marking()->WhiteToGreyAndPush(
680 HeapObject::FromAddress(new_start), new_mark_bit);
681 heap_->incremental_marking()->RestartIfNotMarking();
682 }
683
684 #ifdef DEBUG
685 ObjectColor new_color = Color(new_mark_bit);
686 DCHECK(new_color == old_color);
687 #endif
688 }
689
690
AllocationSpaceName(AllocationSpace space)691 const char* AllocationSpaceName(AllocationSpace space) {
692 switch (space) {
693 case NEW_SPACE:
694 return "NEW_SPACE";
695 case OLD_POINTER_SPACE:
696 return "OLD_POINTER_SPACE";
697 case OLD_DATA_SPACE:
698 return "OLD_DATA_SPACE";
699 case CODE_SPACE:
700 return "CODE_SPACE";
701 case MAP_SPACE:
702 return "MAP_SPACE";
703 case CELL_SPACE:
704 return "CELL_SPACE";
705 case PROPERTY_CELL_SPACE:
706 return "PROPERTY_CELL_SPACE";
707 case LO_SPACE:
708 return "LO_SPACE";
709 default:
710 UNREACHABLE();
711 }
712
713 return NULL;
714 }
715
716
717 // Returns zero for pages that have so little fragmentation that it is not
718 // worth defragmenting them. Otherwise a positive integer that gives an
719 // estimate of fragmentation on an arbitrary scale.
FreeListFragmentation(PagedSpace * space,Page * p)720 static int FreeListFragmentation(PagedSpace* space, Page* p) {
721 // If page was not swept then there are no free list items on it.
722 if (!p->WasSwept()) {
723 if (FLAG_trace_fragmentation) {
724 PrintF("%p [%s]: %d bytes live (unswept)\n", reinterpret_cast<void*>(p),
725 AllocationSpaceName(space->identity()), p->LiveBytes());
726 }
727 return 0;
728 }
729
730 PagedSpace::SizeStats sizes;
731 space->ObtainFreeListStatistics(p, &sizes);
732
733 intptr_t ratio;
734 intptr_t ratio_threshold;
735 intptr_t area_size = space->AreaSize();
736 if (space->identity() == CODE_SPACE) {
737 ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 / area_size;
738 ratio_threshold = 10;
739 } else {
740 ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 / area_size;
741 ratio_threshold = 15;
742 }
743
744 if (FLAG_trace_fragmentation) {
745 PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
746 reinterpret_cast<void*>(p), AllocationSpaceName(space->identity()),
747 static_cast<int>(sizes.small_size_),
748 static_cast<double>(sizes.small_size_ * 100) / area_size,
749 static_cast<int>(sizes.medium_size_),
750 static_cast<double>(sizes.medium_size_ * 100) / area_size,
751 static_cast<int>(sizes.large_size_),
752 static_cast<double>(sizes.large_size_ * 100) / area_size,
753 static_cast<int>(sizes.huge_size_),
754 static_cast<double>(sizes.huge_size_ * 100) / area_size,
755 (ratio > ratio_threshold) ? "[fragmented]" : "");
756 }
757
758 if (FLAG_always_compact && sizes.Total() != area_size) {
759 return 1;
760 }
761
762 if (ratio <= ratio_threshold) return 0; // Not fragmented.
763
764 return static_cast<int>(ratio - ratio_threshold);
765 }
766
767
CollectEvacuationCandidates(PagedSpace * space)768 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
769 DCHECK(space->identity() == OLD_POINTER_SPACE ||
770 space->identity() == OLD_DATA_SPACE ||
771 space->identity() == CODE_SPACE);
772
773 static const int kMaxMaxEvacuationCandidates = 1000;
774 int number_of_pages = space->CountTotalPages();
775 int max_evacuation_candidates =
776 static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
777
778 if (FLAG_stress_compaction || FLAG_always_compact) {
779 max_evacuation_candidates = kMaxMaxEvacuationCandidates;
780 }
781
782 class Candidate {
783 public:
784 Candidate() : fragmentation_(0), page_(NULL) {}
785 Candidate(int f, Page* p) : fragmentation_(f), page_(p) {}
786
787 int fragmentation() { return fragmentation_; }
788 Page* page() { return page_; }
789
790 private:
791 int fragmentation_;
792 Page* page_;
793 };
794
795 enum CompactionMode { COMPACT_FREE_LISTS, REDUCE_MEMORY_FOOTPRINT };
796
797 CompactionMode mode = COMPACT_FREE_LISTS;
798
799 intptr_t reserved = number_of_pages * space->AreaSize();
800 intptr_t over_reserved = reserved - space->SizeOfObjects();
801 static const intptr_t kFreenessThreshold = 50;
802
803 if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
804 // If reduction of memory footprint was requested, we are aggressive
805 // about choosing pages to free. We expect that half-empty pages
806 // are easier to compact so slightly bump the limit.
807 mode = REDUCE_MEMORY_FOOTPRINT;
808 max_evacuation_candidates += 2;
809 }
810
811
812 if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
813 // If over-usage is very high (more than a third of the space), we
814 // try to free all mostly empty pages. We expect that almost empty
815 // pages are even easier to compact so bump the limit even more.
816 mode = REDUCE_MEMORY_FOOTPRINT;
817 max_evacuation_candidates *= 2;
818 }
819
820 if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
821 PrintF(
822 "Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
823 "evacuation candidate limit: %d\n",
824 static_cast<double>(over_reserved) / MB,
825 static_cast<double>(reserved) / MB,
826 static_cast<int>(kFreenessThreshold), max_evacuation_candidates);
827 }
828
829 intptr_t estimated_release = 0;
830
831 Candidate candidates[kMaxMaxEvacuationCandidates];
832
833 max_evacuation_candidates =
834 Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
835
836 int count = 0;
837 int fragmentation = 0;
838 Candidate* least = NULL;
839
840 PageIterator it(space);
841 if (it.has_next()) it.next(); // Never compact the first page.
842
843 while (it.has_next()) {
844 Page* p = it.next();
845 p->ClearEvacuationCandidate();
846
847 if (FLAG_stress_compaction) {
848 unsigned int counter = space->heap()->ms_count();
849 uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
850 if ((counter & 1) == (page_number & 1)) fragmentation = 1;
851 } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
852 // Don't try to release too many pages.
853 if (estimated_release >= over_reserved) {
854 continue;
855 }
856
857 intptr_t free_bytes = 0;
858
859 if (!p->WasSwept()) {
860 free_bytes = (p->area_size() - p->LiveBytes());
861 } else {
862 PagedSpace::SizeStats sizes;
863 space->ObtainFreeListStatistics(p, &sizes);
864 free_bytes = sizes.Total();
865 }
866
867 int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
868
869 if (free_pct >= kFreenessThreshold) {
870 estimated_release += free_bytes;
871 fragmentation = free_pct;
872 } else {
873 fragmentation = 0;
874 }
875
876 if (FLAG_trace_fragmentation) {
877 PrintF("%p [%s]: %d (%.2f%%) free %s\n", reinterpret_cast<void*>(p),
878 AllocationSpaceName(space->identity()),
879 static_cast<int>(free_bytes),
880 static_cast<double>(free_bytes * 100) / p->area_size(),
881 (fragmentation > 0) ? "[fragmented]" : "");
882 }
883 } else {
884 fragmentation = FreeListFragmentation(space, p);
885 }
886
887 if (fragmentation != 0) {
888 if (count < max_evacuation_candidates) {
889 candidates[count++] = Candidate(fragmentation, p);
890 } else {
891 if (least == NULL) {
892 for (int i = 0; i < max_evacuation_candidates; i++) {
893 if (least == NULL ||
894 candidates[i].fragmentation() < least->fragmentation()) {
895 least = candidates + i;
896 }
897 }
898 }
899 if (least->fragmentation() < fragmentation) {
900 *least = Candidate(fragmentation, p);
901 least = NULL;
902 }
903 }
904 }
905 }
906
907 for (int i = 0; i < count; i++) {
908 AddEvacuationCandidate(candidates[i].page());
909 }
910
911 if (count > 0 && FLAG_trace_fragmentation) {
912 PrintF("Collected %d evacuation candidates for space %s\n", count,
913 AllocationSpaceName(space->identity()));
914 }
915 }
916
917
AbortCompaction()918 void MarkCompactCollector::AbortCompaction() {
919 if (compacting_) {
920 int npages = evacuation_candidates_.length();
921 for (int i = 0; i < npages; i++) {
922 Page* p = evacuation_candidates_[i];
923 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
924 p->ClearEvacuationCandidate();
925 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
926 }
927 compacting_ = false;
928 evacuation_candidates_.Rewind(0);
929 invalidated_code_.Rewind(0);
930 }
931 DCHECK_EQ(0, evacuation_candidates_.length());
932 }
933
934
Prepare()935 void MarkCompactCollector::Prepare() {
936 was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
937
938 #ifdef DEBUG
939 DCHECK(state_ == IDLE);
940 state_ = PREPARE_GC;
941 #endif
942
943 DCHECK(!FLAG_never_compact || !FLAG_always_compact);
944
945 if (sweeping_in_progress()) {
946 // Instead of waiting we could also abort the sweeper threads here.
947 EnsureSweepingCompleted();
948 }
949
950 // Clear marking bits if incremental marking is aborted.
951 if (was_marked_incrementally_ && abort_incremental_marking_) {
952 heap()->incremental_marking()->Abort();
953 ClearMarkbits();
954 AbortWeakCollections();
955 AbortCompaction();
956 was_marked_incrementally_ = false;
957 }
958
959 // Don't start compaction if we are in the middle of incremental
960 // marking cycle. We did not collect any slots.
961 if (!FLAG_never_compact && !was_marked_incrementally_) {
962 StartCompaction(NON_INCREMENTAL_COMPACTION);
963 }
964
965 PagedSpaces spaces(heap());
966 for (PagedSpace* space = spaces.next(); space != NULL;
967 space = spaces.next()) {
968 space->PrepareForMarkCompact();
969 }
970
971 #ifdef VERIFY_HEAP
972 if (!was_marked_incrementally_ && FLAG_verify_heap) {
973 VerifyMarkbitsAreClean();
974 }
975 #endif
976 }
977
978
Finish()979 void MarkCompactCollector::Finish() {
980 #ifdef DEBUG
981 DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
982 state_ = IDLE;
983 #endif
984 // The stub cache is not traversed during GC; clear the cache to
985 // force lazy re-initialization of it. This must be done after the
986 // GC, because it relies on the new address of certain old space
987 // objects (empty string, illegal builtin).
988 isolate()->stub_cache()->Clear();
989
990 if (have_code_to_deoptimize_) {
991 // Some code objects were marked for deoptimization during the GC.
992 Deoptimizer::DeoptimizeMarkedCode(isolate());
993 have_code_to_deoptimize_ = false;
994 }
995 }
996
997
998 // -------------------------------------------------------------------------
999 // Phase 1: tracing and marking live objects.
1000 // before: all objects are in normal state.
1001 // after: a live object's map pointer is marked as '00'.
1002
1003 // Marking all live objects in the heap as part of mark-sweep or mark-compact
1004 // collection. Before marking, all objects are in their normal state. After
1005 // marking, live objects' map pointers are marked indicating that the object
1006 // has been found reachable.
1007 //
1008 // The marking algorithm is a (mostly) depth-first (because of possible stack
1009 // overflow) traversal of the graph of objects reachable from the roots. It
1010 // uses an explicit stack of pointers rather than recursion. The young
1011 // generation's inactive ('from') space is used as a marking stack. The
1012 // objects in the marking stack are the ones that have been reached and marked
1013 // but their children have not yet been visited.
1014 //
1015 // The marking stack can overflow during traversal. In that case, we set an
1016 // overflow flag. When the overflow flag is set, we continue marking objects
1017 // reachable from the objects on the marking stack, but no longer push them on
1018 // the marking stack. Instead, we mark them as both marked and overflowed.
1019 // When the stack is in the overflowed state, objects marked as overflowed
1020 // have been reached and marked but their children have not been visited yet.
1021 // After emptying the marking stack, we clear the overflow flag and traverse
1022 // the heap looking for objects marked as overflowed, push them on the stack,
1023 // and continue with marking. This process repeats until all reachable
1024 // objects have been marked.
1025
ProcessJSFunctionCandidates()1026 void CodeFlusher::ProcessJSFunctionCandidates() {
1027 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
1028 Object* undefined = isolate_->heap()->undefined_value();
1029
1030 JSFunction* candidate = jsfunction_candidates_head_;
1031 JSFunction* next_candidate;
1032 while (candidate != NULL) {
1033 next_candidate = GetNextCandidate(candidate);
1034 ClearNextCandidate(candidate, undefined);
1035
1036 SharedFunctionInfo* shared = candidate->shared();
1037
1038 Code* code = shared->code();
1039 MarkBit code_mark = Marking::MarkBitFrom(code);
1040 if (!code_mark.Get()) {
1041 if (FLAG_trace_code_flushing && shared->is_compiled()) {
1042 PrintF("[code-flushing clears: ");
1043 shared->ShortPrint();
1044 PrintF(" - age: %d]\n", code->GetAge());
1045 }
1046 shared->set_code(lazy_compile);
1047 candidate->set_code(lazy_compile);
1048 } else {
1049 candidate->set_code(code);
1050 }
1051
1052 // We are in the middle of a GC cycle so the write barrier in the code
1053 // setter did not record the slot update and we have to do that manually.
1054 Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
1055 Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
1056 isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot(slot,
1057 target);
1058
1059 Object** shared_code_slot =
1060 HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
1061 isolate_->heap()->mark_compact_collector()->RecordSlot(
1062 shared_code_slot, shared_code_slot, *shared_code_slot);
1063
1064 candidate = next_candidate;
1065 }
1066
1067 jsfunction_candidates_head_ = NULL;
1068 }
1069
1070
ProcessSharedFunctionInfoCandidates()1071 void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
1072 Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy);
1073
1074 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1075 SharedFunctionInfo* next_candidate;
1076 while (candidate != NULL) {
1077 next_candidate = GetNextCandidate(candidate);
1078 ClearNextCandidate(candidate);
1079
1080 Code* code = candidate->code();
1081 MarkBit code_mark = Marking::MarkBitFrom(code);
1082 if (!code_mark.Get()) {
1083 if (FLAG_trace_code_flushing && candidate->is_compiled()) {
1084 PrintF("[code-flushing clears: ");
1085 candidate->ShortPrint();
1086 PrintF(" - age: %d]\n", code->GetAge());
1087 }
1088 candidate->set_code(lazy_compile);
1089 }
1090
1091 Object** code_slot =
1092 HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
1093 isolate_->heap()->mark_compact_collector()->RecordSlot(code_slot, code_slot,
1094 *code_slot);
1095
1096 candidate = next_candidate;
1097 }
1098
1099 shared_function_info_candidates_head_ = NULL;
1100 }
1101
1102
ProcessOptimizedCodeMaps()1103 void CodeFlusher::ProcessOptimizedCodeMaps() {
1104 STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
1105
1106 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1107 SharedFunctionInfo* next_holder;
1108
1109 while (holder != NULL) {
1110 next_holder = GetNextCodeMap(holder);
1111 ClearNextCodeMap(holder);
1112
1113 FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
1114 int new_length = SharedFunctionInfo::kEntriesStart;
1115 int old_length = code_map->length();
1116 for (int i = SharedFunctionInfo::kEntriesStart; i < old_length;
1117 i += SharedFunctionInfo::kEntryLength) {
1118 Code* code =
1119 Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
1120 if (!Marking::MarkBitFrom(code).Get()) continue;
1121
1122 // Move every slot in the entry.
1123 for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
1124 int dst_index = new_length++;
1125 Object** slot = code_map->RawFieldOfElementAt(dst_index);
1126 Object* object = code_map->get(i + j);
1127 code_map->set(dst_index, object);
1128 if (j == SharedFunctionInfo::kOsrAstIdOffset) {
1129 DCHECK(object->IsSmi());
1130 } else {
1131 DCHECK(
1132 Marking::IsBlack(Marking::MarkBitFrom(HeapObject::cast(*slot))));
1133 isolate_->heap()->mark_compact_collector()->RecordSlot(slot, slot,
1134 *slot);
1135 }
1136 }
1137 }
1138
1139 // Trim the optimized code map if entries have been removed.
1140 if (new_length < old_length) {
1141 holder->TrimOptimizedCodeMap(old_length - new_length);
1142 }
1143
1144 holder = next_holder;
1145 }
1146
1147 optimized_code_map_holder_head_ = NULL;
1148 }
1149
1150
EvictCandidate(SharedFunctionInfo * shared_info)1151 void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
1152 // Make sure previous flushing decisions are revisited.
1153 isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
1154
1155 if (FLAG_trace_code_flushing) {
1156 PrintF("[code-flushing abandons function-info: ");
1157 shared_info->ShortPrint();
1158 PrintF("]\n");
1159 }
1160
1161 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1162 SharedFunctionInfo* next_candidate;
1163 if (candidate == shared_info) {
1164 next_candidate = GetNextCandidate(shared_info);
1165 shared_function_info_candidates_head_ = next_candidate;
1166 ClearNextCandidate(shared_info);
1167 } else {
1168 while (candidate != NULL) {
1169 next_candidate = GetNextCandidate(candidate);
1170
1171 if (next_candidate == shared_info) {
1172 next_candidate = GetNextCandidate(shared_info);
1173 SetNextCandidate(candidate, next_candidate);
1174 ClearNextCandidate(shared_info);
1175 break;
1176 }
1177
1178 candidate = next_candidate;
1179 }
1180 }
1181 }
1182
1183
EvictCandidate(JSFunction * function)1184 void CodeFlusher::EvictCandidate(JSFunction* function) {
1185 DCHECK(!function->next_function_link()->IsUndefined());
1186 Object* undefined = isolate_->heap()->undefined_value();
1187
1188 // Make sure previous flushing decisions are revisited.
1189 isolate_->heap()->incremental_marking()->RecordWrites(function);
1190 isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
1191
1192 if (FLAG_trace_code_flushing) {
1193 PrintF("[code-flushing abandons closure: ");
1194 function->shared()->ShortPrint();
1195 PrintF("]\n");
1196 }
1197
1198 JSFunction* candidate = jsfunction_candidates_head_;
1199 JSFunction* next_candidate;
1200 if (candidate == function) {
1201 next_candidate = GetNextCandidate(function);
1202 jsfunction_candidates_head_ = next_candidate;
1203 ClearNextCandidate(function, undefined);
1204 } else {
1205 while (candidate != NULL) {
1206 next_candidate = GetNextCandidate(candidate);
1207
1208 if (next_candidate == function) {
1209 next_candidate = GetNextCandidate(function);
1210 SetNextCandidate(candidate, next_candidate);
1211 ClearNextCandidate(function, undefined);
1212 break;
1213 }
1214
1215 candidate = next_candidate;
1216 }
1217 }
1218 }
1219
1220
EvictOptimizedCodeMap(SharedFunctionInfo * code_map_holder)1221 void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
1222 DCHECK(!FixedArray::cast(code_map_holder->optimized_code_map())
1223 ->get(SharedFunctionInfo::kNextMapIndex)
1224 ->IsUndefined());
1225
1226 // Make sure previous flushing decisions are revisited.
1227 isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
1228
1229 if (FLAG_trace_code_flushing) {
1230 PrintF("[code-flushing abandons code-map: ");
1231 code_map_holder->ShortPrint();
1232 PrintF("]\n");
1233 }
1234
1235 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1236 SharedFunctionInfo* next_holder;
1237 if (holder == code_map_holder) {
1238 next_holder = GetNextCodeMap(code_map_holder);
1239 optimized_code_map_holder_head_ = next_holder;
1240 ClearNextCodeMap(code_map_holder);
1241 } else {
1242 while (holder != NULL) {
1243 next_holder = GetNextCodeMap(holder);
1244
1245 if (next_holder == code_map_holder) {
1246 next_holder = GetNextCodeMap(code_map_holder);
1247 SetNextCodeMap(holder, next_holder);
1248 ClearNextCodeMap(code_map_holder);
1249 break;
1250 }
1251
1252 holder = next_holder;
1253 }
1254 }
1255 }
1256
1257
EvictJSFunctionCandidates()1258 void CodeFlusher::EvictJSFunctionCandidates() {
1259 JSFunction* candidate = jsfunction_candidates_head_;
1260 JSFunction* next_candidate;
1261 while (candidate != NULL) {
1262 next_candidate = GetNextCandidate(candidate);
1263 EvictCandidate(candidate);
1264 candidate = next_candidate;
1265 }
1266 DCHECK(jsfunction_candidates_head_ == NULL);
1267 }
1268
1269
EvictSharedFunctionInfoCandidates()1270 void CodeFlusher::EvictSharedFunctionInfoCandidates() {
1271 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1272 SharedFunctionInfo* next_candidate;
1273 while (candidate != NULL) {
1274 next_candidate = GetNextCandidate(candidate);
1275 EvictCandidate(candidate);
1276 candidate = next_candidate;
1277 }
1278 DCHECK(shared_function_info_candidates_head_ == NULL);
1279 }
1280
1281
EvictOptimizedCodeMaps()1282 void CodeFlusher::EvictOptimizedCodeMaps() {
1283 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1284 SharedFunctionInfo* next_holder;
1285 while (holder != NULL) {
1286 next_holder = GetNextCodeMap(holder);
1287 EvictOptimizedCodeMap(holder);
1288 holder = next_holder;
1289 }
1290 DCHECK(optimized_code_map_holder_head_ == NULL);
1291 }
1292
1293
IteratePointersToFromSpace(ObjectVisitor * v)1294 void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
1295 Heap* heap = isolate_->heap();
1296
1297 JSFunction** slot = &jsfunction_candidates_head_;
1298 JSFunction* candidate = jsfunction_candidates_head_;
1299 while (candidate != NULL) {
1300 if (heap->InFromSpace(candidate)) {
1301 v->VisitPointer(reinterpret_cast<Object**>(slot));
1302 }
1303 candidate = GetNextCandidate(*slot);
1304 slot = GetNextCandidateSlot(*slot);
1305 }
1306 }
1307
1308
~MarkCompactCollector()1309 MarkCompactCollector::~MarkCompactCollector() {
1310 if (code_flusher_ != NULL) {
1311 delete code_flusher_;
1312 code_flusher_ = NULL;
1313 }
1314 }
1315
1316
ShortCircuitConsString(Object ** p)1317 static inline HeapObject* ShortCircuitConsString(Object** p) {
1318 // Optimization: If the heap object pointed to by p is a non-internalized
1319 // cons string whose right substring is HEAP->empty_string, update
1320 // it in place to its left substring. Return the updated value.
1321 //
1322 // Here we assume that if we change *p, we replace it with a heap object
1323 // (i.e., the left substring of a cons string is always a heap object).
1324 //
1325 // The check performed is:
1326 // object->IsConsString() && !object->IsInternalizedString() &&
1327 // (ConsString::cast(object)->second() == HEAP->empty_string())
1328 // except the maps for the object and its possible substrings might be
1329 // marked.
1330 HeapObject* object = HeapObject::cast(*p);
1331 if (!FLAG_clever_optimizations) return object;
1332 Map* map = object->map();
1333 InstanceType type = map->instance_type();
1334 if (!IsShortcutCandidate(type)) return object;
1335
1336 Object* second = reinterpret_cast<ConsString*>(object)->second();
1337 Heap* heap = map->GetHeap();
1338 if (second != heap->empty_string()) {
1339 return object;
1340 }
1341
1342 // Since we don't have the object's start, it is impossible to update the
1343 // page dirty marks. Therefore, we only replace the string with its left
1344 // substring when page dirty marks do not change.
1345 Object* first = reinterpret_cast<ConsString*>(object)->first();
1346 if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
1347
1348 *p = first;
1349 return HeapObject::cast(first);
1350 }
1351
1352
1353 class MarkCompactMarkingVisitor
1354 : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
1355 public:
1356 static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id, Map* map,
1357 HeapObject* obj);
1358
1359 static void ObjectStatsCountFixedArray(
1360 FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
1361 FixedArraySubInstanceType dictionary_type);
1362
1363 template <MarkCompactMarkingVisitor::VisitorId id>
1364 class ObjectStatsTracker {
1365 public:
1366 static inline void Visit(Map* map, HeapObject* obj);
1367 };
1368
1369 static void Initialize();
1370
INLINE(static void VisitPointer (Heap * heap,Object ** p))1371 INLINE(static void VisitPointer(Heap* heap, Object** p)) {
1372 MarkObjectByPointer(heap->mark_compact_collector(), p, p);
1373 }
1374
INLINE(static void VisitPointers (Heap * heap,Object ** start,Object ** end))1375 INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
1376 // Mark all objects pointed to in [start, end).
1377 const int kMinRangeForMarkingRecursion = 64;
1378 if (end - start >= kMinRangeForMarkingRecursion) {
1379 if (VisitUnmarkedObjects(heap, start, end)) return;
1380 // We are close to a stack overflow, so just mark the objects.
1381 }
1382 MarkCompactCollector* collector = heap->mark_compact_collector();
1383 for (Object** p = start; p < end; p++) {
1384 MarkObjectByPointer(collector, start, p);
1385 }
1386 }
1387
1388 // Marks the object black and pushes it on the marking stack.
INLINE(static void MarkObject (Heap * heap,HeapObject * object))1389 INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
1390 MarkBit mark = Marking::MarkBitFrom(object);
1391 heap->mark_compact_collector()->MarkObject(object, mark);
1392 }
1393
1394 // Marks the object black without pushing it on the marking stack.
1395 // Returns true if object needed marking and false otherwise.
INLINE(static bool MarkObjectWithoutPush (Heap * heap,HeapObject * object))1396 INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
1397 MarkBit mark_bit = Marking::MarkBitFrom(object);
1398 if (!mark_bit.Get()) {
1399 heap->mark_compact_collector()->SetMark(object, mark_bit);
1400 return true;
1401 }
1402 return false;
1403 }
1404
1405 // Mark object pointed to by p.
INLINE(static void MarkObjectByPointer (MarkCompactCollector * collector,Object ** anchor_slot,Object ** p))1406 INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
1407 Object** anchor_slot, Object** p)) {
1408 if (!(*p)->IsHeapObject()) return;
1409 HeapObject* object = ShortCircuitConsString(p);
1410 collector->RecordSlot(anchor_slot, p, object);
1411 MarkBit mark = Marking::MarkBitFrom(object);
1412 collector->MarkObject(object, mark);
1413 }
1414
1415
1416 // Visit an unmarked object.
INLINE(static void VisitUnmarkedObject (MarkCompactCollector * collector,HeapObject * obj))1417 INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
1418 HeapObject* obj)) {
1419 #ifdef DEBUG
1420 DCHECK(collector->heap()->Contains(obj));
1421 DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
1422 #endif
1423 Map* map = obj->map();
1424 Heap* heap = obj->GetHeap();
1425 MarkBit mark = Marking::MarkBitFrom(obj);
1426 heap->mark_compact_collector()->SetMark(obj, mark);
1427 // Mark the map pointer and the body.
1428 MarkBit map_mark = Marking::MarkBitFrom(map);
1429 heap->mark_compact_collector()->MarkObject(map, map_mark);
1430 IterateBody(map, obj);
1431 }
1432
1433 // Visit all unmarked objects pointed to by [start, end).
1434 // Returns false if the operation fails (lack of stack space).
INLINE(static bool VisitUnmarkedObjects (Heap * heap,Object ** start,Object ** end))1435 INLINE(static bool VisitUnmarkedObjects(Heap* heap, Object** start,
1436 Object** end)) {
1437 // Return false is we are close to the stack limit.
1438 StackLimitCheck check(heap->isolate());
1439 if (check.HasOverflowed()) return false;
1440
1441 MarkCompactCollector* collector = heap->mark_compact_collector();
1442 // Visit the unmarked objects.
1443 for (Object** p = start; p < end; p++) {
1444 Object* o = *p;
1445 if (!o->IsHeapObject()) continue;
1446 collector->RecordSlot(start, p, o);
1447 HeapObject* obj = HeapObject::cast(o);
1448 MarkBit mark = Marking::MarkBitFrom(obj);
1449 if (mark.Get()) continue;
1450 VisitUnmarkedObject(collector, obj);
1451 }
1452 return true;
1453 }
1454
1455 private:
1456 template <int id>
1457 static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
1458
1459 // Code flushing support.
1460
1461 static const int kRegExpCodeThreshold = 5;
1462
UpdateRegExpCodeAgeAndFlush(Heap * heap,JSRegExp * re,bool is_one_byte)1463 static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re,
1464 bool is_one_byte) {
1465 // Make sure that the fixed array is in fact initialized on the RegExp.
1466 // We could potentially trigger a GC when initializing the RegExp.
1467 if (HeapObject::cast(re->data())->map()->instance_type() !=
1468 FIXED_ARRAY_TYPE)
1469 return;
1470
1471 // Make sure this is a RegExp that actually contains code.
1472 if (re->TypeTag() != JSRegExp::IRREGEXP) return;
1473
1474 Object* code = re->DataAt(JSRegExp::code_index(is_one_byte));
1475 if (!code->IsSmi() &&
1476 HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
1477 // Save a copy that can be reinstated if we need the code again.
1478 re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code);
1479
1480 // Saving a copy might create a pointer into compaction candidate
1481 // that was not observed by marker. This might happen if JSRegExp data
1482 // was marked through the compilation cache before marker reached JSRegExp
1483 // object.
1484 FixedArray* data = FixedArray::cast(re->data());
1485 Object** slot =
1486 data->data_start() + JSRegExp::saved_code_index(is_one_byte);
1487 heap->mark_compact_collector()->RecordSlot(slot, slot, code);
1488
1489 // Set a number in the 0-255 range to guarantee no smi overflow.
1490 re->SetDataAt(JSRegExp::code_index(is_one_byte),
1491 Smi::FromInt(heap->sweep_generation() & 0xff));
1492 } else if (code->IsSmi()) {
1493 int value = Smi::cast(code)->value();
1494 // The regexp has not been compiled yet or there was a compilation error.
1495 if (value == JSRegExp::kUninitializedValue ||
1496 value == JSRegExp::kCompilationErrorValue) {
1497 return;
1498 }
1499
1500 // Check if we should flush now.
1501 if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
1502 re->SetDataAt(JSRegExp::code_index(is_one_byte),
1503 Smi::FromInt(JSRegExp::kUninitializedValue));
1504 re->SetDataAt(JSRegExp::saved_code_index(is_one_byte),
1505 Smi::FromInt(JSRegExp::kUninitializedValue));
1506 }
1507 }
1508 }
1509
1510
1511 // Works by setting the current sweep_generation (as a smi) in the
1512 // code object place in the data array of the RegExp and keeps a copy
1513 // around that can be reinstated if we reuse the RegExp before flushing.
1514 // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
1515 // we flush the code.
VisitRegExpAndFlushCode(Map * map,HeapObject * object)1516 static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
1517 Heap* heap = map->GetHeap();
1518 MarkCompactCollector* collector = heap->mark_compact_collector();
1519 if (!collector->is_code_flushing_enabled()) {
1520 VisitJSRegExp(map, object);
1521 return;
1522 }
1523 JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
1524 // Flush code or set age on both one byte and two byte code.
1525 UpdateRegExpCodeAgeAndFlush(heap, re, true);
1526 UpdateRegExpCodeAgeAndFlush(heap, re, false);
1527 // Visit the fields of the RegExp, including the updated FixedArray.
1528 VisitJSRegExp(map, object);
1529 }
1530
1531 static VisitorDispatchTable<Callback> non_count_table_;
1532 };
1533
1534
ObjectStatsCountFixedArray(FixedArrayBase * fixed_array,FixedArraySubInstanceType fast_type,FixedArraySubInstanceType dictionary_type)1535 void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
1536 FixedArrayBase* fixed_array, FixedArraySubInstanceType fast_type,
1537 FixedArraySubInstanceType dictionary_type) {
1538 Heap* heap = fixed_array->map()->GetHeap();
1539 if (fixed_array->map() != heap->fixed_cow_array_map() &&
1540 fixed_array->map() != heap->fixed_double_array_map() &&
1541 fixed_array != heap->empty_fixed_array()) {
1542 if (fixed_array->IsDictionary()) {
1543 heap->RecordFixedArraySubTypeStats(dictionary_type, fixed_array->Size());
1544 } else {
1545 heap->RecordFixedArraySubTypeStats(fast_type, fixed_array->Size());
1546 }
1547 }
1548 }
1549
1550
ObjectStatsVisitBase(MarkCompactMarkingVisitor::VisitorId id,Map * map,HeapObject * obj)1551 void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
1552 MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
1553 Heap* heap = map->GetHeap();
1554 int object_size = obj->Size();
1555 heap->RecordObjectStats(map->instance_type(), object_size);
1556 non_count_table_.GetVisitorById(id)(map, obj);
1557 if (obj->IsJSObject()) {
1558 JSObject* object = JSObject::cast(obj);
1559 ObjectStatsCountFixedArray(object->elements(), DICTIONARY_ELEMENTS_SUB_TYPE,
1560 FAST_ELEMENTS_SUB_TYPE);
1561 ObjectStatsCountFixedArray(object->properties(),
1562 DICTIONARY_PROPERTIES_SUB_TYPE,
1563 FAST_PROPERTIES_SUB_TYPE);
1564 }
1565 }
1566
1567
1568 template <MarkCompactMarkingVisitor::VisitorId id>
Visit(Map * map,HeapObject * obj)1569 void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(Map* map,
1570 HeapObject* obj) {
1571 ObjectStatsVisitBase(id, map, obj);
1572 }
1573
1574
1575 template <>
1576 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1577 MarkCompactMarkingVisitor::kVisitMap> {
1578 public:
Visit(Map * map,HeapObject * obj)1579 static inline void Visit(Map* map, HeapObject* obj) {
1580 Heap* heap = map->GetHeap();
1581 Map* map_obj = Map::cast(obj);
1582 DCHECK(map->instance_type() == MAP_TYPE);
1583 DescriptorArray* array = map_obj->instance_descriptors();
1584 if (map_obj->owns_descriptors() &&
1585 array != heap->empty_descriptor_array()) {
1586 int fixed_array_size = array->Size();
1587 heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
1588 fixed_array_size);
1589 }
1590 if (map_obj->HasTransitionArray()) {
1591 int fixed_array_size = map_obj->transitions()->Size();
1592 heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
1593 fixed_array_size);
1594 }
1595 if (map_obj->has_code_cache()) {
1596 CodeCache* cache = CodeCache::cast(map_obj->code_cache());
1597 heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
1598 cache->default_cache()->Size());
1599 if (!cache->normal_type_cache()->IsUndefined()) {
1600 heap->RecordFixedArraySubTypeStats(
1601 MAP_CODE_CACHE_SUB_TYPE,
1602 FixedArray::cast(cache->normal_type_cache())->Size());
1603 }
1604 }
1605 ObjectStatsVisitBase(kVisitMap, map, obj);
1606 }
1607 };
1608
1609
1610 template <>
1611 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1612 MarkCompactMarkingVisitor::kVisitCode> {
1613 public:
Visit(Map * map,HeapObject * obj)1614 static inline void Visit(Map* map, HeapObject* obj) {
1615 Heap* heap = map->GetHeap();
1616 int object_size = obj->Size();
1617 DCHECK(map->instance_type() == CODE_TYPE);
1618 Code* code_obj = Code::cast(obj);
1619 heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
1620 object_size);
1621 ObjectStatsVisitBase(kVisitCode, map, obj);
1622 }
1623 };
1624
1625
1626 template <>
1627 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1628 MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
1629 public:
Visit(Map * map,HeapObject * obj)1630 static inline void Visit(Map* map, HeapObject* obj) {
1631 Heap* heap = map->GetHeap();
1632 SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
1633 if (sfi->scope_info() != heap->empty_fixed_array()) {
1634 heap->RecordFixedArraySubTypeStats(
1635 SCOPE_INFO_SUB_TYPE, FixedArray::cast(sfi->scope_info())->Size());
1636 }
1637 ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
1638 }
1639 };
1640
1641
1642 template <>
1643 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1644 MarkCompactMarkingVisitor::kVisitFixedArray> {
1645 public:
Visit(Map * map,HeapObject * obj)1646 static inline void Visit(Map* map, HeapObject* obj) {
1647 Heap* heap = map->GetHeap();
1648 FixedArray* fixed_array = FixedArray::cast(obj);
1649 if (fixed_array == heap->string_table()) {
1650 heap->RecordFixedArraySubTypeStats(STRING_TABLE_SUB_TYPE,
1651 fixed_array->Size());
1652 }
1653 ObjectStatsVisitBase(kVisitFixedArray, map, obj);
1654 }
1655 };
1656
1657
Initialize()1658 void MarkCompactMarkingVisitor::Initialize() {
1659 StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
1660
1661 table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode);
1662
1663 if (FLAG_track_gc_object_stats) {
1664 // Copy the visitor table to make call-through possible.
1665 non_count_table_.CopyFrom(&table_);
1666 #define VISITOR_ID_COUNT_FUNCTION(id) \
1667 table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
1668 VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
1669 #undef VISITOR_ID_COUNT_FUNCTION
1670 }
1671 }
1672
1673
1674 VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
1675 MarkCompactMarkingVisitor::non_count_table_;
1676
1677
1678 class CodeMarkingVisitor : public ThreadVisitor {
1679 public:
CodeMarkingVisitor(MarkCompactCollector * collector)1680 explicit CodeMarkingVisitor(MarkCompactCollector* collector)
1681 : collector_(collector) {}
1682
VisitThread(Isolate * isolate,ThreadLocalTop * top)1683 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
1684 collector_->PrepareThreadForCodeFlushing(isolate, top);
1685 }
1686
1687 private:
1688 MarkCompactCollector* collector_;
1689 };
1690
1691
1692 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
1693 public:
SharedFunctionInfoMarkingVisitor(MarkCompactCollector * collector)1694 explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
1695 : collector_(collector) {}
1696
VisitPointers(Object ** start,Object ** end)1697 void VisitPointers(Object** start, Object** end) {
1698 for (Object** p = start; p < end; p++) VisitPointer(p);
1699 }
1700
VisitPointer(Object ** slot)1701 void VisitPointer(Object** slot) {
1702 Object* obj = *slot;
1703 if (obj->IsSharedFunctionInfo()) {
1704 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
1705 MarkBit shared_mark = Marking::MarkBitFrom(shared);
1706 MarkBit code_mark = Marking::MarkBitFrom(shared->code());
1707 collector_->MarkObject(shared->code(), code_mark);
1708 collector_->MarkObject(shared, shared_mark);
1709 }
1710 }
1711
1712 private:
1713 MarkCompactCollector* collector_;
1714 };
1715
1716
PrepareThreadForCodeFlushing(Isolate * isolate,ThreadLocalTop * top)1717 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
1718 ThreadLocalTop* top) {
1719 for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
1720 // Note: for the frame that has a pending lazy deoptimization
1721 // StackFrame::unchecked_code will return a non-optimized code object for
1722 // the outermost function and StackFrame::LookupCode will return
1723 // actual optimized code object.
1724 StackFrame* frame = it.frame();
1725 Code* code = frame->unchecked_code();
1726 MarkBit code_mark = Marking::MarkBitFrom(code);
1727 MarkObject(code, code_mark);
1728 if (frame->is_optimized()) {
1729 MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
1730 frame->LookupCode());
1731 }
1732 }
1733 }
1734
1735
PrepareForCodeFlushing()1736 void MarkCompactCollector::PrepareForCodeFlushing() {
1737 // Enable code flushing for non-incremental cycles.
1738 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
1739 EnableCodeFlushing(!was_marked_incrementally_);
1740 }
1741
1742 // If code flushing is disabled, there is no need to prepare for it.
1743 if (!is_code_flushing_enabled()) return;
1744
1745 // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
1746 // relies on it being marked before any other descriptor array.
1747 HeapObject* descriptor_array = heap()->empty_descriptor_array();
1748 MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
1749 MarkObject(descriptor_array, descriptor_array_mark);
1750
1751 // Make sure we are not referencing the code from the stack.
1752 DCHECK(this == heap()->mark_compact_collector());
1753 PrepareThreadForCodeFlushing(heap()->isolate(),
1754 heap()->isolate()->thread_local_top());
1755
1756 // Iterate the archived stacks in all threads to check if
1757 // the code is referenced.
1758 CodeMarkingVisitor code_marking_visitor(this);
1759 heap()->isolate()->thread_manager()->IterateArchivedThreads(
1760 &code_marking_visitor);
1761
1762 SharedFunctionInfoMarkingVisitor visitor(this);
1763 heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
1764 heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
1765
1766 ProcessMarkingDeque();
1767 }
1768
1769
1770 // Visitor class for marking heap roots.
1771 class RootMarkingVisitor : public ObjectVisitor {
1772 public:
RootMarkingVisitor(Heap * heap)1773 explicit RootMarkingVisitor(Heap* heap)
1774 : collector_(heap->mark_compact_collector()) {}
1775
VisitPointer(Object ** p)1776 void VisitPointer(Object** p) { MarkObjectByPointer(p); }
1777
VisitPointers(Object ** start,Object ** end)1778 void VisitPointers(Object** start, Object** end) {
1779 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
1780 }
1781
1782 // Skip the weak next code link in a code object, which is visited in
1783 // ProcessTopOptimizedFrame.
VisitNextCodeLink(Object ** p)1784 void VisitNextCodeLink(Object** p) {}
1785
1786 private:
MarkObjectByPointer(Object ** p)1787 void MarkObjectByPointer(Object** p) {
1788 if (!(*p)->IsHeapObject()) return;
1789
1790 // Replace flat cons strings in place.
1791 HeapObject* object = ShortCircuitConsString(p);
1792 MarkBit mark_bit = Marking::MarkBitFrom(object);
1793 if (mark_bit.Get()) return;
1794
1795 Map* map = object->map();
1796 // Mark the object.
1797 collector_->SetMark(object, mark_bit);
1798
1799 // Mark the map pointer and body, and push them on the marking stack.
1800 MarkBit map_mark = Marking::MarkBitFrom(map);
1801 collector_->MarkObject(map, map_mark);
1802 MarkCompactMarkingVisitor::IterateBody(map, object);
1803
1804 // Mark all the objects reachable from the map and body. May leave
1805 // overflowed objects in the heap.
1806 collector_->EmptyMarkingDeque();
1807 }
1808
1809 MarkCompactCollector* collector_;
1810 };
1811
1812
1813 // Helper class for pruning the string table.
1814 template <bool finalize_external_strings>
1815 class StringTableCleaner : public ObjectVisitor {
1816 public:
StringTableCleaner(Heap * heap)1817 explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {}
1818
VisitPointers(Object ** start,Object ** end)1819 virtual void VisitPointers(Object** start, Object** end) {
1820 // Visit all HeapObject pointers in [start, end).
1821 for (Object** p = start; p < end; p++) {
1822 Object* o = *p;
1823 if (o->IsHeapObject() &&
1824 !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
1825 if (finalize_external_strings) {
1826 DCHECK(o->IsExternalString());
1827 heap_->FinalizeExternalString(String::cast(*p));
1828 } else {
1829 pointers_removed_++;
1830 }
1831 // Set the entry to the_hole_value (as deleted).
1832 *p = heap_->the_hole_value();
1833 }
1834 }
1835 }
1836
PointersRemoved()1837 int PointersRemoved() {
1838 DCHECK(!finalize_external_strings);
1839 return pointers_removed_;
1840 }
1841
1842 private:
1843 Heap* heap_;
1844 int pointers_removed_;
1845 };
1846
1847
1848 typedef StringTableCleaner<false> InternalizedStringTableCleaner;
1849 typedef StringTableCleaner<true> ExternalStringTableCleaner;
1850
1851
1852 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
1853 // are retained.
1854 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
1855 public:
RetainAs(Object * object)1856 virtual Object* RetainAs(Object* object) {
1857 if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
1858 return object;
1859 } else if (object->IsAllocationSite() &&
1860 !(AllocationSite::cast(object)->IsZombie())) {
1861 // "dead" AllocationSites need to live long enough for a traversal of new
1862 // space. These sites get a one-time reprieve.
1863 AllocationSite* site = AllocationSite::cast(object);
1864 site->MarkZombie();
1865 site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
1866 return object;
1867 } else {
1868 return NULL;
1869 }
1870 }
1871 };
1872
1873
1874 // Fill the marking stack with overflowed objects returned by the given
1875 // iterator. Stop when the marking stack is filled or the end of the space
1876 // is reached, whichever comes first.
1877 template <class T>
DiscoverGreyObjectsWithIterator(Heap * heap,MarkingDeque * marking_deque,T * it)1878 static void DiscoverGreyObjectsWithIterator(Heap* heap,
1879 MarkingDeque* marking_deque,
1880 T* it) {
1881 // The caller should ensure that the marking stack is initially not full,
1882 // so that we don't waste effort pointlessly scanning for objects.
1883 DCHECK(!marking_deque->IsFull());
1884
1885 Map* filler_map = heap->one_pointer_filler_map();
1886 for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) {
1887 MarkBit markbit = Marking::MarkBitFrom(object);
1888 if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
1889 Marking::GreyToBlack(markbit);
1890 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1891 marking_deque->PushBlack(object);
1892 if (marking_deque->IsFull()) return;
1893 }
1894 }
1895 }
1896
1897
1898 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
1899
1900
DiscoverGreyObjectsOnPage(MarkingDeque * marking_deque,MemoryChunk * p)1901 static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
1902 MemoryChunk* p) {
1903 DCHECK(!marking_deque->IsFull());
1904 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1905 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1906 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1907 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1908
1909 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1910 Address cell_base = it.CurrentCellBase();
1911 MarkBit::CellType* cell = it.CurrentCell();
1912
1913 const MarkBit::CellType current_cell = *cell;
1914 if (current_cell == 0) continue;
1915
1916 MarkBit::CellType grey_objects;
1917 if (it.HasNext()) {
1918 const MarkBit::CellType next_cell = *(cell + 1);
1919 grey_objects = current_cell & ((current_cell >> 1) |
1920 (next_cell << (Bitmap::kBitsPerCell - 1)));
1921 } else {
1922 grey_objects = current_cell & (current_cell >> 1);
1923 }
1924
1925 int offset = 0;
1926 while (grey_objects != 0) {
1927 int trailing_zeros = base::bits::CountTrailingZeros32(grey_objects);
1928 grey_objects >>= trailing_zeros;
1929 offset += trailing_zeros;
1930 MarkBit markbit(cell, 1 << offset, false);
1931 DCHECK(Marking::IsGrey(markbit));
1932 Marking::GreyToBlack(markbit);
1933 Address addr = cell_base + offset * kPointerSize;
1934 HeapObject* object = HeapObject::FromAddress(addr);
1935 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1936 marking_deque->PushBlack(object);
1937 if (marking_deque->IsFull()) return;
1938 offset += 2;
1939 grey_objects >>= 2;
1940 }
1941
1942 grey_objects >>= (Bitmap::kBitsPerCell - 1);
1943 }
1944 }
1945
1946
DiscoverAndEvacuateBlackObjectsOnPage(NewSpace * new_space,NewSpacePage * p)1947 int MarkCompactCollector::DiscoverAndEvacuateBlackObjectsOnPage(
1948 NewSpace* new_space, NewSpacePage* p) {
1949 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1950 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1951 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1952 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1953
1954 MarkBit::CellType* cells = p->markbits()->cells();
1955 int survivors_size = 0;
1956
1957 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1958 Address cell_base = it.CurrentCellBase();
1959 MarkBit::CellType* cell = it.CurrentCell();
1960
1961 MarkBit::CellType current_cell = *cell;
1962 if (current_cell == 0) continue;
1963
1964 int offset = 0;
1965 while (current_cell != 0) {
1966 int trailing_zeros = base::bits::CountTrailingZeros32(current_cell);
1967 current_cell >>= trailing_zeros;
1968 offset += trailing_zeros;
1969 Address address = cell_base + offset * kPointerSize;
1970 HeapObject* object = HeapObject::FromAddress(address);
1971
1972 int size = object->Size();
1973 survivors_size += size;
1974
1975 Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
1976
1977 offset++;
1978 current_cell >>= 1;
1979
1980 // TODO(hpayer): Refactor EvacuateObject and call this function instead.
1981 if (heap()->ShouldBePromoted(object->address(), size) &&
1982 TryPromoteObject(object, size)) {
1983 continue;
1984 }
1985
1986 AllocationResult allocation = new_space->AllocateRaw(size);
1987 if (allocation.IsRetry()) {
1988 if (!new_space->AddFreshPage()) {
1989 // Shouldn't happen. We are sweeping linearly, and to-space
1990 // has the same number of pages as from-space, so there is
1991 // always room.
1992 UNREACHABLE();
1993 }
1994 allocation = new_space->AllocateRaw(size);
1995 DCHECK(!allocation.IsRetry());
1996 }
1997 Object* target = allocation.ToObjectChecked();
1998
1999 MigrateObject(HeapObject::cast(target), object, size, NEW_SPACE);
2000 heap()->IncrementSemiSpaceCopiedObjectSize(size);
2001 }
2002 *cells = 0;
2003 }
2004 return survivors_size;
2005 }
2006
2007
DiscoverGreyObjectsInSpace(Heap * heap,MarkingDeque * marking_deque,PagedSpace * space)2008 static void DiscoverGreyObjectsInSpace(Heap* heap, MarkingDeque* marking_deque,
2009 PagedSpace* space) {
2010 PageIterator it(space);
2011 while (it.has_next()) {
2012 Page* p = it.next();
2013 DiscoverGreyObjectsOnPage(marking_deque, p);
2014 if (marking_deque->IsFull()) return;
2015 }
2016 }
2017
2018
DiscoverGreyObjectsInNewSpace(Heap * heap,MarkingDeque * marking_deque)2019 static void DiscoverGreyObjectsInNewSpace(Heap* heap,
2020 MarkingDeque* marking_deque) {
2021 NewSpace* space = heap->new_space();
2022 NewSpacePageIterator it(space->bottom(), space->top());
2023 while (it.has_next()) {
2024 NewSpacePage* page = it.next();
2025 DiscoverGreyObjectsOnPage(marking_deque, page);
2026 if (marking_deque->IsFull()) return;
2027 }
2028 }
2029
2030
IsUnmarkedHeapObject(Object ** p)2031 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
2032 Object* o = *p;
2033 if (!o->IsHeapObject()) return false;
2034 HeapObject* heap_object = HeapObject::cast(o);
2035 MarkBit mark = Marking::MarkBitFrom(heap_object);
2036 return !mark.Get();
2037 }
2038
2039
IsUnmarkedHeapObjectWithHeap(Heap * heap,Object ** p)2040 bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
2041 Object** p) {
2042 Object* o = *p;
2043 DCHECK(o->IsHeapObject());
2044 HeapObject* heap_object = HeapObject::cast(o);
2045 MarkBit mark = Marking::MarkBitFrom(heap_object);
2046 return !mark.Get();
2047 }
2048
2049
MarkStringTable(RootMarkingVisitor * visitor)2050 void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
2051 StringTable* string_table = heap()->string_table();
2052 // Mark the string table itself.
2053 MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
2054 if (!string_table_mark.Get()) {
2055 // String table could have already been marked by visiting the handles list.
2056 SetMark(string_table, string_table_mark);
2057 }
2058 // Explicitly mark the prefix.
2059 string_table->IteratePrefix(visitor);
2060 ProcessMarkingDeque();
2061 }
2062
2063
MarkAllocationSite(AllocationSite * site)2064 void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
2065 MarkBit mark_bit = Marking::MarkBitFrom(site);
2066 SetMark(site, mark_bit);
2067 }
2068
2069
MarkRoots(RootMarkingVisitor * visitor)2070 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
2071 // Mark the heap roots including global variables, stack variables,
2072 // etc., and all objects reachable from them.
2073 heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
2074
2075 // Handle the string table specially.
2076 MarkStringTable(visitor);
2077
2078 MarkWeakObjectToCodeTable();
2079
2080 // There may be overflowed objects in the heap. Visit them now.
2081 while (marking_deque_.overflowed()) {
2082 RefillMarkingDeque();
2083 EmptyMarkingDeque();
2084 }
2085 }
2086
2087
MarkImplicitRefGroups()2088 void MarkCompactCollector::MarkImplicitRefGroups() {
2089 List<ImplicitRefGroup*>* ref_groups =
2090 isolate()->global_handles()->implicit_ref_groups();
2091
2092 int last = 0;
2093 for (int i = 0; i < ref_groups->length(); i++) {
2094 ImplicitRefGroup* entry = ref_groups->at(i);
2095 DCHECK(entry != NULL);
2096
2097 if (!IsMarked(*entry->parent)) {
2098 (*ref_groups)[last++] = entry;
2099 continue;
2100 }
2101
2102 Object*** children = entry->children;
2103 // A parent object is marked, so mark all child heap objects.
2104 for (size_t j = 0; j < entry->length; ++j) {
2105 if ((*children[j])->IsHeapObject()) {
2106 HeapObject* child = HeapObject::cast(*children[j]);
2107 MarkBit mark = Marking::MarkBitFrom(child);
2108 MarkObject(child, mark);
2109 }
2110 }
2111
2112 // Once the entire group has been marked, dispose it because it's
2113 // not needed anymore.
2114 delete entry;
2115 }
2116 ref_groups->Rewind(last);
2117 }
2118
2119
MarkWeakObjectToCodeTable()2120 void MarkCompactCollector::MarkWeakObjectToCodeTable() {
2121 HeapObject* weak_object_to_code_table =
2122 HeapObject::cast(heap()->weak_object_to_code_table());
2123 if (!IsMarked(weak_object_to_code_table)) {
2124 MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
2125 SetMark(weak_object_to_code_table, mark);
2126 }
2127 }
2128
2129
2130 // Mark all objects reachable from the objects on the marking stack.
2131 // Before: the marking stack contains zero or more heap object pointers.
2132 // After: the marking stack is empty, and all objects reachable from the
2133 // marking stack have been marked, or are overflowed in the heap.
EmptyMarkingDeque()2134 void MarkCompactCollector::EmptyMarkingDeque() {
2135 while (!marking_deque_.IsEmpty()) {
2136 HeapObject* object = marking_deque_.Pop();
2137 DCHECK(object->IsHeapObject());
2138 DCHECK(heap()->Contains(object));
2139 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
2140
2141 Map* map = object->map();
2142 MarkBit map_mark = Marking::MarkBitFrom(map);
2143 MarkObject(map, map_mark);
2144
2145 MarkCompactMarkingVisitor::IterateBody(map, object);
2146 }
2147 }
2148
2149
2150 // Sweep the heap for overflowed objects, clear their overflow bits, and
2151 // push them on the marking stack. Stop early if the marking stack fills
2152 // before sweeping completes. If sweeping completes, there are no remaining
2153 // overflowed objects in the heap so the overflow flag on the markings stack
2154 // is cleared.
RefillMarkingDeque()2155 void MarkCompactCollector::RefillMarkingDeque() {
2156 DCHECK(marking_deque_.overflowed());
2157
2158 DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
2159 if (marking_deque_.IsFull()) return;
2160
2161 DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
2162 heap()->old_pointer_space());
2163 if (marking_deque_.IsFull()) return;
2164
2165 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->old_data_space());
2166 if (marking_deque_.IsFull()) return;
2167
2168 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->code_space());
2169 if (marking_deque_.IsFull()) return;
2170
2171 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->map_space());
2172 if (marking_deque_.IsFull()) return;
2173
2174 DiscoverGreyObjectsInSpace(heap(), &marking_deque_, heap()->cell_space());
2175 if (marking_deque_.IsFull()) return;
2176
2177 DiscoverGreyObjectsInSpace(heap(), &marking_deque_,
2178 heap()->property_cell_space());
2179 if (marking_deque_.IsFull()) return;
2180
2181 LargeObjectIterator lo_it(heap()->lo_space());
2182 DiscoverGreyObjectsWithIterator(heap(), &marking_deque_, &lo_it);
2183 if (marking_deque_.IsFull()) return;
2184
2185 marking_deque_.ClearOverflowed();
2186 }
2187
2188
2189 // Mark all objects reachable (transitively) from objects on the marking
2190 // stack. Before: the marking stack contains zero or more heap object
2191 // pointers. After: the marking stack is empty and there are no overflowed
2192 // objects in the heap.
ProcessMarkingDeque()2193 void MarkCompactCollector::ProcessMarkingDeque() {
2194 EmptyMarkingDeque();
2195 while (marking_deque_.overflowed()) {
2196 RefillMarkingDeque();
2197 EmptyMarkingDeque();
2198 }
2199 }
2200
2201
2202 // Mark all objects reachable (transitively) from objects on the marking
2203 // stack including references only considered in the atomic marking pause.
ProcessEphemeralMarking(ObjectVisitor * visitor)2204 void MarkCompactCollector::ProcessEphemeralMarking(ObjectVisitor* visitor) {
2205 bool work_to_do = true;
2206 DCHECK(marking_deque_.IsEmpty());
2207 while (work_to_do) {
2208 isolate()->global_handles()->IterateObjectGroups(
2209 visitor, &IsUnmarkedHeapObjectWithHeap);
2210 MarkImplicitRefGroups();
2211 ProcessWeakCollections();
2212 work_to_do = !marking_deque_.IsEmpty();
2213 ProcessMarkingDeque();
2214 }
2215 }
2216
2217
ProcessTopOptimizedFrame(ObjectVisitor * visitor)2218 void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
2219 for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
2220 !it.done(); it.Advance()) {
2221 if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
2222 return;
2223 }
2224 if (it.frame()->type() == StackFrame::OPTIMIZED) {
2225 Code* code = it.frame()->LookupCode();
2226 if (!code->CanDeoptAt(it.frame()->pc())) {
2227 code->CodeIterateBody(visitor);
2228 }
2229 ProcessMarkingDeque();
2230 return;
2231 }
2232 }
2233 }
2234
2235
MarkLiveObjects()2236 void MarkCompactCollector::MarkLiveObjects() {
2237 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
2238 double start_time = 0.0;
2239 if (FLAG_print_cumulative_gc_stat) {
2240 start_time = base::OS::TimeCurrentMillis();
2241 }
2242 // The recursive GC marker detects when it is nearing stack overflow,
2243 // and switches to a different marking system. JS interrupts interfere
2244 // with the C stack limit check.
2245 PostponeInterruptsScope postpone(isolate());
2246
2247 bool incremental_marking_overflowed = false;
2248 IncrementalMarking* incremental_marking = heap_->incremental_marking();
2249 if (was_marked_incrementally_) {
2250 // Finalize the incremental marking and check whether we had an overflow.
2251 // Both markers use grey color to mark overflowed objects so
2252 // non-incremental marker can deal with them as if overflow
2253 // occured during normal marking.
2254 // But incremental marker uses a separate marking deque
2255 // so we have to explicitly copy its overflow state.
2256 incremental_marking->Finalize();
2257 incremental_marking_overflowed =
2258 incremental_marking->marking_deque()->overflowed();
2259 incremental_marking->marking_deque()->ClearOverflowed();
2260 } else {
2261 // Abort any pending incremental activities e.g. incremental sweeping.
2262 incremental_marking->Abort();
2263 }
2264
2265 #ifdef DEBUG
2266 DCHECK(state_ == PREPARE_GC);
2267 state_ = MARK_LIVE_OBJECTS;
2268 #endif
2269 // The to space contains live objects, a page in from space is used as a
2270 // marking stack.
2271 Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
2272 Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
2273 if (FLAG_force_marking_deque_overflows) {
2274 marking_deque_end = marking_deque_start + 64 * kPointerSize;
2275 }
2276 marking_deque_.Initialize(marking_deque_start, marking_deque_end);
2277 DCHECK(!marking_deque_.overflowed());
2278
2279 if (incremental_marking_overflowed) {
2280 // There are overflowed objects left in the heap after incremental marking.
2281 marking_deque_.SetOverflowed();
2282 }
2283
2284 PrepareForCodeFlushing();
2285
2286 if (was_marked_incrementally_) {
2287 // There is no write barrier on cells so we have to scan them now at the end
2288 // of the incremental marking.
2289 {
2290 HeapObjectIterator cell_iterator(heap()->cell_space());
2291 HeapObject* cell;
2292 while ((cell = cell_iterator.Next()) != NULL) {
2293 DCHECK(cell->IsCell());
2294 if (IsMarked(cell)) {
2295 int offset = Cell::kValueOffset;
2296 MarkCompactMarkingVisitor::VisitPointer(
2297 heap(), reinterpret_cast<Object**>(cell->address() + offset));
2298 }
2299 }
2300 }
2301 {
2302 HeapObjectIterator js_global_property_cell_iterator(
2303 heap()->property_cell_space());
2304 HeapObject* cell;
2305 while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
2306 DCHECK(cell->IsPropertyCell());
2307 if (IsMarked(cell)) {
2308 MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
2309 }
2310 }
2311 }
2312 }
2313
2314 RootMarkingVisitor root_visitor(heap());
2315 MarkRoots(&root_visitor);
2316
2317 ProcessTopOptimizedFrame(&root_visitor);
2318
2319 // The objects reachable from the roots are marked, yet unreachable
2320 // objects are unmarked. Mark objects reachable due to host
2321 // application specific logic or through Harmony weak maps.
2322 ProcessEphemeralMarking(&root_visitor);
2323
2324 // The objects reachable from the roots, weak maps or object groups
2325 // are marked, yet unreachable objects are unmarked. Mark objects
2326 // reachable only from weak global handles.
2327 //
2328 // First we identify nonlive weak handles and mark them as pending
2329 // destruction.
2330 heap()->isolate()->global_handles()->IdentifyWeakHandles(
2331 &IsUnmarkedHeapObject);
2332 // Then we mark the objects and process the transitive closure.
2333 heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
2334 while (marking_deque_.overflowed()) {
2335 RefillMarkingDeque();
2336 EmptyMarkingDeque();
2337 }
2338
2339 // Repeat host application specific and Harmony weak maps marking to
2340 // mark unmarked objects reachable from the weak roots.
2341 ProcessEphemeralMarking(&root_visitor);
2342
2343 AfterMarking();
2344
2345 if (FLAG_print_cumulative_gc_stat) {
2346 heap_->tracer()->AddMarkingTime(base::OS::TimeCurrentMillis() - start_time);
2347 }
2348 }
2349
2350
AfterMarking()2351 void MarkCompactCollector::AfterMarking() {
2352 // Object literal map caches reference strings (cache keys) and maps
2353 // (cache values). At this point still useful maps have already been
2354 // marked. Mark the keys for the alive values before we process the
2355 // string table.
2356 ProcessMapCaches();
2357
2358 // Prune the string table removing all strings only pointed to by the
2359 // string table. Cannot use string_table() here because the string
2360 // table is marked.
2361 StringTable* string_table = heap()->string_table();
2362 InternalizedStringTableCleaner internalized_visitor(heap());
2363 string_table->IterateElements(&internalized_visitor);
2364 string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
2365
2366 ExternalStringTableCleaner external_visitor(heap());
2367 heap()->external_string_table_.Iterate(&external_visitor);
2368 heap()->external_string_table_.CleanUp();
2369
2370 // Process the weak references.
2371 MarkCompactWeakObjectRetainer mark_compact_object_retainer;
2372 heap()->ProcessWeakReferences(&mark_compact_object_retainer);
2373
2374 // Remove object groups after marking phase.
2375 heap()->isolate()->global_handles()->RemoveObjectGroups();
2376 heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
2377
2378 // Flush code from collected candidates.
2379 if (is_code_flushing_enabled()) {
2380 code_flusher_->ProcessCandidates();
2381 // If incremental marker does not support code flushing, we need to
2382 // disable it before incremental marking steps for next cycle.
2383 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
2384 EnableCodeFlushing(false);
2385 }
2386 }
2387
2388 if (FLAG_track_gc_object_stats) {
2389 heap()->CheckpointObjectStats();
2390 }
2391 }
2392
2393
ProcessMapCaches()2394 void MarkCompactCollector::ProcessMapCaches() {
2395 Object* raw_context = heap()->native_contexts_list();
2396 while (raw_context != heap()->undefined_value()) {
2397 Context* context = reinterpret_cast<Context*>(raw_context);
2398 if (IsMarked(context)) {
2399 HeapObject* raw_map_cache =
2400 HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
2401 // A map cache may be reachable from the stack. In this case
2402 // it's already transitively marked and it's too late to clean
2403 // up its parts.
2404 if (!IsMarked(raw_map_cache) &&
2405 raw_map_cache != heap()->undefined_value()) {
2406 MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
2407 int existing_elements = map_cache->NumberOfElements();
2408 int used_elements = 0;
2409 for (int i = MapCache::kElementsStartIndex; i < map_cache->length();
2410 i += MapCache::kEntrySize) {
2411 Object* raw_key = map_cache->get(i);
2412 if (raw_key == heap()->undefined_value() ||
2413 raw_key == heap()->the_hole_value())
2414 continue;
2415 STATIC_ASSERT(MapCache::kEntrySize == 2);
2416 Object* raw_map = map_cache->get(i + 1);
2417 if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
2418 ++used_elements;
2419 } else {
2420 // Delete useless entries with unmarked maps.
2421 DCHECK(raw_map->IsMap());
2422 map_cache->set_the_hole(i);
2423 map_cache->set_the_hole(i + 1);
2424 }
2425 }
2426 if (used_elements == 0) {
2427 context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
2428 } else {
2429 // Note: we don't actually shrink the cache here to avoid
2430 // extra complexity during GC. We rely on subsequent cache
2431 // usages (EnsureCapacity) to do this.
2432 map_cache->ElementsRemoved(existing_elements - used_elements);
2433 MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
2434 MarkObject(map_cache, map_cache_markbit);
2435 }
2436 }
2437 }
2438 // Move to next element in the list.
2439 raw_context = context->get(Context::NEXT_CONTEXT_LINK);
2440 }
2441 ProcessMarkingDeque();
2442 }
2443
2444
ClearNonLiveReferences()2445 void MarkCompactCollector::ClearNonLiveReferences() {
2446 // Iterate over the map space, setting map transitions that go from
2447 // a marked map to an unmarked map to null transitions. This action
2448 // is carried out only on maps of JSObjects and related subtypes.
2449 HeapObjectIterator map_iterator(heap()->map_space());
2450 for (HeapObject* obj = map_iterator.Next(); obj != NULL;
2451 obj = map_iterator.Next()) {
2452 Map* map = Map::cast(obj);
2453
2454 if (!map->CanTransition()) continue;
2455
2456 MarkBit map_mark = Marking::MarkBitFrom(map);
2457 ClearNonLivePrototypeTransitions(map);
2458 ClearNonLiveMapTransitions(map, map_mark);
2459
2460 if (map_mark.Get()) {
2461 ClearNonLiveDependentCode(map->dependent_code());
2462 } else {
2463 ClearDependentCode(map->dependent_code());
2464 map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
2465 }
2466 }
2467
2468 // Iterate over property cell space, removing dependent code that is not
2469 // otherwise kept alive by strong references.
2470 HeapObjectIterator cell_iterator(heap_->property_cell_space());
2471 for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
2472 cell = cell_iterator.Next()) {
2473 if (IsMarked(cell)) {
2474 ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
2475 }
2476 }
2477
2478 // Iterate over allocation sites, removing dependent code that is not
2479 // otherwise kept alive by strong references.
2480 Object* undefined = heap()->undefined_value();
2481 for (Object* site = heap()->allocation_sites_list(); site != undefined;
2482 site = AllocationSite::cast(site)->weak_next()) {
2483 if (IsMarked(site)) {
2484 ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
2485 }
2486 }
2487
2488 if (heap_->weak_object_to_code_table()->IsHashTable()) {
2489 WeakHashTable* table =
2490 WeakHashTable::cast(heap_->weak_object_to_code_table());
2491 uint32_t capacity = table->Capacity();
2492 for (uint32_t i = 0; i < capacity; i++) {
2493 uint32_t key_index = table->EntryToIndex(i);
2494 Object* key = table->get(key_index);
2495 if (!table->IsKey(key)) continue;
2496 uint32_t value_index = table->EntryToValueIndex(i);
2497 Object* value = table->get(value_index);
2498 if (key->IsCell() && !IsMarked(key)) {
2499 Cell* cell = Cell::cast(key);
2500 Object* object = cell->value();
2501 if (IsMarked(object)) {
2502 MarkBit mark = Marking::MarkBitFrom(cell);
2503 SetMark(cell, mark);
2504 Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
2505 RecordSlot(value_slot, value_slot, *value_slot);
2506 }
2507 }
2508 if (IsMarked(key)) {
2509 if (!IsMarked(value)) {
2510 HeapObject* obj = HeapObject::cast(value);
2511 MarkBit mark = Marking::MarkBitFrom(obj);
2512 SetMark(obj, mark);
2513 }
2514 ClearNonLiveDependentCode(DependentCode::cast(value));
2515 } else {
2516 ClearDependentCode(DependentCode::cast(value));
2517 table->set(key_index, heap_->the_hole_value());
2518 table->set(value_index, heap_->the_hole_value());
2519 table->ElementRemoved();
2520 }
2521 }
2522 }
2523 }
2524
2525
ClearNonLivePrototypeTransitions(Map * map)2526 void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
2527 int number_of_transitions = map->NumberOfProtoTransitions();
2528 FixedArray* prototype_transitions = map->GetPrototypeTransitions();
2529
2530 int new_number_of_transitions = 0;
2531 const int header = Map::kProtoTransitionHeaderSize;
2532 const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
2533 const int map_offset = header + Map::kProtoTransitionMapOffset;
2534 const int step = Map::kProtoTransitionElementsPerEntry;
2535 for (int i = 0; i < number_of_transitions; i++) {
2536 Object* prototype = prototype_transitions->get(proto_offset + i * step);
2537 Object* cached_map = prototype_transitions->get(map_offset + i * step);
2538 if (IsMarked(prototype) && IsMarked(cached_map)) {
2539 DCHECK(!prototype->IsUndefined());
2540 int proto_index = proto_offset + new_number_of_transitions * step;
2541 int map_index = map_offset + new_number_of_transitions * step;
2542 if (new_number_of_transitions != i) {
2543 prototype_transitions->set(proto_index, prototype,
2544 UPDATE_WRITE_BARRIER);
2545 prototype_transitions->set(map_index, cached_map, SKIP_WRITE_BARRIER);
2546 }
2547 Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
2548 RecordSlot(slot, slot, prototype);
2549 new_number_of_transitions++;
2550 }
2551 }
2552
2553 if (new_number_of_transitions != number_of_transitions) {
2554 map->SetNumberOfProtoTransitions(new_number_of_transitions);
2555 }
2556
2557 // Fill slots that became free with undefined value.
2558 for (int i = new_number_of_transitions * step;
2559 i < number_of_transitions * step; i++) {
2560 prototype_transitions->set_undefined(header + i);
2561 }
2562 }
2563
2564
ClearNonLiveMapTransitions(Map * map,MarkBit map_mark)2565 void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
2566 MarkBit map_mark) {
2567 Object* potential_parent = map->GetBackPointer();
2568 if (!potential_parent->IsMap()) return;
2569 Map* parent = Map::cast(potential_parent);
2570
2571 // Follow back pointer, check whether we are dealing with a map transition
2572 // from a live map to a dead path and in case clear transitions of parent.
2573 bool current_is_alive = map_mark.Get();
2574 bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
2575 if (!current_is_alive && parent_is_alive) {
2576 ClearMapTransitions(parent);
2577 }
2578 }
2579
2580
2581 // Clear a possible back pointer in case the transition leads to a dead map.
2582 // Return true in case a back pointer has been cleared and false otherwise.
ClearMapBackPointer(Map * target)2583 bool MarkCompactCollector::ClearMapBackPointer(Map* target) {
2584 if (Marking::MarkBitFrom(target).Get()) return false;
2585 target->SetBackPointer(heap_->undefined_value(), SKIP_WRITE_BARRIER);
2586 return true;
2587 }
2588
2589
ClearMapTransitions(Map * map)2590 void MarkCompactCollector::ClearMapTransitions(Map* map) {
2591 // If there are no transitions to be cleared, return.
2592 // TODO(verwaest) Should be an assert, otherwise back pointers are not
2593 // properly cleared.
2594 if (!map->HasTransitionArray()) return;
2595
2596 TransitionArray* t = map->transitions();
2597
2598 int transition_index = 0;
2599
2600 DescriptorArray* descriptors = map->instance_descriptors();
2601 bool descriptors_owner_died = false;
2602
2603 // Compact all live descriptors to the left.
2604 for (int i = 0; i < t->number_of_transitions(); ++i) {
2605 Map* target = t->GetTarget(i);
2606 if (ClearMapBackPointer(target)) {
2607 if (target->instance_descriptors() == descriptors) {
2608 descriptors_owner_died = true;
2609 }
2610 } else {
2611 if (i != transition_index) {
2612 Name* key = t->GetKey(i);
2613 t->SetKey(transition_index, key);
2614 Object** key_slot = t->GetKeySlot(transition_index);
2615 RecordSlot(key_slot, key_slot, key);
2616 // Target slots do not need to be recorded since maps are not compacted.
2617 t->SetTarget(transition_index, t->GetTarget(i));
2618 }
2619 transition_index++;
2620 }
2621 }
2622
2623 // If there are no transitions to be cleared, return.
2624 // TODO(verwaest) Should be an assert, otherwise back pointers are not
2625 // properly cleared.
2626 if (transition_index == t->number_of_transitions()) return;
2627
2628 int number_of_own_descriptors = map->NumberOfOwnDescriptors();
2629
2630 if (descriptors_owner_died) {
2631 if (number_of_own_descriptors > 0) {
2632 TrimDescriptorArray(map, descriptors, number_of_own_descriptors);
2633 DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
2634 map->set_owns_descriptors(true);
2635 } else {
2636 DCHECK(descriptors == heap_->empty_descriptor_array());
2637 }
2638 }
2639
2640 // Note that we never eliminate a transition array, though we might right-trim
2641 // such that number_of_transitions() == 0. If this assumption changes,
2642 // TransitionArray::CopyInsert() will need to deal with the case that a
2643 // transition array disappeared during GC.
2644 int trim = t->number_of_transitions() - transition_index;
2645 if (trim > 0) {
2646 heap_->RightTrimFixedArray<Heap::FROM_GC>(
2647 t, t->IsSimpleTransition() ? trim
2648 : trim * TransitionArray::kTransitionSize);
2649 }
2650 DCHECK(map->HasTransitionArray());
2651 }
2652
2653
TrimDescriptorArray(Map * map,DescriptorArray * descriptors,int number_of_own_descriptors)2654 void MarkCompactCollector::TrimDescriptorArray(Map* map,
2655 DescriptorArray* descriptors,
2656 int number_of_own_descriptors) {
2657 int number_of_descriptors = descriptors->number_of_descriptors_storage();
2658 int to_trim = number_of_descriptors - number_of_own_descriptors;
2659 if (to_trim == 0) return;
2660
2661 heap_->RightTrimFixedArray<Heap::FROM_GC>(
2662 descriptors, to_trim * DescriptorArray::kDescriptorSize);
2663 descriptors->SetNumberOfDescriptors(number_of_own_descriptors);
2664
2665 if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors);
2666 descriptors->Sort();
2667 }
2668
2669
TrimEnumCache(Map * map,DescriptorArray * descriptors)2670 void MarkCompactCollector::TrimEnumCache(Map* map,
2671 DescriptorArray* descriptors) {
2672 int live_enum = map->EnumLength();
2673 if (live_enum == kInvalidEnumCacheSentinel) {
2674 live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, DONT_ENUM);
2675 }
2676 if (live_enum == 0) return descriptors->ClearEnumCache();
2677
2678 FixedArray* enum_cache = descriptors->GetEnumCache();
2679
2680 int to_trim = enum_cache->length() - live_enum;
2681 if (to_trim <= 0) return;
2682 heap_->RightTrimFixedArray<Heap::FROM_GC>(descriptors->GetEnumCache(),
2683 to_trim);
2684
2685 if (!descriptors->HasEnumIndicesCache()) return;
2686 FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache();
2687 heap_->RightTrimFixedArray<Heap::FROM_GC>(enum_indices_cache, to_trim);
2688 }
2689
2690
ClearDependentICList(Object * head)2691 void MarkCompactCollector::ClearDependentICList(Object* head) {
2692 Object* current = head;
2693 Object* undefined = heap()->undefined_value();
2694 while (current != undefined) {
2695 Code* code = Code::cast(current);
2696 if (IsMarked(code)) {
2697 DCHECK(code->is_weak_stub());
2698 IC::InvalidateMaps(code);
2699 }
2700 current = code->next_code_link();
2701 code->set_next_code_link(undefined);
2702 }
2703 }
2704
2705
ClearDependentCode(DependentCode * entries)2706 void MarkCompactCollector::ClearDependentCode(DependentCode* entries) {
2707 DisallowHeapAllocation no_allocation;
2708 DependentCode::GroupStartIndexes starts(entries);
2709 int number_of_entries = starts.number_of_entries();
2710 if (number_of_entries == 0) return;
2711 int g = DependentCode::kWeakICGroup;
2712 if (starts.at(g) != starts.at(g + 1)) {
2713 int i = starts.at(g);
2714 DCHECK(i + 1 == starts.at(g + 1));
2715 Object* head = entries->object_at(i);
2716 ClearDependentICList(head);
2717 }
2718 g = DependentCode::kWeakCodeGroup;
2719 for (int i = starts.at(g); i < starts.at(g + 1); i++) {
2720 // If the entry is compilation info then the map must be alive,
2721 // and ClearDependentCode shouldn't be called.
2722 DCHECK(entries->is_code_at(i));
2723 Code* code = entries->code_at(i);
2724 if (IsMarked(code) && !code->marked_for_deoptimization()) {
2725 DependentCode::SetMarkedForDeoptimization(
2726 code, static_cast<DependentCode::DependencyGroup>(g));
2727 code->InvalidateEmbeddedObjects();
2728 have_code_to_deoptimize_ = true;
2729 }
2730 }
2731 for (int i = 0; i < number_of_entries; i++) {
2732 entries->clear_at(i);
2733 }
2734 }
2735
2736
ClearNonLiveDependentCodeInGroup(DependentCode * entries,int group,int start,int end,int new_start)2737 int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
2738 DependentCode* entries, int group, int start, int end, int new_start) {
2739 int survived = 0;
2740 if (group == DependentCode::kWeakICGroup) {
2741 // Dependent weak IC stubs form a linked list and only the head is stored
2742 // in the dependent code array.
2743 if (start != end) {
2744 DCHECK(start + 1 == end);
2745 Object* old_head = entries->object_at(start);
2746 MarkCompactWeakObjectRetainer retainer;
2747 Object* head = VisitWeakList<Code>(heap(), old_head, &retainer);
2748 entries->set_object_at(new_start, head);
2749 Object** slot = entries->slot_at(new_start);
2750 RecordSlot(slot, slot, head);
2751 // We do not compact this group even if the head is undefined,
2752 // more dependent ICs are likely to be added later.
2753 survived = 1;
2754 }
2755 } else {
2756 for (int i = start; i < end; i++) {
2757 Object* obj = entries->object_at(i);
2758 DCHECK(obj->IsCode() || IsMarked(obj));
2759 if (IsMarked(obj) &&
2760 (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
2761 if (new_start + survived != i) {
2762 entries->set_object_at(new_start + survived, obj);
2763 }
2764 Object** slot = entries->slot_at(new_start + survived);
2765 RecordSlot(slot, slot, obj);
2766 survived++;
2767 }
2768 }
2769 }
2770 entries->set_number_of_entries(
2771 static_cast<DependentCode::DependencyGroup>(group), survived);
2772 return survived;
2773 }
2774
2775
ClearNonLiveDependentCode(DependentCode * entries)2776 void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
2777 DisallowHeapAllocation no_allocation;
2778 DependentCode::GroupStartIndexes starts(entries);
2779 int number_of_entries = starts.number_of_entries();
2780 if (number_of_entries == 0) return;
2781 int new_number_of_entries = 0;
2782 // Go through all groups, remove dead codes and compact.
2783 for (int g = 0; g < DependentCode::kGroupCount; g++) {
2784 int survived = ClearNonLiveDependentCodeInGroup(
2785 entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
2786 new_number_of_entries += survived;
2787 }
2788 for (int i = new_number_of_entries; i < number_of_entries; i++) {
2789 entries->clear_at(i);
2790 }
2791 }
2792
2793
ProcessWeakCollections()2794 void MarkCompactCollector::ProcessWeakCollections() {
2795 GCTracer::Scope gc_scope(heap()->tracer(),
2796 GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
2797 Object* weak_collection_obj = heap()->encountered_weak_collections();
2798 while (weak_collection_obj != Smi::FromInt(0)) {
2799 JSWeakCollection* weak_collection =
2800 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2801 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2802 if (weak_collection->table()->IsHashTable()) {
2803 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2804 Object** anchor = reinterpret_cast<Object**>(table->address());
2805 for (int i = 0; i < table->Capacity(); i++) {
2806 if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2807 Object** key_slot =
2808 table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
2809 RecordSlot(anchor, key_slot, *key_slot);
2810 Object** value_slot =
2811 table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
2812 MarkCompactMarkingVisitor::MarkObjectByPointer(this, anchor,
2813 value_slot);
2814 }
2815 }
2816 }
2817 weak_collection_obj = weak_collection->next();
2818 }
2819 }
2820
2821
ClearWeakCollections()2822 void MarkCompactCollector::ClearWeakCollections() {
2823 GCTracer::Scope gc_scope(heap()->tracer(),
2824 GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
2825 Object* weak_collection_obj = heap()->encountered_weak_collections();
2826 while (weak_collection_obj != Smi::FromInt(0)) {
2827 JSWeakCollection* weak_collection =
2828 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2829 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2830 if (weak_collection->table()->IsHashTable()) {
2831 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2832 for (int i = 0; i < table->Capacity(); i++) {
2833 HeapObject* key = HeapObject::cast(table->KeyAt(i));
2834 if (!MarkCompactCollector::IsMarked(key)) {
2835 table->RemoveEntry(i);
2836 }
2837 }
2838 }
2839 weak_collection_obj = weak_collection->next();
2840 weak_collection->set_next(heap()->undefined_value());
2841 }
2842 heap()->set_encountered_weak_collections(Smi::FromInt(0));
2843 }
2844
2845
AbortWeakCollections()2846 void MarkCompactCollector::AbortWeakCollections() {
2847 GCTracer::Scope gc_scope(heap()->tracer(),
2848 GCTracer::Scope::MC_WEAKCOLLECTION_ABORT);
2849 Object* weak_collection_obj = heap()->encountered_weak_collections();
2850 while (weak_collection_obj != Smi::FromInt(0)) {
2851 JSWeakCollection* weak_collection =
2852 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2853 weak_collection_obj = weak_collection->next();
2854 weak_collection->set_next(heap()->undefined_value());
2855 }
2856 heap()->set_encountered_weak_collections(Smi::FromInt(0));
2857 }
2858
2859
RecordMigratedSlot(Object * value,Address slot)2860 void MarkCompactCollector::RecordMigratedSlot(Object* value, Address slot) {
2861 if (heap_->InNewSpace(value)) {
2862 heap_->store_buffer()->Mark(slot);
2863 } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
2864 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2865 reinterpret_cast<Object**>(slot),
2866 SlotsBuffer::IGNORE_OVERFLOW);
2867 }
2868 }
2869
2870
2871 // We scavange new space simultaneously with sweeping. This is done in two
2872 // passes.
2873 //
2874 // The first pass migrates all alive objects from one semispace to another or
2875 // promotes them to old space. Forwarding address is written directly into
2876 // first word of object without any encoding. If object is dead we write
2877 // NULL as a forwarding address.
2878 //
2879 // The second pass updates pointers to new space in all spaces. It is possible
2880 // to encounter pointers to dead new space objects during traversal of pointers
2881 // to new space. We should clear them to avoid encountering them during next
2882 // pointer iteration. This is an issue if the store buffer overflows and we
2883 // have to scan the entire old space, including dead objects, looking for
2884 // pointers to new space.
MigrateObject(HeapObject * dst,HeapObject * src,int size,AllocationSpace dest)2885 void MarkCompactCollector::MigrateObject(HeapObject* dst, HeapObject* src,
2886 int size, AllocationSpace dest) {
2887 Address dst_addr = dst->address();
2888 Address src_addr = src->address();
2889 DCHECK(heap()->AllowedToBeMigrated(src, dest));
2890 DCHECK(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
2891 if (dest == OLD_POINTER_SPACE) {
2892 Address src_slot = src_addr;
2893 Address dst_slot = dst_addr;
2894 DCHECK(IsAligned(size, kPointerSize));
2895
2896 for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
2897 Object* value = Memory::Object_at(src_slot);
2898
2899 Memory::Object_at(dst_slot) = value;
2900
2901 if (!src->MayContainRawValues()) {
2902 RecordMigratedSlot(value, dst_slot);
2903 }
2904
2905 src_slot += kPointerSize;
2906 dst_slot += kPointerSize;
2907 }
2908
2909 if (compacting_ && dst->IsJSFunction()) {
2910 Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
2911 Address code_entry = Memory::Address_at(code_entry_slot);
2912
2913 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2914 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2915 SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
2916 SlotsBuffer::IGNORE_OVERFLOW);
2917 }
2918 } else if (dst->IsConstantPoolArray()) {
2919 // We special case ConstantPoolArrays since they could contain integers
2920 // value entries which look like tagged pointers.
2921 // TODO(mstarzinger): restructure this code to avoid this special-casing.
2922 ConstantPoolArray* array = ConstantPoolArray::cast(dst);
2923 ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
2924 while (!code_iter.is_finished()) {
2925 Address code_entry_slot =
2926 dst_addr + array->OffsetOfElementAt(code_iter.next_index());
2927 Address code_entry = Memory::Address_at(code_entry_slot);
2928
2929 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2930 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2931 SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot,
2932 SlotsBuffer::IGNORE_OVERFLOW);
2933 }
2934 }
2935 ConstantPoolArray::Iterator heap_iter(array, ConstantPoolArray::HEAP_PTR);
2936 while (!heap_iter.is_finished()) {
2937 Address heap_slot =
2938 dst_addr + array->OffsetOfElementAt(heap_iter.next_index());
2939 Object* value = Memory::Object_at(heap_slot);
2940 RecordMigratedSlot(value, heap_slot);
2941 }
2942 }
2943 } else if (dest == CODE_SPACE) {
2944 PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
2945 heap()->MoveBlock(dst_addr, src_addr, size);
2946 SlotsBuffer::AddTo(&slots_buffer_allocator_, &migration_slots_buffer_,
2947 SlotsBuffer::RELOCATED_CODE_OBJECT, dst_addr,
2948 SlotsBuffer::IGNORE_OVERFLOW);
2949 Code::cast(dst)->Relocate(dst_addr - src_addr);
2950 } else {
2951 DCHECK(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
2952 heap()->MoveBlock(dst_addr, src_addr, size);
2953 }
2954 heap()->OnMoveEvent(dst, src, size);
2955 Memory::Address_at(src_addr) = dst_addr;
2956 }
2957
2958
2959 // Visitor for updating pointers from live objects in old spaces to new space.
2960 // It does not expect to encounter pointers to dead objects.
2961 class PointersUpdatingVisitor : public ObjectVisitor {
2962 public:
PointersUpdatingVisitor(Heap * heap)2963 explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {}
2964
VisitPointer(Object ** p)2965 void VisitPointer(Object** p) { UpdatePointer(p); }
2966
VisitPointers(Object ** start,Object ** end)2967 void VisitPointers(Object** start, Object** end) {
2968 for (Object** p = start; p < end; p++) UpdatePointer(p);
2969 }
2970
VisitEmbeddedPointer(RelocInfo * rinfo)2971 void VisitEmbeddedPointer(RelocInfo* rinfo) {
2972 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
2973 Object* target = rinfo->target_object();
2974 Object* old_target = target;
2975 VisitPointer(&target);
2976 // Avoid unnecessary changes that might unnecessary flush the instruction
2977 // cache.
2978 if (target != old_target) {
2979 rinfo->set_target_object(target);
2980 }
2981 }
2982
VisitCodeTarget(RelocInfo * rinfo)2983 void VisitCodeTarget(RelocInfo* rinfo) {
2984 DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
2985 Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
2986 Object* old_target = target;
2987 VisitPointer(&target);
2988 if (target != old_target) {
2989 rinfo->set_target_address(Code::cast(target)->instruction_start());
2990 }
2991 }
2992
VisitCodeAgeSequence(RelocInfo * rinfo)2993 void VisitCodeAgeSequence(RelocInfo* rinfo) {
2994 DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
2995 Object* stub = rinfo->code_age_stub();
2996 DCHECK(stub != NULL);
2997 VisitPointer(&stub);
2998 if (stub != rinfo->code_age_stub()) {
2999 rinfo->set_code_age_stub(Code::cast(stub));
3000 }
3001 }
3002
VisitDebugTarget(RelocInfo * rinfo)3003 void VisitDebugTarget(RelocInfo* rinfo) {
3004 DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) &&
3005 rinfo->IsPatchedReturnSequence()) ||
3006 (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
3007 rinfo->IsPatchedDebugBreakSlotSequence()));
3008 Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
3009 VisitPointer(&target);
3010 rinfo->set_call_address(Code::cast(target)->instruction_start());
3011 }
3012
UpdateSlot(Heap * heap,Object ** slot)3013 static inline void UpdateSlot(Heap* heap, Object** slot) {
3014 Object* obj = *slot;
3015
3016 if (!obj->IsHeapObject()) return;
3017
3018 HeapObject* heap_obj = HeapObject::cast(obj);
3019
3020 MapWord map_word = heap_obj->map_word();
3021 if (map_word.IsForwardingAddress()) {
3022 DCHECK(heap->InFromSpace(heap_obj) ||
3023 MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
3024 HeapObject* target = map_word.ToForwardingAddress();
3025 *slot = target;
3026 DCHECK(!heap->InFromSpace(target) &&
3027 !MarkCompactCollector::IsOnEvacuationCandidate(target));
3028 }
3029 }
3030
3031 private:
UpdatePointer(Object ** p)3032 inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); }
3033
3034 Heap* heap_;
3035 };
3036
3037
UpdatePointer(HeapObject ** address,HeapObject * object)3038 static void UpdatePointer(HeapObject** address, HeapObject* object) {
3039 Address new_addr = Memory::Address_at(object->address());
3040
3041 // The new space sweep will overwrite the map word of dead objects
3042 // with NULL. In this case we do not need to transfer this entry to
3043 // the store buffer which we are rebuilding.
3044 // We perform the pointer update with a no barrier compare-and-swap. The
3045 // compare and swap may fail in the case where the pointer update tries to
3046 // update garbage memory which was concurrently accessed by the sweeper.
3047 if (new_addr != NULL) {
3048 base::NoBarrier_CompareAndSwap(
3049 reinterpret_cast<base::AtomicWord*>(address),
3050 reinterpret_cast<base::AtomicWord>(object),
3051 reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
3052 }
3053 }
3054
3055
UpdateReferenceInExternalStringTableEntry(Heap * heap,Object ** p)3056 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
3057 Object** p) {
3058 MapWord map_word = HeapObject::cast(*p)->map_word();
3059
3060 if (map_word.IsForwardingAddress()) {
3061 return String::cast(map_word.ToForwardingAddress());
3062 }
3063
3064 return String::cast(*p);
3065 }
3066
3067
TryPromoteObject(HeapObject * object,int object_size)3068 bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
3069 int object_size) {
3070 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3071
3072 OldSpace* target_space = heap()->TargetSpace(object);
3073
3074 DCHECK(target_space == heap()->old_pointer_space() ||
3075 target_space == heap()->old_data_space());
3076 HeapObject* target;
3077 AllocationResult allocation = target_space->AllocateRaw(object_size);
3078 if (allocation.To(&target)) {
3079 MigrateObject(target, object, object_size, target_space->identity());
3080 heap()->IncrementPromotedObjectsSize(object_size);
3081 return true;
3082 }
3083
3084 return false;
3085 }
3086
3087
EvacuateNewSpace()3088 void MarkCompactCollector::EvacuateNewSpace() {
3089 // There are soft limits in the allocation code, designed trigger a mark
3090 // sweep collection by failing allocations. But since we are already in
3091 // a mark-sweep allocation, there is no sense in trying to trigger one.
3092 AlwaysAllocateScope scope(isolate());
3093
3094 NewSpace* new_space = heap()->new_space();
3095
3096 // Store allocation range before flipping semispaces.
3097 Address from_bottom = new_space->bottom();
3098 Address from_top = new_space->top();
3099
3100 // Flip the semispaces. After flipping, to space is empty, from space has
3101 // live objects.
3102 new_space->Flip();
3103 new_space->ResetAllocationInfo();
3104
3105 int survivors_size = 0;
3106
3107 // First pass: traverse all objects in inactive semispace, remove marks,
3108 // migrate live objects and write forwarding addresses. This stage puts
3109 // new entries in the store buffer and may cause some pages to be marked
3110 // scan-on-scavenge.
3111 NewSpacePageIterator it(from_bottom, from_top);
3112 while (it.has_next()) {
3113 NewSpacePage* p = it.next();
3114 survivors_size += DiscoverAndEvacuateBlackObjectsOnPage(new_space, p);
3115 }
3116
3117 heap_->IncrementYoungSurvivorsCounter(survivors_size);
3118 new_space->set_age_mark(new_space->top());
3119 }
3120
3121
EvacuateLiveObjectsFromPage(Page * p)3122 void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
3123 AlwaysAllocateScope always_allocate(isolate());
3124 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3125 DCHECK(p->IsEvacuationCandidate() && !p->WasSwept());
3126 p->SetWasSwept();
3127
3128 int offsets[16];
3129
3130 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3131 Address cell_base = it.CurrentCellBase();
3132 MarkBit::CellType* cell = it.CurrentCell();
3133
3134 if (*cell == 0) continue;
3135
3136 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3137 for (int i = 0; i < live_objects; i++) {
3138 Address object_addr = cell_base + offsets[i] * kPointerSize;
3139 HeapObject* object = HeapObject::FromAddress(object_addr);
3140 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
3141
3142 int size = object->Size();
3143
3144 HeapObject* target_object;
3145 AllocationResult allocation = space->AllocateRaw(size);
3146 if (!allocation.To(&target_object)) {
3147 // If allocation failed, use emergency memory and re-try allocation.
3148 CHECK(space->HasEmergencyMemory());
3149 space->UseEmergencyMemory();
3150 allocation = space->AllocateRaw(size);
3151 }
3152 if (!allocation.To(&target_object)) {
3153 // OS refused to give us memory.
3154 V8::FatalProcessOutOfMemory("Evacuation");
3155 return;
3156 }
3157
3158 MigrateObject(target_object, object, size, space->identity());
3159 DCHECK(object->map_word().IsForwardingAddress());
3160 }
3161
3162 // Clear marking bits for current cell.
3163 *cell = 0;
3164 }
3165 p->ResetLiveBytes();
3166 }
3167
3168
EvacuatePages()3169 void MarkCompactCollector::EvacuatePages() {
3170 int npages = evacuation_candidates_.length();
3171 for (int i = 0; i < npages; i++) {
3172 Page* p = evacuation_candidates_[i];
3173 DCHECK(p->IsEvacuationCandidate() ||
3174 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3175 DCHECK(static_cast<int>(p->parallel_sweeping()) ==
3176 MemoryChunk::SWEEPING_DONE);
3177 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3178 // Allocate emergency memory for the case when compaction fails due to out
3179 // of memory.
3180 if (!space->HasEmergencyMemory()) {
3181 space->CreateEmergencyMemory();
3182 }
3183 if (p->IsEvacuationCandidate()) {
3184 // During compaction we might have to request a new page. Check that we
3185 // have an emergency page and the space still has room for that.
3186 if (space->HasEmergencyMemory() && space->CanExpand()) {
3187 EvacuateLiveObjectsFromPage(p);
3188 } else {
3189 // Without room for expansion evacuation is not guaranteed to succeed.
3190 // Pessimistically abandon unevacuated pages.
3191 for (int j = i; j < npages; j++) {
3192 Page* page = evacuation_candidates_[j];
3193 slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
3194 page->ClearEvacuationCandidate();
3195 page->SetFlag(Page::RESCAN_ON_EVACUATION);
3196 }
3197 break;
3198 }
3199 }
3200 }
3201 if (npages > 0) {
3202 // Release emergency memory.
3203 PagedSpaces spaces(heap());
3204 for (PagedSpace* space = spaces.next(); space != NULL;
3205 space = spaces.next()) {
3206 if (space->HasEmergencyMemory()) {
3207 space->FreeEmergencyMemory();
3208 }
3209 }
3210 }
3211 }
3212
3213
3214 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
3215 public:
RetainAs(Object * object)3216 virtual Object* RetainAs(Object* object) {
3217 if (object->IsHeapObject()) {
3218 HeapObject* heap_object = HeapObject::cast(object);
3219 MapWord map_word = heap_object->map_word();
3220 if (map_word.IsForwardingAddress()) {
3221 return map_word.ToForwardingAddress();
3222 }
3223 }
3224 return object;
3225 }
3226 };
3227
3228
UpdateSlot(Isolate * isolate,ObjectVisitor * v,SlotsBuffer::SlotType slot_type,Address addr)3229 static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v,
3230 SlotsBuffer::SlotType slot_type, Address addr) {
3231 switch (slot_type) {
3232 case SlotsBuffer::CODE_TARGET_SLOT: {
3233 RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
3234 rinfo.Visit(isolate, v);
3235 break;
3236 }
3237 case SlotsBuffer::CODE_ENTRY_SLOT: {
3238 v->VisitCodeEntry(addr);
3239 break;
3240 }
3241 case SlotsBuffer::RELOCATED_CODE_OBJECT: {
3242 HeapObject* obj = HeapObject::FromAddress(addr);
3243 Code::cast(obj)->CodeIterateBody(v);
3244 break;
3245 }
3246 case SlotsBuffer::DEBUG_TARGET_SLOT: {
3247 RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
3248 if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
3249 break;
3250 }
3251 case SlotsBuffer::JS_RETURN_SLOT: {
3252 RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
3253 if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
3254 break;
3255 }
3256 case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
3257 RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
3258 rinfo.Visit(isolate, v);
3259 break;
3260 }
3261 default:
3262 UNREACHABLE();
3263 break;
3264 }
3265 }
3266
3267
3268 enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
3269
3270
3271 enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
3272
3273
3274 enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
3275
3276
3277 template <MarkCompactCollector::SweepingParallelism mode>
Free(PagedSpace * space,FreeList * free_list,Address start,int size)3278 static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start,
3279 int size) {
3280 if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
3281 DCHECK(free_list == NULL);
3282 return space->Free(start, size);
3283 } else {
3284 // TODO(hpayer): account for wasted bytes in concurrent sweeping too.
3285 return size - free_list->Free(start, size);
3286 }
3287 }
3288
3289
3290 // Sweeps a page. After sweeping the page can be iterated.
3291 // Slots in live objects pointing into evacuation candidates are updated
3292 // if requested.
3293 // Returns the size of the biggest continuous freed memory chunk in bytes.
3294 template <SweepingMode sweeping_mode,
3295 MarkCompactCollector::SweepingParallelism parallelism,
3296 SkipListRebuildingMode skip_list_mode,
3297 FreeSpaceTreatmentMode free_space_mode>
Sweep(PagedSpace * space,FreeList * free_list,Page * p,ObjectVisitor * v)3298 static int Sweep(PagedSpace* space, FreeList* free_list, Page* p,
3299 ObjectVisitor* v) {
3300 DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
3301 DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
3302 space->identity() == CODE_SPACE);
3303 DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
3304 DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
3305 sweeping_mode == SWEEP_ONLY);
3306
3307 Address free_start = p->area_start();
3308 DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
3309 int offsets[16];
3310
3311 SkipList* skip_list = p->skip_list();
3312 int curr_region = -1;
3313 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
3314 skip_list->Clear();
3315 }
3316
3317 intptr_t freed_bytes = 0;
3318 intptr_t max_freed_bytes = 0;
3319
3320 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3321 Address cell_base = it.CurrentCellBase();
3322 MarkBit::CellType* cell = it.CurrentCell();
3323 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3324 int live_index = 0;
3325 for (; live_objects != 0; live_objects--) {
3326 Address free_end = cell_base + offsets[live_index++] * kPointerSize;
3327 if (free_end != free_start) {
3328 int size = static_cast<int>(free_end - free_start);
3329 if (free_space_mode == ZAP_FREE_SPACE) {
3330 memset(free_start, 0xcc, size);
3331 }
3332 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3333 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3334 #ifdef ENABLE_GDB_JIT_INTERFACE
3335 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3336 GDBJITInterface::RemoveCodeRange(free_start, free_end);
3337 }
3338 #endif
3339 }
3340 HeapObject* live_object = HeapObject::FromAddress(free_end);
3341 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
3342 Map* map = live_object->map();
3343 int size = live_object->SizeFromMap(map);
3344 if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
3345 live_object->IterateBody(map->instance_type(), size, v);
3346 }
3347 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
3348 int new_region_start = SkipList::RegionNumber(free_end);
3349 int new_region_end =
3350 SkipList::RegionNumber(free_end + size - kPointerSize);
3351 if (new_region_start != curr_region || new_region_end != curr_region) {
3352 skip_list->AddObject(free_end, size);
3353 curr_region = new_region_end;
3354 }
3355 }
3356 free_start = free_end + size;
3357 }
3358 // Clear marking bits for current cell.
3359 *cell = 0;
3360 }
3361 if (free_start != p->area_end()) {
3362 int size = static_cast<int>(p->area_end() - free_start);
3363 if (free_space_mode == ZAP_FREE_SPACE) {
3364 memset(free_start, 0xcc, size);
3365 }
3366 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3367 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3368 #ifdef ENABLE_GDB_JIT_INTERFACE
3369 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3370 GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
3371 }
3372 #endif
3373 }
3374 p->ResetLiveBytes();
3375
3376 if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
3377 // When concurrent sweeping is active, the page will be marked after
3378 // sweeping by the main thread.
3379 p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
3380 } else {
3381 p->SetWasSwept();
3382 }
3383 return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
3384 }
3385
3386
SetMarkBitsUnderInvalidatedCode(Code * code,bool value)3387 static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
3388 Page* p = Page::FromAddress(code->address());
3389
3390 if (p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3391 return false;
3392 }
3393
3394 Address code_start = code->address();
3395 Address code_end = code_start + code->Size();
3396
3397 uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
3398 uint32_t end_index =
3399 MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
3400
3401 Bitmap* b = p->markbits();
3402
3403 MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
3404 MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
3405
3406 MarkBit::CellType* start_cell = start_mark_bit.cell();
3407 MarkBit::CellType* end_cell = end_mark_bit.cell();
3408
3409 if (value) {
3410 MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
3411 MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
3412
3413 if (start_cell == end_cell) {
3414 *start_cell |= start_mask & end_mask;
3415 } else {
3416 *start_cell |= start_mask;
3417 for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
3418 *cell = ~0;
3419 }
3420 *end_cell |= end_mask;
3421 }
3422 } else {
3423 for (MarkBit::CellType* cell = start_cell; cell <= end_cell; cell++) {
3424 *cell = 0;
3425 }
3426 }
3427
3428 return true;
3429 }
3430
3431
IsOnInvalidatedCodeObject(Address addr)3432 static bool IsOnInvalidatedCodeObject(Address addr) {
3433 // We did not record any slots in large objects thus
3434 // we can safely go to the page from the slot address.
3435 Page* p = Page::FromAddress(addr);
3436
3437 // First check owner's identity because old pointer and old data spaces
3438 // are swept lazily and might still have non-zero mark-bits on some
3439 // pages.
3440 if (p->owner()->identity() != CODE_SPACE) return false;
3441
3442 // In code space only bits on evacuation candidates (but we don't record
3443 // any slots on them) and under invalidated code objects are non-zero.
3444 MarkBit mark_bit =
3445 p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
3446
3447 return mark_bit.Get();
3448 }
3449
3450
InvalidateCode(Code * code)3451 void MarkCompactCollector::InvalidateCode(Code* code) {
3452 if (heap_->incremental_marking()->IsCompacting() &&
3453 !ShouldSkipEvacuationSlotRecording(code)) {
3454 DCHECK(compacting_);
3455
3456 // If the object is white than no slots were recorded on it yet.
3457 MarkBit mark_bit = Marking::MarkBitFrom(code);
3458 if (Marking::IsWhite(mark_bit)) return;
3459
3460 invalidated_code_.Add(code);
3461 }
3462 }
3463
3464
3465 // Return true if the given code is deoptimized or will be deoptimized.
WillBeDeoptimized(Code * code)3466 bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
3467 return code->is_optimized_code() && code->marked_for_deoptimization();
3468 }
3469
3470
MarkInvalidatedCode()3471 bool MarkCompactCollector::MarkInvalidatedCode() {
3472 bool code_marked = false;
3473
3474 int length = invalidated_code_.length();
3475 for (int i = 0; i < length; i++) {
3476 Code* code = invalidated_code_[i];
3477
3478 if (SetMarkBitsUnderInvalidatedCode(code, true)) {
3479 code_marked = true;
3480 }
3481 }
3482
3483 return code_marked;
3484 }
3485
3486
RemoveDeadInvalidatedCode()3487 void MarkCompactCollector::RemoveDeadInvalidatedCode() {
3488 int length = invalidated_code_.length();
3489 for (int i = 0; i < length; i++) {
3490 if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
3491 }
3492 }
3493
3494
ProcessInvalidatedCode(ObjectVisitor * visitor)3495 void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
3496 int length = invalidated_code_.length();
3497 for (int i = 0; i < length; i++) {
3498 Code* code = invalidated_code_[i];
3499 if (code != NULL) {
3500 code->Iterate(visitor);
3501 SetMarkBitsUnderInvalidatedCode(code, false);
3502 }
3503 }
3504 invalidated_code_.Rewind(0);
3505 }
3506
3507
EvacuateNewSpaceAndCandidates()3508 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
3509 Heap::RelocationLock relocation_lock(heap());
3510
3511 bool code_slots_filtering_required;
3512 {
3513 GCTracer::Scope gc_scope(heap()->tracer(),
3514 GCTracer::Scope::MC_SWEEP_NEWSPACE);
3515 code_slots_filtering_required = MarkInvalidatedCode();
3516 EvacuateNewSpace();
3517 }
3518
3519 {
3520 GCTracer::Scope gc_scope(heap()->tracer(),
3521 GCTracer::Scope::MC_EVACUATE_PAGES);
3522 EvacuatePages();
3523 }
3524
3525 // Second pass: find pointers to new space and update them.
3526 PointersUpdatingVisitor updating_visitor(heap());
3527
3528 {
3529 GCTracer::Scope gc_scope(heap()->tracer(),
3530 GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
3531 // Update pointers in to space.
3532 SemiSpaceIterator to_it(heap()->new_space()->bottom(),
3533 heap()->new_space()->top());
3534 for (HeapObject* object = to_it.Next(); object != NULL;
3535 object = to_it.Next()) {
3536 Map* map = object->map();
3537 object->IterateBody(map->instance_type(), object->SizeFromMap(map),
3538 &updating_visitor);
3539 }
3540 }
3541
3542 {
3543 GCTracer::Scope gc_scope(heap()->tracer(),
3544 GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
3545 // Update roots.
3546 heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
3547 }
3548
3549 {
3550 GCTracer::Scope gc_scope(heap()->tracer(),
3551 GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
3552 StoreBufferRebuildScope scope(heap_, heap_->store_buffer(),
3553 &Heap::ScavengeStoreBufferCallback);
3554 heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
3555 &UpdatePointer);
3556 }
3557
3558 {
3559 GCTracer::Scope gc_scope(heap()->tracer(),
3560 GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
3561 SlotsBuffer::UpdateSlotsRecordedIn(heap_, migration_slots_buffer_,
3562 code_slots_filtering_required);
3563 if (FLAG_trace_fragmentation) {
3564 PrintF(" migration slots buffer: %d\n",
3565 SlotsBuffer::SizeOfChain(migration_slots_buffer_));
3566 }
3567
3568 if (compacting_ && was_marked_incrementally_) {
3569 // It's difficult to filter out slots recorded for large objects.
3570 LargeObjectIterator it(heap_->lo_space());
3571 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3572 // LargeObjectSpace is not swept yet thus we have to skip
3573 // dead objects explicitly.
3574 if (!IsMarked(obj)) continue;
3575
3576 Page* p = Page::FromAddress(obj->address());
3577 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3578 obj->Iterate(&updating_visitor);
3579 p->ClearFlag(Page::RESCAN_ON_EVACUATION);
3580 }
3581 }
3582 }
3583 }
3584
3585 int npages = evacuation_candidates_.length();
3586 {
3587 GCTracer::Scope gc_scope(
3588 heap()->tracer(),
3589 GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
3590 for (int i = 0; i < npages; i++) {
3591 Page* p = evacuation_candidates_[i];
3592 DCHECK(p->IsEvacuationCandidate() ||
3593 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3594
3595 if (p->IsEvacuationCandidate()) {
3596 SlotsBuffer::UpdateSlotsRecordedIn(heap_, p->slots_buffer(),
3597 code_slots_filtering_required);
3598 if (FLAG_trace_fragmentation) {
3599 PrintF(" page %p slots buffer: %d\n", reinterpret_cast<void*>(p),
3600 SlotsBuffer::SizeOfChain(p->slots_buffer()));
3601 }
3602
3603 // Important: skip list should be cleared only after roots were updated
3604 // because root iteration traverses the stack and might have to find
3605 // code objects from non-updated pc pointing into evacuation candidate.
3606 SkipList* list = p->skip_list();
3607 if (list != NULL) list->Clear();
3608 } else {
3609 if (FLAG_gc_verbose) {
3610 PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
3611 reinterpret_cast<intptr_t>(p));
3612 }
3613 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3614 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
3615
3616 switch (space->identity()) {
3617 case OLD_DATA_SPACE:
3618 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3619 IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3620 &updating_visitor);
3621 break;
3622 case OLD_POINTER_SPACE:
3623 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3624 IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3625 &updating_visitor);
3626 break;
3627 case CODE_SPACE:
3628 if (FLAG_zap_code_space) {
3629 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3630 REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p,
3631 &updating_visitor);
3632 } else {
3633 Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD,
3634 REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p,
3635 &updating_visitor);
3636 }
3637 break;
3638 default:
3639 UNREACHABLE();
3640 break;
3641 }
3642 }
3643 }
3644 }
3645
3646 GCTracer::Scope gc_scope(heap()->tracer(),
3647 GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
3648
3649 // Update pointers from cells.
3650 HeapObjectIterator cell_iterator(heap_->cell_space());
3651 for (HeapObject* cell = cell_iterator.Next(); cell != NULL;
3652 cell = cell_iterator.Next()) {
3653 if (cell->IsCell()) {
3654 Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3655 }
3656 }
3657
3658 HeapObjectIterator js_global_property_cell_iterator(
3659 heap_->property_cell_space());
3660 for (HeapObject* cell = js_global_property_cell_iterator.Next(); cell != NULL;
3661 cell = js_global_property_cell_iterator.Next()) {
3662 if (cell->IsPropertyCell()) {
3663 PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3664 }
3665 }
3666
3667 heap_->string_table()->Iterate(&updating_visitor);
3668 updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
3669 if (heap_->weak_object_to_code_table()->IsHashTable()) {
3670 WeakHashTable* table =
3671 WeakHashTable::cast(heap_->weak_object_to_code_table());
3672 table->Iterate(&updating_visitor);
3673 table->Rehash(heap_->isolate()->factory()->undefined_value());
3674 }
3675
3676 // Update pointers from external string table.
3677 heap_->UpdateReferencesInExternalStringTable(
3678 &UpdateReferenceInExternalStringTableEntry);
3679
3680 EvacuationWeakObjectRetainer evacuation_object_retainer;
3681 heap()->ProcessWeakReferences(&evacuation_object_retainer);
3682
3683 // Visit invalidated code (we ignored all slots on it) and clear mark-bits
3684 // under it.
3685 ProcessInvalidatedCode(&updating_visitor);
3686
3687 heap_->isolate()->inner_pointer_to_code_cache()->Flush();
3688
3689 slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
3690 DCHECK(migration_slots_buffer_ == NULL);
3691 }
3692
3693
MoveEvacuationCandidatesToEndOfPagesList()3694 void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
3695 int npages = evacuation_candidates_.length();
3696 for (int i = 0; i < npages; i++) {
3697 Page* p = evacuation_candidates_[i];
3698 if (!p->IsEvacuationCandidate()) continue;
3699 p->Unlink();
3700 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3701 p->InsertAfter(space->LastPage());
3702 }
3703 }
3704
3705
ReleaseEvacuationCandidates()3706 void MarkCompactCollector::ReleaseEvacuationCandidates() {
3707 int npages = evacuation_candidates_.length();
3708 for (int i = 0; i < npages; i++) {
3709 Page* p = evacuation_candidates_[i];
3710 if (!p->IsEvacuationCandidate()) continue;
3711 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3712 space->Free(p->area_start(), p->area_size());
3713 p->set_scan_on_scavenge(false);
3714 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
3715 p->ResetLiveBytes();
3716 space->ReleasePage(p);
3717 }
3718 evacuation_candidates_.Rewind(0);
3719 compacting_ = false;
3720 heap()->FreeQueuedChunks();
3721 }
3722
3723
3724 static const int kStartTableEntriesPerLine = 5;
3725 static const int kStartTableLines = 171;
3726 static const int kStartTableInvalidLine = 127;
3727 static const int kStartTableUnusedEntry = 126;
3728
3729 #define _ kStartTableUnusedEntry
3730 #define X kStartTableInvalidLine
3731 // Mark-bit to object start offset table.
3732 //
3733 // The line is indexed by the mark bits in a byte. The first number on
3734 // the line describes the number of live object starts for the line and the
3735 // other numbers on the line describe the offsets (in words) of the object
3736 // starts.
3737 //
3738 // Since objects are at least 2 words large we don't have entries for two
3739 // consecutive 1 bits. All entries after 170 have at least 2 consecutive bits.
3740 char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
3741 0, _, _,
3742 _, _, // 0
3743 1, 0, _,
3744 _, _, // 1
3745 1, 1, _,
3746 _, _, // 2
3747 X, _, _,
3748 _, _, // 3
3749 1, 2, _,
3750 _, _, // 4
3751 2, 0, 2,
3752 _, _, // 5
3753 X, _, _,
3754 _, _, // 6
3755 X, _, _,
3756 _, _, // 7
3757 1, 3, _,
3758 _, _, // 8
3759 2, 0, 3,
3760 _, _, // 9
3761 2, 1, 3,
3762 _, _, // 10
3763 X, _, _,
3764 _, _, // 11
3765 X, _, _,
3766 _, _, // 12
3767 X, _, _,
3768 _, _, // 13
3769 X, _, _,
3770 _, _, // 14
3771 X, _, _,
3772 _, _, // 15
3773 1, 4, _,
3774 _, _, // 16
3775 2, 0, 4,
3776 _, _, // 17
3777 2, 1, 4,
3778 _, _, // 18
3779 X, _, _,
3780 _, _, // 19
3781 2, 2, 4,
3782 _, _, // 20
3783 3, 0, 2,
3784 4, _, // 21
3785 X, _, _,
3786 _, _, // 22
3787 X, _, _,
3788 _, _, // 23
3789 X, _, _,
3790 _, _, // 24
3791 X, _, _,
3792 _, _, // 25
3793 X, _, _,
3794 _, _, // 26
3795 X, _, _,
3796 _, _, // 27
3797 X, _, _,
3798 _, _, // 28
3799 X, _, _,
3800 _, _, // 29
3801 X, _, _,
3802 _, _, // 30
3803 X, _, _,
3804 _, _, // 31
3805 1, 5, _,
3806 _, _, // 32
3807 2, 0, 5,
3808 _, _, // 33
3809 2, 1, 5,
3810 _, _, // 34
3811 X, _, _,
3812 _, _, // 35
3813 2, 2, 5,
3814 _, _, // 36
3815 3, 0, 2,
3816 5, _, // 37
3817 X, _, _,
3818 _, _, // 38
3819 X, _, _,
3820 _, _, // 39
3821 2, 3, 5,
3822 _, _, // 40
3823 3, 0, 3,
3824 5, _, // 41
3825 3, 1, 3,
3826 5, _, // 42
3827 X, _, _,
3828 _, _, // 43
3829 X, _, _,
3830 _, _, // 44
3831 X, _, _,
3832 _, _, // 45
3833 X, _, _,
3834 _, _, // 46
3835 X, _, _,
3836 _, _, // 47
3837 X, _, _,
3838 _, _, // 48
3839 X, _, _,
3840 _, _, // 49
3841 X, _, _,
3842 _, _, // 50
3843 X, _, _,
3844 _, _, // 51
3845 X, _, _,
3846 _, _, // 52
3847 X, _, _,
3848 _, _, // 53
3849 X, _, _,
3850 _, _, // 54
3851 X, _, _,
3852 _, _, // 55
3853 X, _, _,
3854 _, _, // 56
3855 X, _, _,
3856 _, _, // 57
3857 X, _, _,
3858 _, _, // 58
3859 X, _, _,
3860 _, _, // 59
3861 X, _, _,
3862 _, _, // 60
3863 X, _, _,
3864 _, _, // 61
3865 X, _, _,
3866 _, _, // 62
3867 X, _, _,
3868 _, _, // 63
3869 1, 6, _,
3870 _, _, // 64
3871 2, 0, 6,
3872 _, _, // 65
3873 2, 1, 6,
3874 _, _, // 66
3875 X, _, _,
3876 _, _, // 67
3877 2, 2, 6,
3878 _, _, // 68
3879 3, 0, 2,
3880 6, _, // 69
3881 X, _, _,
3882 _, _, // 70
3883 X, _, _,
3884 _, _, // 71
3885 2, 3, 6,
3886 _, _, // 72
3887 3, 0, 3,
3888 6, _, // 73
3889 3, 1, 3,
3890 6, _, // 74
3891 X, _, _,
3892 _, _, // 75
3893 X, _, _,
3894 _, _, // 76
3895 X, _, _,
3896 _, _, // 77
3897 X, _, _,
3898 _, _, // 78
3899 X, _, _,
3900 _, _, // 79
3901 2, 4, 6,
3902 _, _, // 80
3903 3, 0, 4,
3904 6, _, // 81
3905 3, 1, 4,
3906 6, _, // 82
3907 X, _, _,
3908 _, _, // 83
3909 3, 2, 4,
3910 6, _, // 84
3911 4, 0, 2,
3912 4, 6, // 85
3913 X, _, _,
3914 _, _, // 86
3915 X, _, _,
3916 _, _, // 87
3917 X, _, _,
3918 _, _, // 88
3919 X, _, _,
3920 _, _, // 89
3921 X, _, _,
3922 _, _, // 90
3923 X, _, _,
3924 _, _, // 91
3925 X, _, _,
3926 _, _, // 92
3927 X, _, _,
3928 _, _, // 93
3929 X, _, _,
3930 _, _, // 94
3931 X, _, _,
3932 _, _, // 95
3933 X, _, _,
3934 _, _, // 96
3935 X, _, _,
3936 _, _, // 97
3937 X, _, _,
3938 _, _, // 98
3939 X, _, _,
3940 _, _, // 99
3941 X, _, _,
3942 _, _, // 100
3943 X, _, _,
3944 _, _, // 101
3945 X, _, _,
3946 _, _, // 102
3947 X, _, _,
3948 _, _, // 103
3949 X, _, _,
3950 _, _, // 104
3951 X, _, _,
3952 _, _, // 105
3953 X, _, _,
3954 _, _, // 106
3955 X, _, _,
3956 _, _, // 107
3957 X, _, _,
3958 _, _, // 108
3959 X, _, _,
3960 _, _, // 109
3961 X, _, _,
3962 _, _, // 110
3963 X, _, _,
3964 _, _, // 111
3965 X, _, _,
3966 _, _, // 112
3967 X, _, _,
3968 _, _, // 113
3969 X, _, _,
3970 _, _, // 114
3971 X, _, _,
3972 _, _, // 115
3973 X, _, _,
3974 _, _, // 116
3975 X, _, _,
3976 _, _, // 117
3977 X, _, _,
3978 _, _, // 118
3979 X, _, _,
3980 _, _, // 119
3981 X, _, _,
3982 _, _, // 120
3983 X, _, _,
3984 _, _, // 121
3985 X, _, _,
3986 _, _, // 122
3987 X, _, _,
3988 _, _, // 123
3989 X, _, _,
3990 _, _, // 124
3991 X, _, _,
3992 _, _, // 125
3993 X, _, _,
3994 _, _, // 126
3995 X, _, _,
3996 _, _, // 127
3997 1, 7, _,
3998 _, _, // 128
3999 2, 0, 7,
4000 _, _, // 129
4001 2, 1, 7,
4002 _, _, // 130
4003 X, _, _,
4004 _, _, // 131
4005 2, 2, 7,
4006 _, _, // 132
4007 3, 0, 2,
4008 7, _, // 133
4009 X, _, _,
4010 _, _, // 134
4011 X, _, _,
4012 _, _, // 135
4013 2, 3, 7,
4014 _, _, // 136
4015 3, 0, 3,
4016 7, _, // 137
4017 3, 1, 3,
4018 7, _, // 138
4019 X, _, _,
4020 _, _, // 139
4021 X, _, _,
4022 _, _, // 140
4023 X, _, _,
4024 _, _, // 141
4025 X, _, _,
4026 _, _, // 142
4027 X, _, _,
4028 _, _, // 143
4029 2, 4, 7,
4030 _, _, // 144
4031 3, 0, 4,
4032 7, _, // 145
4033 3, 1, 4,
4034 7, _, // 146
4035 X, _, _,
4036 _, _, // 147
4037 3, 2, 4,
4038 7, _, // 148
4039 4, 0, 2,
4040 4, 7, // 149
4041 X, _, _,
4042 _, _, // 150
4043 X, _, _,
4044 _, _, // 151
4045 X, _, _,
4046 _, _, // 152
4047 X, _, _,
4048 _, _, // 153
4049 X, _, _,
4050 _, _, // 154
4051 X, _, _,
4052 _, _, // 155
4053 X, _, _,
4054 _, _, // 156
4055 X, _, _,
4056 _, _, // 157
4057 X, _, _,
4058 _, _, // 158
4059 X, _, _,
4060 _, _, // 159
4061 2, 5, 7,
4062 _, _, // 160
4063 3, 0, 5,
4064 7, _, // 161
4065 3, 1, 5,
4066 7, _, // 162
4067 X, _, _,
4068 _, _, // 163
4069 3, 2, 5,
4070 7, _, // 164
4071 4, 0, 2,
4072 5, 7, // 165
4073 X, _, _,
4074 _, _, // 166
4075 X, _, _,
4076 _, _, // 167
4077 3, 3, 5,
4078 7, _, // 168
4079 4, 0, 3,
4080 5, 7, // 169
4081 4, 1, 3,
4082 5, 7 // 170
4083 };
4084 #undef _
4085 #undef X
4086
4087
4088 // Takes a word of mark bits. Returns the number of objects that start in the
4089 // range. Puts the offsets of the words in the supplied array.
MarkWordToObjectStarts(uint32_t mark_bits,int * starts)4090 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
4091 int objects = 0;
4092 int offset = 0;
4093
4094 // No consecutive 1 bits.
4095 DCHECK((mark_bits & 0x180) != 0x180);
4096 DCHECK((mark_bits & 0x18000) != 0x18000);
4097 DCHECK((mark_bits & 0x1800000) != 0x1800000);
4098
4099 while (mark_bits != 0) {
4100 int byte = (mark_bits & 0xff);
4101 mark_bits >>= 8;
4102 if (byte != 0) {
4103 DCHECK(byte < kStartTableLines); // No consecutive 1 bits.
4104 char* table = kStartTable + byte * kStartTableEntriesPerLine;
4105 int objects_in_these_8_words = table[0];
4106 DCHECK(objects_in_these_8_words != kStartTableInvalidLine);
4107 DCHECK(objects_in_these_8_words < kStartTableEntriesPerLine);
4108 for (int i = 0; i < objects_in_these_8_words; i++) {
4109 starts[objects++] = offset + table[1 + i];
4110 }
4111 }
4112 offset += 8;
4113 }
4114 return objects;
4115 }
4116
4117
SweepInParallel(PagedSpace * space,int required_freed_bytes)4118 int MarkCompactCollector::SweepInParallel(PagedSpace* space,
4119 int required_freed_bytes) {
4120 int max_freed = 0;
4121 int max_freed_overall = 0;
4122 PageIterator it(space);
4123 while (it.has_next()) {
4124 Page* p = it.next();
4125 max_freed = SweepInParallel(p, space);
4126 DCHECK(max_freed >= 0);
4127 if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
4128 return max_freed;
4129 }
4130 max_freed_overall = Max(max_freed, max_freed_overall);
4131 if (p == space->end_of_unswept_pages()) break;
4132 }
4133 return max_freed_overall;
4134 }
4135
4136
SweepInParallel(Page * page,PagedSpace * space)4137 int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
4138 int max_freed = 0;
4139 if (page->TryParallelSweeping()) {
4140 FreeList* free_list = space == heap()->old_pointer_space()
4141 ? free_list_old_pointer_space_.get()
4142 : free_list_old_data_space_.get();
4143 FreeList private_free_list(space);
4144 max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST,
4145 IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL);
4146 free_list->Concatenate(&private_free_list);
4147 }
4148 return max_freed;
4149 }
4150
4151
SweepSpace(PagedSpace * space,SweeperType sweeper)4152 void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
4153 space->ClearStats();
4154
4155 // We defensively initialize end_of_unswept_pages_ here with the first page
4156 // of the pages list.
4157 space->set_end_of_unswept_pages(space->FirstPage());
4158
4159 PageIterator it(space);
4160
4161 int pages_swept = 0;
4162 bool unused_page_present = false;
4163 bool parallel_sweeping_active = false;
4164
4165 while (it.has_next()) {
4166 Page* p = it.next();
4167 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4168
4169 // Clear sweeping flags indicating that marking bits are still intact.
4170 p->ClearWasSwept();
4171
4172 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
4173 p->IsEvacuationCandidate()) {
4174 // Will be processed in EvacuateNewSpaceAndCandidates.
4175 DCHECK(evacuation_candidates_.length() > 0);
4176 continue;
4177 }
4178
4179 // One unused page is kept, all further are released before sweeping them.
4180 if (p->LiveBytes() == 0) {
4181 if (unused_page_present) {
4182 if (FLAG_gc_verbose) {
4183 PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
4184 reinterpret_cast<intptr_t>(p));
4185 }
4186 // Adjust unswept free bytes because releasing a page expects said
4187 // counter to be accurate for unswept pages.
4188 space->IncreaseUnsweptFreeBytes(p);
4189 space->ReleasePage(p);
4190 continue;
4191 }
4192 unused_page_present = true;
4193 }
4194
4195 switch (sweeper) {
4196 case CONCURRENT_SWEEPING:
4197 case PARALLEL_SWEEPING:
4198 if (!parallel_sweeping_active) {
4199 if (FLAG_gc_verbose) {
4200 PrintF("Sweeping 0x%" V8PRIxPTR ".\n",
4201 reinterpret_cast<intptr_t>(p));
4202 }
4203 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
4204 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4205 pages_swept++;
4206 parallel_sweeping_active = true;
4207 } else {
4208 if (FLAG_gc_verbose) {
4209 PrintF("Sweeping 0x%" V8PRIxPTR " in parallel.\n",
4210 reinterpret_cast<intptr_t>(p));
4211 }
4212 p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
4213 space->IncreaseUnsweptFreeBytes(p);
4214 }
4215 space->set_end_of_unswept_pages(p);
4216 break;
4217 case SEQUENTIAL_SWEEPING: {
4218 if (FLAG_gc_verbose) {
4219 PrintF("Sweeping 0x%" V8PRIxPTR ".\n", reinterpret_cast<intptr_t>(p));
4220 }
4221 if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
4222 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
4223 ZAP_FREE_SPACE>(space, NULL, p, NULL);
4224 } else if (space->identity() == CODE_SPACE) {
4225 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST,
4226 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4227 } else {
4228 Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST,
4229 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4230 }
4231 pages_swept++;
4232 break;
4233 }
4234 default: { UNREACHABLE(); }
4235 }
4236 }
4237
4238 if (FLAG_gc_verbose) {
4239 PrintF("SweepSpace: %s (%d pages swept)\n",
4240 AllocationSpaceName(space->identity()), pages_swept);
4241 }
4242
4243 // Give pages that are queued to be freed back to the OS.
4244 heap()->FreeQueuedChunks();
4245 }
4246
4247
ShouldStartSweeperThreads(MarkCompactCollector::SweeperType type)4248 static bool ShouldStartSweeperThreads(MarkCompactCollector::SweeperType type) {
4249 return type == MarkCompactCollector::PARALLEL_SWEEPING ||
4250 type == MarkCompactCollector::CONCURRENT_SWEEPING;
4251 }
4252
4253
ShouldWaitForSweeperThreads(MarkCompactCollector::SweeperType type)4254 static bool ShouldWaitForSweeperThreads(
4255 MarkCompactCollector::SweeperType type) {
4256 return type == MarkCompactCollector::PARALLEL_SWEEPING;
4257 }
4258
4259
SweepSpaces()4260 void MarkCompactCollector::SweepSpaces() {
4261 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
4262 double start_time = 0.0;
4263 if (FLAG_print_cumulative_gc_stat) {
4264 start_time = base::OS::TimeCurrentMillis();
4265 }
4266
4267 #ifdef DEBUG
4268 state_ = SWEEP_SPACES;
4269 #endif
4270 SweeperType how_to_sweep = CONCURRENT_SWEEPING;
4271 if (FLAG_parallel_sweeping) how_to_sweep = PARALLEL_SWEEPING;
4272 if (FLAG_concurrent_sweeping) how_to_sweep = CONCURRENT_SWEEPING;
4273
4274 MoveEvacuationCandidatesToEndOfPagesList();
4275
4276 // Noncompacting collections simply sweep the spaces to clear the mark
4277 // bits and free the nonlive blocks (for old and map spaces). We sweep
4278 // the map space last because freeing non-live maps overwrites them and
4279 // the other spaces rely on possibly non-live maps to get the sizes for
4280 // non-live objects.
4281 {
4282 GCTracer::Scope sweep_scope(heap()->tracer(),
4283 GCTracer::Scope::MC_SWEEP_OLDSPACE);
4284 {
4285 SequentialSweepingScope scope(this);
4286 SweepSpace(heap()->old_pointer_space(), how_to_sweep);
4287 SweepSpace(heap()->old_data_space(), how_to_sweep);
4288 }
4289
4290 if (ShouldStartSweeperThreads(how_to_sweep)) {
4291 StartSweeperThreads();
4292 }
4293
4294 if (ShouldWaitForSweeperThreads(how_to_sweep)) {
4295 EnsureSweepingCompleted();
4296 }
4297 }
4298 RemoveDeadInvalidatedCode();
4299
4300 {
4301 GCTracer::Scope sweep_scope(heap()->tracer(),
4302 GCTracer::Scope::MC_SWEEP_CODE);
4303 SweepSpace(heap()->code_space(), SEQUENTIAL_SWEEPING);
4304 }
4305
4306 {
4307 GCTracer::Scope sweep_scope(heap()->tracer(),
4308 GCTracer::Scope::MC_SWEEP_CELL);
4309 SweepSpace(heap()->cell_space(), SEQUENTIAL_SWEEPING);
4310 SweepSpace(heap()->property_cell_space(), SEQUENTIAL_SWEEPING);
4311 }
4312
4313 EvacuateNewSpaceAndCandidates();
4314
4315 // ClearNonLiveTransitions depends on precise sweeping of map space to
4316 // detect whether unmarked map became dead in this collection or in one
4317 // of the previous ones.
4318 {
4319 GCTracer::Scope sweep_scope(heap()->tracer(),
4320 GCTracer::Scope::MC_SWEEP_MAP);
4321 SweepSpace(heap()->map_space(), SEQUENTIAL_SWEEPING);
4322 }
4323
4324 // Deallocate unmarked objects and clear marked bits for marked objects.
4325 heap_->lo_space()->FreeUnmarkedObjects();
4326
4327 // Deallocate evacuated candidate pages.
4328 ReleaseEvacuationCandidates();
4329
4330 if (FLAG_print_cumulative_gc_stat) {
4331 heap_->tracer()->AddSweepingTime(base::OS::TimeCurrentMillis() -
4332 start_time);
4333 }
4334 }
4335
4336
ParallelSweepSpaceComplete(PagedSpace * space)4337 void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
4338 PageIterator it(space);
4339 while (it.has_next()) {
4340 Page* p = it.next();
4341 if (p->parallel_sweeping() == MemoryChunk::SWEEPING_FINALIZE) {
4342 p->set_parallel_sweeping(MemoryChunk::SWEEPING_DONE);
4343 p->SetWasSwept();
4344 }
4345 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4346 }
4347 }
4348
4349
ParallelSweepSpacesComplete()4350 void MarkCompactCollector::ParallelSweepSpacesComplete() {
4351 ParallelSweepSpaceComplete(heap()->old_pointer_space());
4352 ParallelSweepSpaceComplete(heap()->old_data_space());
4353 }
4354
4355
EnableCodeFlushing(bool enable)4356 void MarkCompactCollector::EnableCodeFlushing(bool enable) {
4357 if (isolate()->debug()->is_loaded() ||
4358 isolate()->debug()->has_break_points()) {
4359 enable = false;
4360 }
4361
4362 if (enable) {
4363 if (code_flusher_ != NULL) return;
4364 code_flusher_ = new CodeFlusher(isolate());
4365 } else {
4366 if (code_flusher_ == NULL) return;
4367 code_flusher_->EvictAllCandidates();
4368 delete code_flusher_;
4369 code_flusher_ = NULL;
4370 }
4371
4372 if (FLAG_trace_code_flushing) {
4373 PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
4374 }
4375 }
4376
4377
4378 // TODO(1466) ReportDeleteIfNeeded is not called currently.
4379 // Our profiling tools do not expect intersections between
4380 // code objects. We should either reenable it or change our tools.
ReportDeleteIfNeeded(HeapObject * obj,Isolate * isolate)4381 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
4382 Isolate* isolate) {
4383 if (obj->IsCode()) {
4384 PROFILE(isolate, CodeDeleteEvent(obj->address()));
4385 }
4386 }
4387
4388
isolate() const4389 Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); }
4390
4391
Initialize()4392 void MarkCompactCollector::Initialize() {
4393 MarkCompactMarkingVisitor::Initialize();
4394 IncrementalMarking::Initialize();
4395 }
4396
4397
IsTypedSlot(ObjectSlot slot)4398 bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
4399 return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
4400 }
4401
4402
AddTo(SlotsBufferAllocator * allocator,SlotsBuffer ** buffer_address,SlotType type,Address addr,AdditionMode mode)4403 bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
4404 SlotsBuffer** buffer_address, SlotType type,
4405 Address addr, AdditionMode mode) {
4406 SlotsBuffer* buffer = *buffer_address;
4407 if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
4408 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
4409 allocator->DeallocateChain(buffer_address);
4410 return false;
4411 }
4412 buffer = allocator->AllocateBuffer(buffer);
4413 *buffer_address = buffer;
4414 }
4415 DCHECK(buffer->HasSpaceForTypedSlot());
4416 buffer->Add(reinterpret_cast<ObjectSlot>(type));
4417 buffer->Add(reinterpret_cast<ObjectSlot>(addr));
4418 return true;
4419 }
4420
4421
SlotTypeForRMode(RelocInfo::Mode rmode)4422 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
4423 if (RelocInfo::IsCodeTarget(rmode)) {
4424 return SlotsBuffer::CODE_TARGET_SLOT;
4425 } else if (RelocInfo::IsEmbeddedObject(rmode)) {
4426 return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
4427 } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
4428 return SlotsBuffer::DEBUG_TARGET_SLOT;
4429 } else if (RelocInfo::IsJSReturn(rmode)) {
4430 return SlotsBuffer::JS_RETURN_SLOT;
4431 }
4432 UNREACHABLE();
4433 return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
4434 }
4435
4436
RecordRelocSlot(RelocInfo * rinfo,Object * target)4437 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
4438 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4439 RelocInfo::Mode rmode = rinfo->rmode();
4440 if (target_page->IsEvacuationCandidate() &&
4441 (rinfo->host() == NULL ||
4442 !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
4443 bool success;
4444 if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
4445 // This doesn't need to be typed since it is just a normal heap pointer.
4446 Object** target_pointer =
4447 reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
4448 success = SlotsBuffer::AddTo(
4449 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4450 target_pointer, SlotsBuffer::FAIL_ON_OVERFLOW);
4451 } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
4452 success = SlotsBuffer::AddTo(
4453 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4454 SlotsBuffer::CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address(),
4455 SlotsBuffer::FAIL_ON_OVERFLOW);
4456 } else {
4457 success = SlotsBuffer::AddTo(
4458 &slots_buffer_allocator_, target_page->slots_buffer_address(),
4459 SlotTypeForRMode(rmode), rinfo->pc(), SlotsBuffer::FAIL_ON_OVERFLOW);
4460 }
4461 if (!success) {
4462 EvictEvacuationCandidate(target_page);
4463 }
4464 }
4465 }
4466
4467
RecordCodeEntrySlot(Address slot,Code * target)4468 void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
4469 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4470 if (target_page->IsEvacuationCandidate() &&
4471 !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
4472 if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4473 target_page->slots_buffer_address(),
4474 SlotsBuffer::CODE_ENTRY_SLOT, slot,
4475 SlotsBuffer::FAIL_ON_OVERFLOW)) {
4476 EvictEvacuationCandidate(target_page);
4477 }
4478 }
4479 }
4480
4481
RecordCodeTargetPatch(Address pc,Code * target)4482 void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
4483 DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
4484 if (is_compacting()) {
4485 Code* host =
4486 isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer(
4487 pc);
4488 MarkBit mark_bit = Marking::MarkBitFrom(host);
4489 if (Marking::IsBlack(mark_bit)) {
4490 RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
4491 RecordRelocSlot(&rinfo, target);
4492 }
4493 }
4494 }
4495
4496
DecodeSlotType(SlotsBuffer::ObjectSlot slot)4497 static inline SlotsBuffer::SlotType DecodeSlotType(
4498 SlotsBuffer::ObjectSlot slot) {
4499 return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
4500 }
4501
4502
UpdateSlots(Heap * heap)4503 void SlotsBuffer::UpdateSlots(Heap* heap) {
4504 PointersUpdatingVisitor v(heap);
4505
4506 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4507 ObjectSlot slot = slots_[slot_idx];
4508 if (!IsTypedSlot(slot)) {
4509 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4510 } else {
4511 ++slot_idx;
4512 DCHECK(slot_idx < idx_);
4513 UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
4514 reinterpret_cast<Address>(slots_[slot_idx]));
4515 }
4516 }
4517 }
4518
4519
UpdateSlotsWithFilter(Heap * heap)4520 void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
4521 PointersUpdatingVisitor v(heap);
4522
4523 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4524 ObjectSlot slot = slots_[slot_idx];
4525 if (!IsTypedSlot(slot)) {
4526 if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
4527 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4528 }
4529 } else {
4530 ++slot_idx;
4531 DCHECK(slot_idx < idx_);
4532 Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
4533 if (!IsOnInvalidatedCodeObject(pc)) {
4534 UpdateSlot(heap->isolate(), &v, DecodeSlotType(slot),
4535 reinterpret_cast<Address>(slots_[slot_idx]));
4536 }
4537 }
4538 }
4539 }
4540
4541
AllocateBuffer(SlotsBuffer * next_buffer)4542 SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
4543 return new SlotsBuffer(next_buffer);
4544 }
4545
4546
DeallocateBuffer(SlotsBuffer * buffer)4547 void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
4548 delete buffer;
4549 }
4550
4551
DeallocateChain(SlotsBuffer ** buffer_address)4552 void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
4553 SlotsBuffer* buffer = *buffer_address;
4554 while (buffer != NULL) {
4555 SlotsBuffer* next_buffer = buffer->next();
4556 DeallocateBuffer(buffer);
4557 buffer = next_buffer;
4558 }
4559 *buffer_address = NULL;
4560 }
4561 }
4562 } // namespace v8::internal
4563