1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/hydrogen-bch.h"
6
7 namespace v8 {
8 namespace internal {
9
10 /*
11 * This class is a table with one element for eack basic block.
12 *
13 * It is used to check if, inside one loop, all execution paths contain
14 * a bounds check for a particular [index, length] combination.
15 * The reason is that if there is a path that stays in the loop without
16 * executing a check then the check cannot be hoisted out of the loop (it
17 * would likely fail and cause a deopt for no good reason).
18 * We also check is there are paths that exit the loop early, and if yes we
19 * perform the hoisting only if graph()->use_optimistic_licm() is true.
20 * The reason is that such paths are realtively common and harmless (like in
21 * a "search" method that scans an array until an element is found), but in
22 * some cases they could cause a deopt if we hoist the check so this is a
23 * situation we need to detect.
24 */
25 class InductionVariableBlocksTable BASE_EMBEDDED {
26 public:
27 class Element {
28 public:
29 static const int kNoBlock = -1;
30
block()31 HBasicBlock* block() { return block_; }
set_block(HBasicBlock * block)32 void set_block(HBasicBlock* block) { block_ = block; }
is_start()33 bool is_start() { return is_start_; }
is_proper_exit()34 bool is_proper_exit() { return is_proper_exit_; }
is_in_loop()35 bool is_in_loop() { return is_in_loop_; }
has_check()36 bool has_check() { return has_check_; }
set_has_check()37 void set_has_check() { has_check_ = true; }
additional_limit()38 InductionVariableLimitUpdate* additional_limit() {
39 return &additional_limit_;
40 }
41
42 /*
43 * Initializes the table element for a given loop (identified by its
44 * induction variable).
45 */
InitializeLoop(InductionVariableData * data)46 void InitializeLoop(InductionVariableData* data) {
47 DCHECK(data->limit() != NULL);
48 HLoopInformation* loop = data->phi()->block()->current_loop();
49 is_start_ = (block() == loop->loop_header());
50 is_proper_exit_ = (block() == data->induction_exit_target());
51 is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
52 has_check_ = false;
53 }
54
55 // Utility methods to iterate over dominated blocks.
ResetCurrentDominatedBlock()56 void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
CurrentDominatedBlock()57 HBasicBlock* CurrentDominatedBlock() {
58 DCHECK(current_dominated_block_ != kNoBlock);
59 return current_dominated_block_ < block()->dominated_blocks()->length() ?
60 block()->dominated_blocks()->at(current_dominated_block_) : NULL;
61 }
NextDominatedBlock()62 HBasicBlock* NextDominatedBlock() {
63 current_dominated_block_++;
64 return CurrentDominatedBlock();
65 }
66
Element()67 Element()
68 : block_(NULL), is_start_(false), is_proper_exit_(false),
69 has_check_(false), additional_limit_(),
70 current_dominated_block_(kNoBlock) {}
71
72 private:
73 HBasicBlock* block_;
74 bool is_start_;
75 bool is_proper_exit_;
76 bool is_in_loop_;
77 bool has_check_;
78 InductionVariableLimitUpdate additional_limit_;
79 int current_dominated_block_;
80 };
81
graph() const82 HGraph* graph() const { return graph_; }
counters() const83 Counters* counters() const { return graph()->isolate()->counters(); }
loop_header() const84 HBasicBlock* loop_header() const { return loop_header_; }
at(int index) const85 Element* at(int index) const { return &(elements_.at(index)); }
at(HBasicBlock * block) const86 Element* at(HBasicBlock* block) const { return at(block->block_id()); }
87
AddCheckAt(HBasicBlock * block)88 void AddCheckAt(HBasicBlock* block) {
89 at(block->block_id())->set_has_check();
90 }
91
92 /*
93 * Initializes the table for a given loop (identified by its induction
94 * variable).
95 */
InitializeLoop(InductionVariableData * data)96 void InitializeLoop(InductionVariableData* data) {
97 for (int i = 0; i < graph()->blocks()->length(); i++) {
98 at(i)->InitializeLoop(data);
99 }
100 loop_header_ = data->phi()->block()->current_loop()->loop_header();
101 }
102
103
104 enum Hoistability {
105 HOISTABLE,
106 OPTIMISTICALLY_HOISTABLE,
107 NOT_HOISTABLE
108 };
109
110 /*
111 * This method checks if it is appropriate to hoist the bounds checks on an
112 * induction variable out of the loop.
113 * The problem is that in the loop code graph there could be execution paths
114 * where the check is not performed, but hoisting the check has the same
115 * semantics as performing it at every loop iteration, which could cause
116 * unnecessary check failures (which would mean unnecessary deoptimizations).
117 * The method returns OK if there are no paths that perform an iteration
118 * (loop back to the header) without meeting a check, or UNSAFE is set if
119 * early exit paths are found.
120 */
CheckHoistability()121 Hoistability CheckHoistability() {
122 for (int i = 0; i < elements_.length(); i++) {
123 at(i)->ResetCurrentDominatedBlock();
124 }
125 bool unsafe = false;
126
127 HBasicBlock* current = loop_header();
128 while (current != NULL) {
129 HBasicBlock* next;
130
131 if (at(current)->has_check() || !at(current)->is_in_loop()) {
132 // We found a check or we reached a dominated block out of the loop,
133 // therefore this block is safe and we can backtrack.
134 next = NULL;
135 } else {
136 for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
137 Element* successor = at(current->end()->SuccessorAt(i));
138
139 if (!successor->is_in_loop()) {
140 if (!successor->is_proper_exit()) {
141 // We found a path that exits the loop early, and is not the exit
142 // related to the induction limit, therefore hoisting checks is
143 // an optimistic assumption.
144 unsafe = true;
145 }
146 }
147
148 if (successor->is_start()) {
149 // We found a path that does one loop iteration without meeting any
150 // check, therefore hoisting checks would be likely to cause
151 // unnecessary deopts.
152 return NOT_HOISTABLE;
153 }
154 }
155
156 next = at(current)->NextDominatedBlock();
157 }
158
159 // If we have no next block we need to backtrack the tree traversal.
160 while (next == NULL) {
161 current = current->dominator();
162 if (current != NULL) {
163 next = at(current)->NextDominatedBlock();
164 } else {
165 // We reached the root: next stays NULL.
166 next = NULL;
167 break;
168 }
169 }
170
171 current = next;
172 }
173
174 return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
175 }
176
InductionVariableBlocksTable(HGraph * graph)177 explicit InductionVariableBlocksTable(HGraph* graph)
178 : graph_(graph), loop_header_(NULL),
179 elements_(graph->blocks()->length(), graph->zone()) {
180 for (int i = 0; i < graph->blocks()->length(); i++) {
181 Element element;
182 element.set_block(graph->blocks()->at(i));
183 elements_.Add(element, graph->zone());
184 DCHECK(at(i)->block()->block_id() == i);
185 }
186 }
187
188 // Tries to hoist a check out of its induction loop.
ProcessRelatedChecks(InductionVariableData::InductionVariableCheck * check,InductionVariableData * data)189 void ProcessRelatedChecks(
190 InductionVariableData::InductionVariableCheck* check,
191 InductionVariableData* data) {
192 HValue* length = check->check()->length();
193 check->set_processed();
194 HBasicBlock* header =
195 data->phi()->block()->current_loop()->loop_header();
196 HBasicBlock* pre_header = header->predecessors()->at(0);
197 // Check that the limit is defined in the loop preheader.
198 if (!data->limit()->IsInteger32Constant()) {
199 HBasicBlock* limit_block = data->limit()->block();
200 if (limit_block != pre_header &&
201 !limit_block->Dominates(pre_header)) {
202 return;
203 }
204 }
205 // Check that the length and limit have compatible representations.
206 if (!(data->limit()->representation().Equals(
207 length->representation()) ||
208 data->limit()->IsInteger32Constant())) {
209 return;
210 }
211 // Check that the length is defined in the loop preheader.
212 if (check->check()->length()->block() != pre_header &&
213 !check->check()->length()->block()->Dominates(pre_header)) {
214 return;
215 }
216
217 // Add checks to the table.
218 for (InductionVariableData::InductionVariableCheck* current_check = check;
219 current_check != NULL;
220 current_check = current_check->next()) {
221 if (current_check->check()->length() != length) continue;
222
223 AddCheckAt(current_check->check()->block());
224 current_check->set_processed();
225 }
226
227 // Check that we will not cause unwanted deoptimizations.
228 Hoistability hoistability = CheckHoistability();
229 if (hoistability == NOT_HOISTABLE ||
230 (hoistability == OPTIMISTICALLY_HOISTABLE &&
231 !graph()->use_optimistic_licm())) {
232 return;
233 }
234
235 // We will do the hoisting, but we must see if the limit is "limit" or if
236 // all checks are done on constants: if all check are done against the same
237 // constant limit we will use that instead of the induction limit.
238 bool has_upper_constant_limit = true;
239 int32_t upper_constant_limit =
240 check != NULL && check->HasUpperLimit() ? check->upper_limit() : 0;
241 for (InductionVariableData::InductionVariableCheck* current_check = check;
242 current_check != NULL;
243 current_check = current_check->next()) {
244 has_upper_constant_limit =
245 has_upper_constant_limit &&
246 check->HasUpperLimit() &&
247 check->upper_limit() == upper_constant_limit;
248 counters()->bounds_checks_eliminated()->Increment();
249 current_check->check()->set_skip_check();
250 }
251
252 // Choose the appropriate limit.
253 Zone* zone = graph()->zone();
254 HValue* context = graph()->GetInvalidContext();
255 HValue* limit = data->limit();
256 if (has_upper_constant_limit) {
257 HConstant* new_limit = HConstant::New(zone, context,
258 upper_constant_limit);
259 new_limit->InsertBefore(pre_header->end());
260 limit = new_limit;
261 }
262
263 // If necessary, redefine the limit in the preheader.
264 if (limit->IsInteger32Constant() &&
265 limit->block() != pre_header &&
266 !limit->block()->Dominates(pre_header)) {
267 HConstant* new_limit = HConstant::New(zone, context,
268 limit->GetInteger32Constant());
269 new_limit->InsertBefore(pre_header->end());
270 limit = new_limit;
271 }
272
273 // Do the hoisting.
274 HBoundsCheck* hoisted_check = HBoundsCheck::New(
275 zone, context, limit, check->check()->length());
276 hoisted_check->InsertBefore(pre_header->end());
277 hoisted_check->set_allow_equality(true);
278 counters()->bounds_checks_hoisted()->Increment();
279 }
280
CollectInductionVariableData(HBasicBlock * bb)281 void CollectInductionVariableData(HBasicBlock* bb) {
282 bool additional_limit = false;
283
284 for (int i = 0; i < bb->phis()->length(); i++) {
285 HPhi* phi = bb->phis()->at(i);
286 phi->DetectInductionVariable();
287 }
288
289 additional_limit = InductionVariableData::ComputeInductionVariableLimit(
290 bb, at(bb)->additional_limit());
291
292 if (additional_limit) {
293 at(bb)->additional_limit()->updated_variable->
294 UpdateAdditionalLimit(at(bb)->additional_limit());
295 }
296
297 for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
298 if (!i->IsBoundsCheck()) continue;
299 HBoundsCheck* check = HBoundsCheck::cast(i);
300 InductionVariableData::BitwiseDecompositionResult decomposition;
301 InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
302 if (!decomposition.base->IsPhi()) continue;
303 HPhi* phi = HPhi::cast(decomposition.base);
304
305 if (!phi->IsInductionVariable()) continue;
306 InductionVariableData* data = phi->induction_variable_data();
307
308 // For now ignore loops decrementing the index.
309 if (data->increment() <= 0) continue;
310 if (!data->LowerLimitIsNonNegativeConstant()) continue;
311
312 // TODO(mmassi): skip OSR values for check->length().
313 if (check->length() == data->limit() ||
314 check->length() == data->additional_upper_limit()) {
315 counters()->bounds_checks_eliminated()->Increment();
316 check->set_skip_check();
317 continue;
318 }
319
320 if (!phi->IsLimitedInductionVariable()) continue;
321
322 int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
323 decomposition.or_mask);
324 phi->induction_variable_data()->AddCheck(check, limit);
325 }
326
327 for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
328 CollectInductionVariableData(bb->dominated_blocks()->at(i));
329 }
330
331 if (additional_limit) {
332 at(bb->block_id())->additional_limit()->updated_variable->
333 UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
334 }
335 }
336
EliminateRedundantBoundsChecks(HBasicBlock * bb)337 void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
338 for (int i = 0; i < bb->phis()->length(); i++) {
339 HPhi* phi = bb->phis()->at(i);
340 if (!phi->IsLimitedInductionVariable()) continue;
341
342 InductionVariableData* induction_data = phi->induction_variable_data();
343 InductionVariableData::ChecksRelatedToLength* current_length_group =
344 induction_data->checks();
345 while (current_length_group != NULL) {
346 current_length_group->CloseCurrentBlock();
347 InductionVariableData::InductionVariableCheck* current_base_check =
348 current_length_group->checks();
349 InitializeLoop(induction_data);
350
351 while (current_base_check != NULL) {
352 ProcessRelatedChecks(current_base_check, induction_data);
353 while (current_base_check != NULL &&
354 current_base_check->processed()) {
355 current_base_check = current_base_check->next();
356 }
357 }
358
359 current_length_group = current_length_group->next();
360 }
361 }
362 }
363
364 private:
365 HGraph* graph_;
366 HBasicBlock* loop_header_;
367 ZoneList<Element> elements_;
368 };
369
370
HoistRedundantBoundsChecks()371 void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
372 InductionVariableBlocksTable table(graph());
373 table.CollectInductionVariableData(graph()->entry_block());
374 for (int i = 0; i < graph()->blocks()->length(); i++) {
375 table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
376 }
377 }
378
379 } } // namespace v8::internal
380