1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/hydrogen-bch.h"
6 
7 namespace v8 {
8 namespace internal {
9 
10 /*
11  * This class is a table with one element for eack basic block.
12  *
13  * It is used to check if, inside one loop, all execution paths contain
14  * a bounds check for a particular [index, length] combination.
15  * The reason is that if there is a path that stays in the loop without
16  * executing a check then the check cannot be hoisted out of the loop (it
17  * would likely fail and cause a deopt for no good reason).
18  * We also check is there are paths that exit the loop early, and if yes we
19  * perform the hoisting only if graph()->use_optimistic_licm() is true.
20  * The reason is that such paths are realtively common and harmless (like in
21  * a "search" method that scans an array until an element is found), but in
22  * some cases they could cause a deopt if we hoist the check so this is a
23  * situation we need to detect.
24  */
25 class InductionVariableBlocksTable BASE_EMBEDDED {
26  public:
27   class Element {
28    public:
29     static const int kNoBlock = -1;
30 
block()31     HBasicBlock* block() { return block_; }
set_block(HBasicBlock * block)32     void set_block(HBasicBlock* block) { block_ = block; }
is_start()33     bool is_start() { return is_start_; }
is_proper_exit()34     bool is_proper_exit() { return is_proper_exit_; }
is_in_loop()35     bool is_in_loop() { return is_in_loop_; }
has_check()36     bool has_check() { return has_check_; }
set_has_check()37     void set_has_check() { has_check_ = true; }
additional_limit()38     InductionVariableLimitUpdate* additional_limit() {
39       return &additional_limit_;
40     }
41 
42     /*
43      * Initializes the table element for a given loop (identified by its
44      * induction variable).
45      */
InitializeLoop(InductionVariableData * data)46     void InitializeLoop(InductionVariableData* data) {
47       DCHECK(data->limit() != NULL);
48       HLoopInformation* loop = data->phi()->block()->current_loop();
49       is_start_ = (block() == loop->loop_header());
50       is_proper_exit_ = (block() == data->induction_exit_target());
51       is_in_loop_ = loop->IsNestedInThisLoop(block()->current_loop());
52       has_check_ = false;
53     }
54 
55     // Utility methods to iterate over dominated blocks.
ResetCurrentDominatedBlock()56     void ResetCurrentDominatedBlock() { current_dominated_block_ = kNoBlock; }
CurrentDominatedBlock()57     HBasicBlock* CurrentDominatedBlock() {
58       DCHECK(current_dominated_block_ != kNoBlock);
59       return current_dominated_block_ < block()->dominated_blocks()->length() ?
60           block()->dominated_blocks()->at(current_dominated_block_) : NULL;
61     }
NextDominatedBlock()62     HBasicBlock* NextDominatedBlock() {
63       current_dominated_block_++;
64       return CurrentDominatedBlock();
65     }
66 
Element()67     Element()
68         : block_(NULL), is_start_(false), is_proper_exit_(false),
69           has_check_(false), additional_limit_(),
70           current_dominated_block_(kNoBlock) {}
71 
72    private:
73     HBasicBlock* block_;
74     bool is_start_;
75     bool is_proper_exit_;
76     bool is_in_loop_;
77     bool has_check_;
78     InductionVariableLimitUpdate additional_limit_;
79     int current_dominated_block_;
80   };
81 
graph() const82   HGraph* graph() const { return graph_; }
counters() const83   Counters* counters() const { return graph()->isolate()->counters(); }
loop_header() const84   HBasicBlock* loop_header() const { return loop_header_; }
at(int index) const85   Element* at(int index) const { return &(elements_.at(index)); }
at(HBasicBlock * block) const86   Element* at(HBasicBlock* block) const { return at(block->block_id()); }
87 
AddCheckAt(HBasicBlock * block)88   void AddCheckAt(HBasicBlock* block) {
89     at(block->block_id())->set_has_check();
90   }
91 
92   /*
93    * Initializes the table for a given loop (identified by its induction
94    * variable).
95    */
InitializeLoop(InductionVariableData * data)96   void InitializeLoop(InductionVariableData* data) {
97     for (int i = 0; i < graph()->blocks()->length(); i++) {
98       at(i)->InitializeLoop(data);
99     }
100     loop_header_ = data->phi()->block()->current_loop()->loop_header();
101   }
102 
103 
104   enum Hoistability {
105     HOISTABLE,
106     OPTIMISTICALLY_HOISTABLE,
107     NOT_HOISTABLE
108   };
109 
110   /*
111    * This method checks if it is appropriate to hoist the bounds checks on an
112    * induction variable out of the loop.
113    * The problem is that in the loop code graph there could be execution paths
114    * where the check is not performed, but hoisting the check has the same
115    * semantics as performing it at every loop iteration, which could cause
116    * unnecessary check failures (which would mean unnecessary deoptimizations).
117    * The method returns OK if there are no paths that perform an iteration
118    * (loop back to the header) without meeting a check, or UNSAFE is set if
119    * early exit paths are found.
120    */
CheckHoistability()121   Hoistability CheckHoistability() {
122     for (int i = 0; i < elements_.length(); i++) {
123       at(i)->ResetCurrentDominatedBlock();
124     }
125     bool unsafe = false;
126 
127     HBasicBlock* current = loop_header();
128     while (current != NULL) {
129       HBasicBlock* next;
130 
131       if (at(current)->has_check() || !at(current)->is_in_loop()) {
132         // We found a check or we reached a dominated block out of the loop,
133         // therefore this block is safe and we can backtrack.
134         next = NULL;
135       } else {
136         for (int i = 0; i < current->end()->SuccessorCount(); i ++) {
137           Element* successor = at(current->end()->SuccessorAt(i));
138 
139           if (!successor->is_in_loop()) {
140             if (!successor->is_proper_exit()) {
141               // We found a path that exits the loop early, and is not the exit
142               // related to the induction limit, therefore hoisting checks is
143               // an optimistic assumption.
144               unsafe = true;
145             }
146           }
147 
148           if (successor->is_start()) {
149             // We found a path that does one loop iteration without meeting any
150             // check, therefore hoisting checks would be likely to cause
151             // unnecessary deopts.
152             return NOT_HOISTABLE;
153           }
154         }
155 
156         next = at(current)->NextDominatedBlock();
157       }
158 
159       // If we have no next block we need to backtrack the tree traversal.
160       while (next == NULL) {
161         current = current->dominator();
162         if (current != NULL) {
163           next = at(current)->NextDominatedBlock();
164         } else {
165           // We reached the root: next stays NULL.
166           next = NULL;
167           break;
168         }
169       }
170 
171       current = next;
172     }
173 
174     return unsafe ? OPTIMISTICALLY_HOISTABLE : HOISTABLE;
175   }
176 
InductionVariableBlocksTable(HGraph * graph)177   explicit InductionVariableBlocksTable(HGraph* graph)
178     : graph_(graph), loop_header_(NULL),
179       elements_(graph->blocks()->length(), graph->zone()) {
180     for (int i = 0; i < graph->blocks()->length(); i++) {
181       Element element;
182       element.set_block(graph->blocks()->at(i));
183       elements_.Add(element, graph->zone());
184       DCHECK(at(i)->block()->block_id() == i);
185     }
186   }
187 
188   // Tries to hoist a check out of its induction loop.
ProcessRelatedChecks(InductionVariableData::InductionVariableCheck * check,InductionVariableData * data)189   void ProcessRelatedChecks(
190       InductionVariableData::InductionVariableCheck* check,
191       InductionVariableData* data) {
192     HValue* length = check->check()->length();
193     check->set_processed();
194     HBasicBlock* header =
195         data->phi()->block()->current_loop()->loop_header();
196     HBasicBlock* pre_header = header->predecessors()->at(0);
197     // Check that the limit is defined in the loop preheader.
198     if (!data->limit()->IsInteger32Constant()) {
199       HBasicBlock* limit_block = data->limit()->block();
200       if (limit_block != pre_header &&
201           !limit_block->Dominates(pre_header)) {
202         return;
203       }
204     }
205     // Check that the length and limit have compatible representations.
206     if (!(data->limit()->representation().Equals(
207             length->representation()) ||
208         data->limit()->IsInteger32Constant())) {
209       return;
210     }
211     // Check that the length is defined in the loop preheader.
212     if (check->check()->length()->block() != pre_header &&
213         !check->check()->length()->block()->Dominates(pre_header)) {
214       return;
215     }
216 
217     // Add checks to the table.
218     for (InductionVariableData::InductionVariableCheck* current_check = check;
219          current_check != NULL;
220          current_check = current_check->next()) {
221       if (current_check->check()->length() != length) continue;
222 
223       AddCheckAt(current_check->check()->block());
224       current_check->set_processed();
225     }
226 
227     // Check that we will not cause unwanted deoptimizations.
228     Hoistability hoistability = CheckHoistability();
229     if (hoistability == NOT_HOISTABLE ||
230         (hoistability == OPTIMISTICALLY_HOISTABLE &&
231          !graph()->use_optimistic_licm())) {
232       return;
233     }
234 
235     // We will do the hoisting, but we must see if the limit is "limit" or if
236     // all checks are done on constants: if all check are done against the same
237     // constant limit we will use that instead of the induction limit.
238     bool has_upper_constant_limit = true;
239     int32_t upper_constant_limit =
240         check != NULL && check->HasUpperLimit() ? check->upper_limit() : 0;
241     for (InductionVariableData::InductionVariableCheck* current_check = check;
242          current_check != NULL;
243          current_check = current_check->next()) {
244       has_upper_constant_limit =
245           has_upper_constant_limit &&
246           check->HasUpperLimit() &&
247           check->upper_limit() == upper_constant_limit;
248       counters()->bounds_checks_eliminated()->Increment();
249       current_check->check()->set_skip_check();
250     }
251 
252     // Choose the appropriate limit.
253     Zone* zone = graph()->zone();
254     HValue* context = graph()->GetInvalidContext();
255     HValue* limit = data->limit();
256     if (has_upper_constant_limit) {
257       HConstant* new_limit = HConstant::New(zone, context,
258                                             upper_constant_limit);
259       new_limit->InsertBefore(pre_header->end());
260       limit = new_limit;
261     }
262 
263     // If necessary, redefine the limit in the preheader.
264     if (limit->IsInteger32Constant() &&
265         limit->block() != pre_header &&
266         !limit->block()->Dominates(pre_header)) {
267       HConstant* new_limit = HConstant::New(zone, context,
268                                             limit->GetInteger32Constant());
269       new_limit->InsertBefore(pre_header->end());
270       limit = new_limit;
271     }
272 
273     // Do the hoisting.
274     HBoundsCheck* hoisted_check = HBoundsCheck::New(
275         zone, context, limit, check->check()->length());
276     hoisted_check->InsertBefore(pre_header->end());
277     hoisted_check->set_allow_equality(true);
278     counters()->bounds_checks_hoisted()->Increment();
279   }
280 
CollectInductionVariableData(HBasicBlock * bb)281   void CollectInductionVariableData(HBasicBlock* bb) {
282     bool additional_limit = false;
283 
284     for (int i = 0; i < bb->phis()->length(); i++) {
285       HPhi* phi = bb->phis()->at(i);
286       phi->DetectInductionVariable();
287     }
288 
289     additional_limit = InductionVariableData::ComputeInductionVariableLimit(
290         bb, at(bb)->additional_limit());
291 
292     if (additional_limit) {
293       at(bb)->additional_limit()->updated_variable->
294           UpdateAdditionalLimit(at(bb)->additional_limit());
295     }
296 
297     for (HInstruction* i = bb->first(); i != NULL; i = i->next()) {
298       if (!i->IsBoundsCheck()) continue;
299       HBoundsCheck* check = HBoundsCheck::cast(i);
300       InductionVariableData::BitwiseDecompositionResult decomposition;
301       InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
302       if (!decomposition.base->IsPhi()) continue;
303       HPhi* phi = HPhi::cast(decomposition.base);
304 
305       if (!phi->IsInductionVariable()) continue;
306       InductionVariableData* data = phi->induction_variable_data();
307 
308       // For now ignore loops decrementing the index.
309       if (data->increment() <= 0) continue;
310       if (!data->LowerLimitIsNonNegativeConstant()) continue;
311 
312       // TODO(mmassi): skip OSR values for check->length().
313       if (check->length() == data->limit() ||
314           check->length() == data->additional_upper_limit()) {
315         counters()->bounds_checks_eliminated()->Increment();
316         check->set_skip_check();
317         continue;
318       }
319 
320       if (!phi->IsLimitedInductionVariable()) continue;
321 
322       int32_t limit = data->ComputeUpperLimit(decomposition.and_mask,
323                                               decomposition.or_mask);
324       phi->induction_variable_data()->AddCheck(check, limit);
325     }
326 
327     for (int i = 0; i < bb->dominated_blocks()->length(); i++) {
328       CollectInductionVariableData(bb->dominated_blocks()->at(i));
329     }
330 
331     if (additional_limit) {
332       at(bb->block_id())->additional_limit()->updated_variable->
333           UpdateAdditionalLimit(at(bb->block_id())->additional_limit());
334     }
335   }
336 
EliminateRedundantBoundsChecks(HBasicBlock * bb)337   void EliminateRedundantBoundsChecks(HBasicBlock* bb) {
338     for (int i = 0; i < bb->phis()->length(); i++) {
339       HPhi* phi = bb->phis()->at(i);
340       if (!phi->IsLimitedInductionVariable()) continue;
341 
342       InductionVariableData* induction_data = phi->induction_variable_data();
343       InductionVariableData::ChecksRelatedToLength* current_length_group =
344           induction_data->checks();
345       while (current_length_group != NULL) {
346         current_length_group->CloseCurrentBlock();
347         InductionVariableData::InductionVariableCheck* current_base_check =
348             current_length_group->checks();
349         InitializeLoop(induction_data);
350 
351         while (current_base_check != NULL) {
352           ProcessRelatedChecks(current_base_check, induction_data);
353           while (current_base_check != NULL &&
354                  current_base_check->processed()) {
355             current_base_check = current_base_check->next();
356           }
357         }
358 
359         current_length_group = current_length_group->next();
360       }
361     }
362   }
363 
364  private:
365   HGraph* graph_;
366   HBasicBlock* loop_header_;
367   ZoneList<Element> elements_;
368 };
369 
370 
HoistRedundantBoundsChecks()371 void HBoundsCheckHoistingPhase::HoistRedundantBoundsChecks() {
372   InductionVariableBlocksTable table(graph());
373   table.CollectInductionVariableData(graph()->entry_block());
374   for (int i = 0; i < graph()->blocks()->length(); i++) {
375     table.EliminateRedundantBoundsChecks(graph()->blocks()->at(i));
376   }
377 }
378 
379 } }  // namespace v8::internal
380