1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39
40 #include "src/isolate.h"
41 #include "src/serialize.h"
42
43 namespace v8 {
44 namespace internal {
45
46 // CPU Registers.
47 //
48 // 1) We would prefer to use an enum, but enum values are assignment-
49 // compatible with int, which has caused code-generation bugs.
50 //
51 // 2) We would prefer to use a class instead of a struct but we don't like
52 // the register initialization to depend on the particular initialization
53 // order (which appears to be different on OS X, Linux, and Windows for the
54 // installed versions of C++ we tried). Using a struct permits C-style
55 // "initialization". Also, the Register objects cannot be const as this
56 // forces initialization stubs in MSVC, making us dependent on initialization
57 // order.
58 //
59 // 3) By not using an enum, we are possibly preventing the compiler from
60 // doing certain constant folds, which may significantly reduce the
61 // code generated for some assembly instructions (because they boil down
62 // to a few constants). If this is a problem, we could change the code
63 // such that we use an enum in optimized mode, and the struct in debug
64 // mode. This way we get the compile-time error checking in debug mode
65 // and best performance in optimized code.
66 //
67 struct Register {
68 static const int kMaxNumAllocatableRegisters = 6;
NumAllocatableRegistersRegister69 static int NumAllocatableRegisters() {
70 return kMaxNumAllocatableRegisters;
71 }
72 static const int kNumRegisters = 8;
73
74 static inline const char* AllocationIndexToString(int index);
75
76 static inline int ToAllocationIndex(Register reg);
77
78 static inline Register FromAllocationIndex(int index);
79
from_codeRegister80 static Register from_code(int code) {
81 DCHECK(code >= 0);
82 DCHECK(code < kNumRegisters);
83 Register r = { code };
84 return r;
85 }
is_validRegister86 bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister87 bool is(Register reg) const { return code_ == reg.code_; }
88 // eax, ebx, ecx and edx are byte registers, the rest are not.
is_byte_registerRegister89 bool is_byte_register() const { return code_ <= 3; }
codeRegister90 int code() const {
91 DCHECK(is_valid());
92 return code_;
93 }
bitRegister94 int bit() const {
95 DCHECK(is_valid());
96 return 1 << code_;
97 }
98
99 // Unfortunately we can't make this private in a struct.
100 int code_;
101 };
102
103 const int kRegister_eax_Code = 0;
104 const int kRegister_ecx_Code = 1;
105 const int kRegister_edx_Code = 2;
106 const int kRegister_ebx_Code = 3;
107 const int kRegister_esp_Code = 4;
108 const int kRegister_ebp_Code = 5;
109 const int kRegister_esi_Code = 6;
110 const int kRegister_edi_Code = 7;
111 const int kRegister_no_reg_Code = -1;
112
113 const Register eax = { kRegister_eax_Code };
114 const Register ecx = { kRegister_ecx_Code };
115 const Register edx = { kRegister_edx_Code };
116 const Register ebx = { kRegister_ebx_Code };
117 const Register esp = { kRegister_esp_Code };
118 const Register ebp = { kRegister_ebp_Code };
119 const Register esi = { kRegister_esi_Code };
120 const Register edi = { kRegister_edi_Code };
121 const Register no_reg = { kRegister_no_reg_Code };
122
123
AllocationIndexToString(int index)124 inline const char* Register::AllocationIndexToString(int index) {
125 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
126 // This is the mapping of allocation indices to registers.
127 const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
128 return kNames[index];
129 }
130
131
ToAllocationIndex(Register reg)132 inline int Register::ToAllocationIndex(Register reg) {
133 DCHECK(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
134 return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
135 }
136
137
FromAllocationIndex(int index)138 inline Register Register::FromAllocationIndex(int index) {
139 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
140 return (index >= 4) ? from_code(index + 2) : from_code(index);
141 }
142
143
144 struct XMMRegister {
145 static const int kMaxNumAllocatableRegisters = 7;
146 static const int kMaxNumRegisters = 8;
NumAllocatableRegistersXMMRegister147 static int NumAllocatableRegisters() {
148 return kMaxNumAllocatableRegisters;
149 }
150
ToAllocationIndexXMMRegister151 static int ToAllocationIndex(XMMRegister reg) {
152 DCHECK(reg.code() != 0);
153 return reg.code() - 1;
154 }
155
FromAllocationIndexXMMRegister156 static XMMRegister FromAllocationIndex(int index) {
157 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
158 return from_code(index + 1);
159 }
160
from_codeXMMRegister161 static XMMRegister from_code(int code) {
162 XMMRegister result = { code };
163 return result;
164 }
165
is_validXMMRegister166 bool is_valid() const {
167 return 0 <= code_ && code_ < kMaxNumRegisters;
168 }
169
codeXMMRegister170 int code() const {
171 DCHECK(is_valid());
172 return code_;
173 }
174
isXMMRegister175 bool is(XMMRegister reg) const { return code_ == reg.code_; }
176
AllocationIndexToStringXMMRegister177 static const char* AllocationIndexToString(int index) {
178 DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
179 const char* const names[] = {
180 "xmm1",
181 "xmm2",
182 "xmm3",
183 "xmm4",
184 "xmm5",
185 "xmm6",
186 "xmm7"
187 };
188 return names[index];
189 }
190
191 int code_;
192 };
193
194
195 typedef XMMRegister DoubleRegister;
196
197
198 const XMMRegister xmm0 = { 0 };
199 const XMMRegister xmm1 = { 1 };
200 const XMMRegister xmm2 = { 2 };
201 const XMMRegister xmm3 = { 3 };
202 const XMMRegister xmm4 = { 4 };
203 const XMMRegister xmm5 = { 5 };
204 const XMMRegister xmm6 = { 6 };
205 const XMMRegister xmm7 = { 7 };
206 const XMMRegister no_xmm_reg = { -1 };
207
208
209 enum Condition {
210 // any value < 0 is considered no_condition
211 no_condition = -1,
212
213 overflow = 0,
214 no_overflow = 1,
215 below = 2,
216 above_equal = 3,
217 equal = 4,
218 not_equal = 5,
219 below_equal = 6,
220 above = 7,
221 negative = 8,
222 positive = 9,
223 parity_even = 10,
224 parity_odd = 11,
225 less = 12,
226 greater_equal = 13,
227 less_equal = 14,
228 greater = 15,
229
230 // aliases
231 carry = below,
232 not_carry = above_equal,
233 zero = equal,
234 not_zero = not_equal,
235 sign = negative,
236 not_sign = positive
237 };
238
239
240 // Returns the equivalent of !cc.
241 // Negation of the default no_condition (-1) results in a non-default
242 // no_condition value (-2). As long as tests for no_condition check
243 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)244 inline Condition NegateCondition(Condition cc) {
245 return static_cast<Condition>(cc ^ 1);
246 }
247
248
249 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)250 inline Condition CommuteCondition(Condition cc) {
251 switch (cc) {
252 case below:
253 return above;
254 case above:
255 return below;
256 case above_equal:
257 return below_equal;
258 case below_equal:
259 return above_equal;
260 case less:
261 return greater;
262 case greater:
263 return less;
264 case greater_equal:
265 return less_equal;
266 case less_equal:
267 return greater_equal;
268 default:
269 return cc;
270 }
271 }
272
273
274 // -----------------------------------------------------------------------------
275 // Machine instruction Immediates
276
277 class Immediate BASE_EMBEDDED {
278 public:
279 inline explicit Immediate(int x);
280 inline explicit Immediate(const ExternalReference& ext);
281 inline explicit Immediate(Handle<Object> handle);
282 inline explicit Immediate(Smi* value);
283 inline explicit Immediate(Address addr);
284
CodeRelativeOffset(Label * label)285 static Immediate CodeRelativeOffset(Label* label) {
286 return Immediate(label);
287 }
288
is_zero()289 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()290 bool is_int8() const {
291 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
292 }
is_int16()293 bool is_int16() const {
294 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
295 }
296
297 private:
298 inline explicit Immediate(Label* value);
299
300 int x_;
301 RelocInfo::Mode rmode_;
302
303 friend class Operand;
304 friend class Assembler;
305 friend class MacroAssembler;
306 };
307
308
309 // -----------------------------------------------------------------------------
310 // Machine instruction Operands
311
312 enum ScaleFactor {
313 times_1 = 0,
314 times_2 = 1,
315 times_4 = 2,
316 times_8 = 3,
317 times_int_size = times_4,
318 times_half_pointer_size = times_2,
319 times_pointer_size = times_4,
320 times_twice_pointer_size = times_8
321 };
322
323
324 class Operand BASE_EMBEDDED {
325 public:
326 // reg
327 INLINE(explicit Operand(Register reg));
328
329 // XMM reg
330 INLINE(explicit Operand(XMMRegister xmm_reg));
331
332 // [disp/r]
333 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
334
335 // [disp/r]
336 INLINE(explicit Operand(Immediate imm));
337
338 // [base + disp/r]
339 explicit Operand(Register base, int32_t disp,
340 RelocInfo::Mode rmode = RelocInfo::NONE32);
341
342 // [base + index*scale + disp/r]
343 explicit Operand(Register base,
344 Register index,
345 ScaleFactor scale,
346 int32_t disp,
347 RelocInfo::Mode rmode = RelocInfo::NONE32);
348
349 // [index*scale + disp/r]
350 explicit Operand(Register index,
351 ScaleFactor scale,
352 int32_t disp,
353 RelocInfo::Mode rmode = RelocInfo::NONE32);
354
StaticVariable(const ExternalReference & ext)355 static Operand StaticVariable(const ExternalReference& ext) {
356 return Operand(reinterpret_cast<int32_t>(ext.address()),
357 RelocInfo::EXTERNAL_REFERENCE);
358 }
359
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)360 static Operand StaticArray(Register index,
361 ScaleFactor scale,
362 const ExternalReference& arr) {
363 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
364 RelocInfo::EXTERNAL_REFERENCE);
365 }
366
ForCell(Handle<Cell> cell)367 static Operand ForCell(Handle<Cell> cell) {
368 AllowDeferredHandleDereference embedding_raw_address;
369 return Operand(reinterpret_cast<int32_t>(cell.location()),
370 RelocInfo::CELL);
371 }
372
ForRegisterPlusImmediate(Register base,Immediate imm)373 static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
374 return Operand(base, imm.x_, imm.rmode_);
375 }
376
377 // Returns true if this Operand is a wrapper for the specified register.
378 bool is_reg(Register reg) const;
379
380 // Returns true if this Operand is a wrapper for one register.
381 bool is_reg_only() const;
382
383 // Asserts that this Operand is a wrapper for one register and returns the
384 // register.
385 Register reg() const;
386
387 private:
388 // Set the ModRM byte without an encoded 'reg' register. The
389 // register is encoded later as part of the emit_operand operation.
390 inline void set_modrm(int mod, Register rm);
391
392 inline void set_sib(ScaleFactor scale, Register index, Register base);
393 inline void set_disp8(int8_t disp);
394 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
395
396 byte buf_[6];
397 // The number of bytes in buf_.
398 unsigned int len_;
399 // Only valid if len_ > 4.
400 RelocInfo::Mode rmode_;
401
402 friend class Assembler;
403 friend class MacroAssembler;
404 };
405
406
407 // -----------------------------------------------------------------------------
408 // A Displacement describes the 32bit immediate field of an instruction which
409 // may be used together with a Label in order to refer to a yet unknown code
410 // position. Displacements stored in the instruction stream are used to describe
411 // the instruction and to chain a list of instructions using the same Label.
412 // A Displacement contains 2 different fields:
413 //
414 // next field: position of next displacement in the chain (0 = end of list)
415 // type field: instruction type
416 //
417 // A next value of null (0) indicates the end of a chain (note that there can
418 // be no displacement at position zero, because there is always at least one
419 // instruction byte before the displacement).
420 //
421 // Displacement _data field layout
422 //
423 // |31.....2|1......0|
424 // [ next | type |
425
426 class Displacement BASE_EMBEDDED {
427 public:
428 enum Type {
429 UNCONDITIONAL_JUMP,
430 CODE_RELATIVE,
431 OTHER
432 };
433
data()434 int data() const { return data_; }
type()435 Type type() const { return TypeField::decode(data_); }
next(Label * L)436 void next(Label* L) const {
437 int n = NextField::decode(data_);
438 n > 0 ? L->link_to(n) : L->Unuse();
439 }
link_to(Label * L)440 void link_to(Label* L) { init(L, type()); }
441
Displacement(int data)442 explicit Displacement(int data) { data_ = data; }
443
Displacement(Label * L,Type type)444 Displacement(Label* L, Type type) { init(L, type); }
445
print()446 void print() {
447 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
448 NextField::decode(data_));
449 }
450
451 private:
452 int data_;
453
454 class TypeField: public BitField<Type, 0, 2> {};
455 class NextField: public BitField<int, 2, 32-2> {};
456
457 void init(Label* L, Type type);
458 };
459
460
461 class Assembler : public AssemblerBase {
462 private:
463 // We check before assembling an instruction that there is sufficient
464 // space to write an instruction and its relocation information.
465 // The relocation writer's position must be kGap bytes above the end of
466 // the generated instructions. This leaves enough space for the
467 // longest possible ia32 instruction, 15 bytes, and the longest possible
468 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
469 // (There is a 15 byte limit on ia32 instruction length that rules out some
470 // otherwise valid instructions.)
471 // This allows for a single, fast space check per instruction.
472 static const int kGap = 32;
473
474 public:
475 // Create an assembler. Instructions and relocation information are emitted
476 // into a buffer, with the instructions starting from the beginning and the
477 // relocation information starting from the end of the buffer. See CodeDesc
478 // for a detailed comment on the layout (globals.h).
479 //
480 // If the provided buffer is NULL, the assembler allocates and grows its own
481 // buffer, and buffer_size determines the initial buffer size. The buffer is
482 // owned by the assembler and deallocated upon destruction of the assembler.
483 //
484 // If the provided buffer is not NULL, the assembler uses the provided buffer
485 // for code generation and assumes its size to be buffer_size. If the buffer
486 // is too small, a fatal error occurs. No deallocation of the buffer is done
487 // upon destruction of the assembler.
488 // TODO(vitalyr): the assembler does not need an isolate.
489 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()490 virtual ~Assembler() { }
491
492 // GetCode emits any pending (non-emitted) code and fills the descriptor
493 // desc. GetCode() is idempotent; it returns the same result if no other
494 // Assembler functions are invoked in between GetCode() calls.
495 void GetCode(CodeDesc* desc);
496
497 // Read/Modify the code target in the branch/call instruction at pc.
498 inline static Address target_address_at(Address pc,
499 ConstantPoolArray* constant_pool);
500 inline static void set_target_address_at(Address pc,
501 ConstantPoolArray* constant_pool,
502 Address target,
503 ICacheFlushMode icache_flush_mode =
504 FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)505 static inline Address target_address_at(Address pc, Code* code) {
506 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
507 return target_address_at(pc, constant_pool);
508 }
509 static inline void set_target_address_at(Address pc,
510 Code* code,
511 Address target,
512 ICacheFlushMode icache_flush_mode =
513 FLUSH_ICACHE_IF_NEEDED) {
514 ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
515 set_target_address_at(pc, constant_pool, target);
516 }
517
518 // Return the code target address at a call site from the return address
519 // of that call in the instruction stream.
520 inline static Address target_address_from_return_address(Address pc);
521
522 // Return the code target address of the patch debug break slot
523 inline static Address break_address_from_return_address(Address pc);
524
525 // This sets the branch destination (which is in the instruction on x86).
526 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)527 inline static void deserialization_set_special_target_at(
528 Address instruction_payload, Code* code, Address target) {
529 set_target_address_at(instruction_payload, code, target);
530 }
531
532 static const int kSpecialTargetSize = kPointerSize;
533
534 // Distance between the address of the code target in the call instruction
535 // and the return address
536 static const int kCallTargetAddressOffset = kPointerSize;
537 // Distance between start of patched return sequence and the emitted address
538 // to jump to.
539 static const int kPatchReturnSequenceAddressOffset = 1; // JMP imm32.
540
541 // Distance between start of patched debug break slot and the emitted address
542 // to jump to.
543 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
544
545 static const int kCallInstructionLength = 5;
546 static const int kPatchDebugBreakSlotReturnOffset = kPointerSize;
547 static const int kJSReturnSequenceLength = 6;
548
549 // The debug break slot must be able to contain a call instruction.
550 static const int kDebugBreakSlotLength = kCallInstructionLength;
551
552 // One byte opcode for test al, 0xXX.
553 static const byte kTestAlByte = 0xA8;
554 // One byte opcode for nop.
555 static const byte kNopByte = 0x90;
556
557 // One byte opcode for a short unconditional jump.
558 static const byte kJmpShortOpcode = 0xEB;
559 // One byte prefix for a short conditional jump.
560 static const byte kJccShortPrefix = 0x70;
561 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
562 static const byte kJcShortOpcode = kJccShortPrefix | carry;
563 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
564 static const byte kJzShortOpcode = kJccShortPrefix | zero;
565
566
567 // ---------------------------------------------------------------------------
568 // Code generation
569 //
570 // - function names correspond one-to-one to ia32 instruction mnemonics
571 // - unless specified otherwise, instructions operate on 32bit operands
572 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
573 // - instructions on 16bit (word) operands/registers have a trailing '_w'
574 // - naming conflicts with C++ keywords are resolved via a trailing '_'
575
576 // NOTE ON INTERFACE: Currently, the interface is not very consistent
577 // in the sense that some operations (e.g. mov()) can be called in more
578 // the one way to generate the same instruction: The Register argument
579 // can in some cases be replaced with an Operand(Register) argument.
580 // This should be cleaned up and made more orthogonal. The questions
581 // is: should we always use Operands instead of Registers where an
582 // Operand is possible, or should we have a Register (overloaded) form
583 // instead? We must be careful to make sure that the selected instruction
584 // is obvious from the parameters to avoid hard-to-find code generation
585 // bugs.
586
587 // Insert the smallest number of nop instructions
588 // possible to align the pc offset to a multiple
589 // of m. m must be a power of 2.
590 void Align(int m);
591 void Nop(int bytes = 1);
592 // Aligns code to something that's optimal for a jump target for the platform.
593 void CodeTargetAlign();
594
595 // Stack
596 void pushad();
597 void popad();
598
599 void pushfd();
600 void popfd();
601
602 void push(const Immediate& x);
603 void push_imm32(int32_t imm32);
604 void push(Register src);
605 void push(const Operand& src);
606
607 void pop(Register dst);
608 void pop(const Operand& dst);
609
610 void enter(const Immediate& size);
611 void leave();
612
613 // Moves
mov_b(Register dst,Register src)614 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
615 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)616 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
617 void mov_b(const Operand& dst, int8_t imm8);
618 void mov_b(const Operand& dst, Register src);
619
620 void mov_w(Register dst, const Operand& src);
621 void mov_w(const Operand& dst, Register src);
622 void mov_w(const Operand& dst, int16_t imm16);
623
624 void mov(Register dst, int32_t imm32);
625 void mov(Register dst, const Immediate& x);
626 void mov(Register dst, Handle<Object> handle);
627 void mov(Register dst, const Operand& src);
628 void mov(Register dst, Register src);
629 void mov(const Operand& dst, const Immediate& x);
630 void mov(const Operand& dst, Handle<Object> handle);
631 void mov(const Operand& dst, Register src);
632
movsx_b(Register dst,Register src)633 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
634 void movsx_b(Register dst, const Operand& src);
635
movsx_w(Register dst,Register src)636 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
637 void movsx_w(Register dst, const Operand& src);
638
movzx_b(Register dst,Register src)639 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
640 void movzx_b(Register dst, const Operand& src);
641
movzx_w(Register dst,Register src)642 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
643 void movzx_w(Register dst, const Operand& src);
644
645 // Conditional moves
cmov(Condition cc,Register dst,Register src)646 void cmov(Condition cc, Register dst, Register src) {
647 cmov(cc, dst, Operand(src));
648 }
649 void cmov(Condition cc, Register dst, const Operand& src);
650
651 // Flag management.
652 void cld();
653
654 // Repetitive string instructions.
655 void rep_movs();
656 void rep_stos();
657 void stos();
658
659 // Exchange
660 void xchg(Register dst, Register src);
661 void xchg(Register dst, const Operand& src);
662
663 // Arithmetics
664 void adc(Register dst, int32_t imm32);
665 void adc(Register dst, const Operand& src);
666
add(Register dst,Register src)667 void add(Register dst, Register src) { add(dst, Operand(src)); }
668 void add(Register dst, const Operand& src);
669 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)670 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
671 void add(const Operand& dst, const Immediate& x);
672
673 void and_(Register dst, int32_t imm32);
674 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)675 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
676 void and_(Register dst, const Operand& src);
677 void and_(const Operand& dst, Register src);
678 void and_(const Operand& dst, const Immediate& x);
679
cmpb(Register reg,int8_t imm8)680 void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
681 void cmpb(const Operand& op, int8_t imm8);
682 void cmpb(Register reg, const Operand& op);
683 void cmpb(const Operand& op, Register reg);
684 void cmpb_al(const Operand& op);
685 void cmpw_ax(const Operand& op);
686 void cmpw(const Operand& op, Immediate imm16);
687 void cmp(Register reg, int32_t imm32);
688 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)689 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
690 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)691 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
692 void cmp(const Operand& op, const Immediate& imm);
693 void cmp(const Operand& op, Handle<Object> handle);
694
695 void dec_b(Register dst);
696 void dec_b(const Operand& dst);
697
698 void dec(Register dst);
699 void dec(const Operand& dst);
700
701 void cdq();
702
idiv(Register src)703 void idiv(Register src) { idiv(Operand(src)); }
704 void idiv(const Operand& src);
div(Register src)705 void div(Register src) { div(Operand(src)); }
706 void div(const Operand& src);
707
708 // Signed multiply instructions.
709 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)710 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
711 void imul(Register dst, const Operand& src); // dst = dst * src.
712 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
713 void imul(Register dst, const Operand& src, int32_t imm32);
714
715 void inc(Register dst);
716 void inc(const Operand& dst);
717
718 void lea(Register dst, const Operand& src);
719
720 // Unsigned multiply instruction.
721 void mul(Register src); // edx:eax = eax * reg.
722
723 void neg(Register dst);
724 void neg(const Operand& dst);
725
726 void not_(Register dst);
727 void not_(const Operand& dst);
728
729 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)730 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
731 void or_(Register dst, const Operand& src);
732 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)733 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
734 void or_(const Operand& dst, const Immediate& x);
735
736 void rcl(Register dst, uint8_t imm8);
737 void rcr(Register dst, uint8_t imm8);
738 void ror(Register dst, uint8_t imm8);
739 void ror_cl(Register dst);
740
sar(Register dst,uint8_t imm8)741 void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
742 void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)743 void sar_cl(Register dst) { sar_cl(Operand(dst)); }
744 void sar_cl(const Operand& dst);
745
746 void sbb(Register dst, const Operand& src);
747
shld(Register dst,Register src)748 void shld(Register dst, Register src) { shld(dst, Operand(src)); }
749 void shld(Register dst, const Operand& src);
750
shl(Register dst,uint8_t imm8)751 void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
752 void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)753 void shl_cl(Register dst) { shl_cl(Operand(dst)); }
754 void shl_cl(const Operand& dst);
755
shrd(Register dst,Register src)756 void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
757 void shrd(Register dst, const Operand& src);
758
shr(Register dst,uint8_t imm8)759 void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
760 void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)761 void shr_cl(Register dst) { shr_cl(Operand(dst)); }
762 void shr_cl(const Operand& dst);
763
sub(Register dst,const Immediate & imm)764 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
765 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)766 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
767 void sub(Register dst, const Operand& src);
768 void sub(const Operand& dst, Register src);
769
770 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)771 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
772 void test(Register reg, const Operand& op);
773 void test_b(Register reg, const Operand& op);
774 void test(const Operand& op, const Immediate& imm);
775 void test_b(Register reg, uint8_t imm8);
776 void test_b(const Operand& op, uint8_t imm8);
777
778 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)779 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
780 void xor_(Register dst, const Operand& src);
781 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)782 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
783 void xor_(const Operand& dst, const Immediate& x);
784
785 // Bit operations.
786 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)787 void bts(Register dst, Register src) { bts(Operand(dst), src); }
788 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)789 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
790 void bsr(Register dst, const Operand& src);
791
792 // Miscellaneous
793 void hlt();
794 void int3();
795 void nop();
796 void ret(int imm16);
797
798 // Label operations & relative jumps (PPUM Appendix D)
799 //
800 // Takes a branch opcode (cc) and a label (L) and generates
801 // either a backward branch or a forward branch and links it
802 // to the label fixup chain. Usage:
803 //
804 // Label L; // unbound label
805 // j(cc, &L); // forward branch to unbound label
806 // bind(&L); // bind label to the current pc
807 // j(cc, &L); // backward branch to bound label
808 // bind(&L); // illegal: a label may be bound only once
809 //
810 // Note: The same Label can be used for forward and backward branches
811 // but it may be bound only once.
812
813 void bind(Label* L); // binds an unbound label L to the current code position
814
815 // Calls
816 void call(Label* L);
817 void call(byte* entry, RelocInfo::Mode rmode);
818 int CallSize(const Operand& adr);
call(Register reg)819 void call(Register reg) { call(Operand(reg)); }
820 void call(const Operand& adr);
821 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
822 void call(Handle<Code> code,
823 RelocInfo::Mode rmode,
824 TypeFeedbackId id = TypeFeedbackId::None());
825
826 // Jumps
827 // unconditional jump to L
828 void jmp(Label* L, Label::Distance distance = Label::kFar);
829 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)830 void jmp(Register reg) { jmp(Operand(reg)); }
831 void jmp(const Operand& adr);
832 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
833
834 // Conditional jumps
835 void j(Condition cc,
836 Label* L,
837 Label::Distance distance = Label::kFar);
838 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
839 void j(Condition cc, Handle<Code> code);
840
841 // Floating-point operations
842 void fld(int i);
843 void fstp(int i);
844
845 void fld1();
846 void fldz();
847 void fldpi();
848 void fldln2();
849
850 void fld_s(const Operand& adr);
851 void fld_d(const Operand& adr);
852
853 void fstp_s(const Operand& adr);
854 void fst_s(const Operand& adr);
855 void fstp_d(const Operand& adr);
856 void fst_d(const Operand& adr);
857
858 void fild_s(const Operand& adr);
859 void fild_d(const Operand& adr);
860
861 void fist_s(const Operand& adr);
862
863 void fistp_s(const Operand& adr);
864 void fistp_d(const Operand& adr);
865
866 // The fisttp instructions require SSE3.
867 void fisttp_s(const Operand& adr);
868 void fisttp_d(const Operand& adr);
869
870 void fabs();
871 void fchs();
872 void fcos();
873 void fsin();
874 void fptan();
875 void fyl2x();
876 void f2xm1();
877 void fscale();
878 void fninit();
879
880 void fadd(int i);
881 void fadd_i(int i);
882 void fsub(int i);
883 void fsub_i(int i);
884 void fmul(int i);
885 void fmul_i(int i);
886 void fdiv(int i);
887 void fdiv_i(int i);
888
889 void fisub_s(const Operand& adr);
890
891 void faddp(int i = 1);
892 void fsubp(int i = 1);
893 void fsubrp(int i = 1);
894 void fmulp(int i = 1);
895 void fdivp(int i = 1);
896 void fprem();
897 void fprem1();
898
899 void fxch(int i = 1);
900 void fincstp();
901 void ffree(int i = 0);
902
903 void ftst();
904 void fucomp(int i);
905 void fucompp();
906 void fucomi(int i);
907 void fucomip();
908 void fcompp();
909 void fnstsw_ax();
910 void fwait();
911 void fnclex();
912
913 void frndint();
914
915 void sahf();
916 void setcc(Condition cc, Register reg);
917
918 void cpuid();
919
920 // SSE instructions
921 void movaps(XMMRegister dst, XMMRegister src);
922 void shufps(XMMRegister dst, XMMRegister src, byte imm8);
923
924 void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)925 void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
926 void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)927 void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
928 void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)929 void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
930
931 void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)932 void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
933 void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)934 void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
935 void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)936 void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
937 void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)938 void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
939
940 // SSE2 instructions
941 void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)942 void cvttss2si(Register dst, XMMRegister src) {
943 cvttss2si(dst, Operand(src));
944 }
945 void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)946 void cvttsd2si(Register dst, XMMRegister src) {
947 cvttsd2si(dst, Operand(src));
948 }
949 void cvtsd2si(Register dst, XMMRegister src);
950
cvtsi2sd(XMMRegister dst,Register src)951 void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
952 void cvtsi2sd(XMMRegister dst, const Operand& src);
953 void cvtss2sd(XMMRegister dst, XMMRegister src);
954 void cvtsd2ss(XMMRegister dst, XMMRegister src);
955
956 void addsd(XMMRegister dst, XMMRegister src);
957 void addsd(XMMRegister dst, const Operand& src);
958 void subsd(XMMRegister dst, XMMRegister src);
959 void subsd(XMMRegister dst, const Operand& src);
960 void mulsd(XMMRegister dst, XMMRegister src);
961 void mulsd(XMMRegister dst, const Operand& src);
962 void divsd(XMMRegister dst, XMMRegister src);
963 void xorpd(XMMRegister dst, XMMRegister src);
964 void sqrtsd(XMMRegister dst, XMMRegister src);
965 void sqrtsd(XMMRegister dst, const Operand& src);
966
967 void andpd(XMMRegister dst, XMMRegister src);
968 void orpd(XMMRegister dst, XMMRegister src);
969
ucomisd(XMMRegister dst,XMMRegister src)970 void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
971 void ucomisd(XMMRegister dst, const Operand& src);
972
973 enum RoundingMode {
974 kRoundToNearest = 0x0,
975 kRoundDown = 0x1,
976 kRoundUp = 0x2,
977 kRoundToZero = 0x3
978 };
979
980 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
981
982 void movmskpd(Register dst, XMMRegister src);
983 void movmskps(Register dst, XMMRegister src);
984
985 void cmpltsd(XMMRegister dst, XMMRegister src);
986 void pcmpeqd(XMMRegister dst, XMMRegister src);
987
988 void movdqa(XMMRegister dst, const Operand& src);
989 void movdqa(const Operand& dst, XMMRegister src);
990 void movdqu(XMMRegister dst, const Operand& src);
991 void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)992 void movdq(bool aligned, XMMRegister dst, const Operand& src) {
993 if (aligned) {
994 movdqa(dst, src);
995 } else {
996 movdqu(dst, src);
997 }
998 }
999
movd(XMMRegister dst,Register src)1000 void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1001 void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1002 void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1003 void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1004 void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1005 void movsd(XMMRegister dst, const Operand& src);
1006 void movsd(const Operand& dst, XMMRegister src);
1007
1008
1009 void movss(XMMRegister dst, const Operand& src);
1010 void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1011 void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1012 void extractps(Register dst, XMMRegister src, byte imm8);
1013
1014 void pand(XMMRegister dst, XMMRegister src);
1015 void pxor(XMMRegister dst, XMMRegister src);
1016 void por(XMMRegister dst, XMMRegister src);
1017 void ptest(XMMRegister dst, XMMRegister src);
1018
1019 void psllq(XMMRegister reg, int8_t shift);
1020 void psllq(XMMRegister dst, XMMRegister src);
1021 void psrlq(XMMRegister reg, int8_t shift);
1022 void psrlq(XMMRegister dst, XMMRegister src);
1023 void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1024 void pextrd(Register dst, XMMRegister src, int8_t offset) {
1025 pextrd(Operand(dst), src, offset);
1026 }
1027 void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1028 void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1029 pinsrd(dst, Operand(src), offset);
1030 }
1031 void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1032
1033 // Parallel XMM operations.
1034 void movntdqa(XMMRegister dst, const Operand& src);
1035 void movntdq(const Operand& dst, XMMRegister src);
1036 // Prefetch src position into cache level.
1037 // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1038 // non-temporal
1039 void prefetch(const Operand& src, int level);
1040 // TODO(lrn): Need SFENCE for movnt?
1041
1042 // Debugging
1043 void Print();
1044
1045 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1046 int SizeOfCodeGeneratedSince(Label* label) {
1047 return pc_offset() - label->pos();
1048 }
1049
1050 // Mark address of the ExitJSFrame code.
1051 void RecordJSReturn();
1052
1053 // Mark address of a debug break slot.
1054 void RecordDebugBreakSlot();
1055
1056 // Record a comment relocation entry that can be used by a disassembler.
1057 // Use --code-comments to enable, or provide "force = true" flag to always
1058 // write a comment.
1059 void RecordComment(const char* msg, bool force = false);
1060
1061 // Writes a single byte or word of data in the code stream. Used for
1062 // inline tables, e.g., jump-tables.
1063 void db(uint8_t data);
1064 void dd(uint32_t data);
1065
1066 // Check if there is less than kGap bytes available in the buffer.
1067 // If this is the case, we need to grow the buffer before emitting
1068 // an instruction or relocation information.
buffer_overflow()1069 inline bool buffer_overflow() const {
1070 return pc_ >= reloc_info_writer.pos() - kGap;
1071 }
1072
1073 // Get the number of bytes available in the buffer.
available_space()1074 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1075
1076 static bool IsNop(Address addr);
1077
positions_recorder()1078 PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1079
relocation_writer_size()1080 int relocation_writer_size() {
1081 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1082 }
1083
1084 // Avoid overflows for displacements etc.
1085 static const int kMaximalBufferSize = 512*MB;
1086
byte_at(int pos)1087 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1088 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1089
1090 // Allocate a constant pool of the correct size for the generated code.
1091 Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1092
1093 // Generate the constant pool for the generated code.
1094 void PopulateConstantPool(ConstantPoolArray* constant_pool);
1095
1096 protected:
1097 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1098 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1099 void emit_sse_operand(Register dst, XMMRegister src);
1100 void emit_sse_operand(XMMRegister dst, Register src);
1101
addr_at(int pos)1102 byte* addr_at(int pos) { return buffer_ + pos; }
1103
1104
1105 private:
long_at(int pos)1106 uint32_t long_at(int pos) {
1107 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1108 }
long_at_put(int pos,uint32_t x)1109 void long_at_put(int pos, uint32_t x) {
1110 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1111 }
1112
1113 // code emission
1114 void GrowBuffer();
1115 inline void emit(uint32_t x);
1116 inline void emit(Handle<Object> handle);
1117 inline void emit(uint32_t x,
1118 RelocInfo::Mode rmode,
1119 TypeFeedbackId id = TypeFeedbackId::None());
1120 inline void emit(Handle<Code> code,
1121 RelocInfo::Mode rmode,
1122 TypeFeedbackId id = TypeFeedbackId::None());
1123 inline void emit(const Immediate& x);
1124 inline void emit_w(const Immediate& x);
1125
1126 // Emit the code-object-relative offset of the label's position
1127 inline void emit_code_relative_offset(Label* label);
1128
1129 // instruction generation
1130 void emit_arith_b(int op1, int op2, Register dst, int imm8);
1131
1132 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1133 // with a given destination expression and an immediate operand. It attempts
1134 // to use the shortest encoding possible.
1135 // sel specifies the /n in the modrm byte (see the Intel PRM).
1136 void emit_arith(int sel, Operand dst, const Immediate& x);
1137
1138 void emit_operand(Register reg, const Operand& adr);
1139
1140 void emit_farith(int b1, int b2, int i);
1141
1142 // labels
1143 void print(Label* L);
1144 void bind_to(Label* L, int pos);
1145
1146 // displacements
1147 inline Displacement disp_at(Label* L);
1148 inline void disp_at_put(Label* L, Displacement disp);
1149 inline void emit_disp(Label* L, Displacement::Type type);
1150 inline void emit_near_disp(Label* L);
1151
1152 // record reloc info for current pc_
1153 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1154
1155 friend class CodePatcher;
1156 friend class EnsureSpace;
1157
1158 // code generation
1159 RelocInfoWriter reloc_info_writer;
1160
1161 PositionsRecorder positions_recorder_;
1162 friend class PositionsRecorder;
1163 };
1164
1165
1166 // Helper class that ensures that there is enough space for generating
1167 // instructions and relocation information. The constructor makes
1168 // sure that there is enough space and (in debug mode) the destructor
1169 // checks that we did not generate too much.
1170 class EnsureSpace BASE_EMBEDDED {
1171 public:
EnsureSpace(Assembler * assembler)1172 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1173 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1174 #ifdef DEBUG
1175 space_before_ = assembler_->available_space();
1176 #endif
1177 }
1178
1179 #ifdef DEBUG
~EnsureSpace()1180 ~EnsureSpace() {
1181 int bytes_generated = space_before_ - assembler_->available_space();
1182 DCHECK(bytes_generated < assembler_->kGap);
1183 }
1184 #endif
1185
1186 private:
1187 Assembler* assembler_;
1188 #ifdef DEBUG
1189 int space_before_;
1190 #endif
1191 };
1192
1193 } } // namespace v8::internal
1194
1195 #endif // V8_IA32_ASSEMBLER_IA32_H_
1196