1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34 
35 // A light-weight IA32 Assembler.
36 
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39 
40 #include "src/isolate.h"
41 #include "src/serialize.h"
42 
43 namespace v8 {
44 namespace internal {
45 
46 // CPU Registers.
47 //
48 // 1) We would prefer to use an enum, but enum values are assignment-
49 // compatible with int, which has caused code-generation bugs.
50 //
51 // 2) We would prefer to use a class instead of a struct but we don't like
52 // the register initialization to depend on the particular initialization
53 // order (which appears to be different on OS X, Linux, and Windows for the
54 // installed versions of C++ we tried). Using a struct permits C-style
55 // "initialization". Also, the Register objects cannot be const as this
56 // forces initialization stubs in MSVC, making us dependent on initialization
57 // order.
58 //
59 // 3) By not using an enum, we are possibly preventing the compiler from
60 // doing certain constant folds, which may significantly reduce the
61 // code generated for some assembly instructions (because they boil down
62 // to a few constants). If this is a problem, we could change the code
63 // such that we use an enum in optimized mode, and the struct in debug
64 // mode. This way we get the compile-time error checking in debug mode
65 // and best performance in optimized code.
66 //
67 struct Register {
68   static const int kMaxNumAllocatableRegisters = 6;
NumAllocatableRegistersRegister69   static int NumAllocatableRegisters() {
70     return kMaxNumAllocatableRegisters;
71   }
72   static const int kNumRegisters = 8;
73 
74   static inline const char* AllocationIndexToString(int index);
75 
76   static inline int ToAllocationIndex(Register reg);
77 
78   static inline Register FromAllocationIndex(int index);
79 
from_codeRegister80   static Register from_code(int code) {
81     DCHECK(code >= 0);
82     DCHECK(code < kNumRegisters);
83     Register r = { code };
84     return r;
85   }
is_validRegister86   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
isRegister87   bool is(Register reg) const { return code_ == reg.code_; }
88   // eax, ebx, ecx and edx are byte registers, the rest are not.
is_byte_registerRegister89   bool is_byte_register() const { return code_ <= 3; }
codeRegister90   int code() const {
91     DCHECK(is_valid());
92     return code_;
93   }
bitRegister94   int bit() const {
95     DCHECK(is_valid());
96     return 1 << code_;
97   }
98 
99   // Unfortunately we can't make this private in a struct.
100   int code_;
101 };
102 
103 const int kRegister_eax_Code = 0;
104 const int kRegister_ecx_Code = 1;
105 const int kRegister_edx_Code = 2;
106 const int kRegister_ebx_Code = 3;
107 const int kRegister_esp_Code = 4;
108 const int kRegister_ebp_Code = 5;
109 const int kRegister_esi_Code = 6;
110 const int kRegister_edi_Code = 7;
111 const int kRegister_no_reg_Code = -1;
112 
113 const Register eax = { kRegister_eax_Code };
114 const Register ecx = { kRegister_ecx_Code };
115 const Register edx = { kRegister_edx_Code };
116 const Register ebx = { kRegister_ebx_Code };
117 const Register esp = { kRegister_esp_Code };
118 const Register ebp = { kRegister_ebp_Code };
119 const Register esi = { kRegister_esi_Code };
120 const Register edi = { kRegister_edi_Code };
121 const Register no_reg = { kRegister_no_reg_Code };
122 
123 
AllocationIndexToString(int index)124 inline const char* Register::AllocationIndexToString(int index) {
125   DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
126   // This is the mapping of allocation indices to registers.
127   const char* const kNames[] = { "eax", "ecx", "edx", "ebx", "esi", "edi" };
128   return kNames[index];
129 }
130 
131 
ToAllocationIndex(Register reg)132 inline int Register::ToAllocationIndex(Register reg) {
133   DCHECK(reg.is_valid() && !reg.is(esp) && !reg.is(ebp));
134   return (reg.code() >= 6) ? reg.code() - 2 : reg.code();
135 }
136 
137 
FromAllocationIndex(int index)138 inline Register Register::FromAllocationIndex(int index)  {
139   DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
140   return (index >= 4) ? from_code(index + 2) : from_code(index);
141 }
142 
143 
144 struct XMMRegister {
145   static const int kMaxNumAllocatableRegisters = 7;
146   static const int kMaxNumRegisters = 8;
NumAllocatableRegistersXMMRegister147   static int NumAllocatableRegisters() {
148     return kMaxNumAllocatableRegisters;
149   }
150 
ToAllocationIndexXMMRegister151   static int ToAllocationIndex(XMMRegister reg) {
152     DCHECK(reg.code() != 0);
153     return reg.code() - 1;
154   }
155 
FromAllocationIndexXMMRegister156   static XMMRegister FromAllocationIndex(int index) {
157     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
158     return from_code(index + 1);
159   }
160 
from_codeXMMRegister161   static XMMRegister from_code(int code) {
162     XMMRegister result = { code };
163     return result;
164   }
165 
is_validXMMRegister166   bool is_valid() const {
167     return 0 <= code_ && code_ < kMaxNumRegisters;
168   }
169 
codeXMMRegister170   int code() const {
171     DCHECK(is_valid());
172     return code_;
173   }
174 
isXMMRegister175   bool is(XMMRegister reg) const { return code_ == reg.code_; }
176 
AllocationIndexToStringXMMRegister177   static const char* AllocationIndexToString(int index) {
178     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
179     const char* const names[] = {
180       "xmm1",
181       "xmm2",
182       "xmm3",
183       "xmm4",
184       "xmm5",
185       "xmm6",
186       "xmm7"
187     };
188     return names[index];
189   }
190 
191   int code_;
192 };
193 
194 
195 typedef XMMRegister DoubleRegister;
196 
197 
198 const XMMRegister xmm0 = { 0 };
199 const XMMRegister xmm1 = { 1 };
200 const XMMRegister xmm2 = { 2 };
201 const XMMRegister xmm3 = { 3 };
202 const XMMRegister xmm4 = { 4 };
203 const XMMRegister xmm5 = { 5 };
204 const XMMRegister xmm6 = { 6 };
205 const XMMRegister xmm7 = { 7 };
206 const XMMRegister no_xmm_reg = { -1 };
207 
208 
209 enum Condition {
210   // any value < 0 is considered no_condition
211   no_condition  = -1,
212 
213   overflow      =  0,
214   no_overflow   =  1,
215   below         =  2,
216   above_equal   =  3,
217   equal         =  4,
218   not_equal     =  5,
219   below_equal   =  6,
220   above         =  7,
221   negative      =  8,
222   positive      =  9,
223   parity_even   = 10,
224   parity_odd    = 11,
225   less          = 12,
226   greater_equal = 13,
227   less_equal    = 14,
228   greater       = 15,
229 
230   // aliases
231   carry         = below,
232   not_carry     = above_equal,
233   zero          = equal,
234   not_zero      = not_equal,
235   sign          = negative,
236   not_sign      = positive
237 };
238 
239 
240 // Returns the equivalent of !cc.
241 // Negation of the default no_condition (-1) results in a non-default
242 // no_condition value (-2). As long as tests for no_condition check
243 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)244 inline Condition NegateCondition(Condition cc) {
245   return static_cast<Condition>(cc ^ 1);
246 }
247 
248 
249 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)250 inline Condition CommuteCondition(Condition cc) {
251   switch (cc) {
252     case below:
253       return above;
254     case above:
255       return below;
256     case above_equal:
257       return below_equal;
258     case below_equal:
259       return above_equal;
260     case less:
261       return greater;
262     case greater:
263       return less;
264     case greater_equal:
265       return less_equal;
266     case less_equal:
267       return greater_equal;
268     default:
269       return cc;
270   }
271 }
272 
273 
274 // -----------------------------------------------------------------------------
275 // Machine instruction Immediates
276 
277 class Immediate BASE_EMBEDDED {
278  public:
279   inline explicit Immediate(int x);
280   inline explicit Immediate(const ExternalReference& ext);
281   inline explicit Immediate(Handle<Object> handle);
282   inline explicit Immediate(Smi* value);
283   inline explicit Immediate(Address addr);
284 
CodeRelativeOffset(Label * label)285   static Immediate CodeRelativeOffset(Label* label) {
286     return Immediate(label);
287   }
288 
is_zero()289   bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()290   bool is_int8() const {
291     return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
292   }
is_int16()293   bool is_int16() const {
294     return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
295   }
296 
297  private:
298   inline explicit Immediate(Label* value);
299 
300   int x_;
301   RelocInfo::Mode rmode_;
302 
303   friend class Operand;
304   friend class Assembler;
305   friend class MacroAssembler;
306 };
307 
308 
309 // -----------------------------------------------------------------------------
310 // Machine instruction Operands
311 
312 enum ScaleFactor {
313   times_1 = 0,
314   times_2 = 1,
315   times_4 = 2,
316   times_8 = 3,
317   times_int_size = times_4,
318   times_half_pointer_size = times_2,
319   times_pointer_size = times_4,
320   times_twice_pointer_size = times_8
321 };
322 
323 
324 class Operand BASE_EMBEDDED {
325  public:
326   // reg
327   INLINE(explicit Operand(Register reg));
328 
329   // XMM reg
330   INLINE(explicit Operand(XMMRegister xmm_reg));
331 
332   // [disp/r]
333   INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
334 
335   // [disp/r]
336   INLINE(explicit Operand(Immediate imm));
337 
338   // [base + disp/r]
339   explicit Operand(Register base, int32_t disp,
340                    RelocInfo::Mode rmode = RelocInfo::NONE32);
341 
342   // [base + index*scale + disp/r]
343   explicit Operand(Register base,
344                    Register index,
345                    ScaleFactor scale,
346                    int32_t disp,
347                    RelocInfo::Mode rmode = RelocInfo::NONE32);
348 
349   // [index*scale + disp/r]
350   explicit Operand(Register index,
351                    ScaleFactor scale,
352                    int32_t disp,
353                    RelocInfo::Mode rmode = RelocInfo::NONE32);
354 
StaticVariable(const ExternalReference & ext)355   static Operand StaticVariable(const ExternalReference& ext) {
356     return Operand(reinterpret_cast<int32_t>(ext.address()),
357                    RelocInfo::EXTERNAL_REFERENCE);
358   }
359 
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)360   static Operand StaticArray(Register index,
361                              ScaleFactor scale,
362                              const ExternalReference& arr) {
363     return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
364                    RelocInfo::EXTERNAL_REFERENCE);
365   }
366 
ForCell(Handle<Cell> cell)367   static Operand ForCell(Handle<Cell> cell) {
368     AllowDeferredHandleDereference embedding_raw_address;
369     return Operand(reinterpret_cast<int32_t>(cell.location()),
370                    RelocInfo::CELL);
371   }
372 
ForRegisterPlusImmediate(Register base,Immediate imm)373   static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
374     return Operand(base, imm.x_, imm.rmode_);
375   }
376 
377   // Returns true if this Operand is a wrapper for the specified register.
378   bool is_reg(Register reg) const;
379 
380   // Returns true if this Operand is a wrapper for one register.
381   bool is_reg_only() const;
382 
383   // Asserts that this Operand is a wrapper for one register and returns the
384   // register.
385   Register reg() const;
386 
387  private:
388   // Set the ModRM byte without an encoded 'reg' register. The
389   // register is encoded later as part of the emit_operand operation.
390   inline void set_modrm(int mod, Register rm);
391 
392   inline void set_sib(ScaleFactor scale, Register index, Register base);
393   inline void set_disp8(int8_t disp);
394   inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
395 
396   byte buf_[6];
397   // The number of bytes in buf_.
398   unsigned int len_;
399   // Only valid if len_ > 4.
400   RelocInfo::Mode rmode_;
401 
402   friend class Assembler;
403   friend class MacroAssembler;
404 };
405 
406 
407 // -----------------------------------------------------------------------------
408 // A Displacement describes the 32bit immediate field of an instruction which
409 // may be used together with a Label in order to refer to a yet unknown code
410 // position. Displacements stored in the instruction stream are used to describe
411 // the instruction and to chain a list of instructions using the same Label.
412 // A Displacement contains 2 different fields:
413 //
414 // next field: position of next displacement in the chain (0 = end of list)
415 // type field: instruction type
416 //
417 // A next value of null (0) indicates the end of a chain (note that there can
418 // be no displacement at position zero, because there is always at least one
419 // instruction byte before the displacement).
420 //
421 // Displacement _data field layout
422 //
423 // |31.....2|1......0|
424 // [  next  |  type  |
425 
426 class Displacement BASE_EMBEDDED {
427  public:
428   enum Type {
429     UNCONDITIONAL_JUMP,
430     CODE_RELATIVE,
431     OTHER
432   };
433 
data()434   int data() const { return data_; }
type()435   Type type() const { return TypeField::decode(data_); }
next(Label * L)436   void next(Label* L) const {
437     int n = NextField::decode(data_);
438     n > 0 ? L->link_to(n) : L->Unuse();
439   }
link_to(Label * L)440   void link_to(Label* L) { init(L, type()); }
441 
Displacement(int data)442   explicit Displacement(int data) { data_ = data; }
443 
Displacement(Label * L,Type type)444   Displacement(Label* L, Type type) { init(L, type); }
445 
print()446   void print() {
447     PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
448                        NextField::decode(data_));
449   }
450 
451  private:
452   int data_;
453 
454   class TypeField: public BitField<Type, 0, 2> {};
455   class NextField: public BitField<int,  2, 32-2> {};
456 
457   void init(Label* L, Type type);
458 };
459 
460 
461 class Assembler : public AssemblerBase {
462  private:
463   // We check before assembling an instruction that there is sufficient
464   // space to write an instruction and its relocation information.
465   // The relocation writer's position must be kGap bytes above the end of
466   // the generated instructions. This leaves enough space for the
467   // longest possible ia32 instruction, 15 bytes, and the longest possible
468   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
469   // (There is a 15 byte limit on ia32 instruction length that rules out some
470   // otherwise valid instructions.)
471   // This allows for a single, fast space check per instruction.
472   static const int kGap = 32;
473 
474  public:
475   // Create an assembler. Instructions and relocation information are emitted
476   // into a buffer, with the instructions starting from the beginning and the
477   // relocation information starting from the end of the buffer. See CodeDesc
478   // for a detailed comment on the layout (globals.h).
479   //
480   // If the provided buffer is NULL, the assembler allocates and grows its own
481   // buffer, and buffer_size determines the initial buffer size. The buffer is
482   // owned by the assembler and deallocated upon destruction of the assembler.
483   //
484   // If the provided buffer is not NULL, the assembler uses the provided buffer
485   // for code generation and assumes its size to be buffer_size. If the buffer
486   // is too small, a fatal error occurs. No deallocation of the buffer is done
487   // upon destruction of the assembler.
488   // TODO(vitalyr): the assembler does not need an isolate.
489   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()490   virtual ~Assembler() { }
491 
492   // GetCode emits any pending (non-emitted) code and fills the descriptor
493   // desc. GetCode() is idempotent; it returns the same result if no other
494   // Assembler functions are invoked in between GetCode() calls.
495   void GetCode(CodeDesc* desc);
496 
497   // Read/Modify the code target in the branch/call instruction at pc.
498   inline static Address target_address_at(Address pc,
499                                           ConstantPoolArray* constant_pool);
500   inline static void set_target_address_at(Address pc,
501                                            ConstantPoolArray* constant_pool,
502                                            Address target,
503                                            ICacheFlushMode icache_flush_mode =
504                                                FLUSH_ICACHE_IF_NEEDED);
target_address_at(Address pc,Code * code)505   static inline Address target_address_at(Address pc, Code* code) {
506     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
507     return target_address_at(pc, constant_pool);
508   }
509   static inline void set_target_address_at(Address pc,
510                                            Code* code,
511                                            Address target,
512                                            ICacheFlushMode icache_flush_mode =
513                                                FLUSH_ICACHE_IF_NEEDED) {
514     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
515     set_target_address_at(pc, constant_pool, target);
516   }
517 
518   // Return the code target address at a call site from the return address
519   // of that call in the instruction stream.
520   inline static Address target_address_from_return_address(Address pc);
521 
522   // Return the code target address of the patch debug break slot
523   inline static Address break_address_from_return_address(Address pc);
524 
525   // This sets the branch destination (which is in the instruction on x86).
526   // This is for calls and branches within generated code.
deserialization_set_special_target_at(Address instruction_payload,Code * code,Address target)527   inline static void deserialization_set_special_target_at(
528       Address instruction_payload, Code* code, Address target) {
529     set_target_address_at(instruction_payload, code, target);
530   }
531 
532   static const int kSpecialTargetSize = kPointerSize;
533 
534   // Distance between the address of the code target in the call instruction
535   // and the return address
536   static const int kCallTargetAddressOffset = kPointerSize;
537   // Distance between start of patched return sequence and the emitted address
538   // to jump to.
539   static const int kPatchReturnSequenceAddressOffset = 1;  // JMP imm32.
540 
541   // Distance between start of patched debug break slot and the emitted address
542   // to jump to.
543   static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
544 
545   static const int kCallInstructionLength = 5;
546   static const int kPatchDebugBreakSlotReturnOffset = kPointerSize;
547   static const int kJSReturnSequenceLength = 6;
548 
549   // The debug break slot must be able to contain a call instruction.
550   static const int kDebugBreakSlotLength = kCallInstructionLength;
551 
552   // One byte opcode for test al, 0xXX.
553   static const byte kTestAlByte = 0xA8;
554   // One byte opcode for nop.
555   static const byte kNopByte = 0x90;
556 
557   // One byte opcode for a short unconditional jump.
558   static const byte kJmpShortOpcode = 0xEB;
559   // One byte prefix for a short conditional jump.
560   static const byte kJccShortPrefix = 0x70;
561   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
562   static const byte kJcShortOpcode = kJccShortPrefix | carry;
563   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
564   static const byte kJzShortOpcode = kJccShortPrefix | zero;
565 
566 
567   // ---------------------------------------------------------------------------
568   // Code generation
569   //
570   // - function names correspond one-to-one to ia32 instruction mnemonics
571   // - unless specified otherwise, instructions operate on 32bit operands
572   // - instructions on 8bit (byte) operands/registers have a trailing '_b'
573   // - instructions on 16bit (word) operands/registers have a trailing '_w'
574   // - naming conflicts with C++ keywords are resolved via a trailing '_'
575 
576   // NOTE ON INTERFACE: Currently, the interface is not very consistent
577   // in the sense that some operations (e.g. mov()) can be called in more
578   // the one way to generate the same instruction: The Register argument
579   // can in some cases be replaced with an Operand(Register) argument.
580   // This should be cleaned up and made more orthogonal. The questions
581   // is: should we always use Operands instead of Registers where an
582   // Operand is possible, or should we have a Register (overloaded) form
583   // instead? We must be careful to make sure that the selected instruction
584   // is obvious from the parameters to avoid hard-to-find code generation
585   // bugs.
586 
587   // Insert the smallest number of nop instructions
588   // possible to align the pc offset to a multiple
589   // of m. m must be a power of 2.
590   void Align(int m);
591   void Nop(int bytes = 1);
592   // Aligns code to something that's optimal for a jump target for the platform.
593   void CodeTargetAlign();
594 
595   // Stack
596   void pushad();
597   void popad();
598 
599   void pushfd();
600   void popfd();
601 
602   void push(const Immediate& x);
603   void push_imm32(int32_t imm32);
604   void push(Register src);
605   void push(const Operand& src);
606 
607   void pop(Register dst);
608   void pop(const Operand& dst);
609 
610   void enter(const Immediate& size);
611   void leave();
612 
613   // Moves
mov_b(Register dst,Register src)614   void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
615   void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)616   void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
617   void mov_b(const Operand& dst, int8_t imm8);
618   void mov_b(const Operand& dst, Register src);
619 
620   void mov_w(Register dst, const Operand& src);
621   void mov_w(const Operand& dst, Register src);
622   void mov_w(const Operand& dst, int16_t imm16);
623 
624   void mov(Register dst, int32_t imm32);
625   void mov(Register dst, const Immediate& x);
626   void mov(Register dst, Handle<Object> handle);
627   void mov(Register dst, const Operand& src);
628   void mov(Register dst, Register src);
629   void mov(const Operand& dst, const Immediate& x);
630   void mov(const Operand& dst, Handle<Object> handle);
631   void mov(const Operand& dst, Register src);
632 
movsx_b(Register dst,Register src)633   void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
634   void movsx_b(Register dst, const Operand& src);
635 
movsx_w(Register dst,Register src)636   void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
637   void movsx_w(Register dst, const Operand& src);
638 
movzx_b(Register dst,Register src)639   void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
640   void movzx_b(Register dst, const Operand& src);
641 
movzx_w(Register dst,Register src)642   void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
643   void movzx_w(Register dst, const Operand& src);
644 
645   // Conditional moves
cmov(Condition cc,Register dst,Register src)646   void cmov(Condition cc, Register dst, Register src) {
647     cmov(cc, dst, Operand(src));
648   }
649   void cmov(Condition cc, Register dst, const Operand& src);
650 
651   // Flag management.
652   void cld();
653 
654   // Repetitive string instructions.
655   void rep_movs();
656   void rep_stos();
657   void stos();
658 
659   // Exchange
660   void xchg(Register dst, Register src);
661   void xchg(Register dst, const Operand& src);
662 
663   // Arithmetics
664   void adc(Register dst, int32_t imm32);
665   void adc(Register dst, const Operand& src);
666 
add(Register dst,Register src)667   void add(Register dst, Register src) { add(dst, Operand(src)); }
668   void add(Register dst, const Operand& src);
669   void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)670   void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
671   void add(const Operand& dst, const Immediate& x);
672 
673   void and_(Register dst, int32_t imm32);
674   void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)675   void and_(Register dst, Register src) { and_(dst, Operand(src)); }
676   void and_(Register dst, const Operand& src);
677   void and_(const Operand& dst, Register src);
678   void and_(const Operand& dst, const Immediate& x);
679 
cmpb(Register reg,int8_t imm8)680   void cmpb(Register reg, int8_t imm8) { cmpb(Operand(reg), imm8); }
681   void cmpb(const Operand& op, int8_t imm8);
682   void cmpb(Register reg, const Operand& op);
683   void cmpb(const Operand& op, Register reg);
684   void cmpb_al(const Operand& op);
685   void cmpw_ax(const Operand& op);
686   void cmpw(const Operand& op, Immediate imm16);
687   void cmp(Register reg, int32_t imm32);
688   void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)689   void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
690   void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)691   void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
692   void cmp(const Operand& op, const Immediate& imm);
693   void cmp(const Operand& op, Handle<Object> handle);
694 
695   void dec_b(Register dst);
696   void dec_b(const Operand& dst);
697 
698   void dec(Register dst);
699   void dec(const Operand& dst);
700 
701   void cdq();
702 
idiv(Register src)703   void idiv(Register src) { idiv(Operand(src)); }
704   void idiv(const Operand& src);
div(Register src)705   void div(Register src) { div(Operand(src)); }
706   void div(const Operand& src);
707 
708   // Signed multiply instructions.
709   void imul(Register src);                               // edx:eax = eax * src.
imul(Register dst,Register src)710   void imul(Register dst, Register src) { imul(dst, Operand(src)); }
711   void imul(Register dst, const Operand& src);           // dst = dst * src.
712   void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
713   void imul(Register dst, const Operand& src, int32_t imm32);
714 
715   void inc(Register dst);
716   void inc(const Operand& dst);
717 
718   void lea(Register dst, const Operand& src);
719 
720   // Unsigned multiply instruction.
721   void mul(Register src);                                // edx:eax = eax * reg.
722 
723   void neg(Register dst);
724   void neg(const Operand& dst);
725 
726   void not_(Register dst);
727   void not_(const Operand& dst);
728 
729   void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)730   void or_(Register dst, Register src) { or_(dst, Operand(src)); }
731   void or_(Register dst, const Operand& src);
732   void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)733   void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
734   void or_(const Operand& dst, const Immediate& x);
735 
736   void rcl(Register dst, uint8_t imm8);
737   void rcr(Register dst, uint8_t imm8);
738   void ror(Register dst, uint8_t imm8);
739   void ror_cl(Register dst);
740 
sar(Register dst,uint8_t imm8)741   void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
742   void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)743   void sar_cl(Register dst) { sar_cl(Operand(dst)); }
744   void sar_cl(const Operand& dst);
745 
746   void sbb(Register dst, const Operand& src);
747 
shld(Register dst,Register src)748   void shld(Register dst, Register src) { shld(dst, Operand(src)); }
749   void shld(Register dst, const Operand& src);
750 
shl(Register dst,uint8_t imm8)751   void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
752   void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)753   void shl_cl(Register dst) { shl_cl(Operand(dst)); }
754   void shl_cl(const Operand& dst);
755 
shrd(Register dst,Register src)756   void shrd(Register dst, Register src) { shrd(dst, Operand(src)); }
757   void shrd(Register dst, const Operand& src);
758 
shr(Register dst,uint8_t imm8)759   void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
760   void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)761   void shr_cl(Register dst) { shr_cl(Operand(dst)); }
762   void shr_cl(const Operand& dst);
763 
sub(Register dst,const Immediate & imm)764   void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
765   void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)766   void sub(Register dst, Register src) { sub(dst, Operand(src)); }
767   void sub(Register dst, const Operand& src);
768   void sub(const Operand& dst, Register src);
769 
770   void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)771   void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
772   void test(Register reg, const Operand& op);
773   void test_b(Register reg, const Operand& op);
774   void test(const Operand& op, const Immediate& imm);
775   void test_b(Register reg, uint8_t imm8);
776   void test_b(const Operand& op, uint8_t imm8);
777 
778   void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)779   void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
780   void xor_(Register dst, const Operand& src);
781   void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)782   void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
783   void xor_(const Operand& dst, const Immediate& x);
784 
785   // Bit operations.
786   void bt(const Operand& dst, Register src);
bts(Register dst,Register src)787   void bts(Register dst, Register src) { bts(Operand(dst), src); }
788   void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)789   void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
790   void bsr(Register dst, const Operand& src);
791 
792   // Miscellaneous
793   void hlt();
794   void int3();
795   void nop();
796   void ret(int imm16);
797 
798   // Label operations & relative jumps (PPUM Appendix D)
799   //
800   // Takes a branch opcode (cc) and a label (L) and generates
801   // either a backward branch or a forward branch and links it
802   // to the label fixup chain. Usage:
803   //
804   // Label L;    // unbound label
805   // j(cc, &L);  // forward branch to unbound label
806   // bind(&L);   // bind label to the current pc
807   // j(cc, &L);  // backward branch to bound label
808   // bind(&L);   // illegal: a label may be bound only once
809   //
810   // Note: The same Label can be used for forward and backward branches
811   // but it may be bound only once.
812 
813   void bind(Label* L);  // binds an unbound label L to the current code position
814 
815   // Calls
816   void call(Label* L);
817   void call(byte* entry, RelocInfo::Mode rmode);
818   int CallSize(const Operand& adr);
call(Register reg)819   void call(Register reg) { call(Operand(reg)); }
820   void call(const Operand& adr);
821   int CallSize(Handle<Code> code, RelocInfo::Mode mode);
822   void call(Handle<Code> code,
823             RelocInfo::Mode rmode,
824             TypeFeedbackId id = TypeFeedbackId::None());
825 
826   // Jumps
827   // unconditional jump to L
828   void jmp(Label* L, Label::Distance distance = Label::kFar);
829   void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)830   void jmp(Register reg) { jmp(Operand(reg)); }
831   void jmp(const Operand& adr);
832   void jmp(Handle<Code> code, RelocInfo::Mode rmode);
833 
834   // Conditional jumps
835   void j(Condition cc,
836          Label* L,
837          Label::Distance distance = Label::kFar);
838   void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
839   void j(Condition cc, Handle<Code> code);
840 
841   // Floating-point operations
842   void fld(int i);
843   void fstp(int i);
844 
845   void fld1();
846   void fldz();
847   void fldpi();
848   void fldln2();
849 
850   void fld_s(const Operand& adr);
851   void fld_d(const Operand& adr);
852 
853   void fstp_s(const Operand& adr);
854   void fst_s(const Operand& adr);
855   void fstp_d(const Operand& adr);
856   void fst_d(const Operand& adr);
857 
858   void fild_s(const Operand& adr);
859   void fild_d(const Operand& adr);
860 
861   void fist_s(const Operand& adr);
862 
863   void fistp_s(const Operand& adr);
864   void fistp_d(const Operand& adr);
865 
866   // The fisttp instructions require SSE3.
867   void fisttp_s(const Operand& adr);
868   void fisttp_d(const Operand& adr);
869 
870   void fabs();
871   void fchs();
872   void fcos();
873   void fsin();
874   void fptan();
875   void fyl2x();
876   void f2xm1();
877   void fscale();
878   void fninit();
879 
880   void fadd(int i);
881   void fadd_i(int i);
882   void fsub(int i);
883   void fsub_i(int i);
884   void fmul(int i);
885   void fmul_i(int i);
886   void fdiv(int i);
887   void fdiv_i(int i);
888 
889   void fisub_s(const Operand& adr);
890 
891   void faddp(int i = 1);
892   void fsubp(int i = 1);
893   void fsubrp(int i = 1);
894   void fmulp(int i = 1);
895   void fdivp(int i = 1);
896   void fprem();
897   void fprem1();
898 
899   void fxch(int i = 1);
900   void fincstp();
901   void ffree(int i = 0);
902 
903   void ftst();
904   void fucomp(int i);
905   void fucompp();
906   void fucomi(int i);
907   void fucomip();
908   void fcompp();
909   void fnstsw_ax();
910   void fwait();
911   void fnclex();
912 
913   void frndint();
914 
915   void sahf();
916   void setcc(Condition cc, Register reg);
917 
918   void cpuid();
919 
920   // SSE instructions
921   void movaps(XMMRegister dst, XMMRegister src);
922   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
923 
924   void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)925   void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
926   void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)927   void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
928   void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)929   void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
930 
931   void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)932   void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
933   void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)934   void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
935   void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)936   void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
937   void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)938   void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
939 
940   // SSE2 instructions
941   void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)942   void cvttss2si(Register dst, XMMRegister src) {
943     cvttss2si(dst, Operand(src));
944   }
945   void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)946   void cvttsd2si(Register dst, XMMRegister src) {
947     cvttsd2si(dst, Operand(src));
948   }
949   void cvtsd2si(Register dst, XMMRegister src);
950 
cvtsi2sd(XMMRegister dst,Register src)951   void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
952   void cvtsi2sd(XMMRegister dst, const Operand& src);
953   void cvtss2sd(XMMRegister dst, XMMRegister src);
954   void cvtsd2ss(XMMRegister dst, XMMRegister src);
955 
956   void addsd(XMMRegister dst, XMMRegister src);
957   void addsd(XMMRegister dst, const Operand& src);
958   void subsd(XMMRegister dst, XMMRegister src);
959   void subsd(XMMRegister dst, const Operand& src);
960   void mulsd(XMMRegister dst, XMMRegister src);
961   void mulsd(XMMRegister dst, const Operand& src);
962   void divsd(XMMRegister dst, XMMRegister src);
963   void xorpd(XMMRegister dst, XMMRegister src);
964   void sqrtsd(XMMRegister dst, XMMRegister src);
965   void sqrtsd(XMMRegister dst, const Operand& src);
966 
967   void andpd(XMMRegister dst, XMMRegister src);
968   void orpd(XMMRegister dst, XMMRegister src);
969 
ucomisd(XMMRegister dst,XMMRegister src)970   void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
971   void ucomisd(XMMRegister dst, const Operand& src);
972 
973   enum RoundingMode {
974     kRoundToNearest = 0x0,
975     kRoundDown      = 0x1,
976     kRoundUp        = 0x2,
977     kRoundToZero    = 0x3
978   };
979 
980   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
981 
982   void movmskpd(Register dst, XMMRegister src);
983   void movmskps(Register dst, XMMRegister src);
984 
985   void cmpltsd(XMMRegister dst, XMMRegister src);
986   void pcmpeqd(XMMRegister dst, XMMRegister src);
987 
988   void movdqa(XMMRegister dst, const Operand& src);
989   void movdqa(const Operand& dst, XMMRegister src);
990   void movdqu(XMMRegister dst, const Operand& src);
991   void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)992   void movdq(bool aligned, XMMRegister dst, const Operand& src) {
993     if (aligned) {
994       movdqa(dst, src);
995     } else {
996       movdqu(dst, src);
997     }
998   }
999 
movd(XMMRegister dst,Register src)1000   void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1001   void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1002   void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1003   void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1004   void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1005   void movsd(XMMRegister dst, const Operand& src);
1006   void movsd(const Operand& dst, XMMRegister src);
1007 
1008 
1009   void movss(XMMRegister dst, const Operand& src);
1010   void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1011   void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1012   void extractps(Register dst, XMMRegister src, byte imm8);
1013 
1014   void pand(XMMRegister dst, XMMRegister src);
1015   void pxor(XMMRegister dst, XMMRegister src);
1016   void por(XMMRegister dst, XMMRegister src);
1017   void ptest(XMMRegister dst, XMMRegister src);
1018 
1019   void psllq(XMMRegister reg, int8_t shift);
1020   void psllq(XMMRegister dst, XMMRegister src);
1021   void psrlq(XMMRegister reg, int8_t shift);
1022   void psrlq(XMMRegister dst, XMMRegister src);
1023   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1024   void pextrd(Register dst, XMMRegister src, int8_t offset) {
1025     pextrd(Operand(dst), src, offset);
1026   }
1027   void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1028   void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1029     pinsrd(dst, Operand(src), offset);
1030   }
1031   void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1032 
1033   // Parallel XMM operations.
1034   void movntdqa(XMMRegister dst, const Operand& src);
1035   void movntdq(const Operand& dst, XMMRegister src);
1036   // Prefetch src position into cache level.
1037   // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1038   // non-temporal
1039   void prefetch(const Operand& src, int level);
1040   // TODO(lrn): Need SFENCE for movnt?
1041 
1042   // Debugging
1043   void Print();
1044 
1045   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1046   int SizeOfCodeGeneratedSince(Label* label) {
1047     return pc_offset() - label->pos();
1048   }
1049 
1050   // Mark address of the ExitJSFrame code.
1051   void RecordJSReturn();
1052 
1053   // Mark address of a debug break slot.
1054   void RecordDebugBreakSlot();
1055 
1056   // Record a comment relocation entry that can be used by a disassembler.
1057   // Use --code-comments to enable, or provide "force = true" flag to always
1058   // write a comment.
1059   void RecordComment(const char* msg, bool force = false);
1060 
1061   // Writes a single byte or word of data in the code stream.  Used for
1062   // inline tables, e.g., jump-tables.
1063   void db(uint8_t data);
1064   void dd(uint32_t data);
1065 
1066   // Check if there is less than kGap bytes available in the buffer.
1067   // If this is the case, we need to grow the buffer before emitting
1068   // an instruction or relocation information.
buffer_overflow()1069   inline bool buffer_overflow() const {
1070     return pc_ >= reloc_info_writer.pos() - kGap;
1071   }
1072 
1073   // Get the number of bytes available in the buffer.
available_space()1074   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1075 
1076   static bool IsNop(Address addr);
1077 
positions_recorder()1078   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
1079 
relocation_writer_size()1080   int relocation_writer_size() {
1081     return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1082   }
1083 
1084   // Avoid overflows for displacements etc.
1085   static const int kMaximalBufferSize = 512*MB;
1086 
byte_at(int pos)1087   byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1088   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1089 
1090   // Allocate a constant pool of the correct size for the generated code.
1091   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
1092 
1093   // Generate the constant pool for the generated code.
1094   void PopulateConstantPool(ConstantPoolArray* constant_pool);
1095 
1096  protected:
1097   void emit_sse_operand(XMMRegister reg, const Operand& adr);
1098   void emit_sse_operand(XMMRegister dst, XMMRegister src);
1099   void emit_sse_operand(Register dst, XMMRegister src);
1100   void emit_sse_operand(XMMRegister dst, Register src);
1101 
addr_at(int pos)1102   byte* addr_at(int pos) { return buffer_ + pos; }
1103 
1104 
1105  private:
long_at(int pos)1106   uint32_t long_at(int pos)  {
1107     return *reinterpret_cast<uint32_t*>(addr_at(pos));
1108   }
long_at_put(int pos,uint32_t x)1109   void long_at_put(int pos, uint32_t x)  {
1110     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1111   }
1112 
1113   // code emission
1114   void GrowBuffer();
1115   inline void emit(uint32_t x);
1116   inline void emit(Handle<Object> handle);
1117   inline void emit(uint32_t x,
1118                    RelocInfo::Mode rmode,
1119                    TypeFeedbackId id = TypeFeedbackId::None());
1120   inline void emit(Handle<Code> code,
1121                    RelocInfo::Mode rmode,
1122                    TypeFeedbackId id = TypeFeedbackId::None());
1123   inline void emit(const Immediate& x);
1124   inline void emit_w(const Immediate& x);
1125 
1126   // Emit the code-object-relative offset of the label's position
1127   inline void emit_code_relative_offset(Label* label);
1128 
1129   // instruction generation
1130   void emit_arith_b(int op1, int op2, Register dst, int imm8);
1131 
1132   // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1133   // with a given destination expression and an immediate operand.  It attempts
1134   // to use the shortest encoding possible.
1135   // sel specifies the /n in the modrm byte (see the Intel PRM).
1136   void emit_arith(int sel, Operand dst, const Immediate& x);
1137 
1138   void emit_operand(Register reg, const Operand& adr);
1139 
1140   void emit_farith(int b1, int b2, int i);
1141 
1142   // labels
1143   void print(Label* L);
1144   void bind_to(Label* L, int pos);
1145 
1146   // displacements
1147   inline Displacement disp_at(Label* L);
1148   inline void disp_at_put(Label* L, Displacement disp);
1149   inline void emit_disp(Label* L, Displacement::Type type);
1150   inline void emit_near_disp(Label* L);
1151 
1152   // record reloc info for current pc_
1153   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1154 
1155   friend class CodePatcher;
1156   friend class EnsureSpace;
1157 
1158   // code generation
1159   RelocInfoWriter reloc_info_writer;
1160 
1161   PositionsRecorder positions_recorder_;
1162   friend class PositionsRecorder;
1163 };
1164 
1165 
1166 // Helper class that ensures that there is enough space for generating
1167 // instructions and relocation information.  The constructor makes
1168 // sure that there is enough space and (in debug mode) the destructor
1169 // checks that we did not generate too much.
1170 class EnsureSpace BASE_EMBEDDED {
1171  public:
EnsureSpace(Assembler * assembler)1172   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1173     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1174 #ifdef DEBUG
1175     space_before_ = assembler_->available_space();
1176 #endif
1177   }
1178 
1179 #ifdef DEBUG
~EnsureSpace()1180   ~EnsureSpace() {
1181     int bytes_generated = space_before_ - assembler_->available_space();
1182     DCHECK(bytes_generated < assembler_->kGap);
1183   }
1184 #endif
1185 
1186  private:
1187   Assembler* assembler_;
1188 #ifdef DEBUG
1189   int space_before_;
1190 #endif
1191 };
1192 
1193 } }  // namespace v8::internal
1194 
1195 #endif  // V8_IA32_ASSEMBLER_IA32_H_
1196