1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5
6 #include "src/v8.h"
7
8 #if V8_TARGET_ARCH_MIPS
9
10 #include "src/codegen.h"
11 #include "src/ic/ic.h"
12 #include "src/ic/ic-compiler.h"
13 #include "src/ic/stub-cache.h"
14
15 namespace v8 {
16 namespace internal {
17
18
19 // ----------------------------------------------------------------------------
20 // Static IC stub generators.
21 //
22
23 #define __ ACCESS_MASM(masm)
24
25
GenerateGlobalInstanceTypeCheck(MacroAssembler * masm,Register type,Label * global_object)26 static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
27 Label* global_object) {
28 // Register usage:
29 // type: holds the receiver instance type on entry.
30 __ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
31 __ Branch(global_object, eq, type, Operand(JS_BUILTINS_OBJECT_TYPE));
32 __ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
33 }
34
35
36 // Helper function used from LoadIC GenerateNormal.
37 //
38 // elements: Property dictionary. It is not clobbered if a jump to the miss
39 // label is done.
40 // name: Property name. It is not clobbered if a jump to the miss label is
41 // done
42 // result: Register for the result. It is only updated if a jump to the miss
43 // label is not done. Can be the same as elements or name clobbering
44 // one of these in the case of not jumping to the miss label.
45 // The two scratch registers need to be different from elements, name and
46 // result.
47 // The generated code assumes that the receiver has slow properties,
48 // is not a global object and does not have interceptors.
49 // The address returned from GenerateStringDictionaryProbes() in scratch2
50 // is used.
GenerateDictionaryLoad(MacroAssembler * masm,Label * miss,Register elements,Register name,Register result,Register scratch1,Register scratch2)51 static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
52 Register elements, Register name,
53 Register result, Register scratch1,
54 Register scratch2) {
55 // Main use of the scratch registers.
56 // scratch1: Used as temporary and to hold the capacity of the property
57 // dictionary.
58 // scratch2: Used as temporary.
59 Label done;
60
61 // Probe the dictionary.
62 NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
63 name, scratch1, scratch2);
64
65 // If probing finds an entry check that the value is a normal
66 // property.
67 __ bind(&done); // scratch2 == elements + 4 * index.
68 const int kElementsStartOffset =
69 NameDictionary::kHeaderSize +
70 NameDictionary::kElementsStartIndex * kPointerSize;
71 const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
72 __ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
73 __ And(at, scratch1,
74 Operand(PropertyDetails::TypeField::kMask << kSmiTagSize));
75 __ Branch(miss, ne, at, Operand(zero_reg));
76
77 // Get the value at the masked, scaled index and return.
78 __ lw(result,
79 FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
80 }
81
82
83 // Helper function used from StoreIC::GenerateNormal.
84 //
85 // elements: Property dictionary. It is not clobbered if a jump to the miss
86 // label is done.
87 // name: Property name. It is not clobbered if a jump to the miss label is
88 // done
89 // value: The value to store.
90 // The two scratch registers need to be different from elements, name and
91 // result.
92 // The generated code assumes that the receiver has slow properties,
93 // is not a global object and does not have interceptors.
94 // The address returned from GenerateStringDictionaryProbes() in scratch2
95 // is used.
GenerateDictionaryStore(MacroAssembler * masm,Label * miss,Register elements,Register name,Register value,Register scratch1,Register scratch2)96 static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
97 Register elements, Register name,
98 Register value, Register scratch1,
99 Register scratch2) {
100 // Main use of the scratch registers.
101 // scratch1: Used as temporary and to hold the capacity of the property
102 // dictionary.
103 // scratch2: Used as temporary.
104 Label done;
105
106 // Probe the dictionary.
107 NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
108 name, scratch1, scratch2);
109
110 // If probing finds an entry in the dictionary check that the value
111 // is a normal property that is not read only.
112 __ bind(&done); // scratch2 == elements + 4 * index.
113 const int kElementsStartOffset =
114 NameDictionary::kHeaderSize +
115 NameDictionary::kElementsStartIndex * kPointerSize;
116 const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
117 const int kTypeAndReadOnlyMask =
118 (PropertyDetails::TypeField::kMask |
119 PropertyDetails::AttributesField::encode(READ_ONLY))
120 << kSmiTagSize;
121 __ lw(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
122 __ And(at, scratch1, Operand(kTypeAndReadOnlyMask));
123 __ Branch(miss, ne, at, Operand(zero_reg));
124
125 // Store the value at the masked, scaled index and return.
126 const int kValueOffset = kElementsStartOffset + kPointerSize;
127 __ Addu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
128 __ sw(value, MemOperand(scratch2));
129
130 // Update the write barrier. Make sure not to clobber the value.
131 __ mov(scratch1, value);
132 __ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved,
133 kDontSaveFPRegs);
134 }
135
136
137 // Checks the receiver for special cases (value type, slow case bits).
138 // Falls through for regular JS object.
GenerateKeyedLoadReceiverCheck(MacroAssembler * masm,Register receiver,Register map,Register scratch,int interceptor_bit,Label * slow)139 static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
140 Register receiver, Register map,
141 Register scratch,
142 int interceptor_bit, Label* slow) {
143 // Check that the object isn't a smi.
144 __ JumpIfSmi(receiver, slow);
145 // Get the map of the receiver.
146 __ lw(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
147 // Check bit field.
148 __ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
149 __ And(at, scratch,
150 Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
151 __ Branch(slow, ne, at, Operand(zero_reg));
152 // Check that the object is some kind of JS object EXCEPT JS Value type.
153 // In the case that the object is a value-wrapper object,
154 // we enter the runtime system to make sure that indexing into string
155 // objects work as intended.
156 DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
157 __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
158 __ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
159 }
160
161
162 // Loads an indexed element from a fast case array.
163 // If not_fast_array is NULL, doesn't perform the elements map check.
GenerateFastArrayLoad(MacroAssembler * masm,Register receiver,Register key,Register elements,Register scratch1,Register scratch2,Register result,Label * not_fast_array,Label * out_of_range)164 static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
165 Register key, Register elements,
166 Register scratch1, Register scratch2,
167 Register result, Label* not_fast_array,
168 Label* out_of_range) {
169 // Register use:
170 //
171 // receiver - holds the receiver on entry.
172 // Unchanged unless 'result' is the same register.
173 //
174 // key - holds the smi key on entry.
175 // Unchanged unless 'result' is the same register.
176 //
177 // elements - holds the elements of the receiver on exit.
178 //
179 // result - holds the result on exit if the load succeeded.
180 // Allowed to be the the same as 'receiver' or 'key'.
181 // Unchanged on bailout so 'receiver' and 'key' can be safely
182 // used by further computation.
183 //
184 // Scratch registers:
185 //
186 // scratch1 - used to hold elements map and elements length.
187 // Holds the elements map if not_fast_array branch is taken.
188 //
189 // scratch2 - used to hold the loaded value.
190
191 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
192 if (not_fast_array != NULL) {
193 // Check that the object is in fast mode (not dictionary).
194 __ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
195 __ LoadRoot(at, Heap::kFixedArrayMapRootIndex);
196 __ Branch(not_fast_array, ne, scratch1, Operand(at));
197 } else {
198 __ AssertFastElements(elements);
199 }
200
201 // Check that the key (index) is within bounds.
202 __ lw(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
203 __ Branch(out_of_range, hs, key, Operand(scratch1));
204
205 // Fast case: Do the load.
206 __ Addu(scratch1, elements,
207 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
208 // The key is a smi.
209 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
210 __ sll(at, key, kPointerSizeLog2 - kSmiTagSize);
211 __ addu(at, at, scratch1);
212 __ lw(scratch2, MemOperand(at));
213
214 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
215 // In case the loaded value is the_hole we have to consult GetProperty
216 // to ensure the prototype chain is searched.
217 __ Branch(out_of_range, eq, scratch2, Operand(at));
218 __ mov(result, scratch2);
219 }
220
221
222 // Checks whether a key is an array index string or a unique name.
223 // Falls through if a key is a unique name.
GenerateKeyNameCheck(MacroAssembler * masm,Register key,Register map,Register hash,Label * index_string,Label * not_unique)224 static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
225 Register map, Register hash,
226 Label* index_string, Label* not_unique) {
227 // The key is not a smi.
228 Label unique;
229 // Is it a name?
230 __ GetObjectType(key, map, hash);
231 __ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
232 STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
233 __ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));
234
235 // Is the string an array index, with cached numeric value?
236 __ lw(hash, FieldMemOperand(key, Name::kHashFieldOffset));
237 __ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
238 __ Branch(index_string, eq, at, Operand(zero_reg));
239
240 // Is the string internalized? We know it's a string, so a single
241 // bit test is enough.
242 // map: key map
243 __ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
244 STATIC_ASSERT(kInternalizedTag == 0);
245 __ And(at, hash, Operand(kIsNotInternalizedMask));
246 __ Branch(not_unique, ne, at, Operand(zero_reg));
247
248 __ bind(&unique);
249 }
250
251
GenerateNormal(MacroAssembler * masm)252 void LoadIC::GenerateNormal(MacroAssembler* masm) {
253 Register dictionary = a0;
254 DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
255 DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
256
257 Label slow;
258
259 __ lw(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
260 JSObject::kPropertiesOffset));
261 GenerateDictionaryLoad(masm, &slow, dictionary,
262 LoadDescriptor::NameRegister(), v0, a3, t0);
263 __ Ret();
264
265 // Dictionary load failed, go slow (but don't miss).
266 __ bind(&slow);
267 GenerateRuntimeGetProperty(masm);
268 }
269
270
271 // A register that isn't one of the parameters to the load ic.
LoadIC_TempRegister()272 static const Register LoadIC_TempRegister() { return a3; }
273
274
GenerateMiss(MacroAssembler * masm)275 void LoadIC::GenerateMiss(MacroAssembler* masm) {
276 // The return address is in ra.
277 Isolate* isolate = masm->isolate();
278
279 __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, t0);
280
281 __ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
282 __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
283
284 // Perform tail call to the entry.
285 ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
286 __ TailCallExternalReference(ref, 2, 1);
287 }
288
289
GenerateRuntimeGetProperty(MacroAssembler * masm)290 void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
291 // The return address is in ra.
292
293 __ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
294 __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
295
296 __ TailCallRuntime(Runtime::kGetProperty, 2, 1);
297 }
298
299
GenerateMappedArgumentsLookup(MacroAssembler * masm,Register object,Register key,Register scratch1,Register scratch2,Register scratch3,Label * unmapped_case,Label * slow_case)300 static MemOperand GenerateMappedArgumentsLookup(
301 MacroAssembler* masm, Register object, Register key, Register scratch1,
302 Register scratch2, Register scratch3, Label* unmapped_case,
303 Label* slow_case) {
304 Heap* heap = masm->isolate()->heap();
305
306 // Check that the receiver is a JSObject. Because of the map check
307 // later, we do not need to check for interceptors or whether it
308 // requires access checks.
309 __ JumpIfSmi(object, slow_case);
310 // Check that the object is some kind of JSObject.
311 __ GetObjectType(object, scratch1, scratch2);
312 __ Branch(slow_case, lt, scratch2, Operand(FIRST_JS_RECEIVER_TYPE));
313
314 // Check that the key is a positive smi.
315 __ And(scratch1, key, Operand(0x80000001));
316 __ Branch(slow_case, ne, scratch1, Operand(zero_reg));
317
318 // Load the elements into scratch1 and check its map.
319 Handle<Map> arguments_map(heap->sloppy_arguments_elements_map());
320 __ lw(scratch1, FieldMemOperand(object, JSObject::kElementsOffset));
321 __ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK);
322 // Check if element is in the range of mapped arguments. If not, jump
323 // to the unmapped lookup with the parameter map in scratch1.
324 __ lw(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
325 __ Subu(scratch2, scratch2, Operand(Smi::FromInt(2)));
326 __ Branch(unmapped_case, Ugreater_equal, key, Operand(scratch2));
327
328 // Load element index and check whether it is the hole.
329 const int kOffset =
330 FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
331
332 __ li(scratch3, Operand(kPointerSize >> 1));
333 __ Mul(scratch3, key, scratch3);
334 __ Addu(scratch3, scratch3, Operand(kOffset));
335
336 __ Addu(scratch2, scratch1, scratch3);
337 __ lw(scratch2, MemOperand(scratch2));
338 __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
339 __ Branch(unmapped_case, eq, scratch2, Operand(scratch3));
340
341 // Load value from context and return it. We can reuse scratch1 because
342 // we do not jump to the unmapped lookup (which requires the parameter
343 // map in scratch1).
344 __ lw(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
345 __ li(scratch3, Operand(kPointerSize >> 1));
346 __ Mul(scratch3, scratch2, scratch3);
347 __ Addu(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag));
348 __ Addu(scratch2, scratch1, scratch3);
349 return MemOperand(scratch2);
350 }
351
352
GenerateUnmappedArgumentsLookup(MacroAssembler * masm,Register key,Register parameter_map,Register scratch,Label * slow_case)353 static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
354 Register key,
355 Register parameter_map,
356 Register scratch,
357 Label* slow_case) {
358 // Element is in arguments backing store, which is referenced by the
359 // second element of the parameter_map. The parameter_map register
360 // must be loaded with the parameter map of the arguments object and is
361 // overwritten.
362 const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
363 Register backing_store = parameter_map;
364 __ lw(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
365 __ CheckMap(backing_store, scratch, Heap::kFixedArrayMapRootIndex, slow_case,
366 DONT_DO_SMI_CHECK);
367 __ lw(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
368 __ Branch(slow_case, Ugreater_equal, key, Operand(scratch));
369 __ li(scratch, Operand(kPointerSize >> 1));
370 __ Mul(scratch, key, scratch);
371 __ Addu(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
372 __ Addu(scratch, backing_store, scratch);
373 return MemOperand(scratch);
374 }
375
376
GenerateSloppyArguments(MacroAssembler * masm)377 void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) {
378 Register receiver = StoreDescriptor::ReceiverRegister();
379 Register key = StoreDescriptor::NameRegister();
380 Register value = StoreDescriptor::ValueRegister();
381 DCHECK(value.is(a0));
382
383 Label slow, notin;
384 // Store address is returned in register (of MemOperand) mapped_location.
385 MemOperand mapped_location = GenerateMappedArgumentsLookup(
386 masm, receiver, key, a3, t0, t1, ¬in, &slow);
387 __ sw(value, mapped_location);
388 __ mov(t5, value);
389 DCHECK_EQ(mapped_location.offset(), 0);
390 __ RecordWrite(a3, mapped_location.rm(), t5, kRAHasNotBeenSaved,
391 kDontSaveFPRegs);
392 __ Ret(USE_DELAY_SLOT);
393 __ mov(v0, value); // (In delay slot) return the value stored in v0.
394 __ bind(¬in);
395 // The unmapped lookup expects that the parameter map is in a3.
396 // Store address is returned in register (of MemOperand) unmapped_location.
397 MemOperand unmapped_location =
398 GenerateUnmappedArgumentsLookup(masm, key, a3, t0, &slow);
399 __ sw(value, unmapped_location);
400 __ mov(t5, value);
401 DCHECK_EQ(unmapped_location.offset(), 0);
402 __ RecordWrite(a3, unmapped_location.rm(), t5, kRAHasNotBeenSaved,
403 kDontSaveFPRegs);
404 __ Ret(USE_DELAY_SLOT);
405 __ mov(v0, a0); // (In delay slot) return the value stored in v0.
406 __ bind(&slow);
407 GenerateMiss(masm);
408 }
409
410
GenerateMiss(MacroAssembler * masm)411 void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
412 // The return address is in ra.
413 Isolate* isolate = masm->isolate();
414
415 __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a3, t0);
416
417 __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
418
419 // Perform tail call to the entry.
420 ExternalReference ref =
421 ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
422
423 __ TailCallExternalReference(ref, 2, 1);
424 }
425
426
GenerateRuntimeGetProperty(MacroAssembler * masm)427 void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
428 // The return address is in ra.
429
430 __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
431
432 __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
433 }
434
435
GenerateGeneric(MacroAssembler * masm)436 void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
437 // The return address is in ra.
438 Label slow, check_name, index_smi, index_name, property_array_property;
439 Label probe_dictionary, check_number_dictionary;
440
441 Register key = LoadDescriptor::NameRegister();
442 Register receiver = LoadDescriptor::ReceiverRegister();
443 DCHECK(key.is(a2));
444 DCHECK(receiver.is(a1));
445
446 Isolate* isolate = masm->isolate();
447
448 // Check that the key is a smi.
449 __ JumpIfNotSmi(key, &check_name);
450 __ bind(&index_smi);
451 // Now the key is known to be a smi. This place is also jumped to from below
452 // where a numeric string is converted to a smi.
453
454 GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
455 Map::kHasIndexedInterceptor, &slow);
456
457 // Check the receiver's map to see if it has fast elements.
458 __ CheckFastElements(a0, a3, &check_number_dictionary);
459
460 GenerateFastArrayLoad(masm, receiver, key, a0, a3, t0, v0, NULL, &slow);
461 __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, t0, a3);
462 __ Ret();
463
464 __ bind(&check_number_dictionary);
465 __ lw(t0, FieldMemOperand(receiver, JSObject::kElementsOffset));
466 __ lw(a3, FieldMemOperand(t0, JSObject::kMapOffset));
467
468 // Check whether the elements is a number dictionary.
469 // a3: elements map
470 // t0: elements
471 __ LoadRoot(at, Heap::kHashTableMapRootIndex);
472 __ Branch(&slow, ne, a3, Operand(at));
473 __ sra(a0, key, kSmiTagSize);
474 __ LoadFromNumberDictionary(&slow, t0, key, v0, a0, a3, t1);
475 __ Ret();
476
477 // Slow case, key and receiver still in a2 and a1.
478 __ bind(&slow);
479 __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, t0,
480 a3);
481 GenerateRuntimeGetProperty(masm);
482
483 __ bind(&check_name);
484 GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow);
485
486 GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
487 Map::kHasNamedInterceptor, &slow);
488
489
490 // If the receiver is a fast-case object, check the keyed lookup
491 // cache. Otherwise probe the dictionary.
492 __ lw(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
493 __ lw(t0, FieldMemOperand(a3, HeapObject::kMapOffset));
494 __ LoadRoot(at, Heap::kHashTableMapRootIndex);
495 __ Branch(&probe_dictionary, eq, t0, Operand(at));
496
497 // Load the map of the receiver, compute the keyed lookup cache hash
498 // based on 32 bits of the map pointer and the name hash.
499 __ lw(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
500 __ sra(a3, a0, KeyedLookupCache::kMapHashShift);
501 __ lw(t0, FieldMemOperand(key, Name::kHashFieldOffset));
502 __ sra(at, t0, Name::kHashShift);
503 __ xor_(a3, a3, at);
504 int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
505 __ And(a3, a3, Operand(mask));
506
507 // Load the key (consisting of map and unique name) from the cache and
508 // check for match.
509 Label load_in_object_property;
510 static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
511 Label hit_on_nth_entry[kEntriesPerBucket];
512 ExternalReference cache_keys =
513 ExternalReference::keyed_lookup_cache_keys(isolate);
514 __ li(t0, Operand(cache_keys));
515 __ sll(at, a3, kPointerSizeLog2 + 1);
516 __ addu(t0, t0, at);
517
518 for (int i = 0; i < kEntriesPerBucket - 1; i++) {
519 Label try_next_entry;
520 __ lw(t1, MemOperand(t0, kPointerSize * i * 2));
521 __ Branch(&try_next_entry, ne, a0, Operand(t1));
522 __ lw(t1, MemOperand(t0, kPointerSize * (i * 2 + 1)));
523 __ Branch(&hit_on_nth_entry[i], eq, key, Operand(t1));
524 __ bind(&try_next_entry);
525 }
526
527 __ lw(t1, MemOperand(t0, kPointerSize * (kEntriesPerBucket - 1) * 2));
528 __ Branch(&slow, ne, a0, Operand(t1));
529 __ lw(t1, MemOperand(t0, kPointerSize * ((kEntriesPerBucket - 1) * 2 + 1)));
530 __ Branch(&slow, ne, key, Operand(t1));
531
532 // Get field offset.
533 // a0 : receiver's map
534 // a3 : lookup cache index
535 ExternalReference cache_field_offsets =
536 ExternalReference::keyed_lookup_cache_field_offsets(isolate);
537
538 // Hit on nth entry.
539 for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
540 __ bind(&hit_on_nth_entry[i]);
541 __ li(t0, Operand(cache_field_offsets));
542 __ sll(at, a3, kPointerSizeLog2);
543 __ addu(at, t0, at);
544 __ lw(t1, MemOperand(at, kPointerSize * i));
545 __ lbu(t2, FieldMemOperand(a0, Map::kInObjectPropertiesOffset));
546 __ Subu(t1, t1, t2);
547 __ Branch(&property_array_property, ge, t1, Operand(zero_reg));
548 if (i != 0) {
549 __ Branch(&load_in_object_property);
550 }
551 }
552
553 // Load in-object property.
554 __ bind(&load_in_object_property);
555 __ lbu(t2, FieldMemOperand(a0, Map::kInstanceSizeOffset));
556 __ addu(t2, t2, t1); // Index from start of object.
557 __ Subu(receiver, receiver, Operand(kHeapObjectTag)); // Remove the heap tag.
558 __ sll(at, t2, kPointerSizeLog2);
559 __ addu(at, receiver, at);
560 __ lw(v0, MemOperand(at));
561 __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
562 t0, a3);
563 __ Ret();
564
565 // Load property array property.
566 __ bind(&property_array_property);
567 __ lw(receiver, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
568 __ Addu(receiver, receiver, FixedArray::kHeaderSize - kHeapObjectTag);
569 __ sll(v0, t1, kPointerSizeLog2);
570 __ Addu(v0, v0, receiver);
571 __ lw(v0, MemOperand(v0));
572 __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1,
573 t0, a3);
574 __ Ret();
575
576
577 // Do a quick inline probe of the receiver's dictionary, if it
578 // exists.
579 __ bind(&probe_dictionary);
580 // a3: elements
581 __ lw(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
582 __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
583 GenerateGlobalInstanceTypeCheck(masm, a0, &slow);
584 // Load the property to v0.
585 GenerateDictionaryLoad(masm, &slow, a3, key, v0, t1, t0);
586 __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, t0,
587 a3);
588 __ Ret();
589
590 __ bind(&index_name);
591 __ IndexFromHash(a3, key);
592 // Now jump to the place where smi keys are handled.
593 __ Branch(&index_smi);
594 }
595
596
GenerateString(MacroAssembler * masm)597 void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
598 // Return address is in ra.
599 Label miss;
600
601 Register receiver = LoadDescriptor::ReceiverRegister();
602 Register index = LoadDescriptor::NameRegister();
603 Register scratch = a3;
604 Register result = v0;
605 DCHECK(!scratch.is(receiver) && !scratch.is(index));
606
607 StringCharAtGenerator char_at_generator(receiver, index, scratch, result,
608 &miss, // When not a string.
609 &miss, // When not a number.
610 &miss, // When index out of range.
611 STRING_INDEX_IS_ARRAY_INDEX);
612 char_at_generator.GenerateFast(masm);
613 __ Ret();
614
615 StubRuntimeCallHelper call_helper;
616 char_at_generator.GenerateSlow(masm, call_helper);
617
618 __ bind(&miss);
619 GenerateMiss(masm);
620 }
621
622
KeyedStoreGenerateGenericHelper(MacroAssembler * masm,Label * fast_object,Label * fast_double,Label * slow,KeyedStoreCheckMap check_map,KeyedStoreIncrementLength increment_length,Register value,Register key,Register receiver,Register receiver_map,Register elements_map,Register elements)623 static void KeyedStoreGenerateGenericHelper(
624 MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
625 KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
626 Register value, Register key, Register receiver, Register receiver_map,
627 Register elements_map, Register elements) {
628 Label transition_smi_elements;
629 Label finish_object_store, non_double_value, transition_double_elements;
630 Label fast_double_without_map_check;
631
632 // Fast case: Do the store, could be either Object or double.
633 __ bind(fast_object);
634 Register scratch_value = t0;
635 Register address = t1;
636 if (check_map == kCheckMap) {
637 __ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
638 __ Branch(fast_double, ne, elements_map,
639 Operand(masm->isolate()->factory()->fixed_array_map()));
640 }
641
642 // HOLECHECK: guards "A[i] = V"
643 // We have to go to the runtime if the current value is the hole because
644 // there may be a callback on the element.
645 Label holecheck_passed1;
646 __ Addu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
647 __ sll(at, key, kPointerSizeLog2 - kSmiTagSize);
648 __ addu(address, address, at);
649 __ lw(scratch_value, MemOperand(address));
650 __ Branch(&holecheck_passed1, ne, scratch_value,
651 Operand(masm->isolate()->factory()->the_hole_value()));
652 __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
653 slow);
654
655 __ bind(&holecheck_passed1);
656
657 // Smi stores don't require further checks.
658 Label non_smi_value;
659 __ JumpIfNotSmi(value, &non_smi_value);
660
661 if (increment_length == kIncrementLength) {
662 // Add 1 to receiver->length.
663 __ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
664 __ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
665 }
666 // It's irrelevant whether array is smi-only or not when writing a smi.
667 __ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
668 __ sll(scratch_value, key, kPointerSizeLog2 - kSmiTagSize);
669 __ Addu(address, address, scratch_value);
670 __ sw(value, MemOperand(address));
671 __ Ret();
672
673 __ bind(&non_smi_value);
674 // Escape to elements kind transition case.
675 __ CheckFastObjectElements(receiver_map, scratch_value,
676 &transition_smi_elements);
677
678 // Fast elements array, store the value to the elements backing store.
679 __ bind(&finish_object_store);
680 if (increment_length == kIncrementLength) {
681 // Add 1 to receiver->length.
682 __ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
683 __ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
684 }
685 __ Addu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
686 __ sll(scratch_value, key, kPointerSizeLog2 - kSmiTagSize);
687 __ Addu(address, address, scratch_value);
688 __ sw(value, MemOperand(address));
689 // Update write barrier for the elements array address.
690 __ mov(scratch_value, value); // Preserve the value which is returned.
691 __ RecordWrite(elements, address, scratch_value, kRAHasNotBeenSaved,
692 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
693 __ Ret();
694
695 __ bind(fast_double);
696 if (check_map == kCheckMap) {
697 // Check for fast double array case. If this fails, call through to the
698 // runtime.
699 __ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
700 __ Branch(slow, ne, elements_map, Operand(at));
701 }
702
703 // HOLECHECK: guards "A[i] double hole?"
704 // We have to see if the double version of the hole is present. If so
705 // go to the runtime.
706 __ Addu(address, elements, Operand(FixedDoubleArray::kHeaderSize +
707 kHoleNanUpper32Offset - kHeapObjectTag));
708 __ sll(at, key, kPointerSizeLog2);
709 __ addu(address, address, at);
710 __ lw(scratch_value, MemOperand(address));
711 __ Branch(&fast_double_without_map_check, ne, scratch_value,
712 Operand(kHoleNanUpper32));
713 __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
714 slow);
715
716 __ bind(&fast_double_without_map_check);
717 __ StoreNumberToDoubleElements(value, key,
718 elements, // Overwritten.
719 a3, // Scratch regs...
720 t0, t1, &transition_double_elements);
721 if (increment_length == kIncrementLength) {
722 // Add 1 to receiver->length.
723 __ Addu(scratch_value, key, Operand(Smi::FromInt(1)));
724 __ sw(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
725 }
726 __ Ret();
727
728 __ bind(&transition_smi_elements);
729 // Transition the array appropriately depending on the value type.
730 __ lw(t0, FieldMemOperand(value, HeapObject::kMapOffset));
731 __ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
732 __ Branch(&non_double_value, ne, t0, Operand(at));
733
734 // Value is a double. Transition FAST_SMI_ELEMENTS ->
735 // FAST_DOUBLE_ELEMENTS and complete the store.
736 __ LoadTransitionedArrayMapConditional(
737 FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, t0, slow);
738 AllocationSiteMode mode =
739 AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
740 ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
741 receiver_map, mode, slow);
742 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
743 __ jmp(&fast_double_without_map_check);
744
745 __ bind(&non_double_value);
746 // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
747 __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
748 receiver_map, t0, slow);
749 mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
750 ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
751 masm, receiver, key, value, receiver_map, mode, slow);
752 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
753 __ jmp(&finish_object_store);
754
755 __ bind(&transition_double_elements);
756 // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
757 // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
758 // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
759 __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
760 receiver_map, t0, slow);
761 mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
762 ElementsTransitionGenerator::GenerateDoubleToObject(
763 masm, receiver, key, value, receiver_map, mode, slow);
764 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
765 __ jmp(&finish_object_store);
766 }
767
768
GenerateGeneric(MacroAssembler * masm,StrictMode strict_mode)769 void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
770 StrictMode strict_mode) {
771 // ---------- S t a t e --------------
772 // -- a0 : value
773 // -- a1 : key
774 // -- a2 : receiver
775 // -- ra : return address
776 // -----------------------------------
777 Label slow, fast_object, fast_object_grow;
778 Label fast_double, fast_double_grow;
779 Label array, extra, check_if_double_array;
780
781 // Register usage.
782 Register value = StoreDescriptor::ValueRegister();
783 Register key = StoreDescriptor::NameRegister();
784 Register receiver = StoreDescriptor::ReceiverRegister();
785 DCHECK(value.is(a0));
786 Register receiver_map = a3;
787 Register elements_map = t2;
788 Register elements = t3; // Elements array of the receiver.
789 // t0 and t1 are used as general scratch registers.
790
791 // Check that the key is a smi.
792 __ JumpIfNotSmi(key, &slow);
793 // Check that the object isn't a smi.
794 __ JumpIfSmi(receiver, &slow);
795 // Get the map of the object.
796 __ lw(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
797 // Check that the receiver does not require access checks and is not observed.
798 // The generic stub does not perform map checks or handle observed objects.
799 __ lbu(t0, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
800 __ And(t0, t0,
801 Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved));
802 __ Branch(&slow, ne, t0, Operand(zero_reg));
803 // Check if the object is a JS array or not.
804 __ lbu(t0, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
805 __ Branch(&array, eq, t0, Operand(JS_ARRAY_TYPE));
806 // Check that the object is some kind of JSObject.
807 __ Branch(&slow, lt, t0, Operand(FIRST_JS_OBJECT_TYPE));
808
809 // Object case: Check key against length in the elements array.
810 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
811 // Check array bounds. Both the key and the length of FixedArray are smis.
812 __ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
813 __ Branch(&fast_object, lo, key, Operand(t0));
814
815 // Slow case, handle jump to runtime.
816 __ bind(&slow);
817 // Entry registers are intact.
818 // a0: value.
819 // a1: key.
820 // a2: receiver.
821 PropertyICCompiler::GenerateRuntimeSetProperty(masm, strict_mode);
822
823 // Extra capacity case: Check if there is extra capacity to
824 // perform the store and update the length. Used for adding one
825 // element to the array by writing to array[array.length].
826 __ bind(&extra);
827 // Condition code from comparing key and array length is still available.
828 // Only support writing to array[array.length].
829 __ Branch(&slow, ne, key, Operand(t0));
830 // Check for room in the elements backing store.
831 // Both the key and the length of FixedArray are smis.
832 __ lw(t0, FieldMemOperand(elements, FixedArray::kLengthOffset));
833 __ Branch(&slow, hs, key, Operand(t0));
834 __ lw(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
835 __ Branch(&check_if_double_array, ne, elements_map,
836 Heap::kFixedArrayMapRootIndex);
837
838 __ jmp(&fast_object_grow);
839
840 __ bind(&check_if_double_array);
841 __ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
842 __ jmp(&fast_double_grow);
843
844 // Array case: Get the length and the elements array from the JS
845 // array. Check that the array is in fast mode (and writable); if it
846 // is the length is always a smi.
847 __ bind(&array);
848 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
849
850 // Check the key against the length in the array.
851 __ lw(t0, FieldMemOperand(receiver, JSArray::kLengthOffset));
852 __ Branch(&extra, hs, key, Operand(t0));
853
854 KeyedStoreGenerateGenericHelper(
855 masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
856 value, key, receiver, receiver_map, elements_map, elements);
857 KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
858 &slow, kDontCheckMap, kIncrementLength, value,
859 key, receiver, receiver_map, elements_map,
860 elements);
861 }
862
863
GenerateMiss(MacroAssembler * masm)864 void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
865 // Push receiver, key and value for runtime call.
866 __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
867 StoreDescriptor::ValueRegister());
868
869 ExternalReference ref =
870 ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
871 __ TailCallExternalReference(ref, 3, 1);
872 }
873
874
GenerateMegamorphic(MacroAssembler * masm)875 void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
876 Register receiver = StoreDescriptor::ReceiverRegister();
877 Register name = StoreDescriptor::NameRegister();
878 DCHECK(receiver.is(a1));
879 DCHECK(name.is(a2));
880 DCHECK(StoreDescriptor::ValueRegister().is(a0));
881
882 // Get the receiver from the stack and probe the stub cache.
883 Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
884 Code::ComputeHandlerFlags(Code::STORE_IC));
885 masm->isolate()->stub_cache()->GenerateProbe(masm, flags, false, receiver,
886 name, a3, t0, t1, t2);
887
888 // Cache miss: Jump to runtime.
889 GenerateMiss(masm);
890 }
891
892
GenerateMiss(MacroAssembler * masm)893 void StoreIC::GenerateMiss(MacroAssembler* masm) {
894 __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
895 StoreDescriptor::ValueRegister());
896 // Perform tail call to the entry.
897 ExternalReference ref =
898 ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
899 __ TailCallExternalReference(ref, 3, 1);
900 }
901
902
GenerateNormal(MacroAssembler * masm)903 void StoreIC::GenerateNormal(MacroAssembler* masm) {
904 Label miss;
905 Register receiver = StoreDescriptor::ReceiverRegister();
906 Register name = StoreDescriptor::NameRegister();
907 Register value = StoreDescriptor::ValueRegister();
908 Register dictionary = a3;
909 DCHECK(receiver.is(a1));
910 DCHECK(name.is(a2));
911 DCHECK(value.is(a0));
912
913 __ lw(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
914
915 GenerateDictionaryStore(masm, &miss, dictionary, name, value, t0, t1);
916 Counters* counters = masm->isolate()->counters();
917 __ IncrementCounter(counters->store_normal_hit(), 1, t0, t1);
918 __ Ret();
919
920 __ bind(&miss);
921 __ IncrementCounter(counters->store_normal_miss(), 1, t0, t1);
922 GenerateMiss(masm);
923 }
924
925
926 #undef __
927
928
ComputeCondition(Token::Value op)929 Condition CompareIC::ComputeCondition(Token::Value op) {
930 switch (op) {
931 case Token::EQ_STRICT:
932 case Token::EQ:
933 return eq;
934 case Token::LT:
935 return lt;
936 case Token::GT:
937 return gt;
938 case Token::LTE:
939 return le;
940 case Token::GTE:
941 return ge;
942 default:
943 UNREACHABLE();
944 return kNoCondition;
945 }
946 }
947
948
HasInlinedSmiCode(Address address)949 bool CompareIC::HasInlinedSmiCode(Address address) {
950 // The address of the instruction following the call.
951 Address andi_instruction_address =
952 address + Assembler::kCallTargetAddressOffset;
953
954 // If the instruction following the call is not a andi at, rx, #yyy, nothing
955 // was inlined.
956 Instr instr = Assembler::instr_at(andi_instruction_address);
957 return Assembler::IsAndImmediate(instr) &&
958 Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
959 }
960
961
PatchInlinedSmiCode(Address address,InlinedSmiCheck check)962 void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
963 Address andi_instruction_address =
964 address + Assembler::kCallTargetAddressOffset;
965
966 // If the instruction following the call is not a andi at, rx, #yyy, nothing
967 // was inlined.
968 Instr instr = Assembler::instr_at(andi_instruction_address);
969 if (!(Assembler::IsAndImmediate(instr) &&
970 Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
971 return;
972 }
973
974 // The delta to the start of the map check instruction and the
975 // condition code uses at the patched jump.
976 int delta = Assembler::GetImmediate16(instr);
977 delta += Assembler::GetRs(instr) * kImm16Mask;
978 // If the delta is 0 the instruction is andi at, zero_reg, #0 which also
979 // signals that nothing was inlined.
980 if (delta == 0) {
981 return;
982 }
983
984 if (FLAG_trace_ic) {
985 PrintF("[ patching ic at %p, andi=%p, delta=%d\n", address,
986 andi_instruction_address, delta);
987 }
988
989 Address patch_address =
990 andi_instruction_address - delta * Instruction::kInstrSize;
991 Instr instr_at_patch = Assembler::instr_at(patch_address);
992 Instr branch_instr =
993 Assembler::instr_at(patch_address + Instruction::kInstrSize);
994 // This is patching a conditional "jump if not smi/jump if smi" site.
995 // Enabling by changing from
996 // andi at, rx, 0
997 // Branch <target>, eq, at, Operand(zero_reg)
998 // to:
999 // andi at, rx, #kSmiTagMask
1000 // Branch <target>, ne, at, Operand(zero_reg)
1001 // and vice-versa to be disabled again.
1002 CodePatcher patcher(patch_address, 2);
1003 Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
1004 if (check == ENABLE_INLINED_SMI_CHECK) {
1005 DCHECK(Assembler::IsAndImmediate(instr_at_patch));
1006 DCHECK_EQ(0, Assembler::GetImmediate16(instr_at_patch));
1007 patcher.masm()->andi(at, reg, kSmiTagMask);
1008 } else {
1009 DCHECK(check == DISABLE_INLINED_SMI_CHECK);
1010 DCHECK(Assembler::IsAndImmediate(instr_at_patch));
1011 patcher.masm()->andi(at, reg, 0);
1012 }
1013 DCHECK(Assembler::IsBranch(branch_instr));
1014 if (Assembler::IsBeq(branch_instr)) {
1015 patcher.ChangeBranchCondition(ne);
1016 } else {
1017 DCHECK(Assembler::IsBne(branch_instr));
1018 patcher.ChangeBranchCondition(eq);
1019 }
1020 }
1021 }
1022 } // namespace v8::internal
1023
1024 #endif // V8_TARGET_ARCH_MIPS
1025