1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_JSREGEXP_H_
6 #define V8_JSREGEXP_H_
7
8 #include "src/allocation.h"
9 #include "src/assembler.h"
10 #include "src/zone-inl.h"
11
12 namespace v8 {
13 namespace internal {
14
15 class NodeVisitor;
16 class RegExpCompiler;
17 class RegExpMacroAssembler;
18 class RegExpNode;
19 class RegExpTree;
20 class BoyerMooreLookahead;
21
22 class RegExpImpl {
23 public:
24 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()25 static bool UsesNativeRegExp() {
26 #ifdef V8_INTERPRETED_REGEXP
27 return false;
28 #else
29 return true;
30 #endif
31 }
32
33 // Creates a regular expression literal in the old space.
34 // This function calls the garbage collector if necessary.
35 MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
36 Handle<JSFunction> constructor,
37 Handle<String> pattern,
38 Handle<String> flags);
39
40 // Returns a string representation of a regular expression.
41 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
42 // This function calls the garbage collector if necessary.
43 static Handle<String> ToString(Handle<Object> value);
44
45 // Parses the RegExp pattern and prepares the JSRegExp object with
46 // generic data and choice of implementation - as well as what
47 // the implementation wants to store in the data field.
48 // Returns false if compilation fails.
49 MUST_USE_RESULT static MaybeHandle<Object> Compile(
50 Handle<JSRegExp> re,
51 Handle<String> pattern,
52 Handle<String> flags);
53
54 // See ECMA-262 section 15.10.6.2.
55 // This function calls the garbage collector if necessary.
56 MUST_USE_RESULT static MaybeHandle<Object> Exec(
57 Handle<JSRegExp> regexp,
58 Handle<String> subject,
59 int index,
60 Handle<JSArray> lastMatchInfo);
61
62 // Prepares a JSRegExp object with Irregexp-specific data.
63 static void IrregexpInitialize(Handle<JSRegExp> re,
64 Handle<String> pattern,
65 JSRegExp::Flags flags,
66 int capture_register_count);
67
68
69 static void AtomCompile(Handle<JSRegExp> re,
70 Handle<String> pattern,
71 JSRegExp::Flags flags,
72 Handle<String> match_pattern);
73
74
75 static int AtomExecRaw(Handle<JSRegExp> regexp,
76 Handle<String> subject,
77 int index,
78 int32_t* output,
79 int output_size);
80
81
82 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
83 Handle<String> subject,
84 int index,
85 Handle<JSArray> lastMatchInfo);
86
87 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
88
89 // Prepare a RegExp for being executed one or more times (using
90 // IrregexpExecOnce) on the subject.
91 // This ensures that the regexp is compiled for the subject, and that
92 // the subject is flat.
93 // Returns the number of integer spaces required by IrregexpExecOnce
94 // as its "registers" argument. If the regexp cannot be compiled,
95 // an exception is set as pending, and this function returns negative.
96 static int IrregexpPrepare(Handle<JSRegExp> regexp,
97 Handle<String> subject);
98
99 // Execute a regular expression on the subject, starting from index.
100 // If matching succeeds, return the number of matches. This can be larger
101 // than one in the case of global regular expressions.
102 // The captures and subcaptures are stored into the registers vector.
103 // If matching fails, returns RE_FAILURE.
104 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
105 static int IrregexpExecRaw(Handle<JSRegExp> regexp,
106 Handle<String> subject,
107 int index,
108 int32_t* output,
109 int output_size);
110
111 // Execute an Irregexp bytecode pattern.
112 // On a successful match, the result is a JSArray containing
113 // captured positions. On a failure, the result is the null value.
114 // Returns an empty handle in case of an exception.
115 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
116 Handle<JSRegExp> regexp,
117 Handle<String> subject,
118 int index,
119 Handle<JSArray> lastMatchInfo);
120
121 // Set last match info. If match is NULL, then setting captures is omitted.
122 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
123 Handle<String> subject,
124 int capture_count,
125 int32_t* match);
126
127
128 class GlobalCache {
129 public:
130 GlobalCache(Handle<JSRegExp> regexp,
131 Handle<String> subject,
132 bool is_global,
133 Isolate* isolate);
134
135 INLINE(~GlobalCache());
136
137 // Fetch the next entry in the cache for global regexp match results.
138 // This does not set the last match info. Upon failure, NULL is returned.
139 // The cause can be checked with Result(). The previous
140 // result is still in available in memory when a failure happens.
141 INLINE(int32_t* FetchNext());
142
143 INLINE(int32_t* LastSuccessfulMatch());
144
INLINE(bool HasException ())145 INLINE(bool HasException()) { return num_matches_ < 0; }
146
147 private:
148 int num_matches_;
149 int max_matches_;
150 int current_match_index_;
151 int registers_per_match_;
152 // Pointer to the last set of captures.
153 int32_t* register_array_;
154 int register_array_size_;
155 Handle<JSRegExp> regexp_;
156 Handle<String> subject_;
157 };
158
159
160 // Array index in the lastMatchInfo array.
161 static const int kLastCaptureCount = 0;
162 static const int kLastSubject = 1;
163 static const int kLastInput = 2;
164 static const int kFirstCapture = 3;
165 static const int kLastMatchOverhead = 3;
166
167 // Direct offset into the lastMatchInfo array.
168 static const int kLastCaptureCountOffset =
169 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
170 static const int kLastSubjectOffset =
171 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
172 static const int kLastInputOffset =
173 FixedArray::kHeaderSize + kLastInput * kPointerSize;
174 static const int kFirstCaptureOffset =
175 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
176
177 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)178 static int GetCapture(FixedArray* array, int index) {
179 return Smi::cast(array->get(index + kFirstCapture))->value();
180 }
181
SetLastCaptureCount(FixedArray * array,int to)182 static void SetLastCaptureCount(FixedArray* array, int to) {
183 array->set(kLastCaptureCount, Smi::FromInt(to));
184 }
185
SetLastSubject(FixedArray * array,String * to)186 static void SetLastSubject(FixedArray* array, String* to) {
187 array->set(kLastSubject, to);
188 }
189
SetLastInput(FixedArray * array,String * to)190 static void SetLastInput(FixedArray* array, String* to) {
191 array->set(kLastInput, to);
192 }
193
SetCapture(FixedArray * array,int index,int to)194 static void SetCapture(FixedArray* array, int index, int to) {
195 array->set(index + kFirstCapture, Smi::FromInt(to));
196 }
197
GetLastCaptureCount(FixedArray * array)198 static int GetLastCaptureCount(FixedArray* array) {
199 return Smi::cast(array->get(kLastCaptureCount))->value();
200 }
201
202 // For acting on the JSRegExp data FixedArray.
203 static int IrregexpMaxRegisterCount(FixedArray* re);
204 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
205 static int IrregexpNumberOfCaptures(FixedArray* re);
206 static int IrregexpNumberOfRegisters(FixedArray* re);
207 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
208 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
209
210 // Limit the space regexps take up on the heap. In order to limit this we
211 // would like to keep track of the amount of regexp code on the heap. This
212 // is not tracked, however. As a conservative approximation we track the
213 // total regexp code compiled including code that has subsequently been freed
214 // and the total executable memory at any point.
215 static const int kRegExpExecutableMemoryLimit = 16 * MB;
216 static const int kRegWxpCompiledLimit = 1 * MB;
217
218 private:
219 static bool CompileIrregexp(Handle<JSRegExp> re,
220 Handle<String> sample_subject, bool is_one_byte);
221 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
222 Handle<String> sample_subject,
223 bool is_one_byte);
224 };
225
226
227 // Represents the location of one element relative to the intersection of
228 // two sets. Corresponds to the four areas of a Venn diagram.
229 enum ElementInSetsRelation {
230 kInsideNone = 0,
231 kInsideFirst = 1,
232 kInsideSecond = 2,
233 kInsideBoth = 3
234 };
235
236
237 // Represents code units in the range from from_ to to_, both ends are
238 // inclusive.
239 class CharacterRange {
240 public:
CharacterRange()241 CharacterRange() : from_(0), to_(0) { }
242 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)243 CharacterRange(void* null) { DCHECK_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)244 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
245 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
246 Zone* zone);
247 static Vector<const int> GetWordBounds();
Singleton(uc16 value)248 static inline CharacterRange Singleton(uc16 value) {
249 return CharacterRange(value, value);
250 }
Range(uc16 from,uc16 to)251 static inline CharacterRange Range(uc16 from, uc16 to) {
252 DCHECK(from <= to);
253 return CharacterRange(from, to);
254 }
Everything()255 static inline CharacterRange Everything() {
256 return CharacterRange(0, 0xFFFF);
257 }
Contains(uc16 i)258 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()259 uc16 from() const { return from_; }
set_from(uc16 value)260 void set_from(uc16 value) { from_ = value; }
to()261 uc16 to() const { return to_; }
set_to(uc16 value)262 void set_to(uc16 value) { to_ = value; }
is_valid()263 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)264 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()265 bool IsSingleton() { return (from_ == to_); }
266 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_one_byte,
267 Zone* zone);
268 static void Split(ZoneList<CharacterRange>* base,
269 Vector<const int> overlay,
270 ZoneList<CharacterRange>** included,
271 ZoneList<CharacterRange>** excluded,
272 Zone* zone);
273 // Whether a range list is in canonical form: Ranges ordered by from value,
274 // and ranges non-overlapping and non-adjacent.
275 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
276 // Convert range list to canonical form. The characters covered by the ranges
277 // will still be the same, but no character is in more than one range, and
278 // adjacent ranges are merged. The resulting list may be shorter than the
279 // original, but cannot be longer.
280 static void Canonicalize(ZoneList<CharacterRange>* ranges);
281 // Negate the contents of a character range in canonical form.
282 static void Negate(ZoneList<CharacterRange>* src,
283 ZoneList<CharacterRange>* dst,
284 Zone* zone);
285 static const int kStartMarker = (1 << 24);
286 static const int kPayloadMask = (1 << 24) - 1;
287
288 private:
289 uc16 from_;
290 uc16 to_;
291 };
292
293
294 // A set of unsigned integers that behaves especially well on small
295 // integers (< 32). May do zone-allocation.
296 class OutSet: public ZoneObject {
297 public:
OutSet()298 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
299 OutSet* Extend(unsigned value, Zone* zone);
300 bool Get(unsigned value) const;
301 static const unsigned kFirstLimit = 32;
302
303 private:
304 // Destructively set a value in this set. In most cases you want
305 // to use Extend instead to ensure that only one instance exists
306 // that contains the same values.
307 void Set(unsigned value, Zone* zone);
308
309 // The successors are a list of sets that contain the same values
310 // as this set and the one more value that is not present in this
311 // set.
successors(Zone * zone)312 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
313
OutSet(uint32_t first,ZoneList<unsigned> * remaining)314 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
315 : first_(first), remaining_(remaining), successors_(NULL) { }
316 uint32_t first_;
317 ZoneList<unsigned>* remaining_;
318 ZoneList<OutSet*>* successors_;
319 friend class Trace;
320 };
321
322
323 // A mapping from integers, specified as ranges, to a set of integers.
324 // Used for mapping character ranges to choices.
325 class DispatchTable : public ZoneObject {
326 public:
DispatchTable(Zone * zone)327 explicit DispatchTable(Zone* zone) : tree_(zone) { }
328
329 class Entry {
330 public:
Entry()331 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)332 Entry(uc16 from, uc16 to, OutSet* out_set)
333 : from_(from), to_(to), out_set_(out_set) { }
from()334 uc16 from() { return from_; }
to()335 uc16 to() { return to_; }
set_to(uc16 value)336 void set_to(uc16 value) { to_ = value; }
AddValue(int value,Zone * zone)337 void AddValue(int value, Zone* zone) {
338 out_set_ = out_set_->Extend(value, zone);
339 }
out_set()340 OutSet* out_set() { return out_set_; }
341 private:
342 uc16 from_;
343 uc16 to_;
344 OutSet* out_set_;
345 };
346
347 class Config {
348 public:
349 typedef uc16 Key;
350 typedef Entry Value;
351 static const uc16 kNoKey;
NoValue()352 static const Entry NoValue() { return Value(); }
Compare(uc16 a,uc16 b)353 static inline int Compare(uc16 a, uc16 b) {
354 if (a == b)
355 return 0;
356 else if (a < b)
357 return -1;
358 else
359 return 1;
360 }
361 };
362
363 void AddRange(CharacterRange range, int value, Zone* zone);
364 OutSet* Get(uc16 value);
365 void Dump();
366
367 template <typename Callback>
ForEach(Callback * callback)368 void ForEach(Callback* callback) {
369 return tree()->ForEach(callback);
370 }
371
372 private:
373 // There can't be a static empty set since it allocates its
374 // successors in a zone and caches them.
empty()375 OutSet* empty() { return &empty_; }
376 OutSet empty_;
tree()377 ZoneSplayTree<Config>* tree() { return &tree_; }
378 ZoneSplayTree<Config> tree_;
379 };
380
381
382 #define FOR_EACH_NODE_TYPE(VISIT) \
383 VISIT(End) \
384 VISIT(Action) \
385 VISIT(Choice) \
386 VISIT(BackReference) \
387 VISIT(Assertion) \
388 VISIT(Text)
389
390
391 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
392 VISIT(Disjunction) \
393 VISIT(Alternative) \
394 VISIT(Assertion) \
395 VISIT(CharacterClass) \
396 VISIT(Atom) \
397 VISIT(Quantifier) \
398 VISIT(Capture) \
399 VISIT(Lookahead) \
400 VISIT(BackReference) \
401 VISIT(Empty) \
402 VISIT(Text)
403
404
405 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)406 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
407 #undef FORWARD_DECLARE
408
409
410 class TextElement FINAL BASE_EMBEDDED {
411 public:
412 enum TextType {
413 ATOM,
414 CHAR_CLASS
415 };
416
417 static TextElement Atom(RegExpAtom* atom);
418 static TextElement CharClass(RegExpCharacterClass* char_class);
419
420 int cp_offset() const { return cp_offset_; }
421 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
422 int length() const;
423
424 TextType text_type() const { return text_type_; }
425
426 RegExpTree* tree() const { return tree_; }
427
428 RegExpAtom* atom() const {
429 DCHECK(text_type() == ATOM);
430 return reinterpret_cast<RegExpAtom*>(tree());
431 }
432
433 RegExpCharacterClass* char_class() const {
434 DCHECK(text_type() == CHAR_CLASS);
435 return reinterpret_cast<RegExpCharacterClass*>(tree());
436 }
437
438 private:
439 TextElement(TextType text_type, RegExpTree* tree)
440 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
441
442 int cp_offset_;
443 TextType text_type_;
444 RegExpTree* tree_;
445 };
446
447
448 class Trace;
449 struct PreloadState;
450 class GreedyLoopState;
451 class AlternativeGenerationList;
452
453 struct NodeInfo {
NodeInfoNodeInfo454 NodeInfo()
455 : being_analyzed(false),
456 been_analyzed(false),
457 follows_word_interest(false),
458 follows_newline_interest(false),
459 follows_start_interest(false),
460 at_end(false),
461 visited(false),
462 replacement_calculated(false) { }
463
464 // Returns true if the interests and assumptions of this node
465 // matches the given one.
MatchesNodeInfo466 bool Matches(NodeInfo* that) {
467 return (at_end == that->at_end) &&
468 (follows_word_interest == that->follows_word_interest) &&
469 (follows_newline_interest == that->follows_newline_interest) &&
470 (follows_start_interest == that->follows_start_interest);
471 }
472
473 // Updates the interests of this node given the interests of the
474 // node preceding it.
AddFromPrecedingNodeInfo475 void AddFromPreceding(NodeInfo* that) {
476 at_end |= that->at_end;
477 follows_word_interest |= that->follows_word_interest;
478 follows_newline_interest |= that->follows_newline_interest;
479 follows_start_interest |= that->follows_start_interest;
480 }
481
HasLookbehindNodeInfo482 bool HasLookbehind() {
483 return follows_word_interest ||
484 follows_newline_interest ||
485 follows_start_interest;
486 }
487
488 // Sets the interests of this node to include the interests of the
489 // following node.
AddFromFollowingNodeInfo490 void AddFromFollowing(NodeInfo* that) {
491 follows_word_interest |= that->follows_word_interest;
492 follows_newline_interest |= that->follows_newline_interest;
493 follows_start_interest |= that->follows_start_interest;
494 }
495
ResetCompilationStateNodeInfo496 void ResetCompilationState() {
497 being_analyzed = false;
498 been_analyzed = false;
499 }
500
501 bool being_analyzed: 1;
502 bool been_analyzed: 1;
503
504 // These bits are set of this node has to know what the preceding
505 // character was.
506 bool follows_word_interest: 1;
507 bool follows_newline_interest: 1;
508 bool follows_start_interest: 1;
509
510 bool at_end: 1;
511 bool visited: 1;
512 bool replacement_calculated: 1;
513 };
514
515
516 // Details of a quick mask-compare check that can look ahead in the
517 // input stream.
518 class QuickCheckDetails {
519 public:
QuickCheckDetails()520 QuickCheckDetails()
521 : characters_(0),
522 mask_(0),
523 value_(0),
524 cannot_match_(false) { }
QuickCheckDetails(int characters)525 explicit QuickCheckDetails(int characters)
526 : characters_(characters),
527 mask_(0),
528 value_(0),
529 cannot_match_(false) { }
530 bool Rationalize(bool one_byte);
531 // Merge in the information from another branch of an alternation.
532 void Merge(QuickCheckDetails* other, int from_index);
533 // Advance the current position by some amount.
534 void Advance(int by, bool one_byte);
535 void Clear();
cannot_match()536 bool cannot_match() { return cannot_match_; }
set_cannot_match()537 void set_cannot_match() { cannot_match_ = true; }
538 struct Position {
PositionPosition539 Position() : mask(0), value(0), determines_perfectly(false) { }
540 uc16 mask;
541 uc16 value;
542 bool determines_perfectly;
543 };
characters()544 int characters() { return characters_; }
set_characters(int characters)545 void set_characters(int characters) { characters_ = characters; }
positions(int index)546 Position* positions(int index) {
547 DCHECK(index >= 0);
548 DCHECK(index < characters_);
549 return positions_ + index;
550 }
mask()551 uint32_t mask() { return mask_; }
value()552 uint32_t value() { return value_; }
553
554 private:
555 // How many characters do we have quick check information from. This is
556 // the same for all branches of a choice node.
557 int characters_;
558 Position positions_[4];
559 // These values are the condensate of the above array after Rationalize().
560 uint32_t mask_;
561 uint32_t value_;
562 // If set to true, there is no way this quick check can match at all.
563 // E.g., if it requires to be at the start of the input, and isn't.
564 bool cannot_match_;
565 };
566
567
568 extern int kUninitializedRegExpNodePlaceHolder;
569
570
571 class RegExpNode: public ZoneObject {
572 public:
RegExpNode(Zone * zone)573 explicit RegExpNode(Zone* zone)
574 : replacement_(NULL), trace_count_(0), zone_(zone) {
575 bm_info_[0] = bm_info_[1] = NULL;
576 }
577 virtual ~RegExpNode();
578 virtual void Accept(NodeVisitor* visitor) = 0;
579 // Generates a goto to this node or actually generates the code at this point.
580 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
581 // How many characters must this node consume at a minimum in order to
582 // succeed. If we have found at least 'still_to_find' characters that
583 // must be consumed there is no need to ask any following nodes whether
584 // they are sure to eat any more characters. The not_at_start argument is
585 // used to indicate that we know we are not at the start of the input. In
586 // this case anchored branches will always fail and can be ignored when
587 // determining how many characters are consumed on success.
588 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
589 // Emits some quick code that checks whether the preloaded characters match.
590 // Falls through on certain failure, jumps to the label on possible success.
591 // If the node cannot make a quick check it does nothing and returns false.
592 bool EmitQuickCheck(RegExpCompiler* compiler,
593 Trace* bounds_check_trace,
594 Trace* trace,
595 bool preload_has_checked_bounds,
596 Label* on_possible_success,
597 QuickCheckDetails* details_return,
598 bool fall_through_on_failure);
599 // For a given number of characters this returns a mask and a value. The
600 // next n characters are anded with the mask and compared with the value.
601 // A comparison failure indicates the node cannot match the next n characters.
602 // A comparison success indicates the node may match.
603 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
604 RegExpCompiler* compiler,
605 int characters_filled_in,
606 bool not_at_start) = 0;
607 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()608 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
609 // Only returns the successor for a text node of length 1 that matches any
610 // character and that has no guards on it.
GetSuccessorOfOmnivorousTextNode(RegExpCompiler * compiler)611 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
612 RegExpCompiler* compiler) {
613 return NULL;
614 }
615
616 // Collects information on the possible code units (mod 128) that can match if
617 // we look forward. This is used for a Boyer-Moore-like string searching
618 // implementation. TODO(erikcorry): This should share more code with
619 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
620 // the number of nodes we are willing to look at in order to create this data.
621 static const int kRecursionBudget = 200;
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)622 virtual void FillInBMInfo(int offset,
623 int budget,
624 BoyerMooreLookahead* bm,
625 bool not_at_start) {
626 UNREACHABLE();
627 }
628
629 // If we know that the input is one-byte then there are some nodes that can
630 // never match. This method returns a node that can be substituted for
631 // itself, or NULL if the node can never match.
FilterOneByte(int depth,bool ignore_case)632 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
633 return this;
634 }
635 // Helper for FilterOneByte.
replacement()636 RegExpNode* replacement() {
637 DCHECK(info()->replacement_calculated);
638 return replacement_;
639 }
set_replacement(RegExpNode * replacement)640 RegExpNode* set_replacement(RegExpNode* replacement) {
641 info()->replacement_calculated = true;
642 replacement_ = replacement;
643 return replacement; // For convenience.
644 }
645
646 // We want to avoid recalculating the lookahead info, so we store it on the
647 // node. Only info that is for this node is stored. We can tell that the
648 // info is for this node when offset == 0, so the information is calculated
649 // relative to this node.
SaveBMInfo(BoyerMooreLookahead * bm,bool not_at_start,int offset)650 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
651 if (offset == 0) set_bm_info(not_at_start, bm);
652 }
653
label()654 Label* label() { return &label_; }
655 // If non-generic code is generated for a node (i.e. the node is not at the
656 // start of the trace) then it cannot be reused. This variable sets a limit
657 // on how often we allow that to happen before we insist on starting a new
658 // trace and generating generic code for a node that can be reused by flushing
659 // the deferred actions in the current trace and generating a goto.
660 static const int kMaxCopiesCodeGenerated = 10;
661
info()662 NodeInfo* info() { return &info_; }
663
bm_info(bool not_at_start)664 BoyerMooreLookahead* bm_info(bool not_at_start) {
665 return bm_info_[not_at_start ? 1 : 0];
666 }
667
zone()668 Zone* zone() const { return zone_; }
669
670 protected:
671 enum LimitResult { DONE, CONTINUE };
672 RegExpNode* replacement_;
673
674 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
675
set_bm_info(bool not_at_start,BoyerMooreLookahead * bm)676 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
677 bm_info_[not_at_start ? 1 : 0] = bm;
678 }
679
680 private:
681 static const int kFirstCharBudget = 10;
682 Label label_;
683 NodeInfo info_;
684 // This variable keeps track of how many times code has been generated for
685 // this node (in different traces). We don't keep track of where the
686 // generated code is located unless the code is generated at the start of
687 // a trace, in which case it is generic and can be reused by flushing the
688 // deferred operations in the current trace and generating a goto.
689 int trace_count_;
690 BoyerMooreLookahead* bm_info_[2];
691
692 Zone* zone_;
693 };
694
695
696 // A simple closed interval.
697 class Interval {
698 public:
Interval()699 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)700 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)701 Interval Union(Interval that) {
702 if (that.from_ == kNone)
703 return *this;
704 else if (from_ == kNone)
705 return that;
706 else
707 return Interval(Min(from_, that.from_), Max(to_, that.to_));
708 }
Contains(int value)709 bool Contains(int value) {
710 return (from_ <= value) && (value <= to_);
711 }
is_empty()712 bool is_empty() { return from_ == kNone; }
from()713 int from() const { return from_; }
to()714 int to() const { return to_; }
Empty()715 static Interval Empty() { return Interval(); }
716 static const int kNone = -1;
717 private:
718 int from_;
719 int to_;
720 };
721
722
723 class SeqRegExpNode: public RegExpNode {
724 public:
SeqRegExpNode(RegExpNode * on_success)725 explicit SeqRegExpNode(RegExpNode* on_success)
726 : RegExpNode(on_success->zone()), on_success_(on_success) { }
on_success()727 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)728 void set_on_success(RegExpNode* node) { on_success_ = node; }
729 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)730 virtual void FillInBMInfo(int offset,
731 int budget,
732 BoyerMooreLookahead* bm,
733 bool not_at_start) {
734 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
735 if (offset == 0) set_bm_info(not_at_start, bm);
736 }
737
738 protected:
739 RegExpNode* FilterSuccessor(int depth, bool ignore_case);
740
741 private:
742 RegExpNode* on_success_;
743 };
744
745
746 class ActionNode: public SeqRegExpNode {
747 public:
748 enum ActionType {
749 SET_REGISTER,
750 INCREMENT_REGISTER,
751 STORE_POSITION,
752 BEGIN_SUBMATCH,
753 POSITIVE_SUBMATCH_SUCCESS,
754 EMPTY_MATCH_CHECK,
755 CLEAR_CAPTURES
756 };
757 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
758 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
759 static ActionNode* StorePosition(int reg,
760 bool is_capture,
761 RegExpNode* on_success);
762 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
763 static ActionNode* BeginSubmatch(int stack_pointer_reg,
764 int position_reg,
765 RegExpNode* on_success);
766 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
767 int restore_reg,
768 int clear_capture_count,
769 int clear_capture_from,
770 RegExpNode* on_success);
771 static ActionNode* EmptyMatchCheck(int start_register,
772 int repetition_register,
773 int repetition_limit,
774 RegExpNode* on_success);
775 virtual void Accept(NodeVisitor* visitor);
776 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
777 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)778 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
779 RegExpCompiler* compiler,
780 int filled_in,
781 bool not_at_start) {
782 return on_success()->GetQuickCheckDetails(
783 details, compiler, filled_in, not_at_start);
784 }
785 virtual void FillInBMInfo(int offset,
786 int budget,
787 BoyerMooreLookahead* bm,
788 bool not_at_start);
action_type()789 ActionType action_type() { return action_type_; }
790 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()791 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
792
793 private:
794 union {
795 struct {
796 int reg;
797 int value;
798 } u_store_register;
799 struct {
800 int reg;
801 } u_increment_register;
802 struct {
803 int reg;
804 bool is_capture;
805 } u_position_register;
806 struct {
807 int stack_pointer_register;
808 int current_position_register;
809 int clear_register_count;
810 int clear_register_from;
811 } u_submatch;
812 struct {
813 int start_register;
814 int repetition_register;
815 int repetition_limit;
816 } u_empty_match_check;
817 struct {
818 int range_from;
819 int range_to;
820 } u_clear_captures;
821 } data_;
ActionNode(ActionType action_type,RegExpNode * on_success)822 ActionNode(ActionType action_type, RegExpNode* on_success)
823 : SeqRegExpNode(on_success),
824 action_type_(action_type) { }
825 ActionType action_type_;
826 friend class DotPrinter;
827 };
828
829
830 class TextNode: public SeqRegExpNode {
831 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)832 TextNode(ZoneList<TextElement>* elms,
833 RegExpNode* on_success)
834 : SeqRegExpNode(on_success),
835 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)836 TextNode(RegExpCharacterClass* that,
837 RegExpNode* on_success)
838 : SeqRegExpNode(on_success),
839 elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
840 elms_->Add(TextElement::CharClass(that), zone());
841 }
842 virtual void Accept(NodeVisitor* visitor);
843 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
844 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
845 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
846 RegExpCompiler* compiler,
847 int characters_filled_in,
848 bool not_at_start);
elements()849 ZoneList<TextElement>* elements() { return elms_; }
850 void MakeCaseIndependent(bool is_one_byte);
851 virtual int GreedyLoopTextLength();
852 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
853 RegExpCompiler* compiler);
854 virtual void FillInBMInfo(int offset,
855 int budget,
856 BoyerMooreLookahead* bm,
857 bool not_at_start);
858 void CalculateOffsets();
859 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
860
861 private:
862 enum TextEmitPassType {
863 NON_LATIN1_MATCH, // Check for characters that can't match.
864 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
865 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
866 CASE_CHARACTER_MATCH, // Case-independent single character check.
867 CHARACTER_CLASS_MATCH // Character class.
868 };
869 static bool SkipPass(int pass, bool ignore_case);
870 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
871 static const int kLastPass = CHARACTER_CLASS_MATCH;
872 void TextEmitPass(RegExpCompiler* compiler,
873 TextEmitPassType pass,
874 bool preloaded,
875 Trace* trace,
876 bool first_element_checked,
877 int* checked_up_to);
878 int Length();
879 ZoneList<TextElement>* elms_;
880 };
881
882
883 class AssertionNode: public SeqRegExpNode {
884 public:
885 enum AssertionType {
886 AT_END,
887 AT_START,
888 AT_BOUNDARY,
889 AT_NON_BOUNDARY,
890 AFTER_NEWLINE
891 };
AtEnd(RegExpNode * on_success)892 static AssertionNode* AtEnd(RegExpNode* on_success) {
893 return new(on_success->zone()) AssertionNode(AT_END, on_success);
894 }
AtStart(RegExpNode * on_success)895 static AssertionNode* AtStart(RegExpNode* on_success) {
896 return new(on_success->zone()) AssertionNode(AT_START, on_success);
897 }
AtBoundary(RegExpNode * on_success)898 static AssertionNode* AtBoundary(RegExpNode* on_success) {
899 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
900 }
AtNonBoundary(RegExpNode * on_success)901 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
902 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
903 }
AfterNewline(RegExpNode * on_success)904 static AssertionNode* AfterNewline(RegExpNode* on_success) {
905 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
906 }
907 virtual void Accept(NodeVisitor* visitor);
908 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
909 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
910 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
911 RegExpCompiler* compiler,
912 int filled_in,
913 bool not_at_start);
914 virtual void FillInBMInfo(int offset,
915 int budget,
916 BoyerMooreLookahead* bm,
917 bool not_at_start);
assertion_type()918 AssertionType assertion_type() { return assertion_type_; }
919
920 private:
921 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
922 enum IfPrevious { kIsNonWord, kIsWord };
923 void BacktrackIfPrevious(RegExpCompiler* compiler,
924 Trace* trace,
925 IfPrevious backtrack_if_previous);
AssertionNode(AssertionType t,RegExpNode * on_success)926 AssertionNode(AssertionType t, RegExpNode* on_success)
927 : SeqRegExpNode(on_success), assertion_type_(t) { }
928 AssertionType assertion_type_;
929 };
930
931
932 class BackReferenceNode: public SeqRegExpNode {
933 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)934 BackReferenceNode(int start_reg,
935 int end_reg,
936 RegExpNode* on_success)
937 : SeqRegExpNode(on_success),
938 start_reg_(start_reg),
939 end_reg_(end_reg) { }
940 virtual void Accept(NodeVisitor* visitor);
start_register()941 int start_register() { return start_reg_; }
end_register()942 int end_register() { return end_reg_; }
943 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
944 virtual int EatsAtLeast(int still_to_find,
945 int recursion_depth,
946 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)947 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
948 RegExpCompiler* compiler,
949 int characters_filled_in,
950 bool not_at_start) {
951 return;
952 }
953 virtual void FillInBMInfo(int offset,
954 int budget,
955 BoyerMooreLookahead* bm,
956 bool not_at_start);
957
958 private:
959 int start_reg_;
960 int end_reg_;
961 };
962
963
964 class EndNode: public RegExpNode {
965 public:
966 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action,Zone * zone)967 explicit EndNode(Action action, Zone* zone)
968 : RegExpNode(zone), action_(action) { }
969 virtual void Accept(NodeVisitor* visitor);
970 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)971 virtual int EatsAtLeast(int still_to_find,
972 int recursion_depth,
973 bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)974 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
975 RegExpCompiler* compiler,
976 int characters_filled_in,
977 bool not_at_start) {
978 // Returning 0 from EatsAtLeast should ensure we never get here.
979 UNREACHABLE();
980 }
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)981 virtual void FillInBMInfo(int offset,
982 int budget,
983 BoyerMooreLookahead* bm,
984 bool not_at_start) {
985 // Returning 0 from EatsAtLeast should ensure we never get here.
986 UNREACHABLE();
987 }
988
989 private:
990 Action action_;
991 };
992
993
994 class NegativeSubmatchSuccess: public EndNode {
995 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start,Zone * zone)996 NegativeSubmatchSuccess(int stack_pointer_reg,
997 int position_reg,
998 int clear_capture_count,
999 int clear_capture_start,
1000 Zone* zone)
1001 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
1002 stack_pointer_register_(stack_pointer_reg),
1003 current_position_register_(position_reg),
1004 clear_capture_count_(clear_capture_count),
1005 clear_capture_start_(clear_capture_start) { }
1006 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1007
1008 private:
1009 int stack_pointer_register_;
1010 int current_position_register_;
1011 int clear_capture_count_;
1012 int clear_capture_start_;
1013 };
1014
1015
1016 class Guard: public ZoneObject {
1017 public:
1018 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1019 Guard(int reg, Relation op, int value)
1020 : reg_(reg),
1021 op_(op),
1022 value_(value) { }
reg()1023 int reg() { return reg_; }
op()1024 Relation op() { return op_; }
value()1025 int value() { return value_; }
1026
1027 private:
1028 int reg_;
1029 Relation op_;
1030 int value_;
1031 };
1032
1033
1034 class GuardedAlternative {
1035 public:
GuardedAlternative(RegExpNode * node)1036 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1037 void AddGuard(Guard* guard, Zone* zone);
node()1038 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1039 void set_node(RegExpNode* node) { node_ = node; }
guards()1040 ZoneList<Guard*>* guards() { return guards_; }
1041
1042 private:
1043 RegExpNode* node_;
1044 ZoneList<Guard*>* guards_;
1045 };
1046
1047
1048 class AlternativeGeneration;
1049
1050
1051 class ChoiceNode: public RegExpNode {
1052 public:
ChoiceNode(int expected_size,Zone * zone)1053 explicit ChoiceNode(int expected_size, Zone* zone)
1054 : RegExpNode(zone),
1055 alternatives_(new(zone)
1056 ZoneList<GuardedAlternative>(expected_size, zone)),
1057 table_(NULL),
1058 not_at_start_(false),
1059 being_calculated_(false) { }
1060 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1061 void AddAlternative(GuardedAlternative node) {
1062 alternatives()->Add(node, zone());
1063 }
alternatives()1064 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1065 DispatchTable* GetTable(bool ignore_case);
1066 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1067 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1068 int EatsAtLeastHelper(int still_to_find,
1069 int budget,
1070 RegExpNode* ignore_this_node,
1071 bool not_at_start);
1072 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1073 RegExpCompiler* compiler,
1074 int characters_filled_in,
1075 bool not_at_start);
1076 virtual void FillInBMInfo(int offset,
1077 int budget,
1078 BoyerMooreLookahead* bm,
1079 bool not_at_start);
1080
being_calculated()1081 bool being_calculated() { return being_calculated_; }
not_at_start()1082 bool not_at_start() { return not_at_start_; }
set_not_at_start()1083 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1084 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(bool is_first)1085 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1086 return true;
1087 }
1088 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1089
1090 protected:
1091 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1092 ZoneList<GuardedAlternative>* alternatives_;
1093
1094 private:
1095 friend class DispatchTableConstructor;
1096 friend class Analysis;
1097 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1098 Guard* guard,
1099 Trace* trace);
1100 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
1101 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1102 Trace* trace,
1103 GuardedAlternative alternative,
1104 AlternativeGeneration* alt_gen,
1105 int preload_characters,
1106 bool next_expects_preload);
1107 void SetUpPreLoad(RegExpCompiler* compiler,
1108 Trace* current_trace,
1109 PreloadState* preloads);
1110 void AssertGuardsMentionRegisters(Trace* trace);
1111 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
1112 Trace* EmitGreedyLoop(RegExpCompiler* compiler,
1113 Trace* trace,
1114 AlternativeGenerationList* alt_gens,
1115 PreloadState* preloads,
1116 GreedyLoopState* greedy_loop_state,
1117 int text_length);
1118 void EmitChoices(RegExpCompiler* compiler,
1119 AlternativeGenerationList* alt_gens,
1120 int first_choice,
1121 Trace* trace,
1122 PreloadState* preloads);
1123 DispatchTable* table_;
1124 // If true, this node is never checked at the start of the input.
1125 // Allows a new trace to start with at_start() set to false.
1126 bool not_at_start_;
1127 bool being_calculated_;
1128 };
1129
1130
1131 class NegativeLookaheadChoiceNode: public ChoiceNode {
1132 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this,Zone * zone)1133 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1134 GuardedAlternative then_do_this,
1135 Zone* zone)
1136 : ChoiceNode(2, zone) {
1137 AddAlternative(this_must_fail);
1138 AddAlternative(then_do_this);
1139 }
1140 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1141 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1142 RegExpCompiler* compiler,
1143 int characters_filled_in,
1144 bool not_at_start);
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)1145 virtual void FillInBMInfo(int offset,
1146 int budget,
1147 BoyerMooreLookahead* bm,
1148 bool not_at_start) {
1149 alternatives_->at(1).node()->FillInBMInfo(
1150 offset, budget - 1, bm, not_at_start);
1151 if (offset == 0) set_bm_info(not_at_start, bm);
1152 }
1153 // For a negative lookahead we don't emit the quick check for the
1154 // alternative that is expected to fail. This is because quick check code
1155 // starts by loading enough characters for the alternative that takes fewest
1156 // characters, but on a negative lookahead the negative branch did not take
1157 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(bool is_first)1158 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
1159 return !is_first;
1160 }
1161 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1162 };
1163
1164
1165 class LoopChoiceNode: public ChoiceNode {
1166 public:
LoopChoiceNode(bool body_can_be_zero_length,Zone * zone)1167 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
1168 : ChoiceNode(2, zone),
1169 loop_node_(NULL),
1170 continue_node_(NULL),
1171 body_can_be_zero_length_(body_can_be_zero_length)
1172 { }
1173 void AddLoopAlternative(GuardedAlternative alt);
1174 void AddContinueAlternative(GuardedAlternative alt);
1175 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1176 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1177 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1178 RegExpCompiler* compiler,
1179 int characters_filled_in,
1180 bool not_at_start);
1181 virtual void FillInBMInfo(int offset,
1182 int budget,
1183 BoyerMooreLookahead* bm,
1184 bool not_at_start);
loop_node()1185 RegExpNode* loop_node() { return loop_node_; }
continue_node()1186 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1187 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1188 virtual void Accept(NodeVisitor* visitor);
1189 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
1190
1191 private:
1192 // AddAlternative is made private for loop nodes because alternatives
1193 // should not be added freely, we need to keep track of which node
1194 // goes back to the node itself.
AddAlternative(GuardedAlternative node)1195 void AddAlternative(GuardedAlternative node) {
1196 ChoiceNode::AddAlternative(node);
1197 }
1198
1199 RegExpNode* loop_node_;
1200 RegExpNode* continue_node_;
1201 bool body_can_be_zero_length_;
1202 };
1203
1204
1205 // Improve the speed that we scan for an initial point where a non-anchored
1206 // regexp can match by using a Boyer-Moore-like table. This is done by
1207 // identifying non-greedy non-capturing loops in the nodes that eat any
1208 // character one at a time. For example in the middle of the regexp
1209 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
1210 // inserted at the start of any non-anchored regexp.
1211 //
1212 // When we have found such a loop we look ahead in the nodes to find the set of
1213 // characters that can come at given distances. For example for the regexp
1214 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
1215 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1216 // the lookahead info where the set of characters is reasonably constrained. In
1217 // our example this is from index 1 to 2 (0 is not constrained). We can now
1218 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1219 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1220 //
1221 // For Unicode input strings we do the same, but modulo 128.
1222 //
1223 // We also look at the first string fed to the regexp and use that to get a hint
1224 // of the character frequencies in the inputs. This affects the assessment of
1225 // whether the set of characters is 'reasonably constrained'.
1226 //
1227 // We also have another lookahead mechanism (called quick check in the code),
1228 // which uses a wide load of multiple characters followed by a mask and compare
1229 // to determine whether a match is possible at this point.
1230 enum ContainedInLattice {
1231 kNotYet = 0,
1232 kLatticeIn = 1,
1233 kLatticeOut = 2,
1234 kLatticeUnknown = 3 // Can also mean both in and out.
1235 };
1236
1237
Combine(ContainedInLattice a,ContainedInLattice b)1238 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1239 return static_cast<ContainedInLattice>(a | b);
1240 }
1241
1242
1243 ContainedInLattice AddRange(ContainedInLattice a,
1244 const int* ranges,
1245 int ranges_size,
1246 Interval new_range);
1247
1248
1249 class BoyerMoorePositionInfo : public ZoneObject {
1250 public:
BoyerMoorePositionInfo(Zone * zone)1251 explicit BoyerMoorePositionInfo(Zone* zone)
1252 : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1253 map_count_(0),
1254 w_(kNotYet),
1255 s_(kNotYet),
1256 d_(kNotYet),
1257 surrogate_(kNotYet) {
1258 for (int i = 0; i < kMapSize; i++) {
1259 map_->Add(false, zone);
1260 }
1261 }
1262
at(int i)1263 bool& at(int i) { return map_->at(i); }
1264
1265 static const int kMapSize = 128;
1266 static const int kMask = kMapSize - 1;
1267
map_count()1268 int map_count() const { return map_count_; }
1269
1270 void Set(int character);
1271 void SetInterval(const Interval& interval);
1272 void SetAll();
is_non_word()1273 bool is_non_word() { return w_ == kLatticeOut; }
is_word()1274 bool is_word() { return w_ == kLatticeIn; }
1275
1276 private:
1277 ZoneList<bool>* map_;
1278 int map_count_; // Number of set bits in the map.
1279 ContainedInLattice w_; // The \w character class.
1280 ContainedInLattice s_; // The \s character class.
1281 ContainedInLattice d_; // The \d character class.
1282 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1283 };
1284
1285
1286 class BoyerMooreLookahead : public ZoneObject {
1287 public:
1288 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1289
length()1290 int length() { return length_; }
max_char()1291 int max_char() { return max_char_; }
compiler()1292 RegExpCompiler* compiler() { return compiler_; }
1293
Count(int map_number)1294 int Count(int map_number) {
1295 return bitmaps_->at(map_number)->map_count();
1296 }
1297
at(int i)1298 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1299
Set(int map_number,int character)1300 void Set(int map_number, int character) {
1301 if (character > max_char_) return;
1302 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1303 info->Set(character);
1304 }
1305
SetInterval(int map_number,const Interval & interval)1306 void SetInterval(int map_number, const Interval& interval) {
1307 if (interval.from() > max_char_) return;
1308 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1309 if (interval.to() > max_char_) {
1310 info->SetInterval(Interval(interval.from(), max_char_));
1311 } else {
1312 info->SetInterval(interval);
1313 }
1314 }
1315
SetAll(int map_number)1316 void SetAll(int map_number) {
1317 bitmaps_->at(map_number)->SetAll();
1318 }
1319
SetRest(int from_map)1320 void SetRest(int from_map) {
1321 for (int i = from_map; i < length_; i++) SetAll(i);
1322 }
1323 void EmitSkipInstructions(RegExpMacroAssembler* masm);
1324
1325 private:
1326 // This is the value obtained by EatsAtLeast. If we do not have at least this
1327 // many characters left in the sample string then the match is bound to fail.
1328 // Therefore it is OK to read a character this far ahead of the current match
1329 // point.
1330 int length_;
1331 RegExpCompiler* compiler_;
1332 // 0xff for Latin1, 0xffff for UTF-16.
1333 int max_char_;
1334 ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1335
1336 int GetSkipTable(int min_lookahead,
1337 int max_lookahead,
1338 Handle<ByteArray> boolean_skip_table);
1339 bool FindWorthwhileInterval(int* from, int* to);
1340 int FindBestInterval(
1341 int max_number_of_chars, int old_biggest_points, int* from, int* to);
1342 };
1343
1344
1345 // There are many ways to generate code for a node. This class encapsulates
1346 // the current way we should be generating. In other words it encapsulates
1347 // the current state of the code generator. The effect of this is that we
1348 // generate code for paths that the matcher can take through the regular
1349 // expression. A given node in the regexp can be code-generated several times
1350 // as it can be part of several traces. For example for the regexp:
1351 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1352 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1353 // to match foo is generated only once (the traces have a common prefix). The
1354 // code to store the capture is deferred and generated (twice) after the places
1355 // where baz has been matched.
1356 class Trace {
1357 public:
1358 // A value for a property that is either known to be true, know to be false,
1359 // or not known.
1360 enum TriBool {
1361 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1362 };
1363
1364 class DeferredAction {
1365 public:
DeferredAction(ActionNode::ActionType action_type,int reg)1366 DeferredAction(ActionNode::ActionType action_type, int reg)
1367 : action_type_(action_type), reg_(reg), next_(NULL) { }
next()1368 DeferredAction* next() { return next_; }
1369 bool Mentions(int reg);
reg()1370 int reg() { return reg_; }
action_type()1371 ActionNode::ActionType action_type() { return action_type_; }
1372 private:
1373 ActionNode::ActionType action_type_;
1374 int reg_;
1375 DeferredAction* next_;
1376 friend class Trace;
1377 };
1378
1379 class DeferredCapture : public DeferredAction {
1380 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1381 DeferredCapture(int reg, bool is_capture, Trace* trace)
1382 : DeferredAction(ActionNode::STORE_POSITION, reg),
1383 cp_offset_(trace->cp_offset()),
1384 is_capture_(is_capture) { }
cp_offset()1385 int cp_offset() { return cp_offset_; }
is_capture()1386 bool is_capture() { return is_capture_; }
1387 private:
1388 int cp_offset_;
1389 bool is_capture_;
set_cp_offset(int cp_offset)1390 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1391 };
1392
1393 class DeferredSetRegister : public DeferredAction {
1394 public:
DeferredSetRegister(int reg,int value)1395 DeferredSetRegister(int reg, int value)
1396 : DeferredAction(ActionNode::SET_REGISTER, reg),
1397 value_(value) { }
value()1398 int value() { return value_; }
1399 private:
1400 int value_;
1401 };
1402
1403 class DeferredClearCaptures : public DeferredAction {
1404 public:
DeferredClearCaptures(Interval range)1405 explicit DeferredClearCaptures(Interval range)
1406 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1407 range_(range) { }
range()1408 Interval range() { return range_; }
1409 private:
1410 Interval range_;
1411 };
1412
1413 class DeferredIncrementRegister : public DeferredAction {
1414 public:
DeferredIncrementRegister(int reg)1415 explicit DeferredIncrementRegister(int reg)
1416 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1417 };
1418
Trace()1419 Trace()
1420 : cp_offset_(0),
1421 actions_(NULL),
1422 backtrack_(NULL),
1423 stop_node_(NULL),
1424 loop_label_(NULL),
1425 characters_preloaded_(0),
1426 bound_checked_up_to_(0),
1427 flush_budget_(100),
1428 at_start_(UNKNOWN) { }
1429
1430 // End the trace. This involves flushing the deferred actions in the trace
1431 // and pushing a backtrack location onto the backtrack stack. Once this is
1432 // done we can start a new trace or go to one that has already been
1433 // generated.
1434 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1435 int cp_offset() { return cp_offset_; }
actions()1436 DeferredAction* actions() { return actions_; }
1437 // A trivial trace is one that has no deferred actions or other state that
1438 // affects the assumptions used when generating code. There is no recorded
1439 // backtrack location in a trivial trace, so with a trivial trace we will
1440 // generate code that, on a failure to match, gets the backtrack location
1441 // from the backtrack stack rather than using a direct jump instruction. We
1442 // always start code generation with a trivial trace and non-trivial traces
1443 // are created as we emit code for nodes or add to the list of deferred
1444 // actions in the trace. The location of the code generated for a node using
1445 // a trivial trace is recorded in a label in the node so that gotos can be
1446 // generated to that code.
is_trivial()1447 bool is_trivial() {
1448 return backtrack_ == NULL &&
1449 actions_ == NULL &&
1450 cp_offset_ == 0 &&
1451 characters_preloaded_ == 0 &&
1452 bound_checked_up_to_ == 0 &&
1453 quick_check_performed_.characters() == 0 &&
1454 at_start_ == UNKNOWN;
1455 }
at_start()1456 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1457 void set_at_start(bool at_start) {
1458 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1459 }
backtrack()1460 Label* backtrack() { return backtrack_; }
loop_label()1461 Label* loop_label() { return loop_label_; }
stop_node()1462 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1463 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1464 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1465 int flush_budget() { return flush_budget_; }
quick_check_performed()1466 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1467 bool mentions_reg(int reg);
1468 // Returns true if a deferred position store exists to the specified
1469 // register and stores the offset in the out-parameter. Otherwise
1470 // returns false.
1471 bool GetStoredPosition(int reg, int* cp_offset);
1472 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1473 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1474 void add_action(DeferredAction* new_action) {
1475 DCHECK(new_action->next_ == NULL);
1476 new_action->next_ = actions_;
1477 actions_ = new_action;
1478 }
set_backtrack(Label * backtrack)1479 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1480 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1481 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1482 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1483 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1484 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1485 void set_quick_check_performed(QuickCheckDetails* d) {
1486 quick_check_performed_ = *d;
1487 }
1488 void InvalidateCurrentCharacter();
1489 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1490
1491 private:
1492 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1493 void PerformDeferredActions(RegExpMacroAssembler* macro,
1494 int max_register,
1495 const OutSet& affected_registers,
1496 OutSet* registers_to_pop,
1497 OutSet* registers_to_clear,
1498 Zone* zone);
1499 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1500 int max_register,
1501 const OutSet& registers_to_pop,
1502 const OutSet& registers_to_clear);
1503 int cp_offset_;
1504 DeferredAction* actions_;
1505 Label* backtrack_;
1506 RegExpNode* stop_node_;
1507 Label* loop_label_;
1508 int characters_preloaded_;
1509 int bound_checked_up_to_;
1510 QuickCheckDetails quick_check_performed_;
1511 int flush_budget_;
1512 TriBool at_start_;
1513 };
1514
1515
1516 class GreedyLoopState {
1517 public:
1518 explicit GreedyLoopState(bool not_at_start);
1519
label()1520 Label* label() { return &label_; }
counter_backtrack_trace()1521 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
1522
1523 private:
1524 Label label_;
1525 Trace counter_backtrack_trace_;
1526 };
1527
1528
1529 struct PreloadState {
1530 static const int kEatsAtLeastNotYetInitialized = -1;
1531 bool preload_is_current_;
1532 bool preload_has_checked_bounds_;
1533 int preload_characters_;
1534 int eats_at_least_;
initPreloadState1535 void init() {
1536 eats_at_least_ = kEatsAtLeastNotYetInitialized;
1537 }
1538 };
1539
1540
1541 class NodeVisitor {
1542 public:
~NodeVisitor()1543 virtual ~NodeVisitor() { }
1544 #define DECLARE_VISIT(Type) \
1545 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1546 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1547 #undef DECLARE_VISIT
1548 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1549 };
1550
1551
1552 // Node visitor used to add the start set of the alternatives to the
1553 // dispatch table of a choice node.
1554 class DispatchTableConstructor: public NodeVisitor {
1555 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case,Zone * zone)1556 DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1557 Zone* zone)
1558 : table_(table),
1559 choice_index_(-1),
1560 ignore_case_(ignore_case),
1561 zone_(zone) { }
1562
1563 void BuildTable(ChoiceNode* node);
1564
AddRange(CharacterRange range)1565 void AddRange(CharacterRange range) {
1566 table()->AddRange(range, choice_index_, zone_);
1567 }
1568
1569 void AddInverse(ZoneList<CharacterRange>* ranges);
1570
1571 #define DECLARE_VISIT(Type) \
1572 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1573 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1574 #undef DECLARE_VISIT
1575
1576 DispatchTable* table() { return table_; }
set_choice_index(int value)1577 void set_choice_index(int value) { choice_index_ = value; }
1578
1579 protected:
1580 DispatchTable* table_;
1581 int choice_index_;
1582 bool ignore_case_;
1583 Zone* zone_;
1584 };
1585
1586
1587 // Assertion propagation moves information about assertions such as
1588 // \b to the affected nodes. For instance, in /.\b./ information must
1589 // be propagated to the first '.' that whatever follows needs to know
1590 // if it matched a word or a non-word, and to the second '.' that it
1591 // has to check if it succeeds a word or non-word. In this case the
1592 // result will be something like:
1593 //
1594 // +-------+ +------------+
1595 // | . | | . |
1596 // +-------+ ---> +------------+
1597 // | word? | | check word |
1598 // +-------+ +------------+
1599 class Analysis: public NodeVisitor {
1600 public:
Analysis(bool ignore_case,bool is_one_byte)1601 Analysis(bool ignore_case, bool is_one_byte)
1602 : ignore_case_(ignore_case),
1603 is_one_byte_(is_one_byte),
1604 error_message_(NULL) {}
1605 void EnsureAnalyzed(RegExpNode* node);
1606
1607 #define DECLARE_VISIT(Type) \
1608 virtual void Visit##Type(Type##Node* that);
1609 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1610 #undef DECLARE_VISIT
1611 virtual void VisitLoopChoice(LoopChoiceNode* that);
1612
has_failed()1613 bool has_failed() { return error_message_ != NULL; }
error_message()1614 const char* error_message() {
1615 DCHECK(error_message_ != NULL);
1616 return error_message_;
1617 }
fail(const char * error_message)1618 void fail(const char* error_message) {
1619 error_message_ = error_message;
1620 }
1621
1622 private:
1623 bool ignore_case_;
1624 bool is_one_byte_;
1625 const char* error_message_;
1626
1627 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1628 };
1629
1630
1631 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1632 RegExpCompileData()
1633 : tree(NULL),
1634 node(NULL),
1635 simple(true),
1636 contains_anchor(false),
1637 capture_count(0) { }
1638 RegExpTree* tree;
1639 RegExpNode* node;
1640 bool simple;
1641 bool contains_anchor;
1642 Handle<String> error;
1643 int capture_count;
1644 };
1645
1646
1647 class RegExpEngine: public AllStatic {
1648 public:
1649 struct CompilationResult {
CompilationResultCompilationResult1650 CompilationResult(Isolate* isolate, const char* error_message)
1651 : error_message(error_message),
1652 code(isolate->heap()->the_hole_value()),
1653 num_registers(0) {}
CompilationResultCompilationResult1654 CompilationResult(Object* code, int registers)
1655 : error_message(NULL),
1656 code(code),
1657 num_registers(registers) {}
1658 const char* error_message;
1659 Object* code;
1660 int num_registers;
1661 };
1662
1663 static CompilationResult Compile(RegExpCompileData* input, bool ignore_case,
1664 bool global, bool multiline, bool sticky,
1665 Handle<String> pattern,
1666 Handle<String> sample_subject,
1667 bool is_one_byte, Zone* zone);
1668
1669 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1670 };
1671
1672
1673 } } // namespace v8::internal
1674
1675 #endif // V8_JSREGEXP_H_
1676