1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_MIPS
8
9 #include "src/codegen.h"
10 #include "src/macro-assembler.h"
11 #include "src/mips/simulator-mips.h"
12
13 namespace v8 {
14 namespace internal {
15
16
17 #define __ masm.
18
19
20 #if defined(USE_SIMULATOR)
21 byte* fast_exp_mips_machine_code = NULL;
fast_exp_simulator(double x)22 double fast_exp_simulator(double x) {
23 return Simulator::current(Isolate::Current())->CallFP(
24 fast_exp_mips_machine_code, x, 0);
25 }
26 #endif
27
28
CreateExpFunction()29 UnaryMathFunction CreateExpFunction() {
30 if (!FLAG_fast_math) return &std::exp;
31 size_t actual_size;
32 byte* buffer =
33 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
34 if (buffer == NULL) return &std::exp;
35 ExternalReference::InitializeMathExpData();
36
37 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
38
39 {
40 DoubleRegister input = f12;
41 DoubleRegister result = f0;
42 DoubleRegister double_scratch1 = f4;
43 DoubleRegister double_scratch2 = f6;
44 Register temp1 = t0;
45 Register temp2 = t1;
46 Register temp3 = t2;
47
48 __ MovFromFloatParameter(input);
49 __ Push(temp3, temp2, temp1);
50 MathExpGenerator::EmitMathExp(
51 &masm, input, result, double_scratch1, double_scratch2,
52 temp1, temp2, temp3);
53 __ Pop(temp3, temp2, temp1);
54 __ MovToFloatResult(result);
55 __ Ret();
56 }
57
58 CodeDesc desc;
59 masm.GetCode(&desc);
60 DCHECK(!RelocInfo::RequiresRelocation(desc));
61
62 CpuFeatures::FlushICache(buffer, actual_size);
63 base::OS::ProtectCode(buffer, actual_size);
64
65 #if !defined(USE_SIMULATOR)
66 return FUNCTION_CAST<UnaryMathFunction>(buffer);
67 #else
68 fast_exp_mips_machine_code = buffer;
69 return &fast_exp_simulator;
70 #endif
71 }
72
73
74 #if defined(V8_HOST_ARCH_MIPS)
CreateMemCopyUint8Function(MemCopyUint8Function stub)75 MemCopyUint8Function CreateMemCopyUint8Function(MemCopyUint8Function stub) {
76 #if defined(USE_SIMULATOR) || defined(_MIPS_ARCH_MIPS32R6) || \
77 defined(_MIPS_ARCH_MIPS32RX)
78 return stub;
79 #else
80 size_t actual_size;
81 byte* buffer =
82 static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true));
83 if (buffer == NULL) return stub;
84
85 // This code assumes that cache lines are 32 bytes and if the cache line is
86 // larger it will not work correctly.
87 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
88
89 {
90 Label lastb, unaligned, aligned, chkw,
91 loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop,
92 leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw,
93 ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop;
94
95 // The size of each prefetch.
96 uint32_t pref_chunk = 32;
97 // The maximum size of a prefetch, it must not be less then pref_chunk.
98 // If the real size of a prefetch is greater then max_pref_size and
99 // the kPrefHintPrepareForStore hint is used, the code will not work
100 // correctly.
101 uint32_t max_pref_size = 128;
102 DCHECK(pref_chunk < max_pref_size);
103
104 // pref_limit is set based on the fact that we never use an offset
105 // greater then 5 on a store pref and that a single pref can
106 // never be larger then max_pref_size.
107 uint32_t pref_limit = (5 * pref_chunk) + max_pref_size;
108 int32_t pref_hint_load = kPrefHintLoadStreamed;
109 int32_t pref_hint_store = kPrefHintPrepareForStore;
110 uint32_t loadstore_chunk = 4;
111
112 // The initial prefetches may fetch bytes that are before the buffer being
113 // copied. Start copies with an offset of 4 so avoid this situation when
114 // using kPrefHintPrepareForStore.
115 DCHECK(pref_hint_store != kPrefHintPrepareForStore ||
116 pref_chunk * 4 >= max_pref_size);
117
118 // If the size is less than 8, go to lastb. Regardless of size,
119 // copy dst pointer to v0 for the retuen value.
120 __ slti(t2, a2, 2 * loadstore_chunk);
121 __ bne(t2, zero_reg, &lastb);
122 __ mov(v0, a0); // In delay slot.
123
124 // If src and dst have different alignments, go to unaligned, if they
125 // have the same alignment (but are not actually aligned) do a partial
126 // load/store to make them aligned. If they are both already aligned
127 // we can start copying at aligned.
128 __ xor_(t8, a1, a0);
129 __ andi(t8, t8, loadstore_chunk - 1); // t8 is a0/a1 word-displacement.
130 __ bne(t8, zero_reg, &unaligned);
131 __ subu(a3, zero_reg, a0); // In delay slot.
132
133 __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
134 __ beq(a3, zero_reg, &aligned); // Already aligned.
135 __ subu(a2, a2, a3); // In delay slot. a2 is the remining bytes count.
136
137 if (kArchEndian == kLittle) {
138 __ lwr(t8, MemOperand(a1));
139 __ addu(a1, a1, a3);
140 __ swr(t8, MemOperand(a0));
141 __ addu(a0, a0, a3);
142 } else {
143 __ lwl(t8, MemOperand(a1));
144 __ addu(a1, a1, a3);
145 __ swl(t8, MemOperand(a0));
146 __ addu(a0, a0, a3);
147 }
148 // Now dst/src are both aligned to (word) aligned addresses. Set a2 to
149 // count how many bytes we have to copy after all the 64 byte chunks are
150 // copied and a3 to the dst pointer after all the 64 byte chunks have been
151 // copied. We will loop, incrementing a0 and a1 until a0 equals a3.
152 __ bind(&aligned);
153 __ andi(t8, a2, 0x3f);
154 __ beq(a2, t8, &chkw); // Less than 64?
155 __ subu(a3, a2, t8); // In delay slot.
156 __ addu(a3, a0, a3); // Now a3 is the final dst after loop.
157
158 // When in the loop we prefetch with kPrefHintPrepareForStore hint,
159 // in this case the a0+x should be past the "t0-32" address. This means:
160 // for x=128 the last "safe" a0 address is "t0-160". Alternatively, for
161 // x=64 the last "safe" a0 address is "t0-96". In the current version we
162 // will use "pref hint, 128(a0)", so "t0-160" is the limit.
163 if (pref_hint_store == kPrefHintPrepareForStore) {
164 __ addu(t0, a0, a2); // t0 is the "past the end" address.
165 __ Subu(t9, t0, pref_limit); // t9 is the "last safe pref" address.
166 }
167
168 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
169 __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
170 __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
171 __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
172
173 if (pref_hint_store != kPrefHintPrepareForStore) {
174 __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
175 __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
176 __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
177 }
178 __ bind(&loop16w);
179 __ lw(t0, MemOperand(a1));
180
181 if (pref_hint_store == kPrefHintPrepareForStore) {
182 __ sltu(v1, t9, a0); // If a0 > t9, don't use next prefetch.
183 __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg));
184 }
185 __ lw(t1, MemOperand(a1, 1, loadstore_chunk)); // Maybe in delay slot.
186
187 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
188 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
189
190 __ bind(&skip_pref);
191 __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
192 __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
193 __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
194 __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
195 __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
196 __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
197 __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
198
199 __ sw(t0, MemOperand(a0));
200 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
201 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
202 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
203 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
204 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
205 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
206 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
207
208 __ lw(t0, MemOperand(a1, 8, loadstore_chunk));
209 __ lw(t1, MemOperand(a1, 9, loadstore_chunk));
210 __ lw(t2, MemOperand(a1, 10, loadstore_chunk));
211 __ lw(t3, MemOperand(a1, 11, loadstore_chunk));
212 __ lw(t4, MemOperand(a1, 12, loadstore_chunk));
213 __ lw(t5, MemOperand(a1, 13, loadstore_chunk));
214 __ lw(t6, MemOperand(a1, 14, loadstore_chunk));
215 __ lw(t7, MemOperand(a1, 15, loadstore_chunk));
216 __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
217
218 __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
219 __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
220 __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
221 __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
222 __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
223 __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
224 __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
225 __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
226 __ addiu(a0, a0, 16 * loadstore_chunk);
227 __ bne(a0, a3, &loop16w);
228 __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
229 __ mov(a2, t8);
230
231 // Here we have src and dest word-aligned but less than 64-bytes to go.
232 // Check for a 32 bytes chunk and copy if there is one. Otherwise jump
233 // down to chk1w to handle the tail end of the copy.
234 __ bind(&chkw);
235 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
236 __ andi(t8, a2, 0x1f);
237 __ beq(a2, t8, &chk1w); // Less than 32?
238 __ nop(); // In delay slot.
239 __ lw(t0, MemOperand(a1));
240 __ lw(t1, MemOperand(a1, 1, loadstore_chunk));
241 __ lw(t2, MemOperand(a1, 2, loadstore_chunk));
242 __ lw(t3, MemOperand(a1, 3, loadstore_chunk));
243 __ lw(t4, MemOperand(a1, 4, loadstore_chunk));
244 __ lw(t5, MemOperand(a1, 5, loadstore_chunk));
245 __ lw(t6, MemOperand(a1, 6, loadstore_chunk));
246 __ lw(t7, MemOperand(a1, 7, loadstore_chunk));
247 __ addiu(a1, a1, 8 * loadstore_chunk);
248 __ sw(t0, MemOperand(a0));
249 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
250 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
251 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
252 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
253 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
254 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
255 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
256 __ addiu(a0, a0, 8 * loadstore_chunk);
257
258 // Here we have less than 32 bytes to copy. Set up for a loop to copy
259 // one word at a time. Set a2 to count how many bytes we have to copy
260 // after all the word chunks are copied and a3 to the dst pointer after
261 // all the word chunks have been copied. We will loop, incrementing a0
262 // and a1 untill a0 equals a3.
263 __ bind(&chk1w);
264 __ andi(a2, t8, loadstore_chunk - 1);
265 __ beq(a2, t8, &lastb);
266 __ subu(a3, t8, a2); // In delay slot.
267 __ addu(a3, a0, a3);
268
269 __ bind(&wordCopy_loop);
270 __ lw(t3, MemOperand(a1));
271 __ addiu(a0, a0, loadstore_chunk);
272 __ addiu(a1, a1, loadstore_chunk);
273 __ bne(a0, a3, &wordCopy_loop);
274 __ sw(t3, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
275
276 __ bind(&lastb);
277 __ Branch(&leave, le, a2, Operand(zero_reg));
278 __ addu(a3, a0, a2);
279
280 __ bind(&lastbloop);
281 __ lb(v1, MemOperand(a1));
282 __ addiu(a0, a0, 1);
283 __ addiu(a1, a1, 1);
284 __ bne(a0, a3, &lastbloop);
285 __ sb(v1, MemOperand(a0, -1)); // In delay slot.
286
287 __ bind(&leave);
288 __ jr(ra);
289 __ nop();
290
291 // Unaligned case. Only the dst gets aligned so we need to do partial
292 // loads of the source followed by normal stores to the dst (once we
293 // have aligned the destination).
294 __ bind(&unaligned);
295 __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1.
296 __ beq(a3, zero_reg, &ua_chk16w);
297 __ subu(a2, a2, a3); // In delay slot.
298
299 if (kArchEndian == kLittle) {
300 __ lwr(v1, MemOperand(a1));
301 __ lwl(v1,
302 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
303 __ addu(a1, a1, a3);
304 __ swr(v1, MemOperand(a0));
305 __ addu(a0, a0, a3);
306 } else {
307 __ lwl(v1, MemOperand(a1));
308 __ lwr(v1,
309 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
310 __ addu(a1, a1, a3);
311 __ swl(v1, MemOperand(a0));
312 __ addu(a0, a0, a3);
313 }
314
315 // Now the dst (but not the source) is aligned. Set a2 to count how many
316 // bytes we have to copy after all the 64 byte chunks are copied and a3 to
317 // the dst pointer after all the 64 byte chunks have been copied. We will
318 // loop, incrementing a0 and a1 until a0 equals a3.
319 __ bind(&ua_chk16w);
320 __ andi(t8, a2, 0x3f);
321 __ beq(a2, t8, &ua_chkw);
322 __ subu(a3, a2, t8); // In delay slot.
323 __ addu(a3, a0, a3);
324
325 if (pref_hint_store == kPrefHintPrepareForStore) {
326 __ addu(t0, a0, a2);
327 __ Subu(t9, t0, pref_limit);
328 }
329
330 __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk));
331 __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk));
332 __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk));
333
334 if (pref_hint_store != kPrefHintPrepareForStore) {
335 __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk));
336 __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk));
337 __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk));
338 }
339
340 __ bind(&ua_loop16w);
341 __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk));
342 if (kArchEndian == kLittle) {
343 __ lwr(t0, MemOperand(a1));
344 __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
345 __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
346
347 if (pref_hint_store == kPrefHintPrepareForStore) {
348 __ sltu(v1, t9, a0);
349 __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
350 }
351 __ lwr(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
352
353 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
354 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
355
356 __ bind(&ua_skip_pref);
357 __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
358 __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
359 __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
360 __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
361 __ lwl(t0,
362 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
363 __ lwl(t1,
364 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
365 __ lwl(t2,
366 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
367 __ lwl(t3,
368 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
369 __ lwl(t4,
370 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
371 __ lwl(t5,
372 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
373 __ lwl(t6,
374 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
375 __ lwl(t7,
376 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
377 } else {
378 __ lwl(t0, MemOperand(a1));
379 __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
380 __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
381
382 if (pref_hint_store == kPrefHintPrepareForStore) {
383 __ sltu(v1, t9, a0);
384 __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg));
385 }
386 __ lwl(t3, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot.
387
388 __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk));
389 __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk));
390
391 __ bind(&ua_skip_pref);
392 __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
393 __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
394 __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
395 __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
396 __ lwr(t0,
397 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
398 __ lwr(t1,
399 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
400 __ lwr(t2,
401 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
402 __ lwr(t3,
403 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
404 __ lwr(t4,
405 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
406 __ lwr(t5,
407 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
408 __ lwr(t6,
409 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
410 __ lwr(t7,
411 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
412 }
413 __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk));
414 __ sw(t0, MemOperand(a0));
415 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
416 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
417 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
418 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
419 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
420 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
421 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
422 if (kArchEndian == kLittle) {
423 __ lwr(t0, MemOperand(a1, 8, loadstore_chunk));
424 __ lwr(t1, MemOperand(a1, 9, loadstore_chunk));
425 __ lwr(t2, MemOperand(a1, 10, loadstore_chunk));
426 __ lwr(t3, MemOperand(a1, 11, loadstore_chunk));
427 __ lwr(t4, MemOperand(a1, 12, loadstore_chunk));
428 __ lwr(t5, MemOperand(a1, 13, loadstore_chunk));
429 __ lwr(t6, MemOperand(a1, 14, loadstore_chunk));
430 __ lwr(t7, MemOperand(a1, 15, loadstore_chunk));
431 __ lwl(t0,
432 MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
433 __ lwl(t1,
434 MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
435 __ lwl(t2,
436 MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
437 __ lwl(t3,
438 MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
439 __ lwl(t4,
440 MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
441 __ lwl(t5,
442 MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
443 __ lwl(t6,
444 MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
445 __ lwl(t7,
446 MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
447 } else {
448 __ lwl(t0, MemOperand(a1, 8, loadstore_chunk));
449 __ lwl(t1, MemOperand(a1, 9, loadstore_chunk));
450 __ lwl(t2, MemOperand(a1, 10, loadstore_chunk));
451 __ lwl(t3, MemOperand(a1, 11, loadstore_chunk));
452 __ lwl(t4, MemOperand(a1, 12, loadstore_chunk));
453 __ lwl(t5, MemOperand(a1, 13, loadstore_chunk));
454 __ lwl(t6, MemOperand(a1, 14, loadstore_chunk));
455 __ lwl(t7, MemOperand(a1, 15, loadstore_chunk));
456 __ lwr(t0,
457 MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one));
458 __ lwr(t1,
459 MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one));
460 __ lwr(t2,
461 MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one));
462 __ lwr(t3,
463 MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one));
464 __ lwr(t4,
465 MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one));
466 __ lwr(t5,
467 MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one));
468 __ lwr(t6,
469 MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one));
470 __ lwr(t7,
471 MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one));
472 }
473 __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk));
474 __ sw(t0, MemOperand(a0, 8, loadstore_chunk));
475 __ sw(t1, MemOperand(a0, 9, loadstore_chunk));
476 __ sw(t2, MemOperand(a0, 10, loadstore_chunk));
477 __ sw(t3, MemOperand(a0, 11, loadstore_chunk));
478 __ sw(t4, MemOperand(a0, 12, loadstore_chunk));
479 __ sw(t5, MemOperand(a0, 13, loadstore_chunk));
480 __ sw(t6, MemOperand(a0, 14, loadstore_chunk));
481 __ sw(t7, MemOperand(a0, 15, loadstore_chunk));
482 __ addiu(a0, a0, 16 * loadstore_chunk);
483 __ bne(a0, a3, &ua_loop16w);
484 __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot.
485 __ mov(a2, t8);
486
487 // Here less than 64-bytes. Check for
488 // a 32 byte chunk and copy if there is one. Otherwise jump down to
489 // ua_chk1w to handle the tail end of the copy.
490 __ bind(&ua_chkw);
491 __ Pref(pref_hint_load, MemOperand(a1));
492 __ andi(t8, a2, 0x1f);
493
494 __ beq(a2, t8, &ua_chk1w);
495 __ nop(); // In delay slot.
496 if (kArchEndian == kLittle) {
497 __ lwr(t0, MemOperand(a1));
498 __ lwr(t1, MemOperand(a1, 1, loadstore_chunk));
499 __ lwr(t2, MemOperand(a1, 2, loadstore_chunk));
500 __ lwr(t3, MemOperand(a1, 3, loadstore_chunk));
501 __ lwr(t4, MemOperand(a1, 4, loadstore_chunk));
502 __ lwr(t5, MemOperand(a1, 5, loadstore_chunk));
503 __ lwr(t6, MemOperand(a1, 6, loadstore_chunk));
504 __ lwr(t7, MemOperand(a1, 7, loadstore_chunk));
505 __ lwl(t0,
506 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
507 __ lwl(t1,
508 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
509 __ lwl(t2,
510 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
511 __ lwl(t3,
512 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
513 __ lwl(t4,
514 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
515 __ lwl(t5,
516 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
517 __ lwl(t6,
518 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
519 __ lwl(t7,
520 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
521 } else {
522 __ lwl(t0, MemOperand(a1));
523 __ lwl(t1, MemOperand(a1, 1, loadstore_chunk));
524 __ lwl(t2, MemOperand(a1, 2, loadstore_chunk));
525 __ lwl(t3, MemOperand(a1, 3, loadstore_chunk));
526 __ lwl(t4, MemOperand(a1, 4, loadstore_chunk));
527 __ lwl(t5, MemOperand(a1, 5, loadstore_chunk));
528 __ lwl(t6, MemOperand(a1, 6, loadstore_chunk));
529 __ lwl(t7, MemOperand(a1, 7, loadstore_chunk));
530 __ lwr(t0,
531 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
532 __ lwr(t1,
533 MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one));
534 __ lwr(t2,
535 MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one));
536 __ lwr(t3,
537 MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one));
538 __ lwr(t4,
539 MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one));
540 __ lwr(t5,
541 MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one));
542 __ lwr(t6,
543 MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one));
544 __ lwr(t7,
545 MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one));
546 }
547 __ addiu(a1, a1, 8 * loadstore_chunk);
548 __ sw(t0, MemOperand(a0));
549 __ sw(t1, MemOperand(a0, 1, loadstore_chunk));
550 __ sw(t2, MemOperand(a0, 2, loadstore_chunk));
551 __ sw(t3, MemOperand(a0, 3, loadstore_chunk));
552 __ sw(t4, MemOperand(a0, 4, loadstore_chunk));
553 __ sw(t5, MemOperand(a0, 5, loadstore_chunk));
554 __ sw(t6, MemOperand(a0, 6, loadstore_chunk));
555 __ sw(t7, MemOperand(a0, 7, loadstore_chunk));
556 __ addiu(a0, a0, 8 * loadstore_chunk);
557
558 // Less than 32 bytes to copy. Set up for a loop to
559 // copy one word at a time.
560 __ bind(&ua_chk1w);
561 __ andi(a2, t8, loadstore_chunk - 1);
562 __ beq(a2, t8, &ua_smallCopy);
563 __ subu(a3, t8, a2); // In delay slot.
564 __ addu(a3, a0, a3);
565
566 __ bind(&ua_wordCopy_loop);
567 if (kArchEndian == kLittle) {
568 __ lwr(v1, MemOperand(a1));
569 __ lwl(v1,
570 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
571 } else {
572 __ lwl(v1, MemOperand(a1));
573 __ lwr(v1,
574 MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one));
575 }
576 __ addiu(a0, a0, loadstore_chunk);
577 __ addiu(a1, a1, loadstore_chunk);
578 __ bne(a0, a3, &ua_wordCopy_loop);
579 __ sw(v1, MemOperand(a0, -1, loadstore_chunk)); // In delay slot.
580
581 // Copy the last 8 bytes.
582 __ bind(&ua_smallCopy);
583 __ beq(a2, zero_reg, &leave);
584 __ addu(a3, a0, a2); // In delay slot.
585
586 __ bind(&ua_smallCopy_loop);
587 __ lb(v1, MemOperand(a1));
588 __ addiu(a0, a0, 1);
589 __ addiu(a1, a1, 1);
590 __ bne(a0, a3, &ua_smallCopy_loop);
591 __ sb(v1, MemOperand(a0, -1)); // In delay slot.
592
593 __ jr(ra);
594 __ nop();
595 }
596 CodeDesc desc;
597 masm.GetCode(&desc);
598 DCHECK(!RelocInfo::RequiresRelocation(desc));
599
600 CpuFeatures::FlushICache(buffer, actual_size);
601 base::OS::ProtectCode(buffer, actual_size);
602 return FUNCTION_CAST<MemCopyUint8Function>(buffer);
603 #endif
604 }
605 #endif
606
CreateSqrtFunction()607 UnaryMathFunction CreateSqrtFunction() {
608 #if defined(USE_SIMULATOR)
609 return &std::sqrt;
610 #else
611 size_t actual_size;
612 byte* buffer =
613 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
614 if (buffer == NULL) return &std::sqrt;
615
616 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
617
618 __ MovFromFloatParameter(f12);
619 __ sqrt_d(f0, f12);
620 __ MovToFloatResult(f0);
621 __ Ret();
622
623 CodeDesc desc;
624 masm.GetCode(&desc);
625 DCHECK(!RelocInfo::RequiresRelocation(desc));
626
627 CpuFeatures::FlushICache(buffer, actual_size);
628 base::OS::ProtectCode(buffer, actual_size);
629 return FUNCTION_CAST<UnaryMathFunction>(buffer);
630 #endif
631 }
632
633 #undef __
634
635
636 // -------------------------------------------------------------------------
637 // Platform-specific RuntimeCallHelper functions.
638
BeforeCall(MacroAssembler * masm) const639 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
640 masm->EnterFrame(StackFrame::INTERNAL);
641 DCHECK(!masm->has_frame());
642 masm->set_has_frame(true);
643 }
644
645
AfterCall(MacroAssembler * masm) const646 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
647 masm->LeaveFrame(StackFrame::INTERNAL);
648 DCHECK(masm->has_frame());
649 masm->set_has_frame(false);
650 }
651
652
653 // -------------------------------------------------------------------------
654 // Code generators
655
656 #define __ ACCESS_MASM(masm)
657
GenerateMapChangeElementsTransition(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * allocation_memento_found)658 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
659 MacroAssembler* masm,
660 Register receiver,
661 Register key,
662 Register value,
663 Register target_map,
664 AllocationSiteMode mode,
665 Label* allocation_memento_found) {
666 Register scratch_elements = t0;
667 DCHECK(!AreAliased(receiver, key, value, target_map,
668 scratch_elements));
669
670 if (mode == TRACK_ALLOCATION_SITE) {
671 DCHECK(allocation_memento_found != NULL);
672 __ JumpIfJSArrayHasAllocationMemento(
673 receiver, scratch_elements, allocation_memento_found);
674 }
675
676 // Set transitioned map.
677 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
678 __ RecordWriteField(receiver,
679 HeapObject::kMapOffset,
680 target_map,
681 t5,
682 kRAHasNotBeenSaved,
683 kDontSaveFPRegs,
684 EMIT_REMEMBERED_SET,
685 OMIT_SMI_CHECK);
686 }
687
688
GenerateSmiToDouble(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)689 void ElementsTransitionGenerator::GenerateSmiToDouble(
690 MacroAssembler* masm,
691 Register receiver,
692 Register key,
693 Register value,
694 Register target_map,
695 AllocationSiteMode mode,
696 Label* fail) {
697 // Register ra contains the return address.
698 Label loop, entry, convert_hole, gc_required, only_change_map, done;
699 Register elements = t0;
700 Register length = t1;
701 Register array = t2;
702 Register array_end = array;
703
704 // target_map parameter can be clobbered.
705 Register scratch1 = target_map;
706 Register scratch2 = t5;
707 Register scratch3 = t3;
708
709 // Verify input registers don't conflict with locals.
710 DCHECK(!AreAliased(receiver, key, value, target_map,
711 elements, length, array, scratch2));
712
713 Register scratch = t6;
714
715 if (mode == TRACK_ALLOCATION_SITE) {
716 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
717 }
718
719 // Check for empty arrays, which only require a map transition and no changes
720 // to the backing store.
721 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
722 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
723 __ Branch(&only_change_map, eq, at, Operand(elements));
724
725 __ push(ra);
726 __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
727 // elements: source FixedArray
728 // length: number of elements (smi-tagged)
729
730 // Allocate new FixedDoubleArray.
731 __ sll(scratch, length, 2);
732 __ Addu(scratch, scratch, FixedDoubleArray::kHeaderSize);
733 __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT);
734 // array: destination FixedDoubleArray, not tagged as heap object
735
736 // Set destination FixedDoubleArray's length and map.
737 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
738 __ sw(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
739 // Update receiver's map.
740 __ sw(scratch2, MemOperand(array, HeapObject::kMapOffset));
741
742 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
743 __ RecordWriteField(receiver,
744 HeapObject::kMapOffset,
745 target_map,
746 scratch2,
747 kRAHasBeenSaved,
748 kDontSaveFPRegs,
749 OMIT_REMEMBERED_SET,
750 OMIT_SMI_CHECK);
751 // Replace receiver's backing store with newly created FixedDoubleArray.
752 __ Addu(scratch1, array, Operand(kHeapObjectTag));
753 __ sw(scratch1, FieldMemOperand(a2, JSObject::kElementsOffset));
754 __ RecordWriteField(receiver,
755 JSObject::kElementsOffset,
756 scratch1,
757 scratch2,
758 kRAHasBeenSaved,
759 kDontSaveFPRegs,
760 EMIT_REMEMBERED_SET,
761 OMIT_SMI_CHECK);
762
763
764 // Prepare for conversion loop.
765 __ Addu(scratch1, elements,
766 Operand(FixedArray::kHeaderSize - kHeapObjectTag));
767 __ Addu(scratch3, array, Operand(FixedDoubleArray::kHeaderSize));
768 __ sll(at, length, 2);
769 __ Addu(array_end, scratch3, at);
770
771 // Repurpose registers no longer in use.
772 Register hole_lower = elements;
773 Register hole_upper = length;
774
775 __ li(hole_lower, Operand(kHoleNanLower32));
776 // scratch1: begin of source FixedArray element fields, not tagged
777 // hole_lower: kHoleNanLower32
778 // hole_upper: kHoleNanUpper32
779 // array_end: end of destination FixedDoubleArray, not tagged
780 // scratch3: begin of FixedDoubleArray element fields, not tagged
781 __ Branch(USE_DELAY_SLOT, &entry);
782 __ li(hole_upper, Operand(kHoleNanUpper32)); // In delay slot.
783
784 __ bind(&only_change_map);
785 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
786 __ RecordWriteField(receiver,
787 HeapObject::kMapOffset,
788 target_map,
789 scratch2,
790 kRAHasBeenSaved,
791 kDontSaveFPRegs,
792 OMIT_REMEMBERED_SET,
793 OMIT_SMI_CHECK);
794 __ Branch(&done);
795
796 // Call into runtime if GC is required.
797 __ bind(&gc_required);
798 __ lw(ra, MemOperand(sp, 0));
799 __ Branch(USE_DELAY_SLOT, fail);
800 __ addiu(sp, sp, kPointerSize); // In delay slot.
801
802 // Convert and copy elements.
803 __ bind(&loop);
804 __ lw(scratch2, MemOperand(scratch1));
805 __ Addu(scratch1, scratch1, kIntSize);
806 // scratch2: current element
807 __ UntagAndJumpIfNotSmi(scratch2, scratch2, &convert_hole);
808
809 // Normal smi, convert to double and store.
810 __ mtc1(scratch2, f0);
811 __ cvt_d_w(f0, f0);
812 __ sdc1(f0, MemOperand(scratch3));
813 __ Branch(USE_DELAY_SLOT, &entry);
814 __ addiu(scratch3, scratch3, kDoubleSize); // In delay slot.
815
816 // Hole found, store the-hole NaN.
817 __ bind(&convert_hole);
818 if (FLAG_debug_code) {
819 // Restore a "smi-untagged" heap object.
820 __ SmiTag(scratch2);
821 __ Or(scratch2, scratch2, Operand(1));
822 __ LoadRoot(at, Heap::kTheHoleValueRootIndex);
823 __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2));
824 }
825 // mantissa
826 __ sw(hole_lower, MemOperand(scratch3, Register::kMantissaOffset));
827 // exponent
828 __ sw(hole_upper, MemOperand(scratch3, Register::kExponentOffset));
829 __ bind(&entry);
830 __ addiu(scratch3, scratch3, kDoubleSize);
831
832 __ Branch(&loop, lt, scratch3, Operand(array_end));
833
834 __ bind(&done);
835 __ pop(ra);
836 }
837
838
GenerateDoubleToObject(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)839 void ElementsTransitionGenerator::GenerateDoubleToObject(
840 MacroAssembler* masm,
841 Register receiver,
842 Register key,
843 Register value,
844 Register target_map,
845 AllocationSiteMode mode,
846 Label* fail) {
847 // Register ra contains the return address.
848 Label entry, loop, convert_hole, gc_required, only_change_map;
849 Register elements = t0;
850 Register array = t2;
851 Register length = t1;
852 Register scratch = t5;
853
854 // Verify input registers don't conflict with locals.
855 DCHECK(!AreAliased(receiver, key, value, target_map,
856 elements, array, length, scratch));
857
858 if (mode == TRACK_ALLOCATION_SITE) {
859 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
860 }
861
862 // Check for empty arrays, which only require a map transition and no changes
863 // to the backing store.
864 __ lw(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
865 __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
866 __ Branch(&only_change_map, eq, at, Operand(elements));
867
868 __ MultiPush(
869 value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
870
871 __ lw(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
872 // elements: source FixedArray
873 // length: number of elements (smi-tagged)
874
875 // Allocate new FixedArray.
876 // Re-use value and target_map registers, as they have been saved on the
877 // stack.
878 Register array_size = value;
879 Register allocate_scratch = target_map;
880 __ sll(array_size, length, 1);
881 __ Addu(array_size, array_size, FixedDoubleArray::kHeaderSize);
882 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
883 NO_ALLOCATION_FLAGS);
884 // array: destination FixedArray, not tagged as heap object
885 // Set destination FixedDoubleArray's length and map.
886 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
887 __ sw(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
888 __ sw(scratch, MemOperand(array, HeapObject::kMapOffset));
889
890 // Prepare for conversion loop.
891 Register src_elements = elements;
892 Register dst_elements = target_map;
893 Register dst_end = length;
894 Register heap_number_map = scratch;
895 __ Addu(src_elements, src_elements, Operand(
896 FixedDoubleArray::kHeaderSize - kHeapObjectTag
897 + Register::kExponentOffset));
898 __ Addu(dst_elements, array, Operand(FixedArray::kHeaderSize));
899 __ Addu(array, array, Operand(kHeapObjectTag));
900 __ sll(dst_end, dst_end, 1);
901 __ Addu(dst_end, dst_elements, dst_end);
902 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
903 // Using offsetted addresses.
904 // dst_elements: begin of destination FixedArray element fields, not tagged
905 // src_elements: begin of source FixedDoubleArray element fields, not tagged,
906 // points to the exponent
907 // dst_end: end of destination FixedArray, not tagged
908 // array: destination FixedArray
909 // heap_number_map: heap number map
910 __ Branch(&entry);
911
912 // Call into runtime if GC is required.
913 __ bind(&gc_required);
914 __ MultiPop(
915 value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit());
916
917 __ Branch(fail);
918
919 __ bind(&loop);
920 Register upper_bits = key;
921 __ lw(upper_bits, MemOperand(src_elements));
922 __ Addu(src_elements, src_elements, kDoubleSize);
923 // upper_bits: current element's upper 32 bit
924 // src_elements: address of next element's upper 32 bit
925 __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32));
926
927 // Non-hole double, copy value into a heap number.
928 Register heap_number = receiver;
929 Register scratch2 = value;
930 Register scratch3 = t6;
931 __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map,
932 &gc_required);
933 // heap_number: new heap number
934 // Load mantissa of current element, src_elements
935 // point to exponent of next element.
936 __ lw(scratch2, MemOperand(src_elements, (Register::kMantissaOffset
937 - Register::kExponentOffset - kDoubleSize)));
938 __ sw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
939 __ sw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
940 __ mov(scratch2, dst_elements);
941 __ sw(heap_number, MemOperand(dst_elements));
942 __ Addu(dst_elements, dst_elements, kIntSize);
943 __ RecordWrite(array,
944 scratch2,
945 heap_number,
946 kRAHasBeenSaved,
947 kDontSaveFPRegs,
948 EMIT_REMEMBERED_SET,
949 OMIT_SMI_CHECK);
950 __ Branch(&entry);
951
952 // Replace the-hole NaN with the-hole pointer.
953 __ bind(&convert_hole);
954 __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
955 __ sw(scratch2, MemOperand(dst_elements));
956 __ Addu(dst_elements, dst_elements, kIntSize);
957
958 __ bind(&entry);
959 __ Branch(&loop, lt, dst_elements, Operand(dst_end));
960
961 __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit());
962 // Replace receiver's backing store with newly created and filled FixedArray.
963 __ sw(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
964 __ RecordWriteField(receiver,
965 JSObject::kElementsOffset,
966 array,
967 scratch,
968 kRAHasBeenSaved,
969 kDontSaveFPRegs,
970 EMIT_REMEMBERED_SET,
971 OMIT_SMI_CHECK);
972 __ pop(ra);
973
974 __ bind(&only_change_map);
975 // Update receiver's map.
976 __ sw(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
977 __ RecordWriteField(receiver,
978 HeapObject::kMapOffset,
979 target_map,
980 scratch,
981 kRAHasNotBeenSaved,
982 kDontSaveFPRegs,
983 OMIT_REMEMBERED_SET,
984 OMIT_SMI_CHECK);
985 }
986
987
Generate(MacroAssembler * masm,Register string,Register index,Register result,Label * call_runtime)988 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
989 Register string,
990 Register index,
991 Register result,
992 Label* call_runtime) {
993 // Fetch the instance type of the receiver into result register.
994 __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
995 __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
996
997 // We need special handling for indirect strings.
998 Label check_sequential;
999 __ And(at, result, Operand(kIsIndirectStringMask));
1000 __ Branch(&check_sequential, eq, at, Operand(zero_reg));
1001
1002 // Dispatch on the indirect string shape: slice or cons.
1003 Label cons_string;
1004 __ And(at, result, Operand(kSlicedNotConsMask));
1005 __ Branch(&cons_string, eq, at, Operand(zero_reg));
1006
1007 // Handle slices.
1008 Label indirect_string_loaded;
1009 __ lw(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
1010 __ lw(string, FieldMemOperand(string, SlicedString::kParentOffset));
1011 __ sra(at, result, kSmiTagSize);
1012 __ Addu(index, index, at);
1013 __ jmp(&indirect_string_loaded);
1014
1015 // Handle cons strings.
1016 // Check whether the right hand side is the empty string (i.e. if
1017 // this is really a flat string in a cons string). If that is not
1018 // the case we would rather go to the runtime system now to flatten
1019 // the string.
1020 __ bind(&cons_string);
1021 __ lw(result, FieldMemOperand(string, ConsString::kSecondOffset));
1022 __ LoadRoot(at, Heap::kempty_stringRootIndex);
1023 __ Branch(call_runtime, ne, result, Operand(at));
1024 // Get the first of the two strings and load its instance type.
1025 __ lw(string, FieldMemOperand(string, ConsString::kFirstOffset));
1026
1027 __ bind(&indirect_string_loaded);
1028 __ lw(result, FieldMemOperand(string, HeapObject::kMapOffset));
1029 __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
1030
1031 // Distinguish sequential and external strings. Only these two string
1032 // representations can reach here (slices and flat cons strings have been
1033 // reduced to the underlying sequential or external string).
1034 Label external_string, check_encoding;
1035 __ bind(&check_sequential);
1036 STATIC_ASSERT(kSeqStringTag == 0);
1037 __ And(at, result, Operand(kStringRepresentationMask));
1038 __ Branch(&external_string, ne, at, Operand(zero_reg));
1039
1040 // Prepare sequential strings
1041 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
1042 __ Addu(string,
1043 string,
1044 SeqTwoByteString::kHeaderSize - kHeapObjectTag);
1045 __ jmp(&check_encoding);
1046
1047 // Handle external strings.
1048 __ bind(&external_string);
1049 if (FLAG_debug_code) {
1050 // Assert that we do not have a cons or slice (indirect strings) here.
1051 // Sequential strings have already been ruled out.
1052 __ And(at, result, Operand(kIsIndirectStringMask));
1053 __ Assert(eq, kExternalStringExpectedButNotFound,
1054 at, Operand(zero_reg));
1055 }
1056 // Rule out short external strings.
1057 STATIC_ASSERT(kShortExternalStringTag != 0);
1058 __ And(at, result, Operand(kShortExternalStringMask));
1059 __ Branch(call_runtime, ne, at, Operand(zero_reg));
1060 __ lw(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
1061
1062 Label one_byte, done;
1063 __ bind(&check_encoding);
1064 STATIC_ASSERT(kTwoByteStringTag == 0);
1065 __ And(at, result, Operand(kStringEncodingMask));
1066 __ Branch(&one_byte, ne, at, Operand(zero_reg));
1067 // Two-byte string.
1068 __ sll(at, index, 1);
1069 __ Addu(at, string, at);
1070 __ lhu(result, MemOperand(at));
1071 __ jmp(&done);
1072 __ bind(&one_byte);
1073 // One_byte string.
1074 __ Addu(at, string, index);
1075 __ lbu(result, MemOperand(at));
1076 __ bind(&done);
1077 }
1078
1079
ExpConstant(int index,Register base)1080 static MemOperand ExpConstant(int index, Register base) {
1081 return MemOperand(base, index * kDoubleSize);
1082 }
1083
1084
EmitMathExp(MacroAssembler * masm,DoubleRegister input,DoubleRegister result,DoubleRegister double_scratch1,DoubleRegister double_scratch2,Register temp1,Register temp2,Register temp3)1085 void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
1086 DoubleRegister input,
1087 DoubleRegister result,
1088 DoubleRegister double_scratch1,
1089 DoubleRegister double_scratch2,
1090 Register temp1,
1091 Register temp2,
1092 Register temp3) {
1093 DCHECK(!input.is(result));
1094 DCHECK(!input.is(double_scratch1));
1095 DCHECK(!input.is(double_scratch2));
1096 DCHECK(!result.is(double_scratch1));
1097 DCHECK(!result.is(double_scratch2));
1098 DCHECK(!double_scratch1.is(double_scratch2));
1099 DCHECK(!temp1.is(temp2));
1100 DCHECK(!temp1.is(temp3));
1101 DCHECK(!temp2.is(temp3));
1102 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
1103 DCHECK(!masm->serializer_enabled()); // External references not serializable.
1104
1105 Label zero, infinity, done;
1106
1107 __ li(temp3, Operand(ExternalReference::math_exp_constants(0)));
1108
1109 __ ldc1(double_scratch1, ExpConstant(0, temp3));
1110 __ BranchF(&zero, NULL, ge, double_scratch1, input);
1111
1112 __ ldc1(double_scratch2, ExpConstant(1, temp3));
1113 __ BranchF(&infinity, NULL, ge, input, double_scratch2);
1114
1115 __ ldc1(double_scratch1, ExpConstant(3, temp3));
1116 __ ldc1(result, ExpConstant(4, temp3));
1117 __ mul_d(double_scratch1, double_scratch1, input);
1118 __ add_d(double_scratch1, double_scratch1, result);
1119 __ FmoveLow(temp2, double_scratch1);
1120 __ sub_d(double_scratch1, double_scratch1, result);
1121 __ ldc1(result, ExpConstant(6, temp3));
1122 __ ldc1(double_scratch2, ExpConstant(5, temp3));
1123 __ mul_d(double_scratch1, double_scratch1, double_scratch2);
1124 __ sub_d(double_scratch1, double_scratch1, input);
1125 __ sub_d(result, result, double_scratch1);
1126 __ mul_d(double_scratch2, double_scratch1, double_scratch1);
1127 __ mul_d(result, result, double_scratch2);
1128 __ ldc1(double_scratch2, ExpConstant(7, temp3));
1129 __ mul_d(result, result, double_scratch2);
1130 __ sub_d(result, result, double_scratch1);
1131 // Mov 1 in double_scratch2 as math_exp_constants_array[8] == 1.
1132 DCHECK(*reinterpret_cast<double*>
1133 (ExternalReference::math_exp_constants(8).address()) == 1);
1134 __ Move(double_scratch2, 1);
1135 __ add_d(result, result, double_scratch2);
1136 __ srl(temp1, temp2, 11);
1137 __ Ext(temp2, temp2, 0, 11);
1138 __ Addu(temp1, temp1, Operand(0x3ff));
1139
1140 // Must not call ExpConstant() after overwriting temp3!
1141 __ li(temp3, Operand(ExternalReference::math_exp_log_table()));
1142 __ sll(at, temp2, 3);
1143 __ Addu(temp3, temp3, Operand(at));
1144 __ lw(temp2, MemOperand(temp3, Register::kMantissaOffset));
1145 __ lw(temp3, MemOperand(temp3, Register::kExponentOffset));
1146 // The first word is loaded is the lower number register.
1147 if (temp2.code() < temp3.code()) {
1148 __ sll(at, temp1, 20);
1149 __ Or(temp1, temp3, at);
1150 __ Move(double_scratch1, temp2, temp1);
1151 } else {
1152 __ sll(at, temp1, 20);
1153 __ Or(temp1, temp2, at);
1154 __ Move(double_scratch1, temp3, temp1);
1155 }
1156 __ mul_d(result, result, double_scratch1);
1157 __ BranchShort(&done);
1158
1159 __ bind(&zero);
1160 __ Move(result, kDoubleRegZero);
1161 __ BranchShort(&done);
1162
1163 __ bind(&infinity);
1164 __ ldc1(result, ExpConstant(2, temp3));
1165
1166 __ bind(&done);
1167 }
1168
1169 #ifdef DEBUG
1170 // nop(CODE_AGE_MARKER_NOP)
1171 static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180;
1172 #endif
1173
1174
CodeAgingHelper()1175 CodeAgingHelper::CodeAgingHelper() {
1176 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
1177 // Since patcher is a large object, allocate it dynamically when needed,
1178 // to avoid overloading the stack in stress conditions.
1179 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
1180 // the process, before MIPS simulator ICache is setup.
1181 SmartPointer<CodePatcher> patcher(
1182 new CodePatcher(young_sequence_.start(),
1183 young_sequence_.length() / Assembler::kInstrSize,
1184 CodePatcher::DONT_FLUSH));
1185 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
1186 patcher->masm()->Push(ra, fp, cp, a1);
1187 patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP);
1188 patcher->masm()->Addu(
1189 fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
1190 }
1191
1192
1193 #ifdef DEBUG
IsOld(byte * candidate) const1194 bool CodeAgingHelper::IsOld(byte* candidate) const {
1195 return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
1196 }
1197 #endif
1198
1199
IsYoungSequence(Isolate * isolate,byte * sequence)1200 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
1201 bool result = isolate->code_aging_helper()->IsYoung(sequence);
1202 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
1203 return result;
1204 }
1205
1206
GetCodeAgeAndParity(Isolate * isolate,byte * sequence,Age * age,MarkingParity * parity)1207 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
1208 MarkingParity* parity) {
1209 if (IsYoungSequence(isolate, sequence)) {
1210 *age = kNoAgeCodeAge;
1211 *parity = NO_MARKING_PARITY;
1212 } else {
1213 Address target_address = Assembler::target_address_at(
1214 sequence + Assembler::kInstrSize);
1215 Code* stub = GetCodeFromTargetAddress(target_address);
1216 GetCodeAgeAndParity(stub, age, parity);
1217 }
1218 }
1219
1220
PatchPlatformCodeAge(Isolate * isolate,byte * sequence,Code::Age age,MarkingParity parity)1221 void Code::PatchPlatformCodeAge(Isolate* isolate,
1222 byte* sequence,
1223 Code::Age age,
1224 MarkingParity parity) {
1225 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
1226 if (age == kNoAgeCodeAge) {
1227 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
1228 CpuFeatures::FlushICache(sequence, young_length);
1229 } else {
1230 Code* stub = GetCodeAgeStub(isolate, age, parity);
1231 CodePatcher patcher(sequence, young_length / Assembler::kInstrSize);
1232 // Mark this code sequence for FindPlatformCodeAgeSequence().
1233 patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP);
1234 // Load the stub address to t9 and call it,
1235 // GetCodeAgeAndParity() extracts the stub address from this instruction.
1236 patcher.masm()->li(
1237 t9,
1238 Operand(reinterpret_cast<uint32_t>(stub->instruction_start())),
1239 CONSTANT_SIZE);
1240 patcher.masm()->nop(); // Prevent jalr to jal optimization.
1241 patcher.masm()->jalr(t9, a0);
1242 patcher.masm()->nop(); // Branch delay slot nop.
1243 patcher.masm()->nop(); // Pad the empty space.
1244 }
1245 }
1246
1247
1248 #undef __
1249
1250 } } // namespace v8::internal
1251
1252 #endif // V8_TARGET_ARCH_MIPS
1253