1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // Features shared by parsing and pre-parsing scanners.
6
7 #include <cmath>
8
9 #include "src/v8.h"
10
11 #include "include/v8stdint.h"
12 #include "src/ast-value-factory.h"
13 #include "src/char-predicates-inl.h"
14 #include "src/conversions-inl.h"
15 #include "src/list-inl.h"
16 #include "src/parser.h"
17 #include "src/scanner.h"
18
19 namespace v8 {
20 namespace internal {
21
22
Internalize(Isolate * isolate) const23 Handle<String> LiteralBuffer::Internalize(Isolate* isolate) const {
24 if (is_one_byte()) {
25 return isolate->factory()->InternalizeOneByteString(one_byte_literal());
26 }
27 return isolate->factory()->InternalizeTwoByteString(two_byte_literal());
28 }
29
30
31 // ----------------------------------------------------------------------------
32 // Scanner
33
Scanner(UnicodeCache * unicode_cache)34 Scanner::Scanner(UnicodeCache* unicode_cache)
35 : unicode_cache_(unicode_cache),
36 octal_pos_(Location::invalid()),
37 harmony_scoping_(false),
38 harmony_modules_(false),
39 harmony_numeric_literals_(false),
40 harmony_classes_(false) { }
41
42
Initialize(Utf16CharacterStream * source)43 void Scanner::Initialize(Utf16CharacterStream* source) {
44 source_ = source;
45 // Need to capture identifiers in order to recognize "get" and "set"
46 // in object literals.
47 Init();
48 // Skip initial whitespace allowing HTML comment ends just like
49 // after a newline and scan first token.
50 has_line_terminator_before_next_ = true;
51 SkipWhiteSpace();
52 Scan();
53 }
54
55
ScanHexNumber(int expected_length)56 uc32 Scanner::ScanHexNumber(int expected_length) {
57 DCHECK(expected_length <= 4); // prevent overflow
58
59 uc32 digits[4] = { 0, 0, 0, 0 };
60 uc32 x = 0;
61 for (int i = 0; i < expected_length; i++) {
62 digits[i] = c0_;
63 int d = HexValue(c0_);
64 if (d < 0) {
65 // According to ECMA-262, 3rd, 7.8.4, page 18, these hex escapes
66 // should be illegal, but other JS VMs just return the
67 // non-escaped version of the original character.
68
69 // Push back digits that we have advanced past.
70 for (int j = i-1; j >= 0; j--) {
71 PushBack(digits[j]);
72 }
73 return -1;
74 }
75 x = x * 16 + d;
76 Advance();
77 }
78
79 return x;
80 }
81
82
83 // Ensure that tokens can be stored in a byte.
84 STATIC_ASSERT(Token::NUM_TOKENS <= 0x100);
85
86 // Table of one-character tokens, by character (0x00..0x7f only).
87 static const byte one_char_tokens[] = {
88 Token::ILLEGAL,
89 Token::ILLEGAL,
90 Token::ILLEGAL,
91 Token::ILLEGAL,
92 Token::ILLEGAL,
93 Token::ILLEGAL,
94 Token::ILLEGAL,
95 Token::ILLEGAL,
96 Token::ILLEGAL,
97 Token::ILLEGAL,
98 Token::ILLEGAL,
99 Token::ILLEGAL,
100 Token::ILLEGAL,
101 Token::ILLEGAL,
102 Token::ILLEGAL,
103 Token::ILLEGAL,
104 Token::ILLEGAL,
105 Token::ILLEGAL,
106 Token::ILLEGAL,
107 Token::ILLEGAL,
108 Token::ILLEGAL,
109 Token::ILLEGAL,
110 Token::ILLEGAL,
111 Token::ILLEGAL,
112 Token::ILLEGAL,
113 Token::ILLEGAL,
114 Token::ILLEGAL,
115 Token::ILLEGAL,
116 Token::ILLEGAL,
117 Token::ILLEGAL,
118 Token::ILLEGAL,
119 Token::ILLEGAL,
120 Token::ILLEGAL,
121 Token::ILLEGAL,
122 Token::ILLEGAL,
123 Token::ILLEGAL,
124 Token::ILLEGAL,
125 Token::ILLEGAL,
126 Token::ILLEGAL,
127 Token::ILLEGAL,
128 Token::LPAREN, // 0x28
129 Token::RPAREN, // 0x29
130 Token::ILLEGAL,
131 Token::ILLEGAL,
132 Token::COMMA, // 0x2c
133 Token::ILLEGAL,
134 Token::ILLEGAL,
135 Token::ILLEGAL,
136 Token::ILLEGAL,
137 Token::ILLEGAL,
138 Token::ILLEGAL,
139 Token::ILLEGAL,
140 Token::ILLEGAL,
141 Token::ILLEGAL,
142 Token::ILLEGAL,
143 Token::ILLEGAL,
144 Token::ILLEGAL,
145 Token::ILLEGAL,
146 Token::COLON, // 0x3a
147 Token::SEMICOLON, // 0x3b
148 Token::ILLEGAL,
149 Token::ILLEGAL,
150 Token::ILLEGAL,
151 Token::CONDITIONAL, // 0x3f
152 Token::ILLEGAL,
153 Token::ILLEGAL,
154 Token::ILLEGAL,
155 Token::ILLEGAL,
156 Token::ILLEGAL,
157 Token::ILLEGAL,
158 Token::ILLEGAL,
159 Token::ILLEGAL,
160 Token::ILLEGAL,
161 Token::ILLEGAL,
162 Token::ILLEGAL,
163 Token::ILLEGAL,
164 Token::ILLEGAL,
165 Token::ILLEGAL,
166 Token::ILLEGAL,
167 Token::ILLEGAL,
168 Token::ILLEGAL,
169 Token::ILLEGAL,
170 Token::ILLEGAL,
171 Token::ILLEGAL,
172 Token::ILLEGAL,
173 Token::ILLEGAL,
174 Token::ILLEGAL,
175 Token::ILLEGAL,
176 Token::ILLEGAL,
177 Token::ILLEGAL,
178 Token::ILLEGAL,
179 Token::LBRACK, // 0x5b
180 Token::ILLEGAL,
181 Token::RBRACK, // 0x5d
182 Token::ILLEGAL,
183 Token::ILLEGAL,
184 Token::ILLEGAL,
185 Token::ILLEGAL,
186 Token::ILLEGAL,
187 Token::ILLEGAL,
188 Token::ILLEGAL,
189 Token::ILLEGAL,
190 Token::ILLEGAL,
191 Token::ILLEGAL,
192 Token::ILLEGAL,
193 Token::ILLEGAL,
194 Token::ILLEGAL,
195 Token::ILLEGAL,
196 Token::ILLEGAL,
197 Token::ILLEGAL,
198 Token::ILLEGAL,
199 Token::ILLEGAL,
200 Token::ILLEGAL,
201 Token::ILLEGAL,
202 Token::ILLEGAL,
203 Token::ILLEGAL,
204 Token::ILLEGAL,
205 Token::ILLEGAL,
206 Token::ILLEGAL,
207 Token::ILLEGAL,
208 Token::ILLEGAL,
209 Token::ILLEGAL,
210 Token::ILLEGAL,
211 Token::LBRACE, // 0x7b
212 Token::ILLEGAL,
213 Token::RBRACE, // 0x7d
214 Token::BIT_NOT, // 0x7e
215 Token::ILLEGAL
216 };
217
218
Next()219 Token::Value Scanner::Next() {
220 current_ = next_;
221 has_line_terminator_before_next_ = false;
222 has_multiline_comment_before_next_ = false;
223 if (static_cast<unsigned>(c0_) <= 0x7f) {
224 Token::Value token = static_cast<Token::Value>(one_char_tokens[c0_]);
225 if (token != Token::ILLEGAL) {
226 int pos = source_pos();
227 next_.token = token;
228 next_.location.beg_pos = pos;
229 next_.location.end_pos = pos + 1;
230 Advance();
231 return current_.token;
232 }
233 }
234 Scan();
235 return current_.token;
236 }
237
238
239 // TODO(yangguo): check whether this is actually necessary.
IsLittleEndianByteOrderMark(uc32 c)240 static inline bool IsLittleEndianByteOrderMark(uc32 c) {
241 // The Unicode value U+FFFE is guaranteed never to be assigned as a
242 // Unicode character; this implies that in a Unicode context the
243 // 0xFF, 0xFE byte pattern can only be interpreted as the U+FEFF
244 // character expressed in little-endian byte order (since it could
245 // not be a U+FFFE character expressed in big-endian byte
246 // order). Nevertheless, we check for it to be compatible with
247 // Spidermonkey.
248 return c == 0xFFFE;
249 }
250
251
SkipWhiteSpace()252 bool Scanner::SkipWhiteSpace() {
253 int start_position = source_pos();
254
255 while (true) {
256 while (true) {
257 // Advance as long as character is a WhiteSpace or LineTerminator.
258 // Remember if the latter is the case.
259 if (unicode_cache_->IsLineTerminator(c0_)) {
260 has_line_terminator_before_next_ = true;
261 } else if (!unicode_cache_->IsWhiteSpace(c0_) &&
262 !IsLittleEndianByteOrderMark(c0_)) {
263 break;
264 }
265 Advance();
266 }
267
268 // If there is an HTML comment end '-->' at the beginning of a
269 // line (with only whitespace in front of it), we treat the rest
270 // of the line as a comment. This is in line with the way
271 // SpiderMonkey handles it.
272 if (c0_ == '-' && has_line_terminator_before_next_) {
273 Advance();
274 if (c0_ == '-') {
275 Advance();
276 if (c0_ == '>') {
277 // Treat the rest of the line as a comment.
278 SkipSingleLineComment();
279 // Continue skipping white space after the comment.
280 continue;
281 }
282 PushBack('-'); // undo Advance()
283 }
284 PushBack('-'); // undo Advance()
285 }
286 // Return whether or not we skipped any characters.
287 return source_pos() != start_position;
288 }
289 }
290
291
SkipSingleLineComment()292 Token::Value Scanner::SkipSingleLineComment() {
293 Advance();
294
295 // The line terminator at the end of the line is not considered
296 // to be part of the single-line comment; it is recognized
297 // separately by the lexical grammar and becomes part of the
298 // stream of input elements for the syntactic grammar (see
299 // ECMA-262, section 7.4).
300 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
301 Advance();
302 }
303
304 return Token::WHITESPACE;
305 }
306
307
SkipSourceURLComment()308 Token::Value Scanner::SkipSourceURLComment() {
309 TryToParseSourceURLComment();
310 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
311 Advance();
312 }
313
314 return Token::WHITESPACE;
315 }
316
317
TryToParseSourceURLComment()318 void Scanner::TryToParseSourceURLComment() {
319 // Magic comments are of the form: //[#@]\s<name>=\s*<value>\s*.* and this
320 // function will just return if it cannot parse a magic comment.
321 if (!unicode_cache_->IsWhiteSpace(c0_))
322 return;
323 Advance();
324 LiteralBuffer name;
325 while (c0_ >= 0 && !unicode_cache_->IsWhiteSpaceOrLineTerminator(c0_) &&
326 c0_ != '=') {
327 name.AddChar(c0_);
328 Advance();
329 }
330 if (!name.is_one_byte()) return;
331 Vector<const uint8_t> name_literal = name.one_byte_literal();
332 LiteralBuffer* value;
333 if (name_literal == STATIC_CHAR_VECTOR("sourceURL")) {
334 value = &source_url_;
335 } else if (name_literal == STATIC_CHAR_VECTOR("sourceMappingURL")) {
336 value = &source_mapping_url_;
337 } else {
338 return;
339 }
340 if (c0_ != '=')
341 return;
342 Advance();
343 value->Reset();
344 while (c0_ >= 0 && unicode_cache_->IsWhiteSpace(c0_)) {
345 Advance();
346 }
347 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
348 // Disallowed characters.
349 if (c0_ == '"' || c0_ == '\'') {
350 value->Reset();
351 return;
352 }
353 if (unicode_cache_->IsWhiteSpace(c0_)) {
354 break;
355 }
356 value->AddChar(c0_);
357 Advance();
358 }
359 // Allow whitespace at the end.
360 while (c0_ >= 0 && !unicode_cache_->IsLineTerminator(c0_)) {
361 if (!unicode_cache_->IsWhiteSpace(c0_)) {
362 value->Reset();
363 break;
364 }
365 Advance();
366 }
367 }
368
369
SkipMultiLineComment()370 Token::Value Scanner::SkipMultiLineComment() {
371 DCHECK(c0_ == '*');
372 Advance();
373
374 while (c0_ >= 0) {
375 uc32 ch = c0_;
376 Advance();
377 if (unicode_cache_->IsLineTerminator(ch)) {
378 // Following ECMA-262, section 7.4, a comment containing
379 // a newline will make the comment count as a line-terminator.
380 has_multiline_comment_before_next_ = true;
381 }
382 // If we have reached the end of the multi-line comment, we
383 // consume the '/' and insert a whitespace. This way all
384 // multi-line comments are treated as whitespace.
385 if (ch == '*' && c0_ == '/') {
386 c0_ = ' ';
387 return Token::WHITESPACE;
388 }
389 }
390
391 // Unterminated multi-line comment.
392 return Token::ILLEGAL;
393 }
394
395
ScanHtmlComment()396 Token::Value Scanner::ScanHtmlComment() {
397 // Check for <!-- comments.
398 DCHECK(c0_ == '!');
399 Advance();
400 if (c0_ == '-') {
401 Advance();
402 if (c0_ == '-') return SkipSingleLineComment();
403 PushBack('-'); // undo Advance()
404 }
405 PushBack('!'); // undo Advance()
406 DCHECK(c0_ == '!');
407 return Token::LT;
408 }
409
410
Scan()411 void Scanner::Scan() {
412 next_.literal_chars = NULL;
413 Token::Value token;
414 do {
415 // Remember the position of the next token
416 next_.location.beg_pos = source_pos();
417
418 switch (c0_) {
419 case ' ':
420 case '\t':
421 Advance();
422 token = Token::WHITESPACE;
423 break;
424
425 case '\n':
426 Advance();
427 has_line_terminator_before_next_ = true;
428 token = Token::WHITESPACE;
429 break;
430
431 case '"': case '\'':
432 token = ScanString();
433 break;
434
435 case '<':
436 // < <= << <<= <!--
437 Advance();
438 if (c0_ == '=') {
439 token = Select(Token::LTE);
440 } else if (c0_ == '<') {
441 token = Select('=', Token::ASSIGN_SHL, Token::SHL);
442 } else if (c0_ == '!') {
443 token = ScanHtmlComment();
444 } else {
445 token = Token::LT;
446 }
447 break;
448
449 case '>':
450 // > >= >> >>= >>> >>>=
451 Advance();
452 if (c0_ == '=') {
453 token = Select(Token::GTE);
454 } else if (c0_ == '>') {
455 // >> >>= >>> >>>=
456 Advance();
457 if (c0_ == '=') {
458 token = Select(Token::ASSIGN_SAR);
459 } else if (c0_ == '>') {
460 token = Select('=', Token::ASSIGN_SHR, Token::SHR);
461 } else {
462 token = Token::SAR;
463 }
464 } else {
465 token = Token::GT;
466 }
467 break;
468
469 case '=':
470 // = == === =>
471 Advance();
472 if (c0_ == '=') {
473 token = Select('=', Token::EQ_STRICT, Token::EQ);
474 } else if (c0_ == '>') {
475 token = Select(Token::ARROW);
476 } else {
477 token = Token::ASSIGN;
478 }
479 break;
480
481 case '!':
482 // ! != !==
483 Advance();
484 if (c0_ == '=') {
485 token = Select('=', Token::NE_STRICT, Token::NE);
486 } else {
487 token = Token::NOT;
488 }
489 break;
490
491 case '+':
492 // + ++ +=
493 Advance();
494 if (c0_ == '+') {
495 token = Select(Token::INC);
496 } else if (c0_ == '=') {
497 token = Select(Token::ASSIGN_ADD);
498 } else {
499 token = Token::ADD;
500 }
501 break;
502
503 case '-':
504 // - -- --> -=
505 Advance();
506 if (c0_ == '-') {
507 Advance();
508 if (c0_ == '>' && has_line_terminator_before_next_) {
509 // For compatibility with SpiderMonkey, we skip lines that
510 // start with an HTML comment end '-->'.
511 token = SkipSingleLineComment();
512 } else {
513 token = Token::DEC;
514 }
515 } else if (c0_ == '=') {
516 token = Select(Token::ASSIGN_SUB);
517 } else {
518 token = Token::SUB;
519 }
520 break;
521
522 case '*':
523 // * *=
524 token = Select('=', Token::ASSIGN_MUL, Token::MUL);
525 break;
526
527 case '%':
528 // % %=
529 token = Select('=', Token::ASSIGN_MOD, Token::MOD);
530 break;
531
532 case '/':
533 // / // /* /=
534 Advance();
535 if (c0_ == '/') {
536 Advance();
537 if (c0_ == '@' || c0_ == '#') {
538 Advance();
539 token = SkipSourceURLComment();
540 } else {
541 PushBack(c0_);
542 token = SkipSingleLineComment();
543 }
544 } else if (c0_ == '*') {
545 token = SkipMultiLineComment();
546 } else if (c0_ == '=') {
547 token = Select(Token::ASSIGN_DIV);
548 } else {
549 token = Token::DIV;
550 }
551 break;
552
553 case '&':
554 // & && &=
555 Advance();
556 if (c0_ == '&') {
557 token = Select(Token::AND);
558 } else if (c0_ == '=') {
559 token = Select(Token::ASSIGN_BIT_AND);
560 } else {
561 token = Token::BIT_AND;
562 }
563 break;
564
565 case '|':
566 // | || |=
567 Advance();
568 if (c0_ == '|') {
569 token = Select(Token::OR);
570 } else if (c0_ == '=') {
571 token = Select(Token::ASSIGN_BIT_OR);
572 } else {
573 token = Token::BIT_OR;
574 }
575 break;
576
577 case '^':
578 // ^ ^=
579 token = Select('=', Token::ASSIGN_BIT_XOR, Token::BIT_XOR);
580 break;
581
582 case '.':
583 // . Number
584 Advance();
585 if (IsDecimalDigit(c0_)) {
586 token = ScanNumber(true);
587 } else {
588 token = Token::PERIOD;
589 }
590 break;
591
592 case ':':
593 token = Select(Token::COLON);
594 break;
595
596 case ';':
597 token = Select(Token::SEMICOLON);
598 break;
599
600 case ',':
601 token = Select(Token::COMMA);
602 break;
603
604 case '(':
605 token = Select(Token::LPAREN);
606 break;
607
608 case ')':
609 token = Select(Token::RPAREN);
610 break;
611
612 case '[':
613 token = Select(Token::LBRACK);
614 break;
615
616 case ']':
617 token = Select(Token::RBRACK);
618 break;
619
620 case '{':
621 token = Select(Token::LBRACE);
622 break;
623
624 case '}':
625 token = Select(Token::RBRACE);
626 break;
627
628 case '?':
629 token = Select(Token::CONDITIONAL);
630 break;
631
632 case '~':
633 token = Select(Token::BIT_NOT);
634 break;
635
636 default:
637 if (unicode_cache_->IsIdentifierStart(c0_)) {
638 token = ScanIdentifierOrKeyword();
639 } else if (IsDecimalDigit(c0_)) {
640 token = ScanNumber(false);
641 } else if (SkipWhiteSpace()) {
642 token = Token::WHITESPACE;
643 } else if (c0_ < 0) {
644 token = Token::EOS;
645 } else {
646 token = Select(Token::ILLEGAL);
647 }
648 break;
649 }
650
651 // Continue scanning for tokens as long as we're just skipping
652 // whitespace.
653 } while (token == Token::WHITESPACE);
654
655 next_.location.end_pos = source_pos();
656 next_.token = token;
657 }
658
659
SeekForward(int pos)660 void Scanner::SeekForward(int pos) {
661 // After this call, we will have the token at the given position as
662 // the "next" token. The "current" token will be invalid.
663 if (pos == next_.location.beg_pos) return;
664 int current_pos = source_pos();
665 DCHECK_EQ(next_.location.end_pos, current_pos);
666 // Positions inside the lookahead token aren't supported.
667 DCHECK(pos >= current_pos);
668 if (pos != current_pos) {
669 source_->SeekForward(pos - source_->pos());
670 Advance();
671 // This function is only called to seek to the location
672 // of the end of a function (at the "}" token). It doesn't matter
673 // whether there was a line terminator in the part we skip.
674 has_line_terminator_before_next_ = false;
675 has_multiline_comment_before_next_ = false;
676 }
677 Scan();
678 }
679
680
ScanEscape()681 bool Scanner::ScanEscape() {
682 uc32 c = c0_;
683 Advance();
684
685 // Skip escaped newlines.
686 if (unicode_cache_->IsLineTerminator(c)) {
687 // Allow CR+LF newlines in multiline string literals.
688 if (IsCarriageReturn(c) && IsLineFeed(c0_)) Advance();
689 // Allow LF+CR newlines in multiline string literals.
690 if (IsLineFeed(c) && IsCarriageReturn(c0_)) Advance();
691 return true;
692 }
693
694 switch (c) {
695 case '\'': // fall through
696 case '"' : // fall through
697 case '\\': break;
698 case 'b' : c = '\b'; break;
699 case 'f' : c = '\f'; break;
700 case 'n' : c = '\n'; break;
701 case 'r' : c = '\r'; break;
702 case 't' : c = '\t'; break;
703 case 'u' : {
704 c = ScanHexNumber(4);
705 if (c < 0) return false;
706 break;
707 }
708 case 'v' : c = '\v'; break;
709 case 'x' : {
710 c = ScanHexNumber(2);
711 if (c < 0) return false;
712 break;
713 }
714 case '0' : // fall through
715 case '1' : // fall through
716 case '2' : // fall through
717 case '3' : // fall through
718 case '4' : // fall through
719 case '5' : // fall through
720 case '6' : // fall through
721 case '7' : c = ScanOctalEscape(c, 2); break;
722 }
723
724 // According to ECMA-262, section 7.8.4, characters not covered by the
725 // above cases should be illegal, but they are commonly handled as
726 // non-escaped characters by JS VMs.
727 AddLiteralChar(c);
728 return true;
729 }
730
731
732 // Octal escapes of the forms '\0xx' and '\xxx' are not a part of
733 // ECMA-262. Other JS VMs support them.
ScanOctalEscape(uc32 c,int length)734 uc32 Scanner::ScanOctalEscape(uc32 c, int length) {
735 uc32 x = c - '0';
736 int i = 0;
737 for (; i < length; i++) {
738 int d = c0_ - '0';
739 if (d < 0 || d > 7) break;
740 int nx = x * 8 + d;
741 if (nx >= 256) break;
742 x = nx;
743 Advance();
744 }
745 // Anything except '\0' is an octal escape sequence, illegal in strict mode.
746 // Remember the position of octal escape sequences so that an error
747 // can be reported later (in strict mode).
748 // We don't report the error immediately, because the octal escape can
749 // occur before the "use strict" directive.
750 if (c != '0' || i > 0) {
751 octal_pos_ = Location(source_pos() - i - 1, source_pos() - 1);
752 }
753 return x;
754 }
755
756
ScanString()757 Token::Value Scanner::ScanString() {
758 uc32 quote = c0_;
759 Advance(); // consume quote
760
761 LiteralScope literal(this);
762 while (c0_ != quote && c0_ >= 0
763 && !unicode_cache_->IsLineTerminator(c0_)) {
764 uc32 c = c0_;
765 Advance();
766 if (c == '\\') {
767 if (c0_ < 0 || !ScanEscape()) return Token::ILLEGAL;
768 } else {
769 AddLiteralChar(c);
770 }
771 }
772 if (c0_ != quote) return Token::ILLEGAL;
773 literal.Complete();
774
775 Advance(); // consume quote
776 return Token::STRING;
777 }
778
779
ScanDecimalDigits()780 void Scanner::ScanDecimalDigits() {
781 while (IsDecimalDigit(c0_))
782 AddLiteralCharAdvance();
783 }
784
785
ScanNumber(bool seen_period)786 Token::Value Scanner::ScanNumber(bool seen_period) {
787 DCHECK(IsDecimalDigit(c0_)); // the first digit of the number or the fraction
788
789 enum { DECIMAL, HEX, OCTAL, IMPLICIT_OCTAL, BINARY } kind = DECIMAL;
790
791 LiteralScope literal(this);
792 if (seen_period) {
793 // we have already seen a decimal point of the float
794 AddLiteralChar('.');
795 ScanDecimalDigits(); // we know we have at least one digit
796
797 } else {
798 // if the first character is '0' we must check for octals and hex
799 if (c0_ == '0') {
800 int start_pos = source_pos(); // For reporting octal positions.
801 AddLiteralCharAdvance();
802
803 // either 0, 0exxx, 0Exxx, 0.xxx, a hex number, a binary number or
804 // an octal number.
805 if (c0_ == 'x' || c0_ == 'X') {
806 // hex number
807 kind = HEX;
808 AddLiteralCharAdvance();
809 if (!IsHexDigit(c0_)) {
810 // we must have at least one hex digit after 'x'/'X'
811 return Token::ILLEGAL;
812 }
813 while (IsHexDigit(c0_)) {
814 AddLiteralCharAdvance();
815 }
816 } else if (harmony_numeric_literals_ && (c0_ == 'o' || c0_ == 'O')) {
817 kind = OCTAL;
818 AddLiteralCharAdvance();
819 if (!IsOctalDigit(c0_)) {
820 // we must have at least one octal digit after 'o'/'O'
821 return Token::ILLEGAL;
822 }
823 while (IsOctalDigit(c0_)) {
824 AddLiteralCharAdvance();
825 }
826 } else if (harmony_numeric_literals_ && (c0_ == 'b' || c0_ == 'B')) {
827 kind = BINARY;
828 AddLiteralCharAdvance();
829 if (!IsBinaryDigit(c0_)) {
830 // we must have at least one binary digit after 'b'/'B'
831 return Token::ILLEGAL;
832 }
833 while (IsBinaryDigit(c0_)) {
834 AddLiteralCharAdvance();
835 }
836 } else if ('0' <= c0_ && c0_ <= '7') {
837 // (possible) octal number
838 kind = IMPLICIT_OCTAL;
839 while (true) {
840 if (c0_ == '8' || c0_ == '9') {
841 kind = DECIMAL;
842 break;
843 }
844 if (c0_ < '0' || '7' < c0_) {
845 // Octal literal finished.
846 octal_pos_ = Location(start_pos, source_pos());
847 break;
848 }
849 AddLiteralCharAdvance();
850 }
851 }
852 }
853
854 // Parse decimal digits and allow trailing fractional part.
855 if (kind == DECIMAL) {
856 ScanDecimalDigits(); // optional
857 if (c0_ == '.') {
858 AddLiteralCharAdvance();
859 ScanDecimalDigits(); // optional
860 }
861 }
862 }
863
864 // scan exponent, if any
865 if (c0_ == 'e' || c0_ == 'E') {
866 DCHECK(kind != HEX); // 'e'/'E' must be scanned as part of the hex number
867 if (kind != DECIMAL) return Token::ILLEGAL;
868 // scan exponent
869 AddLiteralCharAdvance();
870 if (c0_ == '+' || c0_ == '-')
871 AddLiteralCharAdvance();
872 if (!IsDecimalDigit(c0_)) {
873 // we must have at least one decimal digit after 'e'/'E'
874 return Token::ILLEGAL;
875 }
876 ScanDecimalDigits();
877 }
878
879 // The source character immediately following a numeric literal must
880 // not be an identifier start or a decimal digit; see ECMA-262
881 // section 7.8.3, page 17 (note that we read only one decimal digit
882 // if the value is 0).
883 if (IsDecimalDigit(c0_) || unicode_cache_->IsIdentifierStart(c0_))
884 return Token::ILLEGAL;
885
886 literal.Complete();
887
888 return Token::NUMBER;
889 }
890
891
ScanIdentifierUnicodeEscape()892 uc32 Scanner::ScanIdentifierUnicodeEscape() {
893 Advance();
894 if (c0_ != 'u') return -1;
895 Advance();
896 uc32 result = ScanHexNumber(4);
897 if (result < 0) PushBack('u');
898 return result;
899 }
900
901
902 // ----------------------------------------------------------------------------
903 // Keyword Matcher
904
905 #define KEYWORDS(KEYWORD_GROUP, KEYWORD) \
906 KEYWORD_GROUP('b') \
907 KEYWORD("break", Token::BREAK) \
908 KEYWORD_GROUP('c') \
909 KEYWORD("case", Token::CASE) \
910 KEYWORD("catch", Token::CATCH) \
911 KEYWORD("class", \
912 harmony_classes ? Token::CLASS : Token::FUTURE_RESERVED_WORD) \
913 KEYWORD("const", Token::CONST) \
914 KEYWORD("continue", Token::CONTINUE) \
915 KEYWORD_GROUP('d') \
916 KEYWORD("debugger", Token::DEBUGGER) \
917 KEYWORD("default", Token::DEFAULT) \
918 KEYWORD("delete", Token::DELETE) \
919 KEYWORD("do", Token::DO) \
920 KEYWORD_GROUP('e') \
921 KEYWORD("else", Token::ELSE) \
922 KEYWORD("enum", Token::FUTURE_RESERVED_WORD) \
923 KEYWORD("export", \
924 harmony_modules ? Token::EXPORT : Token::FUTURE_RESERVED_WORD) \
925 KEYWORD("extends", \
926 harmony_classes ? Token::EXTENDS : Token::FUTURE_RESERVED_WORD) \
927 KEYWORD_GROUP('f') \
928 KEYWORD("false", Token::FALSE_LITERAL) \
929 KEYWORD("finally", Token::FINALLY) \
930 KEYWORD("for", Token::FOR) \
931 KEYWORD("function", Token::FUNCTION) \
932 KEYWORD_GROUP('i') \
933 KEYWORD("if", Token::IF) \
934 KEYWORD("implements", Token::FUTURE_STRICT_RESERVED_WORD) \
935 KEYWORD("import", \
936 harmony_modules ? Token::IMPORT : Token::FUTURE_RESERVED_WORD) \
937 KEYWORD("in", Token::IN) \
938 KEYWORD("instanceof", Token::INSTANCEOF) \
939 KEYWORD("interface", Token::FUTURE_STRICT_RESERVED_WORD) \
940 KEYWORD_GROUP('l') \
941 KEYWORD("let", \
942 harmony_scoping ? Token::LET : Token::FUTURE_STRICT_RESERVED_WORD) \
943 KEYWORD_GROUP('n') \
944 KEYWORD("new", Token::NEW) \
945 KEYWORD("null", Token::NULL_LITERAL) \
946 KEYWORD_GROUP('p') \
947 KEYWORD("package", Token::FUTURE_STRICT_RESERVED_WORD) \
948 KEYWORD("private", Token::FUTURE_STRICT_RESERVED_WORD) \
949 KEYWORD("protected", Token::FUTURE_STRICT_RESERVED_WORD) \
950 KEYWORD("public", Token::FUTURE_STRICT_RESERVED_WORD) \
951 KEYWORD_GROUP('r') \
952 KEYWORD("return", Token::RETURN) \
953 KEYWORD_GROUP('s') \
954 KEYWORD("static", harmony_classes ? Token::STATIC \
955 : Token::FUTURE_STRICT_RESERVED_WORD) \
956 KEYWORD("super", \
957 harmony_classes ? Token::SUPER : Token::FUTURE_RESERVED_WORD) \
958 KEYWORD("switch", Token::SWITCH) \
959 KEYWORD_GROUP('t') \
960 KEYWORD("this", Token::THIS) \
961 KEYWORD("throw", Token::THROW) \
962 KEYWORD("true", Token::TRUE_LITERAL) \
963 KEYWORD("try", Token::TRY) \
964 KEYWORD("typeof", Token::TYPEOF) \
965 KEYWORD_GROUP('v') \
966 KEYWORD("var", Token::VAR) \
967 KEYWORD("void", Token::VOID) \
968 KEYWORD_GROUP('w') \
969 KEYWORD("while", Token::WHILE) \
970 KEYWORD("with", Token::WITH) \
971 KEYWORD_GROUP('y') \
972 KEYWORD("yield", Token::YIELD)
973
974
KeywordOrIdentifierToken(const uint8_t * input,int input_length,bool harmony_scoping,bool harmony_modules,bool harmony_classes)975 static Token::Value KeywordOrIdentifierToken(const uint8_t* input,
976 int input_length,
977 bool harmony_scoping,
978 bool harmony_modules,
979 bool harmony_classes) {
980 DCHECK(input_length >= 1);
981 const int kMinLength = 2;
982 const int kMaxLength = 10;
983 if (input_length < kMinLength || input_length > kMaxLength) {
984 return Token::IDENTIFIER;
985 }
986 switch (input[0]) {
987 default:
988 #define KEYWORD_GROUP_CASE(ch) \
989 break; \
990 case ch:
991 #define KEYWORD(keyword, token) \
992 { \
993 /* 'keyword' is a char array, so sizeof(keyword) is */ \
994 /* strlen(keyword) plus 1 for the NUL char. */ \
995 const int keyword_length = sizeof(keyword) - 1; \
996 STATIC_ASSERT(keyword_length >= kMinLength); \
997 STATIC_ASSERT(keyword_length <= kMaxLength); \
998 if (input_length == keyword_length && \
999 input[1] == keyword[1] && \
1000 (keyword_length <= 2 || input[2] == keyword[2]) && \
1001 (keyword_length <= 3 || input[3] == keyword[3]) && \
1002 (keyword_length <= 4 || input[4] == keyword[4]) && \
1003 (keyword_length <= 5 || input[5] == keyword[5]) && \
1004 (keyword_length <= 6 || input[6] == keyword[6]) && \
1005 (keyword_length <= 7 || input[7] == keyword[7]) && \
1006 (keyword_length <= 8 || input[8] == keyword[8]) && \
1007 (keyword_length <= 9 || input[9] == keyword[9])) { \
1008 return token; \
1009 } \
1010 }
1011 KEYWORDS(KEYWORD_GROUP_CASE, KEYWORD)
1012 }
1013 return Token::IDENTIFIER;
1014 }
1015
1016
IdentifierIsFutureStrictReserved(const AstRawString * string) const1017 bool Scanner::IdentifierIsFutureStrictReserved(
1018 const AstRawString* string) const {
1019 // Keywords are always 1-byte strings.
1020 return string->is_one_byte() &&
1021 Token::FUTURE_STRICT_RESERVED_WORD ==
1022 KeywordOrIdentifierToken(string->raw_data(), string->length(),
1023 harmony_scoping_, harmony_modules_,
1024 harmony_classes_);
1025 }
1026
1027
ScanIdentifierOrKeyword()1028 Token::Value Scanner::ScanIdentifierOrKeyword() {
1029 DCHECK(unicode_cache_->IsIdentifierStart(c0_));
1030 LiteralScope literal(this);
1031 // Scan identifier start character.
1032 if (c0_ == '\\') {
1033 uc32 c = ScanIdentifierUnicodeEscape();
1034 // Only allow legal identifier start characters.
1035 if (c < 0 ||
1036 c == '\\' || // No recursive escapes.
1037 !unicode_cache_->IsIdentifierStart(c)) {
1038 return Token::ILLEGAL;
1039 }
1040 AddLiteralChar(c);
1041 return ScanIdentifierSuffix(&literal);
1042 }
1043
1044 uc32 first_char = c0_;
1045 Advance();
1046 AddLiteralChar(first_char);
1047
1048 // Scan the rest of the identifier characters.
1049 while (unicode_cache_->IsIdentifierPart(c0_)) {
1050 if (c0_ != '\\') {
1051 uc32 next_char = c0_;
1052 Advance();
1053 AddLiteralChar(next_char);
1054 continue;
1055 }
1056 // Fallthrough if no longer able to complete keyword.
1057 return ScanIdentifierSuffix(&literal);
1058 }
1059
1060 literal.Complete();
1061
1062 if (next_.literal_chars->is_one_byte()) {
1063 Vector<const uint8_t> chars = next_.literal_chars->one_byte_literal();
1064 return KeywordOrIdentifierToken(chars.start(),
1065 chars.length(),
1066 harmony_scoping_,
1067 harmony_modules_,
1068 harmony_classes_);
1069 }
1070
1071 return Token::IDENTIFIER;
1072 }
1073
1074
ScanIdentifierSuffix(LiteralScope * literal)1075 Token::Value Scanner::ScanIdentifierSuffix(LiteralScope* literal) {
1076 // Scan the rest of the identifier characters.
1077 while (unicode_cache_->IsIdentifierPart(c0_)) {
1078 if (c0_ == '\\') {
1079 uc32 c = ScanIdentifierUnicodeEscape();
1080 // Only allow legal identifier part characters.
1081 if (c < 0 ||
1082 c == '\\' ||
1083 !unicode_cache_->IsIdentifierPart(c)) {
1084 return Token::ILLEGAL;
1085 }
1086 AddLiteralChar(c);
1087 } else {
1088 AddLiteralChar(c0_);
1089 Advance();
1090 }
1091 }
1092 literal->Complete();
1093
1094 return Token::IDENTIFIER;
1095 }
1096
1097
ScanRegExpPattern(bool seen_equal)1098 bool Scanner::ScanRegExpPattern(bool seen_equal) {
1099 // Scan: ('/' | '/=') RegularExpressionBody '/' RegularExpressionFlags
1100 bool in_character_class = false;
1101
1102 // Previous token is either '/' or '/=', in the second case, the
1103 // pattern starts at =.
1104 next_.location.beg_pos = source_pos() - (seen_equal ? 2 : 1);
1105 next_.location.end_pos = source_pos() - (seen_equal ? 1 : 0);
1106
1107 // Scan regular expression body: According to ECMA-262, 3rd, 7.8.5,
1108 // the scanner should pass uninterpreted bodies to the RegExp
1109 // constructor.
1110 LiteralScope literal(this);
1111 if (seen_equal) {
1112 AddLiteralChar('=');
1113 }
1114
1115 while (c0_ != '/' || in_character_class) {
1116 if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false;
1117 if (c0_ == '\\') { // Escape sequence.
1118 AddLiteralCharAdvance();
1119 if (unicode_cache_->IsLineTerminator(c0_) || c0_ < 0) return false;
1120 AddLiteralCharAdvance();
1121 // If the escape allows more characters, i.e., \x??, \u????, or \c?,
1122 // only "safe" characters are allowed (letters, digits, underscore),
1123 // otherwise the escape isn't valid and the invalid character has
1124 // its normal meaning. I.e., we can just continue scanning without
1125 // worrying whether the following characters are part of the escape
1126 // or not, since any '/', '\\' or '[' is guaranteed to not be part
1127 // of the escape sequence.
1128
1129 // TODO(896): At some point, parse RegExps more throughly to capture
1130 // octal esacpes in strict mode.
1131 } else { // Unescaped character.
1132 if (c0_ == '[') in_character_class = true;
1133 if (c0_ == ']') in_character_class = false;
1134 AddLiteralCharAdvance();
1135 }
1136 }
1137 Advance(); // consume '/'
1138
1139 literal.Complete();
1140
1141 return true;
1142 }
1143
1144
ScanLiteralUnicodeEscape()1145 bool Scanner::ScanLiteralUnicodeEscape() {
1146 DCHECK(c0_ == '\\');
1147 uc32 chars_read[6] = {'\\', 'u', 0, 0, 0, 0};
1148 Advance();
1149 int i = 1;
1150 if (c0_ == 'u') {
1151 i++;
1152 while (i < 6) {
1153 Advance();
1154 if (!IsHexDigit(c0_)) break;
1155 chars_read[i] = c0_;
1156 i++;
1157 }
1158 }
1159 if (i < 6) {
1160 // Incomplete escape. Undo all advances and return false.
1161 while (i > 0) {
1162 i--;
1163 PushBack(chars_read[i]);
1164 }
1165 return false;
1166 }
1167 // Complete escape. Add all chars to current literal buffer.
1168 for (int i = 0; i < 6; i++) {
1169 AddLiteralChar(chars_read[i]);
1170 }
1171 return true;
1172 }
1173
1174
ScanRegExpFlags()1175 bool Scanner::ScanRegExpFlags() {
1176 // Scan regular expression flags.
1177 LiteralScope literal(this);
1178 while (unicode_cache_->IsIdentifierPart(c0_)) {
1179 if (c0_ != '\\') {
1180 AddLiteralCharAdvance();
1181 } else {
1182 if (!ScanLiteralUnicodeEscape()) {
1183 break;
1184 }
1185 Advance();
1186 }
1187 }
1188 literal.Complete();
1189
1190 next_.location.end_pos = source_pos() - 1;
1191 return true;
1192 }
1193
1194
CurrentSymbol(AstValueFactory * ast_value_factory)1195 const AstRawString* Scanner::CurrentSymbol(AstValueFactory* ast_value_factory) {
1196 if (is_literal_one_byte()) {
1197 return ast_value_factory->GetOneByteString(literal_one_byte_string());
1198 }
1199 return ast_value_factory->GetTwoByteString(literal_two_byte_string());
1200 }
1201
1202
NextSymbol(AstValueFactory * ast_value_factory)1203 const AstRawString* Scanner::NextSymbol(AstValueFactory* ast_value_factory) {
1204 if (is_next_literal_one_byte()) {
1205 return ast_value_factory->GetOneByteString(next_literal_one_byte_string());
1206 }
1207 return ast_value_factory->GetTwoByteString(next_literal_two_byte_string());
1208 }
1209
1210
DoubleValue()1211 double Scanner::DoubleValue() {
1212 DCHECK(is_literal_one_byte());
1213 return StringToDouble(
1214 unicode_cache_,
1215 literal_one_byte_string(),
1216 ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY);
1217 }
1218
1219
FindNumber(DuplicateFinder * finder,int value)1220 int Scanner::FindNumber(DuplicateFinder* finder, int value) {
1221 return finder->AddNumber(literal_one_byte_string(), value);
1222 }
1223
1224
FindSymbol(DuplicateFinder * finder,int value)1225 int Scanner::FindSymbol(DuplicateFinder* finder, int value) {
1226 if (is_literal_one_byte()) {
1227 return finder->AddOneByteSymbol(literal_one_byte_string(), value);
1228 }
1229 return finder->AddTwoByteSymbol(literal_two_byte_string(), value);
1230 }
1231
1232
AddOneByteSymbol(Vector<const uint8_t> key,int value)1233 int DuplicateFinder::AddOneByteSymbol(Vector<const uint8_t> key, int value) {
1234 return AddSymbol(key, true, value);
1235 }
1236
1237
AddTwoByteSymbol(Vector<const uint16_t> key,int value)1238 int DuplicateFinder::AddTwoByteSymbol(Vector<const uint16_t> key, int value) {
1239 return AddSymbol(Vector<const uint8_t>::cast(key), false, value);
1240 }
1241
1242
AddSymbol(Vector<const uint8_t> key,bool is_one_byte,int value)1243 int DuplicateFinder::AddSymbol(Vector<const uint8_t> key,
1244 bool is_one_byte,
1245 int value) {
1246 uint32_t hash = Hash(key, is_one_byte);
1247 byte* encoding = BackupKey(key, is_one_byte);
1248 HashMap::Entry* entry = map_.Lookup(encoding, hash, true);
1249 int old_value = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
1250 entry->value =
1251 reinterpret_cast<void*>(static_cast<intptr_t>(value | old_value));
1252 return old_value;
1253 }
1254
1255
AddNumber(Vector<const uint8_t> key,int value)1256 int DuplicateFinder::AddNumber(Vector<const uint8_t> key, int value) {
1257 DCHECK(key.length() > 0);
1258 // Quick check for already being in canonical form.
1259 if (IsNumberCanonical(key)) {
1260 return AddOneByteSymbol(key, value);
1261 }
1262
1263 int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL | ALLOW_BINARY;
1264 double double_value = StringToDouble(
1265 unicode_constants_, key, flags, 0.0);
1266 int length;
1267 const char* string;
1268 if (!std::isfinite(double_value)) {
1269 string = "Infinity";
1270 length = 8; // strlen("Infinity");
1271 } else {
1272 string = DoubleToCString(double_value,
1273 Vector<char>(number_buffer_, kBufferSize));
1274 length = StrLength(string);
1275 }
1276 return AddSymbol(Vector<const byte>(reinterpret_cast<const byte*>(string),
1277 length), true, value);
1278 }
1279
1280
IsNumberCanonical(Vector<const uint8_t> number)1281 bool DuplicateFinder::IsNumberCanonical(Vector<const uint8_t> number) {
1282 // Test for a safe approximation of number literals that are already
1283 // in canonical form: max 15 digits, no leading zeroes, except an
1284 // integer part that is a single zero, and no trailing zeros below
1285 // the decimal point.
1286 int pos = 0;
1287 int length = number.length();
1288 if (number.length() > 15) return false;
1289 if (number[pos] == '0') {
1290 pos++;
1291 } else {
1292 while (pos < length &&
1293 static_cast<unsigned>(number[pos] - '0') <= ('9' - '0')) pos++;
1294 }
1295 if (length == pos) return true;
1296 if (number[pos] != '.') return false;
1297 pos++;
1298 bool invalid_last_digit = true;
1299 while (pos < length) {
1300 uint8_t digit = number[pos] - '0';
1301 if (digit > '9' - '0') return false;
1302 invalid_last_digit = (digit == 0);
1303 pos++;
1304 }
1305 return !invalid_last_digit;
1306 }
1307
1308
Hash(Vector<const uint8_t> key,bool is_one_byte)1309 uint32_t DuplicateFinder::Hash(Vector<const uint8_t> key, bool is_one_byte) {
1310 // Primitive hash function, almost identical to the one used
1311 // for strings (except that it's seeded by the length and representation).
1312 int length = key.length();
1313 uint32_t hash = (length << 1) | (is_one_byte ? 1 : 0) ;
1314 for (int i = 0; i < length; i++) {
1315 uint32_t c = key[i];
1316 hash = (hash + c) * 1025;
1317 hash ^= (hash >> 6);
1318 }
1319 return hash;
1320 }
1321
1322
Match(void * first,void * second)1323 bool DuplicateFinder::Match(void* first, void* second) {
1324 // Decode lengths.
1325 // Length + representation is encoded as base 128, most significant heptet
1326 // first, with a 8th bit being non-zero while there are more heptets.
1327 // The value encodes the number of bytes following, and whether the original
1328 // was Latin1.
1329 byte* s1 = reinterpret_cast<byte*>(first);
1330 byte* s2 = reinterpret_cast<byte*>(second);
1331 uint32_t length_one_byte_field = 0;
1332 byte c1;
1333 do {
1334 c1 = *s1;
1335 if (c1 != *s2) return false;
1336 length_one_byte_field = (length_one_byte_field << 7) | (c1 & 0x7f);
1337 s1++;
1338 s2++;
1339 } while ((c1 & 0x80) != 0);
1340 int length = static_cast<int>(length_one_byte_field >> 1);
1341 return memcmp(s1, s2, length) == 0;
1342 }
1343
1344
BackupKey(Vector<const uint8_t> bytes,bool is_one_byte)1345 byte* DuplicateFinder::BackupKey(Vector<const uint8_t> bytes,
1346 bool is_one_byte) {
1347 uint32_t one_byte_length = (bytes.length() << 1) | (is_one_byte ? 1 : 0);
1348 backing_store_.StartSequence();
1349 // Emit one_byte_length as base-128 encoded number, with the 7th bit set
1350 // on the byte of every heptet except the last, least significant, one.
1351 if (one_byte_length >= (1 << 7)) {
1352 if (one_byte_length >= (1 << 14)) {
1353 if (one_byte_length >= (1 << 21)) {
1354 if (one_byte_length >= (1 << 28)) {
1355 backing_store_.Add(
1356 static_cast<uint8_t>((one_byte_length >> 28) | 0x80));
1357 }
1358 backing_store_.Add(
1359 static_cast<uint8_t>((one_byte_length >> 21) | 0x80u));
1360 }
1361 backing_store_.Add(
1362 static_cast<uint8_t>((one_byte_length >> 14) | 0x80u));
1363 }
1364 backing_store_.Add(static_cast<uint8_t>((one_byte_length >> 7) | 0x80u));
1365 }
1366 backing_store_.Add(static_cast<uint8_t>(one_byte_length & 0x7f));
1367
1368 backing_store_.AddBlock(bytes);
1369 return backing_store_.EndSequence().start();
1370 }
1371
1372 } } // namespace v8::internal
1373