1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Convenience for platform-independent signatures.  We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
19 
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23   kPointersToHereMaybeInteresting,
24   kPointersToHereAreAlwaysInteresting
25 };
26 
27 
28 enum RegisterValueType {
29   REGISTER_VALUE_IS_SMI,
30   REGISTER_VALUE_IS_INT32
31 };
32 
33 
34 #ifdef DEBUG
35 bool AreAliased(Register reg1,
36                 Register reg2,
37                 Register reg3 = no_reg,
38                 Register reg4 = no_reg,
39                 Register reg5 = no_reg,
40                 Register reg6 = no_reg,
41                 Register reg7 = no_reg,
42                 Register reg8 = no_reg);
43 #endif
44 
45 
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
48  public:
49   // The isolate parameter can be NULL if the macro assembler should
50   // not use isolate-dependent functionality. In this case, it's the
51   // responsibility of the caller to never invoke such function on the
52   // macro assembler.
53   MacroAssembler(Isolate* isolate, void* buffer, int size);
54 
55   void Load(Register dst, const Operand& src, Representation r);
56   void Store(Register src, const Operand& dst, Representation r);
57 
58   // Operations on roots in the root-array.
59   void LoadRoot(Register destination, Heap::RootListIndex index);
60   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62   // These methods can only be used with constant roots (i.e. non-writable
63   // and not in new space).
64   void CompareRoot(Register with, Heap::RootListIndex index);
65   void CompareRoot(const Operand& with, Heap::RootListIndex index);
66 
67   // ---------------------------------------------------------------------------
68   // GC Support
69   enum RememberedSetFinalAction {
70     kReturnAtEnd,
71     kFallThroughAtEnd
72   };
73 
74   // Record in the remembered set the fact that we have a pointer to new space
75   // at the address pointed to by the addr register.  Only works if addr is not
76   // in new space.
77   void RememberedSetHelper(Register object,  // Used for debug code.
78                            Register addr, Register scratch,
79                            SaveFPRegsMode save_fp,
80                            RememberedSetFinalAction and_then);
81 
82   void CheckPageFlag(Register object,
83                      Register scratch,
84                      int mask,
85                      Condition cc,
86                      Label* condition_met,
87                      Label::Distance condition_met_distance = Label::kFar);
88 
89   void CheckPageFlagForMap(
90       Handle<Map> map,
91       int mask,
92       Condition cc,
93       Label* condition_met,
94       Label::Distance condition_met_distance = Label::kFar);
95 
96   void CheckMapDeprecated(Handle<Map> map,
97                           Register scratch,
98                           Label* if_deprecated);
99 
100   // Check if object is in new space.  Jumps if the object is not in new space.
101   // The register scratch can be object itself, but scratch will be clobbered.
102   void JumpIfNotInNewSpace(Register object,
103                            Register scratch,
104                            Label* branch,
105                            Label::Distance distance = Label::kFar) {
106     InNewSpace(object, scratch, zero, branch, distance);
107   }
108 
109   // Check if object is in new space.  Jumps if the object is in new space.
110   // The register scratch can be object itself, but it will be clobbered.
111   void JumpIfInNewSpace(Register object,
112                         Register scratch,
113                         Label* branch,
114                         Label::Distance distance = Label::kFar) {
115     InNewSpace(object, scratch, not_zero, branch, distance);
116   }
117 
118   // Check if an object has a given incremental marking color.  Also uses ecx!
119   void HasColor(Register object,
120                 Register scratch0,
121                 Register scratch1,
122                 Label* has_color,
123                 Label::Distance has_color_distance,
124                 int first_bit,
125                 int second_bit);
126 
127   void JumpIfBlack(Register object,
128                    Register scratch0,
129                    Register scratch1,
130                    Label* on_black,
131                    Label::Distance on_black_distance = Label::kFar);
132 
133   // Checks the color of an object.  If the object is already grey or black
134   // then we just fall through, since it is already live.  If it is white and
135   // we can determine that it doesn't need to be scanned, then we just mark it
136   // black and fall through.  For the rest we jump to the label so the
137   // incremental marker can fix its assumptions.
138   void EnsureNotWhite(Register object,
139                       Register scratch1,
140                       Register scratch2,
141                       Label* object_is_white_and_not_data,
142                       Label::Distance distance);
143 
144   // Notify the garbage collector that we wrote a pointer into an object.
145   // |object| is the object being stored into, |value| is the object being
146   // stored.  value and scratch registers are clobbered by the operation.
147   // The offset is the offset from the start of the object, not the offset from
148   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
149   void RecordWriteField(
150       Register object, int offset, Register value, Register scratch,
151       SaveFPRegsMode save_fp,
152       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
153       SmiCheck smi_check = INLINE_SMI_CHECK,
154       PointersToHereCheck pointers_to_here_check_for_value =
155           kPointersToHereMaybeInteresting);
156 
157   // As above, but the offset has the tag presubtracted.  For use with
158   // Operand(reg, off).
159   void RecordWriteContextSlot(
160       Register context, int offset, Register value, Register scratch,
161       SaveFPRegsMode save_fp,
162       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
163       SmiCheck smi_check = INLINE_SMI_CHECK,
164       PointersToHereCheck pointers_to_here_check_for_value =
165           kPointersToHereMaybeInteresting) {
166     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
167                      remembered_set_action, smi_check,
168                      pointers_to_here_check_for_value);
169   }
170 
171   // Notify the garbage collector that we wrote a pointer into a fixed array.
172   // |array| is the array being stored into, |value| is the
173   // object being stored.  |index| is the array index represented as a
174   // Smi. All registers are clobbered by the operation RecordWriteArray
175   // filters out smis so it does not update the write barrier if the
176   // value is a smi.
177   void RecordWriteArray(
178       Register array, Register value, Register index, SaveFPRegsMode save_fp,
179       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
180       SmiCheck smi_check = INLINE_SMI_CHECK,
181       PointersToHereCheck pointers_to_here_check_for_value =
182           kPointersToHereMaybeInteresting);
183 
184   // For page containing |object| mark region covering |address|
185   // dirty. |object| is the object being stored into, |value| is the
186   // object being stored. The address and value registers are clobbered by the
187   // operation. RecordWrite filters out smis so it does not update the
188   // write barrier if the value is a smi.
189   void RecordWrite(
190       Register object, Register address, Register value, SaveFPRegsMode save_fp,
191       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
192       SmiCheck smi_check = INLINE_SMI_CHECK,
193       PointersToHereCheck pointers_to_here_check_for_value =
194           kPointersToHereMaybeInteresting);
195 
196   // For page containing |object| mark the region covering the object's map
197   // dirty. |object| is the object being stored into, |map| is the Map object
198   // that was stored.
199   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
200                          Register scratch2, SaveFPRegsMode save_fp);
201 
202   // ---------------------------------------------------------------------------
203   // Debugger Support
204 
205   void DebugBreak();
206 
207   // Generates function and stub prologue code.
208   void StubPrologue();
209   void Prologue(bool code_pre_aging);
210 
211   // Enter specific kind of exit frame. Expects the number of
212   // arguments in register eax and sets up the number of arguments in
213   // register edi and the pointer to the first argument in register
214   // esi.
215   void EnterExitFrame(bool save_doubles);
216 
217   void EnterApiExitFrame(int argc);
218 
219   // Leave the current exit frame. Expects the return value in
220   // register eax:edx (untouched) and the pointer to the first
221   // argument in register esi.
222   void LeaveExitFrame(bool save_doubles);
223 
224   // Leave the current exit frame. Expects the return value in
225   // register eax (untouched).
226   void LeaveApiExitFrame(bool restore_context);
227 
228   // Find the function context up the context chain.
229   void LoadContext(Register dst, int context_chain_length);
230 
231   // Conditionally load the cached Array transitioned map of type
232   // transitioned_kind from the native context if the map in register
233   // map_in_out is the cached Array map in the native context of
234   // expected_kind.
235   void LoadTransitionedArrayMapConditional(
236       ElementsKind expected_kind,
237       ElementsKind transitioned_kind,
238       Register map_in_out,
239       Register scratch,
240       Label* no_map_match);
241 
242   // Load the global function with the given index.
243   void LoadGlobalFunction(int index, Register function);
244 
245   // Load the initial map from the global function. The registers
246   // function and map can be the same.
247   void LoadGlobalFunctionInitialMap(Register function, Register map);
248 
249   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()250   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()251   void PopSafepointRegisters() { popad(); }
252   // Store the value in register/immediate src in the safepoint
253   // register stack slot for register dst.
254   void StoreToSafepointRegisterSlot(Register dst, Register src);
255   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
256   void LoadFromSafepointRegisterSlot(Register dst, Register src);
257 
258   void LoadHeapObject(Register result, Handle<HeapObject> object);
259   void CmpHeapObject(Register reg, Handle<HeapObject> object);
260   void PushHeapObject(Handle<HeapObject> object);
261 
LoadObject(Register result,Handle<Object> object)262   void LoadObject(Register result, Handle<Object> object) {
263     AllowDeferredHandleDereference heap_object_check;
264     if (object->IsHeapObject()) {
265       LoadHeapObject(result, Handle<HeapObject>::cast(object));
266     } else {
267       Move(result, Immediate(object));
268     }
269   }
270 
CmpObject(Register reg,Handle<Object> object)271   void CmpObject(Register reg, Handle<Object> object) {
272     AllowDeferredHandleDereference heap_object_check;
273     if (object->IsHeapObject()) {
274       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
275     } else {
276       cmp(reg, Immediate(object));
277     }
278   }
279 
280   // ---------------------------------------------------------------------------
281   // JavaScript invokes
282 
283   // Invoke the JavaScript function code by either calling or jumping.
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)284   void InvokeCode(Register code,
285                   const ParameterCount& expected,
286                   const ParameterCount& actual,
287                   InvokeFlag flag,
288                   const CallWrapper& call_wrapper) {
289     InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
290   }
291 
292   void InvokeCode(const Operand& code,
293                   const ParameterCount& expected,
294                   const ParameterCount& actual,
295                   InvokeFlag flag,
296                   const CallWrapper& call_wrapper);
297 
298   // Invoke the JavaScript function in the given register. Changes the
299   // current context to the context in the function before invoking.
300   void InvokeFunction(Register function,
301                       const ParameterCount& actual,
302                       InvokeFlag flag,
303                       const CallWrapper& call_wrapper);
304 
305   void InvokeFunction(Register function,
306                       const ParameterCount& expected,
307                       const ParameterCount& actual,
308                       InvokeFlag flag,
309                       const CallWrapper& call_wrapper);
310 
311   void InvokeFunction(Handle<JSFunction> function,
312                       const ParameterCount& expected,
313                       const ParameterCount& actual,
314                       InvokeFlag flag,
315                       const CallWrapper& call_wrapper);
316 
317   // Invoke specified builtin JavaScript function. Adds an entry to
318   // the unresolved list if the name does not resolve.
319   void InvokeBuiltin(Builtins::JavaScript id,
320                      InvokeFlag flag,
321                      const CallWrapper& call_wrapper = NullCallWrapper());
322 
323   // Store the function for the given builtin in the target register.
324   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
325 
326   // Store the code object for the given builtin in the target register.
327   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
328 
329   // Expression support
330   // Support for constant splitting.
331   bool IsUnsafeImmediate(const Immediate& x);
332   void SafeMove(Register dst, const Immediate& x);
333   void SafePush(const Immediate& x);
334 
335   // Compare object type for heap object.
336   // Incoming register is heap_object and outgoing register is map.
337   void CmpObjectType(Register heap_object, InstanceType type, Register map);
338 
339   // Compare instance type for map.
340   void CmpInstanceType(Register map, InstanceType type);
341 
342   // Check if a map for a JSObject indicates that the object has fast elements.
343   // Jump to the specified label if it does not.
344   void CheckFastElements(Register map,
345                          Label* fail,
346                          Label::Distance distance = Label::kFar);
347 
348   // Check if a map for a JSObject indicates that the object can have both smi
349   // and HeapObject elements.  Jump to the specified label if it does not.
350   void CheckFastObjectElements(Register map,
351                                Label* fail,
352                                Label::Distance distance = Label::kFar);
353 
354   // Check if a map for a JSObject indicates that the object has fast smi only
355   // elements.  Jump to the specified label if it does not.
356   void CheckFastSmiElements(Register map,
357                             Label* fail,
358                             Label::Distance distance = Label::kFar);
359 
360   // Check to see if maybe_number can be stored as a double in
361   // FastDoubleElements. If it can, store it at the index specified by key in
362   // the FastDoubleElements array elements, otherwise jump to fail.
363   void StoreNumberToDoubleElements(Register maybe_number,
364                                    Register elements,
365                                    Register key,
366                                    Register scratch,
367                                    Label* fail,
368                                    int offset = 0);
369 
370   // Compare an object's map with the specified map.
371   void CompareMap(Register obj, Handle<Map> map);
372 
373   // Check if the map of an object is equal to a specified map and branch to
374   // label if not. Skip the smi check if not required (object is known to be a
375   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
376   // against maps that are ElementsKind transition maps of the specified map.
377   void CheckMap(Register obj,
378                 Handle<Map> map,
379                 Label* fail,
380                 SmiCheckType smi_check_type);
381 
382   // Check if the map of an object is equal to a specified map and branch to a
383   // specified target if equal. Skip the smi check if not required (object is
384   // known to be a heap object)
385   void DispatchMap(Register obj,
386                    Register unused,
387                    Handle<Map> map,
388                    Handle<Code> success,
389                    SmiCheckType smi_check_type);
390 
391   // Check if the object in register heap_object is a string. Afterwards the
392   // register map contains the object map and the register instance_type
393   // contains the instance_type. The registers map and instance_type can be the
394   // same in which case it contains the instance type afterwards. Either of the
395   // registers map and instance_type can be the same as heap_object.
396   Condition IsObjectStringType(Register heap_object,
397                                Register map,
398                                Register instance_type);
399 
400   // Check if the object in register heap_object is a name. Afterwards the
401   // register map contains the object map and the register instance_type
402   // contains the instance_type. The registers map and instance_type can be the
403   // same in which case it contains the instance type afterwards. Either of the
404   // registers map and instance_type can be the same as heap_object.
405   Condition IsObjectNameType(Register heap_object,
406                              Register map,
407                              Register instance_type);
408 
409   // Check if a heap object's type is in the JSObject range, not including
410   // JSFunction.  The object's map will be loaded in the map register.
411   // Any or all of the three registers may be the same.
412   // The contents of the scratch register will always be overwritten.
413   void IsObjectJSObjectType(Register heap_object,
414                             Register map,
415                             Register scratch,
416                             Label* fail);
417 
418   // The contents of the scratch register will be overwritten.
419   void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
420 
421   // FCmp is similar to integer cmp, but requires unsigned
422   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
423   void FCmp();
424   void FXamMinusZero();
425   void FXamSign();
426   void X87CheckIA();
427   void X87SetRC(int rc);
428   void X87SetFPUCW(int cw);
429 
430   void ClampUint8(Register reg);
431   void ClampTOSToUint8(Register result_reg);
432 
433   void SlowTruncateToI(Register result_reg, Register input_reg,
434       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
435 
436   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
437   void TruncateX87TOSToI(Register result_reg);
438 
439   void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
440       Label* lost_precision, Label* is_nan, Label* minus_zero,
441       Label::Distance dst = Label::kFar);
442 
443   // Smi tagging support.
SmiTag(Register reg)444   void SmiTag(Register reg) {
445     STATIC_ASSERT(kSmiTag == 0);
446     STATIC_ASSERT(kSmiTagSize == 1);
447     add(reg, reg);
448   }
SmiUntag(Register reg)449   void SmiUntag(Register reg) {
450     sar(reg, kSmiTagSize);
451   }
452 
453   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)454   void SmiUntag(Register reg, Label* is_smi) {
455     STATIC_ASSERT(kSmiTagSize == 1);
456     sar(reg, kSmiTagSize);
457     STATIC_ASSERT(kSmiTag == 0);
458     j(not_carry, is_smi);
459   }
460 
461   void LoadUint32NoSSE2(Register src);
462 
463   // Jump the register contains a smi.
464   inline void JumpIfSmi(Register value,
465                         Label* smi_label,
466                         Label::Distance distance = Label::kFar) {
467     test(value, Immediate(kSmiTagMask));
468     j(zero, smi_label, distance);
469   }
470   // Jump if the operand is a smi.
471   inline void JumpIfSmi(Operand value,
472                         Label* smi_label,
473                         Label::Distance distance = Label::kFar) {
474     test(value, Immediate(kSmiTagMask));
475     j(zero, smi_label, distance);
476   }
477   // Jump if register contain a non-smi.
478   inline void JumpIfNotSmi(Register value,
479                            Label* not_smi_label,
480                            Label::Distance distance = Label::kFar) {
481     test(value, Immediate(kSmiTagMask));
482     j(not_zero, not_smi_label, distance);
483   }
484 
485   void LoadInstanceDescriptors(Register map, Register descriptors);
486   void EnumLength(Register dst, Register map);
487   void NumberOfOwnDescriptors(Register dst, Register map);
488 
489   template<typename Field>
DecodeField(Register reg)490   void DecodeField(Register reg) {
491     static const int shift = Field::kShift;
492     static const int mask = Field::kMask >> Field::kShift;
493     if (shift != 0) {
494       sar(reg, shift);
495     }
496     and_(reg, Immediate(mask));
497   }
498 
499   template<typename Field>
DecodeFieldToSmi(Register reg)500   void DecodeFieldToSmi(Register reg) {
501     static const int shift = Field::kShift;
502     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
503     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
504     STATIC_ASSERT(kSmiTag == 0);
505     if (shift < kSmiTagSize) {
506       shl(reg, kSmiTagSize - shift);
507     } else if (shift > kSmiTagSize) {
508       sar(reg, shift - kSmiTagSize);
509     }
510     and_(reg, Immediate(mask));
511   }
512 
513   // Abort execution if argument is not a number, enabled via --debug-code.
514   void AssertNumber(Register object);
515 
516   // Abort execution if argument is not a smi, enabled via --debug-code.
517   void AssertSmi(Register object);
518 
519   // Abort execution if argument is a smi, enabled via --debug-code.
520   void AssertNotSmi(Register object);
521 
522   // Abort execution if argument is not a string, enabled via --debug-code.
523   void AssertString(Register object);
524 
525   // Abort execution if argument is not a name, enabled via --debug-code.
526   void AssertName(Register object);
527 
528   // Abort execution if argument is not undefined or an AllocationSite, enabled
529   // via --debug-code.
530   void AssertUndefinedOrAllocationSite(Register object);
531 
532   // ---------------------------------------------------------------------------
533   // Exception handling
534 
535   // Push a new try handler and link it into try handler chain.
536   void PushTryHandler(StackHandler::Kind kind, int handler_index);
537 
538   // Unlink the stack handler on top of the stack from the try handler chain.
539   void PopTryHandler();
540 
541   // Throw to the top handler in the try hander chain.
542   void Throw(Register value);
543 
544   // Throw past all JS frames to the top JS entry frame.
545   void ThrowUncatchable(Register value);
546 
547   // ---------------------------------------------------------------------------
548   // Inline caching support
549 
550   // Generate code for checking access rights - used for security checks
551   // on access to global objects across environments. The holder register
552   // is left untouched, but the scratch register is clobbered.
553   void CheckAccessGlobalProxy(Register holder_reg,
554                               Register scratch1,
555                               Register scratch2,
556                               Label* miss);
557 
558   void GetNumberHash(Register r0, Register scratch);
559 
560   void LoadFromNumberDictionary(Label* miss,
561                                 Register elements,
562                                 Register key,
563                                 Register r0,
564                                 Register r1,
565                                 Register r2,
566                                 Register result);
567 
568 
569   // ---------------------------------------------------------------------------
570   // Allocation support
571 
572   // Allocate an object in new space or old pointer space. If the given space
573   // is exhausted control continues at the gc_required label. The allocated
574   // object is returned in result and end of the new object is returned in
575   // result_end. The register scratch can be passed as no_reg in which case
576   // an additional object reference will be added to the reloc info. The
577   // returned pointers in result and result_end have not yet been tagged as
578   // heap objects. If result_contains_top_on_entry is true the content of
579   // result is known to be the allocation top on entry (could be result_end
580   // from a previous call). If result_contains_top_on_entry is true scratch
581   // should be no_reg as it is never used.
582   void Allocate(int object_size,
583                 Register result,
584                 Register result_end,
585                 Register scratch,
586                 Label* gc_required,
587                 AllocationFlags flags);
588 
589   void Allocate(int header_size,
590                 ScaleFactor element_size,
591                 Register element_count,
592                 RegisterValueType element_count_type,
593                 Register result,
594                 Register result_end,
595                 Register scratch,
596                 Label* gc_required,
597                 AllocationFlags flags);
598 
599   void Allocate(Register object_size,
600                 Register result,
601                 Register result_end,
602                 Register scratch,
603                 Label* gc_required,
604                 AllocationFlags flags);
605 
606   // Undo allocation in new space. The object passed and objects allocated after
607   // it will no longer be allocated. Make sure that no pointers are left to the
608   // object(s) no longer allocated as they would be invalid when allocation is
609   // un-done.
610   void UndoAllocationInNewSpace(Register object);
611 
612   // Allocate a heap number in new space with undefined value. The
613   // register scratch2 can be passed as no_reg; the others must be
614   // valid registers. Returns tagged pointer in result register, or
615   // jumps to gc_required if new space is full.
616   void AllocateHeapNumber(Register result,
617                           Register scratch1,
618                           Register scratch2,
619                           Label* gc_required,
620                           MutableMode mode = IMMUTABLE);
621 
622   // Allocate a sequential string. All the header fields of the string object
623   // are initialized.
624   void AllocateTwoByteString(Register result,
625                              Register length,
626                              Register scratch1,
627                              Register scratch2,
628                              Register scratch3,
629                              Label* gc_required);
630   void AllocateOneByteString(Register result, Register length,
631                              Register scratch1, Register scratch2,
632                              Register scratch3, Label* gc_required);
633   void AllocateOneByteString(Register result, int length, Register scratch1,
634                              Register scratch2, Label* gc_required);
635 
636   // Allocate a raw cons string object. Only the map field of the result is
637   // initialized.
638   void AllocateTwoByteConsString(Register result,
639                           Register scratch1,
640                           Register scratch2,
641                           Label* gc_required);
642   void AllocateOneByteConsString(Register result, Register scratch1,
643                                  Register scratch2, Label* gc_required);
644 
645   // Allocate a raw sliced string object. Only the map field of the result is
646   // initialized.
647   void AllocateTwoByteSlicedString(Register result,
648                             Register scratch1,
649                             Register scratch2,
650                             Label* gc_required);
651   void AllocateOneByteSlicedString(Register result, Register scratch1,
652                                    Register scratch2, Label* gc_required);
653 
654   // Copy memory, byte-by-byte, from source to destination.  Not optimized for
655   // long or aligned copies.
656   // The contents of index and scratch are destroyed.
657   void CopyBytes(Register source,
658                  Register destination,
659                  Register length,
660                  Register scratch);
661 
662   // Initialize fields with filler values.  Fields starting at |start_offset|
663   // not including end_offset are overwritten with the value in |filler|.  At
664   // the end the loop, |start_offset| takes the value of |end_offset|.
665   void InitializeFieldsWithFiller(Register start_offset,
666                                   Register end_offset,
667                                   Register filler);
668 
669   // ---------------------------------------------------------------------------
670   // Support functions.
671 
672   // Check a boolean-bit of a Smi field.
673   void BooleanBitTest(Register object, int field_offset, int bit_index);
674 
675   // Check if result is zero and op is negative.
676   void NegativeZeroTest(Register result, Register op, Label* then_label);
677 
678   // Check if result is zero and any of op1 and op2 are negative.
679   // Register scratch is destroyed, and it must be different from op2.
680   void NegativeZeroTest(Register result, Register op1, Register op2,
681                         Register scratch, Label* then_label);
682 
683   // Try to get function prototype of a function and puts the value in
684   // the result register. Checks that the function really is a
685   // function and jumps to the miss label if the fast checks fail. The
686   // function register will be untouched; the other registers may be
687   // clobbered.
688   void TryGetFunctionPrototype(Register function,
689                                Register result,
690                                Register scratch,
691                                Label* miss,
692                                bool miss_on_bound_function = false);
693 
694   // Picks out an array index from the hash field.
695   // Register use:
696   //   hash - holds the index's hash. Clobbered.
697   //   index - holds the overwritten index on exit.
698   void IndexFromHash(Register hash, Register index);
699 
700   // ---------------------------------------------------------------------------
701   // Runtime calls
702 
703   // Call a code stub.  Generate the code if necessary.
704   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
705 
706   // Tail call a code stub (jump).  Generate the code if necessary.
707   void TailCallStub(CodeStub* stub);
708 
709   // Return from a code stub after popping its arguments.
710   void StubReturn(int argc);
711 
712   // Call a runtime routine.
713   void CallRuntime(const Runtime::Function* f, int num_arguments,
714                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId id)715   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
716     const Runtime::Function* function = Runtime::FunctionForId(id);
717     CallRuntime(function, function->nargs, kSaveFPRegs);
718   }
719 
720   // Convenience function: Same as above, but takes the fid instead.
721   void CallRuntime(Runtime::FunctionId id, int num_arguments,
722                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
723     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
724   }
725 
726   // Convenience function: call an external reference.
727   void CallExternalReference(ExternalReference ref, int num_arguments);
728 
729   // Tail call of a runtime routine (jump).
730   // Like JumpToExternalReference, but also takes care of passing the number
731   // of parameters.
732   void TailCallExternalReference(const ExternalReference& ext,
733                                  int num_arguments,
734                                  int result_size);
735 
736   // Convenience function: tail call a runtime routine (jump).
737   void TailCallRuntime(Runtime::FunctionId fid,
738                        int num_arguments,
739                        int result_size);
740 
741   // Before calling a C-function from generated code, align arguments on stack.
742   // After aligning the frame, arguments must be stored in esp[0], esp[4],
743   // etc., not pushed. The argument count assumes all arguments are word sized.
744   // Some compilers/platforms require the stack to be aligned when calling
745   // C++ code.
746   // Needs a scratch register to do some arithmetic. This register will be
747   // trashed.
748   void PrepareCallCFunction(int num_arguments, Register scratch);
749 
750   // Calls a C function and cleans up the space for arguments allocated
751   // by PrepareCallCFunction. The called function is not allowed to trigger a
752   // garbage collection, since that might move the code and invalidate the
753   // return address (unless this is somehow accounted for by the called
754   // function).
755   void CallCFunction(ExternalReference function, int num_arguments);
756   void CallCFunction(Register function, int num_arguments);
757 
758   // Prepares stack to put arguments (aligns and so on). Reserves
759   // space for return value if needed (assumes the return value is a handle).
760   // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
761   // etc. Saves context (esi). If space was reserved for return value then
762   // stores the pointer to the reserved slot into esi.
763   void PrepareCallApiFunction(int argc);
764 
765   // Calls an API function.  Allocates HandleScope, extracts returned value
766   // from handle and propagates exceptions.  Clobbers ebx, edi and
767   // caller-save registers.  Restores context.  On return removes
768   // stack_space * kPointerSize (GCed).
769   void CallApiFunctionAndReturn(Register function_address,
770                                 ExternalReference thunk_ref,
771                                 Operand thunk_last_arg,
772                                 int stack_space,
773                                 Operand return_value_operand,
774                                 Operand* context_restore_operand);
775 
776   // Jump to a runtime routine.
777   void JumpToExternalReference(const ExternalReference& ext);
778 
779   // ---------------------------------------------------------------------------
780   // Utilities
781 
782   void Ret();
783 
784   // Return and drop arguments from stack, where the number of arguments
785   // may be bigger than 2^16 - 1.  Requires a scratch register.
786   void Ret(int bytes_dropped, Register scratch);
787 
788   // Emit code to discard a non-negative number of pointer-sized elements
789   // from the stack, clobbering only the esp register.
790   void Drop(int element_count);
791 
Call(Label * target)792   void Call(Label* target) { call(target); }
Push(Register src)793   void Push(Register src) { push(src); }
Pop(Register dst)794   void Pop(Register dst) { pop(dst); }
795 
796   // Emit call to the code we are currently generating.
CallSelf()797   void CallSelf() {
798     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
799     call(self, RelocInfo::CODE_TARGET);
800   }
801 
802   // Move if the registers are not identical.
803   void Move(Register target, Register source);
804 
805   // Move a constant into a destination using the most efficient encoding.
806   void Move(Register dst, const Immediate& x);
807   void Move(const Operand& dst, const Immediate& x);
808 
809   // Push a handle value.
Push(Handle<Object> handle)810   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)811   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
812 
CodeObject()813   Handle<Object> CodeObject() {
814     DCHECK(!code_object_.is_null());
815     return code_object_;
816   }
817 
818   // Insert code to verify that the x87 stack has the specified depth (0-7)
819   void VerifyX87StackDepth(uint32_t depth);
820 
821   // Emit code for a truncating division by a constant. The dividend register is
822   // unchanged, the result is in edx, and eax gets clobbered.
823   void TruncatingDiv(Register dividend, int32_t divisor);
824 
825   // ---------------------------------------------------------------------------
826   // StatsCounter support
827 
828   void SetCounter(StatsCounter* counter, int value);
829   void IncrementCounter(StatsCounter* counter, int value);
830   void DecrementCounter(StatsCounter* counter, int value);
831   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
832   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
833 
834 
835   // ---------------------------------------------------------------------------
836   // Debugging
837 
838   // Calls Abort(msg) if the condition cc is not satisfied.
839   // Use --debug_code to enable.
840   void Assert(Condition cc, BailoutReason reason);
841 
842   void AssertFastElements(Register elements);
843 
844   // Like Assert(), but always enabled.
845   void Check(Condition cc, BailoutReason reason);
846 
847   // Print a message to stdout and abort execution.
848   void Abort(BailoutReason reason);
849 
850   // Check that the stack is aligned.
851   void CheckStackAlignment();
852 
853   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)854   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()855   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)856   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()857   bool has_frame() { return has_frame_; }
858   inline bool AllowThisStubCall(CodeStub* stub);
859 
860   // ---------------------------------------------------------------------------
861   // String utilities.
862 
863   // Generate code to do a lookup in the number string cache. If the number in
864   // the register object is found in the cache the generated code falls through
865   // with the result in the result register. The object and the result register
866   // can be the same. If the number is not found in the cache the code jumps to
867   // the label not_found with only the content of register object unchanged.
868   void LookupNumberStringCache(Register object,
869                                Register result,
870                                Register scratch1,
871                                Register scratch2,
872                                Label* not_found);
873 
874   // Check whether the instance type represents a flat one-byte string. Jump to
875   // the label if not. If the instance type can be scratched specify same
876   // register for both instance type and scratch.
877   void JumpIfInstanceTypeIsNotSequentialOneByte(
878       Register instance_type, Register scratch,
879       Label* on_not_flat_one_byte_string);
880 
881   // Checks if both objects are sequential one-byte strings, and jumps to label
882   // if either is not.
883   void JumpIfNotBothSequentialOneByteStrings(
884       Register object1, Register object2, Register scratch1, Register scratch2,
885       Label* on_not_flat_one_byte_strings);
886 
887   // Checks if the given register or operand is a unique name
888   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
889                                        Label::Distance distance = Label::kFar) {
890     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
891   }
892 
893   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
894                                        Label::Distance distance = Label::kFar);
895 
896   void EmitSeqStringSetCharCheck(Register string,
897                                  Register index,
898                                  Register value,
899                                  uint32_t encoding_mask);
900 
SafepointRegisterStackIndex(Register reg)901   static int SafepointRegisterStackIndex(Register reg) {
902     return SafepointRegisterStackIndex(reg.code());
903   }
904 
905   // Activation support.
906   void EnterFrame(StackFrame::Type type);
907   void LeaveFrame(StackFrame::Type type);
908 
909   // Expects object in eax and returns map with validated enum cache
910   // in eax.  Assumes that any other register can be used as a scratch.
911   void CheckEnumCache(Label* call_runtime);
912 
913   // AllocationMemento support. Arrays may have an associated
914   // AllocationMemento object that can be checked for in order to pretransition
915   // to another type.
916   // On entry, receiver_reg should point to the array object.
917   // scratch_reg gets clobbered.
918   // If allocation info is present, conditional code is set to equal.
919   void TestJSArrayForAllocationMemento(Register receiver_reg,
920                                        Register scratch_reg,
921                                        Label* no_memento_found);
922 
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)923   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
924                                          Register scratch_reg,
925                                          Label* memento_found) {
926     Label no_memento_found;
927     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
928                                     &no_memento_found);
929     j(equal, memento_found);
930     bind(&no_memento_found);
931   }
932 
933   // Jumps to found label if a prototype map has dictionary elements.
934   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
935                                         Register scratch1, Label* found);
936 
937  private:
938   bool generating_stub_;
939   bool has_frame_;
940   // This handle will be patched with the code object on installation.
941   Handle<Object> code_object_;
942 
943   // Helper functions for generating invokes.
944   void InvokePrologue(const ParameterCount& expected,
945                       const ParameterCount& actual,
946                       Handle<Code> code_constant,
947                       const Operand& code_operand,
948                       Label* done,
949                       bool* definitely_mismatches,
950                       InvokeFlag flag,
951                       Label::Distance done_distance,
952                       const CallWrapper& call_wrapper = NullCallWrapper());
953 
954   void EnterExitFramePrologue();
955   void EnterExitFrameEpilogue(int argc, bool save_doubles);
956 
957   void LeaveExitFrameEpilogue(bool restore_context);
958 
959   // Allocation support helpers.
960   void LoadAllocationTopHelper(Register result,
961                                Register scratch,
962                                AllocationFlags flags);
963 
964   void UpdateAllocationTopHelper(Register result_end,
965                                  Register scratch,
966                                  AllocationFlags flags);
967 
968   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
969   void InNewSpace(Register object,
970                   Register scratch,
971                   Condition cc,
972                   Label* condition_met,
973                   Label::Distance condition_met_distance = Label::kFar);
974 
975   // Helper for finding the mark bits for an address.  Afterwards, the
976   // bitmap register points at the word with the mark bits and the mask
977   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
978   // unchanged.
979   inline void GetMarkBits(Register addr_reg,
980                           Register bitmap_reg,
981                           Register mask_reg);
982 
983   // Helper for throwing exceptions.  Compute a handler address and jump to
984   // it.  See the implementation for register usage.
985   void JumpToHandlerEntry();
986 
987   // Compute memory operands for safepoint stack slots.
988   Operand SafepointRegisterSlot(Register reg);
989   static int SafepointRegisterStackIndex(int reg_code);
990 
991   // Needs access to SafepointRegisterStackIndex for compiled frame
992   // traversal.
993   friend class StandardFrame;
994 };
995 
996 
997 // The code patcher is used to patch (typically) small parts of code e.g. for
998 // debugging and other types of instrumentation. When using the code patcher
999 // the exact number of bytes specified must be emitted. Is not legal to emit
1000 // relocation information. If any of these constraints are violated it causes
1001 // an assertion.
1002 class CodePatcher {
1003  public:
1004   CodePatcher(byte* address, int size);
1005   virtual ~CodePatcher();
1006 
1007   // Macro assembler to emit code.
masm()1008   MacroAssembler* masm() { return &masm_; }
1009 
1010  private:
1011   byte* address_;  // The address of the code being patched.
1012   int size_;  // Number of bytes of the expected patch size.
1013   MacroAssembler masm_;  // Macro assembler used to generate the code.
1014 };
1015 
1016 
1017 // -----------------------------------------------------------------------------
1018 // Static helper functions.
1019 
1020 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1021 inline Operand FieldOperand(Register object, int offset) {
1022   return Operand(object, offset - kHeapObjectTag);
1023 }
1024 
1025 
1026 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1027 inline Operand FieldOperand(Register object,
1028                             Register index,
1029                             ScaleFactor scale,
1030                             int offset) {
1031   return Operand(object, index, scale, offset - kHeapObjectTag);
1032 }
1033 
1034 
1035 inline Operand FixedArrayElementOperand(Register array,
1036                                         Register index_as_smi,
1037                                         int additional_offset = 0) {
1038   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1039   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1040 }
1041 
1042 
ContextOperand(Register context,int index)1043 inline Operand ContextOperand(Register context, int index) {
1044   return Operand(context, Context::SlotOffset(index));
1045 }
1046 
1047 
GlobalObjectOperand()1048 inline Operand GlobalObjectOperand() {
1049   return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1050 }
1051 
1052 
1053 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1054 Operand ApiParameterOperand(int index);
1055 
1056 
1057 #ifdef GENERATED_CODE_COVERAGE
1058 extern void LogGeneratedCodeCoverage(const char* file_line);
1059 #define CODE_COVERAGE_STRINGIFY(x) #x
1060 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1061 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1062 #define ACCESS_MASM(masm) {                                               \
1063     byte* ia32_coverage_function =                                        \
1064         reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1065     masm->pushfd();                                                       \
1066     masm->pushad();                                                       \
1067     masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));         \
1068     masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY);         \
1069     masm->pop(eax);                                                       \
1070     masm->popad();                                                        \
1071     masm->popfd();                                                        \
1072   }                                                                       \
1073   masm->
1074 #else
1075 #define ACCESS_MASM(masm) masm->
1076 #endif
1077 
1078 
1079 } }  // namespace v8::internal
1080 
1081 #endif  // V8_X87_MACRO_ASSEMBLER_X87_H_
1082