1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X87_MACRO_ASSEMBLER_X87_H_
6 #define V8_X87_MACRO_ASSEMBLER_X87_H_
7
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12
13 namespace v8 {
14 namespace internal {
15
16 // Convenience for platform-independent signatures. We do not normally
17 // distinguish memory operands from other operands on ia32.
18 typedef Operand MemOperand;
19
20 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
21 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
22 enum PointersToHereCheck {
23 kPointersToHereMaybeInteresting,
24 kPointersToHereAreAlwaysInteresting
25 };
26
27
28 enum RegisterValueType {
29 REGISTER_VALUE_IS_SMI,
30 REGISTER_VALUE_IS_INT32
31 };
32
33
34 #ifdef DEBUG
35 bool AreAliased(Register reg1,
36 Register reg2,
37 Register reg3 = no_reg,
38 Register reg4 = no_reg,
39 Register reg5 = no_reg,
40 Register reg6 = no_reg,
41 Register reg7 = no_reg,
42 Register reg8 = no_reg);
43 #endif
44
45
46 // MacroAssembler implements a collection of frequently used macros.
47 class MacroAssembler: public Assembler {
48 public:
49 // The isolate parameter can be NULL if the macro assembler should
50 // not use isolate-dependent functionality. In this case, it's the
51 // responsibility of the caller to never invoke such function on the
52 // macro assembler.
53 MacroAssembler(Isolate* isolate, void* buffer, int size);
54
55 void Load(Register dst, const Operand& src, Representation r);
56 void Store(Register src, const Operand& dst, Representation r);
57
58 // Operations on roots in the root-array.
59 void LoadRoot(Register destination, Heap::RootListIndex index);
60 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
61 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
62 // These methods can only be used with constant roots (i.e. non-writable
63 // and not in new space).
64 void CompareRoot(Register with, Heap::RootListIndex index);
65 void CompareRoot(const Operand& with, Heap::RootListIndex index);
66
67 // ---------------------------------------------------------------------------
68 // GC Support
69 enum RememberedSetFinalAction {
70 kReturnAtEnd,
71 kFallThroughAtEnd
72 };
73
74 // Record in the remembered set the fact that we have a pointer to new space
75 // at the address pointed to by the addr register. Only works if addr is not
76 // in new space.
77 void RememberedSetHelper(Register object, // Used for debug code.
78 Register addr, Register scratch,
79 SaveFPRegsMode save_fp,
80 RememberedSetFinalAction and_then);
81
82 void CheckPageFlag(Register object,
83 Register scratch,
84 int mask,
85 Condition cc,
86 Label* condition_met,
87 Label::Distance condition_met_distance = Label::kFar);
88
89 void CheckPageFlagForMap(
90 Handle<Map> map,
91 int mask,
92 Condition cc,
93 Label* condition_met,
94 Label::Distance condition_met_distance = Label::kFar);
95
96 void CheckMapDeprecated(Handle<Map> map,
97 Register scratch,
98 Label* if_deprecated);
99
100 // Check if object is in new space. Jumps if the object is not in new space.
101 // The register scratch can be object itself, but scratch will be clobbered.
102 void JumpIfNotInNewSpace(Register object,
103 Register scratch,
104 Label* branch,
105 Label::Distance distance = Label::kFar) {
106 InNewSpace(object, scratch, zero, branch, distance);
107 }
108
109 // Check if object is in new space. Jumps if the object is in new space.
110 // The register scratch can be object itself, but it will be clobbered.
111 void JumpIfInNewSpace(Register object,
112 Register scratch,
113 Label* branch,
114 Label::Distance distance = Label::kFar) {
115 InNewSpace(object, scratch, not_zero, branch, distance);
116 }
117
118 // Check if an object has a given incremental marking color. Also uses ecx!
119 void HasColor(Register object,
120 Register scratch0,
121 Register scratch1,
122 Label* has_color,
123 Label::Distance has_color_distance,
124 int first_bit,
125 int second_bit);
126
127 void JumpIfBlack(Register object,
128 Register scratch0,
129 Register scratch1,
130 Label* on_black,
131 Label::Distance on_black_distance = Label::kFar);
132
133 // Checks the color of an object. If the object is already grey or black
134 // then we just fall through, since it is already live. If it is white and
135 // we can determine that it doesn't need to be scanned, then we just mark it
136 // black and fall through. For the rest we jump to the label so the
137 // incremental marker can fix its assumptions.
138 void EnsureNotWhite(Register object,
139 Register scratch1,
140 Register scratch2,
141 Label* object_is_white_and_not_data,
142 Label::Distance distance);
143
144 // Notify the garbage collector that we wrote a pointer into an object.
145 // |object| is the object being stored into, |value| is the object being
146 // stored. value and scratch registers are clobbered by the operation.
147 // The offset is the offset from the start of the object, not the offset from
148 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
149 void RecordWriteField(
150 Register object, int offset, Register value, Register scratch,
151 SaveFPRegsMode save_fp,
152 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
153 SmiCheck smi_check = INLINE_SMI_CHECK,
154 PointersToHereCheck pointers_to_here_check_for_value =
155 kPointersToHereMaybeInteresting);
156
157 // As above, but the offset has the tag presubtracted. For use with
158 // Operand(reg, off).
159 void RecordWriteContextSlot(
160 Register context, int offset, Register value, Register scratch,
161 SaveFPRegsMode save_fp,
162 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
163 SmiCheck smi_check = INLINE_SMI_CHECK,
164 PointersToHereCheck pointers_to_here_check_for_value =
165 kPointersToHereMaybeInteresting) {
166 RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
167 remembered_set_action, smi_check,
168 pointers_to_here_check_for_value);
169 }
170
171 // Notify the garbage collector that we wrote a pointer into a fixed array.
172 // |array| is the array being stored into, |value| is the
173 // object being stored. |index| is the array index represented as a
174 // Smi. All registers are clobbered by the operation RecordWriteArray
175 // filters out smis so it does not update the write barrier if the
176 // value is a smi.
177 void RecordWriteArray(
178 Register array, Register value, Register index, SaveFPRegsMode save_fp,
179 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
180 SmiCheck smi_check = INLINE_SMI_CHECK,
181 PointersToHereCheck pointers_to_here_check_for_value =
182 kPointersToHereMaybeInteresting);
183
184 // For page containing |object| mark region covering |address|
185 // dirty. |object| is the object being stored into, |value| is the
186 // object being stored. The address and value registers are clobbered by the
187 // operation. RecordWrite filters out smis so it does not update the
188 // write barrier if the value is a smi.
189 void RecordWrite(
190 Register object, Register address, Register value, SaveFPRegsMode save_fp,
191 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
192 SmiCheck smi_check = INLINE_SMI_CHECK,
193 PointersToHereCheck pointers_to_here_check_for_value =
194 kPointersToHereMaybeInteresting);
195
196 // For page containing |object| mark the region covering the object's map
197 // dirty. |object| is the object being stored into, |map| is the Map object
198 // that was stored.
199 void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
200 Register scratch2, SaveFPRegsMode save_fp);
201
202 // ---------------------------------------------------------------------------
203 // Debugger Support
204
205 void DebugBreak();
206
207 // Generates function and stub prologue code.
208 void StubPrologue();
209 void Prologue(bool code_pre_aging);
210
211 // Enter specific kind of exit frame. Expects the number of
212 // arguments in register eax and sets up the number of arguments in
213 // register edi and the pointer to the first argument in register
214 // esi.
215 void EnterExitFrame(bool save_doubles);
216
217 void EnterApiExitFrame(int argc);
218
219 // Leave the current exit frame. Expects the return value in
220 // register eax:edx (untouched) and the pointer to the first
221 // argument in register esi.
222 void LeaveExitFrame(bool save_doubles);
223
224 // Leave the current exit frame. Expects the return value in
225 // register eax (untouched).
226 void LeaveApiExitFrame(bool restore_context);
227
228 // Find the function context up the context chain.
229 void LoadContext(Register dst, int context_chain_length);
230
231 // Conditionally load the cached Array transitioned map of type
232 // transitioned_kind from the native context if the map in register
233 // map_in_out is the cached Array map in the native context of
234 // expected_kind.
235 void LoadTransitionedArrayMapConditional(
236 ElementsKind expected_kind,
237 ElementsKind transitioned_kind,
238 Register map_in_out,
239 Register scratch,
240 Label* no_map_match);
241
242 // Load the global function with the given index.
243 void LoadGlobalFunction(int index, Register function);
244
245 // Load the initial map from the global function. The registers
246 // function and map can be the same.
247 void LoadGlobalFunctionInitialMap(Register function, Register map);
248
249 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()250 void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()251 void PopSafepointRegisters() { popad(); }
252 // Store the value in register/immediate src in the safepoint
253 // register stack slot for register dst.
254 void StoreToSafepointRegisterSlot(Register dst, Register src);
255 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
256 void LoadFromSafepointRegisterSlot(Register dst, Register src);
257
258 void LoadHeapObject(Register result, Handle<HeapObject> object);
259 void CmpHeapObject(Register reg, Handle<HeapObject> object);
260 void PushHeapObject(Handle<HeapObject> object);
261
LoadObject(Register result,Handle<Object> object)262 void LoadObject(Register result, Handle<Object> object) {
263 AllowDeferredHandleDereference heap_object_check;
264 if (object->IsHeapObject()) {
265 LoadHeapObject(result, Handle<HeapObject>::cast(object));
266 } else {
267 Move(result, Immediate(object));
268 }
269 }
270
CmpObject(Register reg,Handle<Object> object)271 void CmpObject(Register reg, Handle<Object> object) {
272 AllowDeferredHandleDereference heap_object_check;
273 if (object->IsHeapObject()) {
274 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
275 } else {
276 cmp(reg, Immediate(object));
277 }
278 }
279
280 // ---------------------------------------------------------------------------
281 // JavaScript invokes
282
283 // Invoke the JavaScript function code by either calling or jumping.
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)284 void InvokeCode(Register code,
285 const ParameterCount& expected,
286 const ParameterCount& actual,
287 InvokeFlag flag,
288 const CallWrapper& call_wrapper) {
289 InvokeCode(Operand(code), expected, actual, flag, call_wrapper);
290 }
291
292 void InvokeCode(const Operand& code,
293 const ParameterCount& expected,
294 const ParameterCount& actual,
295 InvokeFlag flag,
296 const CallWrapper& call_wrapper);
297
298 // Invoke the JavaScript function in the given register. Changes the
299 // current context to the context in the function before invoking.
300 void InvokeFunction(Register function,
301 const ParameterCount& actual,
302 InvokeFlag flag,
303 const CallWrapper& call_wrapper);
304
305 void InvokeFunction(Register function,
306 const ParameterCount& expected,
307 const ParameterCount& actual,
308 InvokeFlag flag,
309 const CallWrapper& call_wrapper);
310
311 void InvokeFunction(Handle<JSFunction> function,
312 const ParameterCount& expected,
313 const ParameterCount& actual,
314 InvokeFlag flag,
315 const CallWrapper& call_wrapper);
316
317 // Invoke specified builtin JavaScript function. Adds an entry to
318 // the unresolved list if the name does not resolve.
319 void InvokeBuiltin(Builtins::JavaScript id,
320 InvokeFlag flag,
321 const CallWrapper& call_wrapper = NullCallWrapper());
322
323 // Store the function for the given builtin in the target register.
324 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
325
326 // Store the code object for the given builtin in the target register.
327 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
328
329 // Expression support
330 // Support for constant splitting.
331 bool IsUnsafeImmediate(const Immediate& x);
332 void SafeMove(Register dst, const Immediate& x);
333 void SafePush(const Immediate& x);
334
335 // Compare object type for heap object.
336 // Incoming register is heap_object and outgoing register is map.
337 void CmpObjectType(Register heap_object, InstanceType type, Register map);
338
339 // Compare instance type for map.
340 void CmpInstanceType(Register map, InstanceType type);
341
342 // Check if a map for a JSObject indicates that the object has fast elements.
343 // Jump to the specified label if it does not.
344 void CheckFastElements(Register map,
345 Label* fail,
346 Label::Distance distance = Label::kFar);
347
348 // Check if a map for a JSObject indicates that the object can have both smi
349 // and HeapObject elements. Jump to the specified label if it does not.
350 void CheckFastObjectElements(Register map,
351 Label* fail,
352 Label::Distance distance = Label::kFar);
353
354 // Check if a map for a JSObject indicates that the object has fast smi only
355 // elements. Jump to the specified label if it does not.
356 void CheckFastSmiElements(Register map,
357 Label* fail,
358 Label::Distance distance = Label::kFar);
359
360 // Check to see if maybe_number can be stored as a double in
361 // FastDoubleElements. If it can, store it at the index specified by key in
362 // the FastDoubleElements array elements, otherwise jump to fail.
363 void StoreNumberToDoubleElements(Register maybe_number,
364 Register elements,
365 Register key,
366 Register scratch,
367 Label* fail,
368 int offset = 0);
369
370 // Compare an object's map with the specified map.
371 void CompareMap(Register obj, Handle<Map> map);
372
373 // Check if the map of an object is equal to a specified map and branch to
374 // label if not. Skip the smi check if not required (object is known to be a
375 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
376 // against maps that are ElementsKind transition maps of the specified map.
377 void CheckMap(Register obj,
378 Handle<Map> map,
379 Label* fail,
380 SmiCheckType smi_check_type);
381
382 // Check if the map of an object is equal to a specified map and branch to a
383 // specified target if equal. Skip the smi check if not required (object is
384 // known to be a heap object)
385 void DispatchMap(Register obj,
386 Register unused,
387 Handle<Map> map,
388 Handle<Code> success,
389 SmiCheckType smi_check_type);
390
391 // Check if the object in register heap_object is a string. Afterwards the
392 // register map contains the object map and the register instance_type
393 // contains the instance_type. The registers map and instance_type can be the
394 // same in which case it contains the instance type afterwards. Either of the
395 // registers map and instance_type can be the same as heap_object.
396 Condition IsObjectStringType(Register heap_object,
397 Register map,
398 Register instance_type);
399
400 // Check if the object in register heap_object is a name. Afterwards the
401 // register map contains the object map and the register instance_type
402 // contains the instance_type. The registers map and instance_type can be the
403 // same in which case it contains the instance type afterwards. Either of the
404 // registers map and instance_type can be the same as heap_object.
405 Condition IsObjectNameType(Register heap_object,
406 Register map,
407 Register instance_type);
408
409 // Check if a heap object's type is in the JSObject range, not including
410 // JSFunction. The object's map will be loaded in the map register.
411 // Any or all of the three registers may be the same.
412 // The contents of the scratch register will always be overwritten.
413 void IsObjectJSObjectType(Register heap_object,
414 Register map,
415 Register scratch,
416 Label* fail);
417
418 // The contents of the scratch register will be overwritten.
419 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
420
421 // FCmp is similar to integer cmp, but requires unsigned
422 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
423 void FCmp();
424 void FXamMinusZero();
425 void FXamSign();
426 void X87CheckIA();
427 void X87SetRC(int rc);
428 void X87SetFPUCW(int cw);
429
430 void ClampUint8(Register reg);
431 void ClampTOSToUint8(Register result_reg);
432
433 void SlowTruncateToI(Register result_reg, Register input_reg,
434 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
435
436 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
437 void TruncateX87TOSToI(Register result_reg);
438
439 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
440 Label* lost_precision, Label* is_nan, Label* minus_zero,
441 Label::Distance dst = Label::kFar);
442
443 // Smi tagging support.
SmiTag(Register reg)444 void SmiTag(Register reg) {
445 STATIC_ASSERT(kSmiTag == 0);
446 STATIC_ASSERT(kSmiTagSize == 1);
447 add(reg, reg);
448 }
SmiUntag(Register reg)449 void SmiUntag(Register reg) {
450 sar(reg, kSmiTagSize);
451 }
452
453 // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)454 void SmiUntag(Register reg, Label* is_smi) {
455 STATIC_ASSERT(kSmiTagSize == 1);
456 sar(reg, kSmiTagSize);
457 STATIC_ASSERT(kSmiTag == 0);
458 j(not_carry, is_smi);
459 }
460
461 void LoadUint32NoSSE2(Register src);
462
463 // Jump the register contains a smi.
464 inline void JumpIfSmi(Register value,
465 Label* smi_label,
466 Label::Distance distance = Label::kFar) {
467 test(value, Immediate(kSmiTagMask));
468 j(zero, smi_label, distance);
469 }
470 // Jump if the operand is a smi.
471 inline void JumpIfSmi(Operand value,
472 Label* smi_label,
473 Label::Distance distance = Label::kFar) {
474 test(value, Immediate(kSmiTagMask));
475 j(zero, smi_label, distance);
476 }
477 // Jump if register contain a non-smi.
478 inline void JumpIfNotSmi(Register value,
479 Label* not_smi_label,
480 Label::Distance distance = Label::kFar) {
481 test(value, Immediate(kSmiTagMask));
482 j(not_zero, not_smi_label, distance);
483 }
484
485 void LoadInstanceDescriptors(Register map, Register descriptors);
486 void EnumLength(Register dst, Register map);
487 void NumberOfOwnDescriptors(Register dst, Register map);
488
489 template<typename Field>
DecodeField(Register reg)490 void DecodeField(Register reg) {
491 static const int shift = Field::kShift;
492 static const int mask = Field::kMask >> Field::kShift;
493 if (shift != 0) {
494 sar(reg, shift);
495 }
496 and_(reg, Immediate(mask));
497 }
498
499 template<typename Field>
DecodeFieldToSmi(Register reg)500 void DecodeFieldToSmi(Register reg) {
501 static const int shift = Field::kShift;
502 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
503 STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
504 STATIC_ASSERT(kSmiTag == 0);
505 if (shift < kSmiTagSize) {
506 shl(reg, kSmiTagSize - shift);
507 } else if (shift > kSmiTagSize) {
508 sar(reg, shift - kSmiTagSize);
509 }
510 and_(reg, Immediate(mask));
511 }
512
513 // Abort execution if argument is not a number, enabled via --debug-code.
514 void AssertNumber(Register object);
515
516 // Abort execution if argument is not a smi, enabled via --debug-code.
517 void AssertSmi(Register object);
518
519 // Abort execution if argument is a smi, enabled via --debug-code.
520 void AssertNotSmi(Register object);
521
522 // Abort execution if argument is not a string, enabled via --debug-code.
523 void AssertString(Register object);
524
525 // Abort execution if argument is not a name, enabled via --debug-code.
526 void AssertName(Register object);
527
528 // Abort execution if argument is not undefined or an AllocationSite, enabled
529 // via --debug-code.
530 void AssertUndefinedOrAllocationSite(Register object);
531
532 // ---------------------------------------------------------------------------
533 // Exception handling
534
535 // Push a new try handler and link it into try handler chain.
536 void PushTryHandler(StackHandler::Kind kind, int handler_index);
537
538 // Unlink the stack handler on top of the stack from the try handler chain.
539 void PopTryHandler();
540
541 // Throw to the top handler in the try hander chain.
542 void Throw(Register value);
543
544 // Throw past all JS frames to the top JS entry frame.
545 void ThrowUncatchable(Register value);
546
547 // ---------------------------------------------------------------------------
548 // Inline caching support
549
550 // Generate code for checking access rights - used for security checks
551 // on access to global objects across environments. The holder register
552 // is left untouched, but the scratch register is clobbered.
553 void CheckAccessGlobalProxy(Register holder_reg,
554 Register scratch1,
555 Register scratch2,
556 Label* miss);
557
558 void GetNumberHash(Register r0, Register scratch);
559
560 void LoadFromNumberDictionary(Label* miss,
561 Register elements,
562 Register key,
563 Register r0,
564 Register r1,
565 Register r2,
566 Register result);
567
568
569 // ---------------------------------------------------------------------------
570 // Allocation support
571
572 // Allocate an object in new space or old pointer space. If the given space
573 // is exhausted control continues at the gc_required label. The allocated
574 // object is returned in result and end of the new object is returned in
575 // result_end. The register scratch can be passed as no_reg in which case
576 // an additional object reference will be added to the reloc info. The
577 // returned pointers in result and result_end have not yet been tagged as
578 // heap objects. If result_contains_top_on_entry is true the content of
579 // result is known to be the allocation top on entry (could be result_end
580 // from a previous call). If result_contains_top_on_entry is true scratch
581 // should be no_reg as it is never used.
582 void Allocate(int object_size,
583 Register result,
584 Register result_end,
585 Register scratch,
586 Label* gc_required,
587 AllocationFlags flags);
588
589 void Allocate(int header_size,
590 ScaleFactor element_size,
591 Register element_count,
592 RegisterValueType element_count_type,
593 Register result,
594 Register result_end,
595 Register scratch,
596 Label* gc_required,
597 AllocationFlags flags);
598
599 void Allocate(Register object_size,
600 Register result,
601 Register result_end,
602 Register scratch,
603 Label* gc_required,
604 AllocationFlags flags);
605
606 // Undo allocation in new space. The object passed and objects allocated after
607 // it will no longer be allocated. Make sure that no pointers are left to the
608 // object(s) no longer allocated as they would be invalid when allocation is
609 // un-done.
610 void UndoAllocationInNewSpace(Register object);
611
612 // Allocate a heap number in new space with undefined value. The
613 // register scratch2 can be passed as no_reg; the others must be
614 // valid registers. Returns tagged pointer in result register, or
615 // jumps to gc_required if new space is full.
616 void AllocateHeapNumber(Register result,
617 Register scratch1,
618 Register scratch2,
619 Label* gc_required,
620 MutableMode mode = IMMUTABLE);
621
622 // Allocate a sequential string. All the header fields of the string object
623 // are initialized.
624 void AllocateTwoByteString(Register result,
625 Register length,
626 Register scratch1,
627 Register scratch2,
628 Register scratch3,
629 Label* gc_required);
630 void AllocateOneByteString(Register result, Register length,
631 Register scratch1, Register scratch2,
632 Register scratch3, Label* gc_required);
633 void AllocateOneByteString(Register result, int length, Register scratch1,
634 Register scratch2, Label* gc_required);
635
636 // Allocate a raw cons string object. Only the map field of the result is
637 // initialized.
638 void AllocateTwoByteConsString(Register result,
639 Register scratch1,
640 Register scratch2,
641 Label* gc_required);
642 void AllocateOneByteConsString(Register result, Register scratch1,
643 Register scratch2, Label* gc_required);
644
645 // Allocate a raw sliced string object. Only the map field of the result is
646 // initialized.
647 void AllocateTwoByteSlicedString(Register result,
648 Register scratch1,
649 Register scratch2,
650 Label* gc_required);
651 void AllocateOneByteSlicedString(Register result, Register scratch1,
652 Register scratch2, Label* gc_required);
653
654 // Copy memory, byte-by-byte, from source to destination. Not optimized for
655 // long or aligned copies.
656 // The contents of index and scratch are destroyed.
657 void CopyBytes(Register source,
658 Register destination,
659 Register length,
660 Register scratch);
661
662 // Initialize fields with filler values. Fields starting at |start_offset|
663 // not including end_offset are overwritten with the value in |filler|. At
664 // the end the loop, |start_offset| takes the value of |end_offset|.
665 void InitializeFieldsWithFiller(Register start_offset,
666 Register end_offset,
667 Register filler);
668
669 // ---------------------------------------------------------------------------
670 // Support functions.
671
672 // Check a boolean-bit of a Smi field.
673 void BooleanBitTest(Register object, int field_offset, int bit_index);
674
675 // Check if result is zero and op is negative.
676 void NegativeZeroTest(Register result, Register op, Label* then_label);
677
678 // Check if result is zero and any of op1 and op2 are negative.
679 // Register scratch is destroyed, and it must be different from op2.
680 void NegativeZeroTest(Register result, Register op1, Register op2,
681 Register scratch, Label* then_label);
682
683 // Try to get function prototype of a function and puts the value in
684 // the result register. Checks that the function really is a
685 // function and jumps to the miss label if the fast checks fail. The
686 // function register will be untouched; the other registers may be
687 // clobbered.
688 void TryGetFunctionPrototype(Register function,
689 Register result,
690 Register scratch,
691 Label* miss,
692 bool miss_on_bound_function = false);
693
694 // Picks out an array index from the hash field.
695 // Register use:
696 // hash - holds the index's hash. Clobbered.
697 // index - holds the overwritten index on exit.
698 void IndexFromHash(Register hash, Register index);
699
700 // ---------------------------------------------------------------------------
701 // Runtime calls
702
703 // Call a code stub. Generate the code if necessary.
704 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
705
706 // Tail call a code stub (jump). Generate the code if necessary.
707 void TailCallStub(CodeStub* stub);
708
709 // Return from a code stub after popping its arguments.
710 void StubReturn(int argc);
711
712 // Call a runtime routine.
713 void CallRuntime(const Runtime::Function* f, int num_arguments,
714 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId id)715 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
716 const Runtime::Function* function = Runtime::FunctionForId(id);
717 CallRuntime(function, function->nargs, kSaveFPRegs);
718 }
719
720 // Convenience function: Same as above, but takes the fid instead.
721 void CallRuntime(Runtime::FunctionId id, int num_arguments,
722 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
723 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
724 }
725
726 // Convenience function: call an external reference.
727 void CallExternalReference(ExternalReference ref, int num_arguments);
728
729 // Tail call of a runtime routine (jump).
730 // Like JumpToExternalReference, but also takes care of passing the number
731 // of parameters.
732 void TailCallExternalReference(const ExternalReference& ext,
733 int num_arguments,
734 int result_size);
735
736 // Convenience function: tail call a runtime routine (jump).
737 void TailCallRuntime(Runtime::FunctionId fid,
738 int num_arguments,
739 int result_size);
740
741 // Before calling a C-function from generated code, align arguments on stack.
742 // After aligning the frame, arguments must be stored in esp[0], esp[4],
743 // etc., not pushed. The argument count assumes all arguments are word sized.
744 // Some compilers/platforms require the stack to be aligned when calling
745 // C++ code.
746 // Needs a scratch register to do some arithmetic. This register will be
747 // trashed.
748 void PrepareCallCFunction(int num_arguments, Register scratch);
749
750 // Calls a C function and cleans up the space for arguments allocated
751 // by PrepareCallCFunction. The called function is not allowed to trigger a
752 // garbage collection, since that might move the code and invalidate the
753 // return address (unless this is somehow accounted for by the called
754 // function).
755 void CallCFunction(ExternalReference function, int num_arguments);
756 void CallCFunction(Register function, int num_arguments);
757
758 // Prepares stack to put arguments (aligns and so on). Reserves
759 // space for return value if needed (assumes the return value is a handle).
760 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
761 // etc. Saves context (esi). If space was reserved for return value then
762 // stores the pointer to the reserved slot into esi.
763 void PrepareCallApiFunction(int argc);
764
765 // Calls an API function. Allocates HandleScope, extracts returned value
766 // from handle and propagates exceptions. Clobbers ebx, edi and
767 // caller-save registers. Restores context. On return removes
768 // stack_space * kPointerSize (GCed).
769 void CallApiFunctionAndReturn(Register function_address,
770 ExternalReference thunk_ref,
771 Operand thunk_last_arg,
772 int stack_space,
773 Operand return_value_operand,
774 Operand* context_restore_operand);
775
776 // Jump to a runtime routine.
777 void JumpToExternalReference(const ExternalReference& ext);
778
779 // ---------------------------------------------------------------------------
780 // Utilities
781
782 void Ret();
783
784 // Return and drop arguments from stack, where the number of arguments
785 // may be bigger than 2^16 - 1. Requires a scratch register.
786 void Ret(int bytes_dropped, Register scratch);
787
788 // Emit code to discard a non-negative number of pointer-sized elements
789 // from the stack, clobbering only the esp register.
790 void Drop(int element_count);
791
Call(Label * target)792 void Call(Label* target) { call(target); }
Push(Register src)793 void Push(Register src) { push(src); }
Pop(Register dst)794 void Pop(Register dst) { pop(dst); }
795
796 // Emit call to the code we are currently generating.
CallSelf()797 void CallSelf() {
798 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
799 call(self, RelocInfo::CODE_TARGET);
800 }
801
802 // Move if the registers are not identical.
803 void Move(Register target, Register source);
804
805 // Move a constant into a destination using the most efficient encoding.
806 void Move(Register dst, const Immediate& x);
807 void Move(const Operand& dst, const Immediate& x);
808
809 // Push a handle value.
Push(Handle<Object> handle)810 void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)811 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
812
CodeObject()813 Handle<Object> CodeObject() {
814 DCHECK(!code_object_.is_null());
815 return code_object_;
816 }
817
818 // Insert code to verify that the x87 stack has the specified depth (0-7)
819 void VerifyX87StackDepth(uint32_t depth);
820
821 // Emit code for a truncating division by a constant. The dividend register is
822 // unchanged, the result is in edx, and eax gets clobbered.
823 void TruncatingDiv(Register dividend, int32_t divisor);
824
825 // ---------------------------------------------------------------------------
826 // StatsCounter support
827
828 void SetCounter(StatsCounter* counter, int value);
829 void IncrementCounter(StatsCounter* counter, int value);
830 void DecrementCounter(StatsCounter* counter, int value);
831 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
832 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
833
834
835 // ---------------------------------------------------------------------------
836 // Debugging
837
838 // Calls Abort(msg) if the condition cc is not satisfied.
839 // Use --debug_code to enable.
840 void Assert(Condition cc, BailoutReason reason);
841
842 void AssertFastElements(Register elements);
843
844 // Like Assert(), but always enabled.
845 void Check(Condition cc, BailoutReason reason);
846
847 // Print a message to stdout and abort execution.
848 void Abort(BailoutReason reason);
849
850 // Check that the stack is aligned.
851 void CheckStackAlignment();
852
853 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)854 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()855 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)856 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()857 bool has_frame() { return has_frame_; }
858 inline bool AllowThisStubCall(CodeStub* stub);
859
860 // ---------------------------------------------------------------------------
861 // String utilities.
862
863 // Generate code to do a lookup in the number string cache. If the number in
864 // the register object is found in the cache the generated code falls through
865 // with the result in the result register. The object and the result register
866 // can be the same. If the number is not found in the cache the code jumps to
867 // the label not_found with only the content of register object unchanged.
868 void LookupNumberStringCache(Register object,
869 Register result,
870 Register scratch1,
871 Register scratch2,
872 Label* not_found);
873
874 // Check whether the instance type represents a flat one-byte string. Jump to
875 // the label if not. If the instance type can be scratched specify same
876 // register for both instance type and scratch.
877 void JumpIfInstanceTypeIsNotSequentialOneByte(
878 Register instance_type, Register scratch,
879 Label* on_not_flat_one_byte_string);
880
881 // Checks if both objects are sequential one-byte strings, and jumps to label
882 // if either is not.
883 void JumpIfNotBothSequentialOneByteStrings(
884 Register object1, Register object2, Register scratch1, Register scratch2,
885 Label* on_not_flat_one_byte_strings);
886
887 // Checks if the given register or operand is a unique name
888 void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
889 Label::Distance distance = Label::kFar) {
890 JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
891 }
892
893 void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
894 Label::Distance distance = Label::kFar);
895
896 void EmitSeqStringSetCharCheck(Register string,
897 Register index,
898 Register value,
899 uint32_t encoding_mask);
900
SafepointRegisterStackIndex(Register reg)901 static int SafepointRegisterStackIndex(Register reg) {
902 return SafepointRegisterStackIndex(reg.code());
903 }
904
905 // Activation support.
906 void EnterFrame(StackFrame::Type type);
907 void LeaveFrame(StackFrame::Type type);
908
909 // Expects object in eax and returns map with validated enum cache
910 // in eax. Assumes that any other register can be used as a scratch.
911 void CheckEnumCache(Label* call_runtime);
912
913 // AllocationMemento support. Arrays may have an associated
914 // AllocationMemento object that can be checked for in order to pretransition
915 // to another type.
916 // On entry, receiver_reg should point to the array object.
917 // scratch_reg gets clobbered.
918 // If allocation info is present, conditional code is set to equal.
919 void TestJSArrayForAllocationMemento(Register receiver_reg,
920 Register scratch_reg,
921 Label* no_memento_found);
922
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)923 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
924 Register scratch_reg,
925 Label* memento_found) {
926 Label no_memento_found;
927 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
928 &no_memento_found);
929 j(equal, memento_found);
930 bind(&no_memento_found);
931 }
932
933 // Jumps to found label if a prototype map has dictionary elements.
934 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
935 Register scratch1, Label* found);
936
937 private:
938 bool generating_stub_;
939 bool has_frame_;
940 // This handle will be patched with the code object on installation.
941 Handle<Object> code_object_;
942
943 // Helper functions for generating invokes.
944 void InvokePrologue(const ParameterCount& expected,
945 const ParameterCount& actual,
946 Handle<Code> code_constant,
947 const Operand& code_operand,
948 Label* done,
949 bool* definitely_mismatches,
950 InvokeFlag flag,
951 Label::Distance done_distance,
952 const CallWrapper& call_wrapper = NullCallWrapper());
953
954 void EnterExitFramePrologue();
955 void EnterExitFrameEpilogue(int argc, bool save_doubles);
956
957 void LeaveExitFrameEpilogue(bool restore_context);
958
959 // Allocation support helpers.
960 void LoadAllocationTopHelper(Register result,
961 Register scratch,
962 AllocationFlags flags);
963
964 void UpdateAllocationTopHelper(Register result_end,
965 Register scratch,
966 AllocationFlags flags);
967
968 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
969 void InNewSpace(Register object,
970 Register scratch,
971 Condition cc,
972 Label* condition_met,
973 Label::Distance condition_met_distance = Label::kFar);
974
975 // Helper for finding the mark bits for an address. Afterwards, the
976 // bitmap register points at the word with the mark bits and the mask
977 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
978 // unchanged.
979 inline void GetMarkBits(Register addr_reg,
980 Register bitmap_reg,
981 Register mask_reg);
982
983 // Helper for throwing exceptions. Compute a handler address and jump to
984 // it. See the implementation for register usage.
985 void JumpToHandlerEntry();
986
987 // Compute memory operands for safepoint stack slots.
988 Operand SafepointRegisterSlot(Register reg);
989 static int SafepointRegisterStackIndex(int reg_code);
990
991 // Needs access to SafepointRegisterStackIndex for compiled frame
992 // traversal.
993 friend class StandardFrame;
994 };
995
996
997 // The code patcher is used to patch (typically) small parts of code e.g. for
998 // debugging and other types of instrumentation. When using the code patcher
999 // the exact number of bytes specified must be emitted. Is not legal to emit
1000 // relocation information. If any of these constraints are violated it causes
1001 // an assertion.
1002 class CodePatcher {
1003 public:
1004 CodePatcher(byte* address, int size);
1005 virtual ~CodePatcher();
1006
1007 // Macro assembler to emit code.
masm()1008 MacroAssembler* masm() { return &masm_; }
1009
1010 private:
1011 byte* address_; // The address of the code being patched.
1012 int size_; // Number of bytes of the expected patch size.
1013 MacroAssembler masm_; // Macro assembler used to generate the code.
1014 };
1015
1016
1017 // -----------------------------------------------------------------------------
1018 // Static helper functions.
1019
1020 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1021 inline Operand FieldOperand(Register object, int offset) {
1022 return Operand(object, offset - kHeapObjectTag);
1023 }
1024
1025
1026 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1027 inline Operand FieldOperand(Register object,
1028 Register index,
1029 ScaleFactor scale,
1030 int offset) {
1031 return Operand(object, index, scale, offset - kHeapObjectTag);
1032 }
1033
1034
1035 inline Operand FixedArrayElementOperand(Register array,
1036 Register index_as_smi,
1037 int additional_offset = 0) {
1038 int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
1039 return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
1040 }
1041
1042
ContextOperand(Register context,int index)1043 inline Operand ContextOperand(Register context, int index) {
1044 return Operand(context, Context::SlotOffset(index));
1045 }
1046
1047
GlobalObjectOperand()1048 inline Operand GlobalObjectOperand() {
1049 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1050 }
1051
1052
1053 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1054 Operand ApiParameterOperand(int index);
1055
1056
1057 #ifdef GENERATED_CODE_COVERAGE
1058 extern void LogGeneratedCodeCoverage(const char* file_line);
1059 #define CODE_COVERAGE_STRINGIFY(x) #x
1060 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1061 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1062 #define ACCESS_MASM(masm) { \
1063 byte* ia32_coverage_function = \
1064 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1065 masm->pushfd(); \
1066 masm->pushad(); \
1067 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1068 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1069 masm->pop(eax); \
1070 masm->popad(); \
1071 masm->popfd(); \
1072 } \
1073 masm->
1074 #else
1075 #define ACCESS_MASM(masm) masm->
1076 #endif
1077
1078
1079 } } // namespace v8::internal
1080
1081 #endif // V8_X87_MACRO_ASSEMBLER_X87_H_
1082