1 /* 2 * Copyright 2014 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkTextureCompressor_Blitter_DEFINED 9 #define SkTextureCompressor_Blitter_DEFINED 10 11 #include "SkTypes.h" 12 #include "SkBlitter.h" 13 14 namespace SkTextureCompressor { 15 16 // Ostensibly, SkBlitter::BlitRect is supposed to set a rect of pixels to full 17 // alpha. This becomes problematic when using compressed texture blitters, since 18 // the rect rarely falls along block boundaries. The proper way to handle this is 19 // to update the compressed encoding of a block by resetting the proper parameters 20 // (and even recompressing the block) where a rect falls inbetween block boundaries. 21 // PEDANTIC_BLIT_RECT attempts to do this by requiring the struct passed to 22 // SkTCompressedAlphaBlitter to implement an UpdateBlock function call. 23 // 24 // However, the way that BlitRect gets used almost exclusively is to bracket inverse 25 // fills for paths. In other words, the top few rows and bottom few rows of a path 26 // that's getting inverse filled are called using blitRect. The rest are called using 27 // the standard blitAntiH. As a result, we can just call blitAntiH with a faux RLE 28 // of full alpha values, and then check in our flush() call that we don't run off the 29 // edge of the buffer. This is why we do not need this flag to be turned on. 30 // 31 // NOTE: This code is unfinished, but is inteded as a starting point if an when 32 // bugs are introduced from the existing code. 33 #define PEDANTIC_BLIT_RECT 0 34 35 // This class implements a blitter that blits directly into a buffer that will 36 // be used as an compressed alpha texture. We compute this buffer by 37 // buffering scan lines and then outputting them all at once. The number of 38 // scan lines buffered is controlled by kBlockSize 39 // 40 // The CompressorType is a struct with a bunch of static methods that provides 41 // the specialized compression functionality of the blitter. A complete CompressorType 42 // will implement the following static functions; 43 // 44 // struct CompressorType { 45 // // The function used to compress an A8 block. The layout of the 46 // // block is also expected to be in column-major order. 47 // static void CompressA8Vertical(uint8_t* dst, const uint8_t block[]); 48 // 49 // // The function used to compress an A8 block. The layout of the 50 // // block is also expected to be in row-major order. 51 // static void CompressA8Horizontal(uint8_t* dst, const uint8_t* src, int srcRowBytes); 52 // 53 #if PEDANTIC_BLIT_RECT 54 // // The function used to update an already compressed block. This will 55 // // most likely be implementation dependent. The mask variable will have 56 // // 0xFF in positions where the block should be updated and 0 in positions 57 // // where it shouldn't. src contains an uncompressed buffer of pixels. 58 // static void UpdateBlock(uint8_t* dst, const uint8_t* src, int srcRowBytes, 59 // const uint8_t* mask); 60 #endif 61 // }; 62 template<int BlockDim, int EncodedBlockSize, typename CompressorType> 63 class SkTCompressedAlphaBlitter : public SkBlitter { 64 public: SkTCompressedAlphaBlitter(int width,int height,void * compressedBuffer)65 SkTCompressedAlphaBlitter(int width, int height, void *compressedBuffer) 66 // 0x7FFE is one minus the largest positive 16-bit int. We use it for 67 // debugging to make sure that we're properly setting the nextX distance 68 // in flushRuns(). 69 #ifdef SK_DEBUG 70 : fCalledOnceWithNonzeroY(false) 71 , fBlitMaskCalled(false), 72 #else 73 : 74 #endif 75 kLongestRun(0x7FFE), kZeroAlpha(0) 76 , fNextRun(0) 77 , fWidth(width) 78 , fHeight(height) 79 , fBuffer(compressedBuffer) 80 { 81 SkASSERT((width % BlockDim) == 0); 82 SkASSERT((height % BlockDim) == 0); 83 } 84 ~SkTCompressedAlphaBlitter()85 virtual ~SkTCompressedAlphaBlitter() { this->flushRuns(); } 86 87 // Blit a horizontal run of one or more pixels. blitH(int x,int y,int width)88 void blitH(int x, int y, int width) override { 89 // This function is intended to be called from any standard RGB 90 // buffer, so we should never encounter it. However, if some code 91 // path does end up here, then this needs to be investigated. 92 SkFAIL("Not implemented!"); 93 } 94 95 // Blit a horizontal run of antialiased pixels; runs[] is a *sparse* 96 // zero-terminated run-length encoding of spans of constant alpha values. blitAntiH(int x,int y,const SkAlpha antialias[],const int16_t runs[])97 void blitAntiH(int x, int y, 98 const SkAlpha antialias[], 99 const int16_t runs[]) override { 100 SkASSERT(0 == x); 101 102 // Make sure that the new row to blit is either the first 103 // row that we're blitting, or it's exactly the next scan row 104 // since the last row that we blit. This is to ensure that when 105 // we go to flush the runs, that they are all the same four 106 // runs. 107 if (fNextRun > 0 && 108 ((x != fBufferedRuns[fNextRun-1].fX) || 109 (y-1 != fBufferedRuns[fNextRun-1].fY))) { 110 this->flushRuns(); 111 } 112 113 // Align the rows to a block boundary. If we receive rows that 114 // are not on a block boundary, then fill in the preceding runs 115 // with zeros. We do this by producing a single RLE that says 116 // that we have 0x7FFE pixels of zero (0x7FFE = 32766). 117 const int row = BlockDim * (y / BlockDim); 118 while ((row + fNextRun) < y) { 119 fBufferedRuns[fNextRun].fAlphas = &kZeroAlpha; 120 fBufferedRuns[fNextRun].fRuns = &kLongestRun; 121 fBufferedRuns[fNextRun].fX = 0; 122 fBufferedRuns[fNextRun].fY = row + fNextRun; 123 ++fNextRun; 124 } 125 126 // Make sure that our assumptions aren't violated... 127 SkASSERT(fNextRun == (y % BlockDim)); 128 SkASSERT(fNextRun == 0 || fBufferedRuns[fNextRun - 1].fY < y); 129 130 // Set the values of the next run 131 fBufferedRuns[fNextRun].fAlphas = antialias; 132 fBufferedRuns[fNextRun].fRuns = runs; 133 fBufferedRuns[fNextRun].fX = x; 134 fBufferedRuns[fNextRun].fY = y; 135 136 // If we've output a block of scanlines in a row that don't violate our 137 // assumptions, then it's time to flush them... 138 if (BlockDim == ++fNextRun) { 139 this->flushRuns(); 140 } 141 } 142 143 // Blit a vertical run of pixels with a constant alpha value. blitV(int x,int y,int height,SkAlpha alpha)144 void blitV(int x, int y, int height, SkAlpha alpha) override { 145 // This function is currently not implemented. It is not explicitly 146 // required by the contract, but if at some time a code path runs into 147 // this function (which is entirely possible), it needs to be implemented. 148 // 149 // TODO (krajcevski): 150 // This function will be most easily implemented in one of two ways: 151 // 1. Buffer each vertical column value and then construct a list 152 // of alpha values and output all of the blocks at once. This only 153 // requires a write to the compressed buffer 154 // 2. Replace the indices of each block with the proper indices based 155 // on the alpha value. This requires a read and write of the compressed 156 // buffer, but much less overhead. 157 SkFAIL("Not implemented!"); 158 } 159 160 // Blit a solid rectangle one or more pixels wide. It's assumed that blitRect 161 // is called as a way to bracket blitAntiH where above and below the path the 162 // called path just needs a solid rectangle to fill in the mask. 163 #ifdef SK_DEBUG 164 bool fCalledOnceWithNonzeroY; 165 #endif blitRect(int x,int y,int width,int height)166 void blitRect(int x, int y, int width, int height) override { 167 168 // Assumptions: 169 SkASSERT(0 == x); 170 SkASSERT(width <= fWidth); 171 172 // Make sure that we're only ever bracketing calls to blitAntiH. 173 SkASSERT((0 == y) || (!fCalledOnceWithNonzeroY && (fCalledOnceWithNonzeroY = true))); 174 175 #if !(PEDANTIC_BLIT_RECT) 176 for (int i = 0; i < height; ++i) { 177 const SkAlpha kFullAlpha = 0xFF; 178 this->blitAntiH(x, y+i, &kFullAlpha, &kLongestRun); 179 } 180 #else 181 const int startBlockX = (x / BlockDim) * BlockDim; 182 const int startBlockY = (y / BlockDim) * BlockDim; 183 184 const int endBlockX = ((x + width) / BlockDim) * BlockDim; 185 const int endBlockY = ((y + height) / BlockDim) * BlockDim; 186 187 // If start and end are the same, then we only need to update a single block... 188 if (startBlockY == endBlockY && startBlockX == endBlockX) { 189 uint8_t mask[BlockDim*BlockDim]; 190 memset(mask, 0, sizeof(mask)); 191 192 const int xoff = x - startBlockX; 193 SkASSERT((xoff + width) <= BlockDim); 194 195 const int yoff = y - startBlockY; 196 SkASSERT((yoff + height) <= BlockDim); 197 198 for (int j = 0; j < height; ++j) { 199 memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, width); 200 } 201 202 uint8_t* dst = this->getBlock(startBlockX, startBlockY); 203 CompressorType::UpdateBlock(dst, mask, BlockDim, mask); 204 205 // If start and end are the same in the y dimension, then we can freely update an 206 // entire row of blocks... 207 } else if (startBlockY == endBlockY) { 208 209 this->updateBlockRow(x, y, width, height, startBlockY, startBlockX, endBlockX); 210 211 // Similarly, if the start and end are in the same column, then we can just update 212 // an entire column of blocks... 213 } else if (startBlockX == endBlockX) { 214 215 this->updateBlockCol(x, y, width, height, startBlockX, startBlockY, endBlockY); 216 217 // Otherwise, the rect spans a non-trivial region of blocks, and we have to construct 218 // a kind of 9-patch to update each of the pieces of the rect. The top and bottom 219 // rows are updated using updateBlockRow, and the left and right columns are updated 220 // using updateBlockColumn. Anything in the middle is simply memset to an opaque block 221 // encoding. 222 } else { 223 224 const int innerStartBlockX = startBlockX + BlockDim; 225 const int innerStartBlockY = startBlockY + BlockDim; 226 227 // Blit top row 228 const int topRowHeight = innerStartBlockY - y; 229 this->updateBlockRow(x, y, width, topRowHeight, startBlockY, 230 startBlockX, endBlockX); 231 232 // Advance y 233 y += topRowHeight; 234 height -= topRowHeight; 235 236 // Blit middle 237 if (endBlockY > innerStartBlockY) { 238 239 // Update left row 240 this->updateBlockCol(x, y, innerStartBlockX - x, endBlockY, startBlockY, 241 startBlockX, innerStartBlockX); 242 243 // Update the middle with an opaque encoding... 244 uint8_t mask[BlockDim*BlockDim]; 245 memset(mask, 0xFF, sizeof(mask)); 246 247 uint8_t opaqueEncoding[EncodedBlockSize]; 248 CompressorType::CompressA8Horizontal(opaqueEncoding, mask, BlockDim); 249 250 for (int j = innerStartBlockY; j < endBlockY; j += BlockDim) { 251 uint8_t* opaqueDst = this->getBlock(innerStartBlockX, j); 252 for (int i = innerStartBlockX; i < endBlockX; i += BlockDim) { 253 memcpy(opaqueDst, opaqueEncoding, EncodedBlockSize); 254 opaqueDst += EncodedBlockSize; 255 } 256 } 257 258 // If we need to update the right column, do that too 259 if (x + width > endBlockX) { 260 this->updateBlockCol(endBlockX, y, x + width - endBlockX, endBlockY, 261 endBlockX, innerStartBlockY, endBlockY); 262 } 263 264 // Advance y 265 height = y + height - endBlockY; 266 y = endBlockY; 267 } 268 269 // If we need to update the last row, then do that, too. 270 if (height > 0) { 271 this->updateBlockRow(x, y, width, height, endBlockY, 272 startBlockX, endBlockX); 273 } 274 } 275 #endif 276 } 277 278 // Blit a rectangle with one alpha-blended column on the left, 279 // width (zero or more) opaque pixels, and one alpha-blended column 280 // on the right. The result will always be at least two pixels wide. blitAntiRect(int x,int y,int width,int height,SkAlpha leftAlpha,SkAlpha rightAlpha)281 void blitAntiRect(int x, int y, int width, int height, 282 SkAlpha leftAlpha, SkAlpha rightAlpha) override { 283 // This function is currently not implemented. It is not explicitly 284 // required by the contract, but if at some time a code path runs into 285 // this function (which is entirely possible), it needs to be implemented. 286 // 287 // TODO (krajcevski): 288 // This function will be most easily implemented as follows: 289 // 1. If width/height are smaller than a block, then update the 290 // indices of the affected blocks. 291 // 2. If width/height are larger than a block, then construct a 9-patch 292 // of block encodings that represent the rectangle, and write them 293 // to the compressed buffer as necessary. Whether or not the blocks 294 // are overwritten by zeros or just their indices are updated is up 295 // to debate. 296 SkFAIL("Not implemented!"); 297 } 298 299 // Blit a pattern of pixels defined by a rectangle-clipped mask; We make an 300 // assumption here that if this function gets called, then it will replace all 301 // of the compressed texture blocks that it touches. Hence, two separate calls 302 // to blitMask that have clips next to one another will cause artifacts. Most 303 // of the time, however, this function gets called because constructing the mask 304 // was faster than constructing the RLE for blitAntiH, and this function will 305 // only be called once. 306 #ifdef SK_DEBUG 307 bool fBlitMaskCalled; 308 #endif blitMask(const SkMask & mask,const SkIRect & clip)309 void blitMask(const SkMask& mask, const SkIRect& clip) override { 310 311 // Assumptions: 312 SkASSERT(!fBlitMaskCalled); 313 SkDEBUGCODE(fBlitMaskCalled = true); 314 SkASSERT(SkMask::kA8_Format == mask.fFormat); 315 SkASSERT(mask.fBounds.contains(clip)); 316 317 // Start from largest block boundary less than the clip boundaries. 318 const int startI = BlockDim * (clip.left() / BlockDim); 319 const int startJ = BlockDim * (clip.top() / BlockDim); 320 321 for (int j = startJ; j < clip.bottom(); j += BlockDim) { 322 323 // Get the destination for this block row 324 uint8_t* dst = this->getBlock(startI, j); 325 for (int i = startI; i < clip.right(); i += BlockDim) { 326 327 // At this point, the block should intersect the clip. 328 SkASSERT(SkIRect::IntersectsNoEmptyCheck( 329 SkIRect::MakeXYWH(i, j, BlockDim, BlockDim), clip)); 330 331 // Do we need to pad it? 332 if (i < clip.left() || j < clip.top() || 333 i + BlockDim > clip.right() || j + BlockDim > clip.bottom()) { 334 335 uint8_t block[BlockDim*BlockDim]; 336 memset(block, 0, sizeof(block)); 337 338 const int startX = SkMax32(i, clip.left()); 339 const int startY = SkMax32(j, clip.top()); 340 341 const int endX = SkMin32(i + BlockDim, clip.right()); 342 const int endY = SkMin32(j + BlockDim, clip.bottom()); 343 344 for (int y = startY; y < endY; ++y) { 345 const int col = startX - i; 346 const int row = y - j; 347 const int valsWide = endX - startX; 348 SkASSERT(valsWide <= BlockDim); 349 SkASSERT(0 <= col && col < BlockDim); 350 SkASSERT(0 <= row && row < BlockDim); 351 memcpy(block + row*BlockDim + col, 352 mask.getAddr8(startX, j + row), valsWide); 353 } 354 355 CompressorType::CompressA8Horizontal(dst, block, BlockDim); 356 } else { 357 // Otherwise, just compress it. 358 uint8_t*const src = mask.getAddr8(i, j); 359 const uint32_t rb = mask.fRowBytes; 360 CompressorType::CompressA8Horizontal(dst, src, rb); 361 } 362 363 dst += EncodedBlockSize; 364 } 365 } 366 } 367 368 // If the blitter just sets a single value for each pixel, return the 369 // bitmap it draws into, and assign value. If not, return NULL and ignore 370 // the value parameter. justAnOpaqueColor(uint32_t * value)371 const SkBitmap* justAnOpaqueColor(uint32_t* value) override { 372 return NULL; 373 } 374 375 /** 376 * Compressed texture blitters only really work correctly if they get 377 * BlockDim rows at a time. That being said, this blitter tries it's best 378 * to preserve semantics if blitAntiH doesn't get called in too many 379 * weird ways... 380 */ requestRowsPreserved()381 int requestRowsPreserved() const override { return BlockDim; } 382 383 private: 384 static const int kPixelsPerBlock = BlockDim * BlockDim; 385 386 // The longest possible run of pixels that this blitter will receive. 387 // This is initialized in the constructor to 0x7FFE, which is one less 388 // than the largest positive 16-bit integer. We make sure that it's one 389 // less for debugging purposes. We also don't make this variable static 390 // in order to make sure that we can construct a valid pointer to it. 391 const int16_t kLongestRun; 392 393 // Usually used in conjunction with kLongestRun. This is initialized to 394 // zero. 395 const SkAlpha kZeroAlpha; 396 397 // This is the information that we buffer whenever we're asked to blit 398 // a row with this blitter. 399 struct BufferedRun { 400 const SkAlpha* fAlphas; 401 const int16_t* fRuns; 402 int fX, fY; 403 } fBufferedRuns[BlockDim]; 404 405 // The next row [0, BlockDim) that we need to blit. 406 int fNextRun; 407 408 // The width and height of the image that we're blitting 409 const int fWidth; 410 const int fHeight; 411 412 // The compressed buffer that we're blitting into. It is assumed that the buffer 413 // is large enough to store a compressed image of size fWidth*fHeight. 414 void* const fBuffer; 415 416 // Various utility functions blocksWide()417 int blocksWide() const { return fWidth / BlockDim; } blocksTall()418 int blocksTall() const { return fHeight / BlockDim; } totalBlocks()419 int totalBlocks() const { return (fWidth * fHeight) / kPixelsPerBlock; } 420 421 // Returns the block index for the block containing pixel (x, y). Block 422 // indices start at zero and proceed in raster order. getBlockOffset(int x,int y)423 int getBlockOffset(int x, int y) const { 424 SkASSERT(x < fWidth); 425 SkASSERT(y < fHeight); 426 const int blockCol = x / BlockDim; 427 const int blockRow = y / BlockDim; 428 return blockRow * this->blocksWide() + blockCol; 429 } 430 431 // Returns a pointer to the block containing pixel (x, y) getBlock(int x,int y)432 uint8_t *getBlock(int x, int y) const { 433 uint8_t* ptr = reinterpret_cast<uint8_t*>(fBuffer); 434 return ptr + EncodedBlockSize*this->getBlockOffset(x, y); 435 } 436 437 // Updates the block whose columns are stored in block. curAlphai is expected 438 // to store the alpha values that will be placed within each of the columns in 439 // the range [col, col+colsLeft). 440 typedef uint32_t Column[BlockDim/4]; 441 typedef uint32_t Block[BlockDim][BlockDim/4]; updateBlockColumns(Block block,const int col,const int colsLeft,const Column curAlphai)442 inline void updateBlockColumns(Block block, const int col, 443 const int colsLeft, const Column curAlphai) { 444 SkASSERT(block); 445 SkASSERT(col + colsLeft <= BlockDim); 446 447 for (int i = col; i < (col + colsLeft); ++i) { 448 memcpy(block[i], curAlphai, sizeof(Column)); 449 } 450 } 451 452 // The following function writes the buffered runs to compressed blocks. 453 // If fNextRun < BlockDim, then we fill the runs that we haven't buffered with 454 // the constant zero buffer. flushRuns()455 void flushRuns() { 456 // If we don't have any runs, then just return. 457 if (0 == fNextRun) { 458 return; 459 } 460 461 #ifndef NDEBUG 462 // Make sure that if we have any runs, they all match 463 for (int i = 1; i < fNextRun; ++i) { 464 SkASSERT(fBufferedRuns[i].fY == fBufferedRuns[i-1].fY + 1); 465 SkASSERT(fBufferedRuns[i].fX == fBufferedRuns[i-1].fX); 466 } 467 #endif 468 469 // If we don't have as many runs as we have rows, fill in the remaining 470 // runs with constant zeros. 471 for (int i = fNextRun; i < BlockDim; ++i) { 472 fBufferedRuns[i].fY = fBufferedRuns[0].fY + i; 473 fBufferedRuns[i].fX = fBufferedRuns[0].fX; 474 fBufferedRuns[i].fAlphas = &kZeroAlpha; 475 fBufferedRuns[i].fRuns = &kLongestRun; 476 } 477 478 // Make sure that our assumptions aren't violated. 479 SkASSERT(fNextRun > 0 && fNextRun <= BlockDim); 480 SkASSERT((fBufferedRuns[0].fY % BlockDim) == 0); 481 482 // The following logic walks BlockDim rows at a time and outputs compressed 483 // blocks to the buffer passed into the constructor. 484 // We do the following: 485 // 486 // c1 c2 c3 c4 487 // ----------------------------------------------------------------------- 488 // ... | | | | | ----> fBufferedRuns[0] 489 // ----------------------------------------------------------------------- 490 // ... | | | | | ----> fBufferedRuns[1] 491 // ----------------------------------------------------------------------- 492 // ... | | | | | ----> fBufferedRuns[2] 493 // ----------------------------------------------------------------------- 494 // ... | | | | | ----> fBufferedRuns[3] 495 // ----------------------------------------------------------------------- 496 // 497 // curX -- the macro X value that we've gotten to. 498 // c[BlockDim] -- the buffers that represent the columns of the current block 499 // that we're operating on 500 // curAlphaColumn -- buffer containing the column of alpha values from fBufferedRuns. 501 // nextX -- for each run, the next point at which we need to update curAlphaColumn 502 // after the value of curX. 503 // finalX -- the minimum of all the nextX values. 504 // 505 // curX advances to finalX outputting any blocks that it passes along 506 // the way. Since finalX will not change when we reach the end of a 507 // run, the termination criteria will be whenever curX == finalX at the 508 // end of a loop. 509 510 // Setup: 511 Block block; 512 sk_bzero(block, sizeof(block)); 513 514 Column curAlphaColumn; 515 sk_bzero(curAlphaColumn, sizeof(curAlphaColumn)); 516 517 SkAlpha *curAlpha = reinterpret_cast<SkAlpha*>(&curAlphaColumn); 518 519 int nextX[BlockDim]; 520 for (int i = 0; i < BlockDim; ++i) { 521 nextX[i] = 0x7FFFFF; 522 } 523 524 uint8_t* outPtr = this->getBlock(fBufferedRuns[0].fX, fBufferedRuns[0].fY); 525 526 // Populate the first set of runs and figure out how far we need to 527 // advance on the first step 528 int curX = 0; 529 int finalX = 0xFFFFF; 530 for (int i = 0; i < BlockDim; ++i) { 531 nextX[i] = *(fBufferedRuns[i].fRuns); 532 curAlpha[i] = *(fBufferedRuns[i].fAlphas); 533 534 finalX = SkMin32(nextX[i], finalX); 535 } 536 537 // Make sure that we have a valid right-bound X value 538 SkASSERT(finalX < 0xFFFFF); 539 540 // If the finalX is the longest run, then just blit until we have 541 // width... 542 if (kLongestRun == finalX) { 543 finalX = fWidth; 544 } 545 546 // Run the blitter... 547 while (curX != finalX) { 548 SkASSERT(finalX >= curX); 549 550 // Do we need to populate the rest of the block? 551 if ((finalX - (BlockDim*(curX / BlockDim))) >= BlockDim) { 552 const int col = curX % BlockDim; 553 const int colsLeft = BlockDim - col; 554 SkASSERT(curX + colsLeft <= finalX); 555 556 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); 557 558 // Write this block 559 CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block)); 560 outPtr += EncodedBlockSize; 561 curX += colsLeft; 562 } 563 564 // If we can advance even further, then just keep memsetting the block 565 if ((finalX - curX) >= BlockDim) { 566 SkASSERT((curX % BlockDim) == 0); 567 568 const int col = 0; 569 const int colsLeft = BlockDim; 570 571 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); 572 573 // While we can keep advancing, just keep writing the block. 574 uint8_t lastBlock[EncodedBlockSize]; 575 CompressorType::CompressA8Vertical(lastBlock, reinterpret_cast<uint8_t*>(block)); 576 while((finalX - curX) >= BlockDim) { 577 memcpy(outPtr, lastBlock, EncodedBlockSize); 578 outPtr += EncodedBlockSize; 579 curX += BlockDim; 580 } 581 } 582 583 // If we haven't advanced within the block then do so. 584 if (curX < finalX) { 585 const int col = curX % BlockDim; 586 const int colsLeft = finalX - curX; 587 588 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); 589 curX += colsLeft; 590 } 591 592 SkASSERT(curX == finalX); 593 594 // Figure out what the next advancement is... 595 if (finalX < fWidth) { 596 for (int i = 0; i < BlockDim; ++i) { 597 if (nextX[i] == finalX) { 598 const int16_t run = *(fBufferedRuns[i].fRuns); 599 fBufferedRuns[i].fRuns += run; 600 fBufferedRuns[i].fAlphas += run; 601 curAlpha[i] = *(fBufferedRuns[i].fAlphas); 602 nextX[i] += *(fBufferedRuns[i].fRuns); 603 } 604 } 605 606 finalX = 0xFFFFF; 607 for (int i = 0; i < BlockDim; ++i) { 608 finalX = SkMin32(nextX[i], finalX); 609 } 610 } else { 611 curX = finalX; 612 } 613 } 614 615 // If we didn't land on a block boundary, output the block... 616 if ((curX % BlockDim) > 0) { 617 #ifdef SK_DEBUG 618 for (int i = 0; i < BlockDim; ++i) { 619 SkASSERT(nextX[i] == kLongestRun || nextX[i] == curX); 620 } 621 #endif 622 const int col = curX % BlockDim; 623 const int colsLeft = BlockDim - col; 624 625 memset(curAlphaColumn, 0, sizeof(curAlphaColumn)); 626 this->updateBlockColumns(block, col, colsLeft, curAlphaColumn); 627 628 CompressorType::CompressA8Vertical(outPtr, reinterpret_cast<uint8_t*>(block)); 629 } 630 631 fNextRun = 0; 632 } 633 634 #if PEDANTIC_BLIT_RECT updateBlockRow(int x,int y,int width,int height,int blockRow,int startBlockX,int endBlockX)635 void updateBlockRow(int x, int y, int width, int height, 636 int blockRow, int startBlockX, int endBlockX) { 637 if (0 == width || 0 == height || startBlockX == endBlockX) { 638 return; 639 } 640 641 uint8_t* dst = this->getBlock(startBlockX, BlockDim * (y / BlockDim)); 642 643 // One horizontal strip to update 644 uint8_t mask[BlockDim*BlockDim]; 645 memset(mask, 0, sizeof(mask)); 646 647 // Update the left cap 648 int blockX = startBlockX; 649 const int yoff = y - blockRow; 650 for (int j = 0; j < height; ++j) { 651 const int xoff = x - blockX; 652 memset(mask + (j + yoff)*BlockDim + xoff, 0xFF, BlockDim - xoff); 653 } 654 CompressorType::UpdateBlock(dst, mask, BlockDim, mask); 655 dst += EncodedBlockSize; 656 blockX += BlockDim; 657 658 // Update the middle 659 if (blockX < endBlockX) { 660 for (int j = 0; j < height; ++j) { 661 memset(mask + (j + yoff)*BlockDim, 0xFF, BlockDim); 662 } 663 while (blockX < endBlockX) { 664 CompressorType::UpdateBlock(dst, mask, BlockDim, mask); 665 dst += EncodedBlockSize; 666 blockX += BlockDim; 667 } 668 } 669 670 SkASSERT(endBlockX == blockX); 671 672 // Update the right cap (if we need to) 673 if (x + width > endBlockX) { 674 memset(mask, 0, sizeof(mask)); 675 for (int j = 0; j < height; ++j) { 676 const int xoff = (x+width-blockX); 677 memset(mask + (j+yoff)*BlockDim, 0xFF, xoff); 678 } 679 CompressorType::UpdateBlock(dst, mask, BlockDim, mask); 680 } 681 } 682 updateBlockCol(int x,int y,int width,int height,int blockCol,int startBlockY,int endBlockY)683 void updateBlockCol(int x, int y, int width, int height, 684 int blockCol, int startBlockY, int endBlockY) { 685 if (0 == width || 0 == height || startBlockY == endBlockY) { 686 return; 687 } 688 689 // One vertical strip to update 690 uint8_t mask[BlockDim*BlockDim]; 691 memset(mask, 0, sizeof(mask)); 692 const int maskX0 = x - blockCol; 693 const int maskWidth = maskX0 + width; 694 SkASSERT(maskWidth <= BlockDim); 695 696 // Update the top cap 697 int blockY = startBlockY; 698 for (int j = (y - blockY); j < BlockDim; ++j) { 699 memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth); 700 } 701 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), mask, BlockDim, mask); 702 blockY += BlockDim; 703 704 // Update middle 705 if (blockY < endBlockY) { 706 for (int j = 0; j < BlockDim; ++j) { 707 memset(mask + maskX0 + j*BlockDim, 0xFF, maskWidth); 708 } 709 while (blockY < endBlockY) { 710 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), 711 mask, BlockDim, mask); 712 blockY += BlockDim; 713 } 714 } 715 716 SkASSERT(endBlockY == blockY); 717 718 // Update bottom 719 if (y + height > endBlockY) { 720 for (int j = y+height; j < endBlockY + BlockDim; ++j) { 721 memset(mask + (j-endBlockY)*BlockDim, 0, BlockDim); 722 } 723 CompressorType::UpdateBlock(this->getBlock(blockCol, blockY), 724 mask, BlockDim, mask); 725 } 726 } 727 #endif // PEDANTIC_BLIT_RECT 728 729 }; 730 731 } // namespace SkTextureCompressor 732 733 #endif // SkTextureCompressor_Blitter_DEFINED 734