1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // For best-case performance on Cortex-A57, we should try to use a balanced
10 // mix of odd and even D-registers when performing a critical sequence of
11 // independent, non-quadword FP/ASIMD floating-point multiply or
12 // multiply-accumulate operations.
13 //
14 // This pass attempts to detect situations where the register allocation may
15 // adversely affect this load balancing and to change the registers used so as
16 // to better utilize the CPU.
17 //
18 // Ideally we'd just take each multiply or multiply-accumulate in turn and
19 // allocate it alternating even or odd registers. However, multiply-accumulates
20 // are most efficiently performed in the same functional unit as their
21 // accumulation operand. Therefore this pass tries to find maximal sequences
22 // ("Chains") of multiply-accumulates linked via their accumulation operand,
23 // and assign them all the same "color" (oddness/evenness).
24 //
25 // This optimization affects S-register and D-register floating point
26 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
27 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 // not affected.
29 //===----------------------------------------------------------------------===//
30 
31 #include "AArch64.h"
32 #include "AArch64InstrInfo.h"
33 #include "AArch64Subtarget.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterScavenging.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <list>
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
50 
51 // Enforce the algorithm to use the scavenged register even when the original
52 // destination register is the correct color. Used for testing.
53 static cl::opt<bool>
54 TransformAll("aarch64-a57-fp-load-balancing-force-all",
55              cl::desc("Always modify dest registers regardless of color"),
56              cl::init(false), cl::Hidden);
57 
58 // Never use the balance information obtained from chains - return a specific
59 // color always. Used for testing.
60 static cl::opt<unsigned>
61 OverrideBalance("aarch64-a57-fp-load-balancing-override",
62               cl::desc("Ignore balance information, always return "
63                        "(1: Even, 2: Odd)."),
64               cl::init(0), cl::Hidden);
65 
66 //===----------------------------------------------------------------------===//
67 // Helper functions
68 
69 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
isMul(MachineInstr * MI)70 static bool isMul(MachineInstr *MI) {
71   switch (MI->getOpcode()) {
72   case AArch64::FMULSrr:
73   case AArch64::FNMULSrr:
74   case AArch64::FMULDrr:
75   case AArch64::FNMULDrr:
76     return true;
77   default:
78     return false;
79   }
80 }
81 
82 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
isMla(MachineInstr * MI)83 static bool isMla(MachineInstr *MI) {
84   switch (MI->getOpcode()) {
85   case AArch64::FMSUBSrrr:
86   case AArch64::FMADDSrrr:
87   case AArch64::FNMSUBSrrr:
88   case AArch64::FNMADDSrrr:
89   case AArch64::FMSUBDrrr:
90   case AArch64::FMADDDrrr:
91   case AArch64::FNMSUBDrrr:
92   case AArch64::FNMADDDrrr:
93     return true;
94   default:
95     return false;
96   }
97 }
98 
99 namespace llvm {
100 static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &);
101 }
102 
103 //===----------------------------------------------------------------------===//
104 
105 namespace {
106 /// A "color", which is either even or odd. Yes, these aren't really colors
107 /// but the algorithm is conceptually doing two-color graph coloring.
108 enum class Color { Even, Odd };
109 #ifndef NDEBUG
110 static const char *ColorNames[2] = { "Even", "Odd" };
111 #endif
112 
113 class Chain;
114 
115 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
116   MachineRegisterInfo *MRI;
117   const TargetRegisterInfo *TRI;
118   RegisterClassInfo RCI;
119 
120 public:
121   static char ID;
AArch64A57FPLoadBalancing()122   explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
123     initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
124   }
125 
126   bool runOnMachineFunction(MachineFunction &F) override;
127 
getPassName() const128   const char *getPassName() const override {
129     return "A57 FP Anti-dependency breaker";
130   }
131 
getAnalysisUsage(AnalysisUsage & AU) const132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.setPreservesCFG();
134     MachineFunctionPass::getAnalysisUsage(AU);
135   }
136 
137 private:
138   bool runOnBasicBlock(MachineBasicBlock &MBB);
139   bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
140                      int &Balance);
141   bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
142   int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
143   void scanInstruction(MachineInstr *MI, unsigned Idx,
144                        std::map<unsigned, Chain*> &Active,
145                        std::vector<std::unique_ptr<Chain>> &AllChains);
146   void maybeKillChain(MachineOperand &MO, unsigned Idx,
147                       std::map<unsigned, Chain*> &RegChains);
148   Color getColor(unsigned Register);
149   Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
150 };
151 }
152 
153 char AArch64A57FPLoadBalancing::ID = 0;
154 
155 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156                       "AArch64 A57 FP Load-Balancing", false, false)
157 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
158                     "AArch64 A57 FP Load-Balancing", false, false)
159 
160 namespace {
161 /// A Chain is a sequence of instructions that are linked together by
162 /// an accumulation operand. For example:
163 ///
164 ///   fmul d0<def>, ?
165 ///   fmla d1<def>, ?, ?, d0<kill>
166 ///   fmla d2<def>, ?, ?, d1<kill>
167 ///
168 /// There may be other instructions interleaved in the sequence that
169 /// do not belong to the chain. These other instructions must not use
170 /// the "chain" register at any point.
171 ///
172 /// We currently only support chains where the "chain" operand is killed
173 /// at each link in the chain for simplicity.
174 /// A chain has three important instructions - Start, Last and Kill.
175 ///   * The start instruction is the first instruction in the chain.
176 ///   * Last is the final instruction in the chain.
177 ///   * Kill may or may not be defined. If defined, Kill is the instruction
178 ///     where the outgoing value of the Last instruction is killed.
179 ///     This information is important as if we know the outgoing value is
180 ///     killed with no intervening uses, we can safely change its register.
181 ///
182 /// Without a kill instruction, we must assume the outgoing value escapes
183 /// beyond our model and either must not change its register or must
184 /// create a fixup FMOV to keep the old register value consistent.
185 ///
186 class Chain {
187 public:
188   /// The important (marker) instructions.
189   MachineInstr *StartInst, *LastInst, *KillInst;
190   /// The index, from the start of the basic block, that each marker
191   /// appears. These are stored so we can do quick interval tests.
192   unsigned StartInstIdx, LastInstIdx, KillInstIdx;
193   /// All instructions in the chain.
194   std::set<MachineInstr*> Insts;
195   /// True if KillInst cannot be modified. If this is true,
196   /// we cannot change LastInst's outgoing register.
197   /// This will be true for tied values and regmasks.
198   bool KillIsImmutable;
199   /// The "color" of LastInst. This will be the preferred chain color,
200   /// as changing intermediate nodes is easy but changing the last
201   /// instruction can be more tricky.
202   Color LastColor;
203 
Chain(MachineInstr * MI,unsigned Idx,Color C)204   Chain(MachineInstr *MI, unsigned Idx, Color C)
205       : StartInst(MI), LastInst(MI), KillInst(nullptr),
206         StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
207         LastColor(C) {
208     Insts.insert(MI);
209   }
210 
211   /// Add a new instruction into the chain. The instruction's dest operand
212   /// has the given color.
add(MachineInstr * MI,unsigned Idx,Color C)213   void add(MachineInstr *MI, unsigned Idx, Color C) {
214     LastInst = MI;
215     LastInstIdx = Idx;
216     LastColor = C;
217     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
218            "Chain: broken invariant. A Chain can only be killed after its last "
219            "def");
220 
221     Insts.insert(MI);
222   }
223 
224   /// Return true if MI is a member of the chain.
contains(MachineInstr * MI)225   bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
226 
227   /// Return the number of instructions in the chain.
size() const228   unsigned size() const {
229     return Insts.size();
230   }
231 
232   /// Inform the chain that its last active register (the dest register of
233   /// LastInst) is killed by MI with no intervening uses or defs.
setKill(MachineInstr * MI,unsigned Idx,bool Immutable)234   void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
235     KillInst = MI;
236     KillInstIdx = Idx;
237     KillIsImmutable = Immutable;
238     assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
239            "Chain: broken invariant. A Chain can only be killed after its last "
240            "def");
241   }
242 
243   /// Return the first instruction in the chain.
getStart() const244   MachineInstr *getStart() const { return StartInst; }
245   /// Return the last instruction in the chain.
getLast() const246   MachineInstr *getLast() const { return LastInst; }
247   /// Return the "kill" instruction (as set with setKill()) or NULL.
getKill() const248   MachineInstr *getKill() const { return KillInst; }
249   /// Return an instruction that can be used as an iterator for the end
250   /// of the chain. This is the maximum of KillInst (if set) and LastInst.
getEnd() const251   MachineBasicBlock::iterator getEnd() const {
252     return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
253   }
254 
255   /// Can the Kill instruction (assuming one exists) be modified?
isKillImmutable() const256   bool isKillImmutable() const { return KillIsImmutable; }
257 
258   /// Return the preferred color of this chain.
getPreferredColor()259   Color getPreferredColor() {
260     if (OverrideBalance != 0)
261       return OverrideBalance == 1 ? Color::Even : Color::Odd;
262     return LastColor;
263   }
264 
265   /// Return true if this chain (StartInst..KillInst) overlaps with Other.
rangeOverlapsWith(const Chain & Other) const266   bool rangeOverlapsWith(const Chain &Other) const {
267     unsigned End = KillInst ? KillInstIdx : LastInstIdx;
268     unsigned OtherEnd = Other.KillInst ?
269       Other.KillInstIdx : Other.LastInstIdx;
270 
271     return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
272   }
273 
274   /// Return true if this chain starts before Other.
startsBefore(const Chain * Other) const275   bool startsBefore(const Chain *Other) const {
276     return StartInstIdx < Other->StartInstIdx;
277   }
278 
279   /// Return true if the group will require a fixup MOV at the end.
requiresFixup() const280   bool requiresFixup() const {
281     return (getKill() && isKillImmutable()) || !getKill();
282   }
283 
284   /// Return a simple string representation of the chain.
str() const285   std::string str() const {
286     std::string S;
287     raw_string_ostream OS(S);
288 
289     OS << "{";
290     StartInst->print(OS, /* SkipOpers= */true);
291     OS << " -> ";
292     LastInst->print(OS, /* SkipOpers= */true);
293     if (KillInst) {
294       OS << " (kill @ ";
295       KillInst->print(OS, /* SkipOpers= */true);
296       OS << ")";
297     }
298     OS << "}";
299 
300     return OS.str();
301   }
302 
303 };
304 
305 } // end anonymous namespace
306 
307 //===----------------------------------------------------------------------===//
308 
runOnMachineFunction(MachineFunction & F)309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
310   // Don't do anything if this isn't an A53 or A57.
311   if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() ||
312         F.getSubtarget<AArch64Subtarget>().isCortexA57()))
313     return false;
314 
315   bool Changed = false;
316   DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
317 
318   MRI = &F.getRegInfo();
319   TRI = F.getRegInfo().getTargetRegisterInfo();
320   RCI.runOnMachineFunction(F);
321 
322   for (auto &MBB : F) {
323     Changed |= runOnBasicBlock(MBB);
324   }
325 
326   return Changed;
327 }
328 
runOnBasicBlock(MachineBasicBlock & MBB)329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
330   bool Changed = false;
331   DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
332 
333   // First, scan the basic block producing a set of chains.
334 
335   // The currently "active" chains - chains that can be added to and haven't
336   // been killed yet. This is keyed by register - all chains can only have one
337   // "link" register between each inst in the chain.
338   std::map<unsigned, Chain*> ActiveChains;
339   std::vector<std::unique_ptr<Chain>> AllChains;
340   unsigned Idx = 0;
341   for (auto &MI : MBB)
342     scanInstruction(&MI, Idx++, ActiveChains, AllChains);
343 
344   DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
345 
346   // Group the chains into disjoint sets based on their liveness range. This is
347   // a poor-man's version of graph coloring. Ideally we'd create an interference
348   // graph and perform full-on graph coloring on that, but;
349   //   (a) That's rather heavyweight for only two colors.
350   //   (b) We expect multiple disjoint interference regions - in practice the live
351   //       range of chains is quite small and they are clustered between loads
352   //       and stores.
353   EquivalenceClasses<Chain*> EC;
354   for (auto &I : AllChains)
355     EC.insert(I.get());
356 
357   for (auto &I : AllChains)
358     for (auto &J : AllChains)
359       if (I != J && I->rangeOverlapsWith(*J))
360         EC.unionSets(I.get(), J.get());
361   DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
362 
363   // Now we assume that every member of an equivalence class interferes
364   // with every other member of that class, and with no members of other classes.
365 
366   // Convert the EquivalenceClasses to a simpler set of sets.
367   std::vector<std::vector<Chain*> > V;
368   for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
369     std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
370     if (Cs.empty()) continue;
371     V.push_back(std::move(Cs));
372   }
373 
374   // Now we have a set of sets, order them by start address so
375   // we can iterate over them sequentially.
376   std::sort(V.begin(), V.end(),
377             [](const std::vector<Chain*> &A,
378                const std::vector<Chain*> &B) {
379       return A.front()->startsBefore(B.front());
380     });
381 
382   // As we only have two colors, we can track the global (BB-level) balance of
383   // odds versus evens. We aim to keep this near zero to keep both execution
384   // units fed.
385   // Positive means we're even-heavy, negative we're odd-heavy.
386   //
387   // FIXME: If chains have interdependencies, for example:
388   //   mul r0, r1, r2
389   //   mul r3, r0, r1
390   // We do not model this and may color each one differently, assuming we'll
391   // get ILP when we obviously can't. This hasn't been seen to be a problem
392   // in practice so far, so we simplify the algorithm by ignoring it.
393   int Parity = 0;
394 
395   for (auto &I : V)
396     Changed |= colorChainSet(std::move(I), MBB, Parity);
397 
398   return Changed;
399 }
400 
getAndEraseNext(Color PreferredColor,std::vector<Chain * > & L)401 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
402                                                   std::vector<Chain*> &L) {
403   if (L.empty())
404     return nullptr;
405 
406   // We try and get the best candidate from L to color next, given that our
407   // preferred color is "PreferredColor". L is ordered from larger to smaller
408   // chains. It is beneficial to color the large chains before the small chains,
409   // but if we can't find a chain of the maximum length with the preferred color,
410   // we fuzz the size and look for slightly smaller chains before giving up and
411   // returning a chain that must be recolored.
412 
413   // FIXME: Does this need to be configurable?
414   const unsigned SizeFuzz = 1;
415   unsigned MinSize = L.front()->size() - SizeFuzz;
416   for (auto I = L.begin(), E = L.end(); I != E; ++I) {
417     if ((*I)->size() <= MinSize) {
418       // We've gone past the size limit. Return the previous item.
419       Chain *Ch = *--I;
420       L.erase(I);
421       return Ch;
422     }
423 
424     if ((*I)->getPreferredColor() == PreferredColor) {
425       Chain *Ch = *I;
426       L.erase(I);
427       return Ch;
428     }
429   }
430 
431   // Bailout case - just return the first item.
432   Chain *Ch = L.front();
433   L.erase(L.begin());
434   return Ch;
435 }
436 
colorChainSet(std::vector<Chain * > GV,MachineBasicBlock & MBB,int & Parity)437 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
438                                               MachineBasicBlock &MBB,
439                                               int &Parity) {
440   bool Changed = false;
441   DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
442 
443   // Sort by descending size order so that we allocate the most important
444   // sets first.
445   // Tie-break equivalent sizes by sorting chains requiring fixups before
446   // those without fixups. The logic here is that we should look at the
447   // chains that we cannot change before we look at those we can,
448   // so the parity counter is updated and we know what color we should
449   // change them to!
450   // Final tie-break with instruction order so pass output is stable (i.e. not
451   // dependent on malloc'd pointer values).
452   std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
453       if (G1->size() != G2->size())
454         return G1->size() > G2->size();
455       if (G1->requiresFixup() != G2->requiresFixup())
456         return G1->requiresFixup() > G2->requiresFixup();
457       // Make sure startsBefore() produces a stable final order.
458       assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
459              "Starts before not total order!");
460       return G1->startsBefore(G2);
461     });
462 
463   Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
464   while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
465     // Start off by assuming we'll color to our own preferred color.
466     Color C = PreferredColor;
467     if (Parity == 0)
468       // But if we really don't care, use the chain's preferred color.
469       C = G->getPreferredColor();
470 
471     DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
472           << ColorNames[(int)C] << "\n");
473 
474     // If we'll need a fixup FMOV, don't bother. Testing has shown that this
475     // happens infrequently and when it does it has at least a 50% chance of
476     // slowing code down instead of speeding it up.
477     if (G->requiresFixup() && C != G->getPreferredColor()) {
478       C = G->getPreferredColor();
479       DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
480             "color remains " << ColorNames[(int)C] << "\n");
481     }
482 
483     Changed |= colorChain(G, C, MBB);
484 
485     Parity += (C == Color::Even) ? G->size() : -G->size();
486     PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
487   }
488 
489   return Changed;
490 }
491 
scavengeRegister(Chain * G,Color C,MachineBasicBlock & MBB)492 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
493                                                 MachineBasicBlock &MBB) {
494   RegScavenger RS;
495   RS.enterBasicBlock(&MBB);
496   RS.forward(MachineBasicBlock::iterator(G->getStart()));
497 
498   // Can we find an appropriate register that is available throughout the life
499   // of the chain?
500   unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
501   BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
502   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
503        I != E; ++I) {
504     RS.forward(I);
505     AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
506 
507     // Remove any registers clobbered by a regmask or any def register that is
508     // immediately dead.
509     for (auto J : I->operands()) {
510       if (J.isRegMask())
511         AvailableRegs.clearBitsNotInMask(J.getRegMask());
512 
513       if (J.isReg() && J.isDef() && AvailableRegs[J.getReg()]) {
514         assert(J.isDead() && "Non-dead def should have been removed by now!");
515         AvailableRegs.reset(J.getReg());
516       }
517     }
518   }
519 
520   // Make sure we allocate in-order, to get the cheapest registers first.
521   auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
522   for (auto Reg : Ord) {
523     if (!AvailableRegs[Reg])
524       continue;
525     if ((C == Color::Even && (Reg % 2) == 0) ||
526         (C == Color::Odd && (Reg % 2) == 1))
527       return Reg;
528   }
529 
530   return -1;
531 }
532 
colorChain(Chain * G,Color C,MachineBasicBlock & MBB)533 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
534                                            MachineBasicBlock &MBB) {
535   bool Changed = false;
536   DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
537         << ColorNames[(int)C] << ")\n");
538 
539   // Try and obtain a free register of the right class. Without a register
540   // to play with we cannot continue.
541   int Reg = scavengeRegister(G, C, MBB);
542   if (Reg == -1) {
543     DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
544     return false;
545   }
546   DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
547 
548   std::map<unsigned, unsigned> Substs;
549   for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
550        I != E; ++I) {
551     if (!G->contains(I) &&
552         (&*I != G->getKill() || G->isKillImmutable()))
553       continue;
554 
555     // I is a member of G, or I is a mutable instruction that kills G.
556 
557     std::vector<unsigned> ToErase;
558     for (auto &U : I->operands()) {
559       if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
560         unsigned OrigReg = U.getReg();
561         U.setReg(Substs[OrigReg]);
562         if (U.isKill())
563           // Don't erase straight away, because there may be other operands
564           // that also reference this substitution!
565           ToErase.push_back(OrigReg);
566       } else if (U.isRegMask()) {
567         for (auto J : Substs) {
568           if (U.clobbersPhysReg(J.first))
569             ToErase.push_back(J.first);
570         }
571       }
572     }
573     // Now it's safe to remove the substs identified earlier.
574     for (auto J : ToErase)
575       Substs.erase(J);
576 
577     // Only change the def if this isn't the last instruction.
578     if (&*I != G->getKill()) {
579       MachineOperand &MO = I->getOperand(0);
580 
581       bool Change = TransformAll || getColor(MO.getReg()) != C;
582       if (G->requiresFixup() && &*I == G->getLast())
583         Change = false;
584 
585       if (Change) {
586         Substs[MO.getReg()] = Reg;
587         MO.setReg(Reg);
588         MRI->setPhysRegUsed(Reg);
589 
590         Changed = true;
591       }
592     }
593   }
594   assert(Substs.size() == 0 && "No substitutions should be left active!");
595 
596   if (G->getKill()) {
597     DEBUG(dbgs() << " - Kill instruction seen.\n");
598   } else {
599     // We didn't have a kill instruction, but we didn't seem to need to change
600     // the destination register anyway.
601     DEBUG(dbgs() << " - Destination register not changed.\n");
602   }
603   return Changed;
604 }
605 
scanInstruction(MachineInstr * MI,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains,std::vector<std::unique_ptr<Chain>> & AllChains)606 void AArch64A57FPLoadBalancing::scanInstruction(
607     MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
608     std::vector<std::unique_ptr<Chain>> &AllChains) {
609   // Inspect "MI", updating ActiveChains and AllChains.
610 
611   if (isMul(MI)) {
612 
613     for (auto &I : MI->uses())
614       maybeKillChain(I, Idx, ActiveChains);
615     for (auto &I : MI->defs())
616       maybeKillChain(I, Idx, ActiveChains);
617 
618     // Create a new chain. Multiplies don't require forwarding so can go on any
619     // unit.
620     unsigned DestReg = MI->getOperand(0).getReg();
621 
622     DEBUG(dbgs() << "New chain started for register "
623           << TRI->getName(DestReg) << " at " << *MI);
624 
625     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
626     ActiveChains[DestReg] = G.get();
627     AllChains.push_back(std::move(G));
628 
629   } else if (isMla(MI)) {
630 
631     // It is beneficial to keep MLAs on the same functional unit as their
632     // accumulator operand.
633     unsigned DestReg  = MI->getOperand(0).getReg();
634     unsigned AccumReg = MI->getOperand(3).getReg();
635 
636     maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
637     maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
638     if (DestReg != AccumReg)
639       maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
640 
641     if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
642       DEBUG(dbgs() << "Chain found for accumulator register "
643             << TRI->getName(AccumReg) << " in MI " << *MI);
644 
645       // For simplicity we only chain together sequences of MULs/MLAs where the
646       // accumulator register is killed on each instruction. This means we don't
647       // need to track other uses of the registers we want to rewrite.
648       //
649       // FIXME: We could extend to handle the non-kill cases for more coverage.
650       if (MI->getOperand(3).isKill()) {
651         // Add to chain.
652         DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
653         ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
654         // Handle cases where the destination is not the same as the accumulator.
655         if (DestReg != AccumReg) {
656           ActiveChains[DestReg] = ActiveChains[AccumReg];
657           ActiveChains.erase(AccumReg);
658         }
659         return;
660       }
661 
662       DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
663             << "marked <kill>!\n");
664       maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
665     }
666 
667     DEBUG(dbgs() << "Creating new chain for dest register "
668           << TRI->getName(DestReg) << "\n");
669     auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
670     ActiveChains[DestReg] = G.get();
671     AllChains.push_back(std::move(G));
672 
673   } else {
674 
675     // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
676     // lists.
677     for (auto &I : MI->uses())
678       maybeKillChain(I, Idx, ActiveChains);
679     for (auto &I : MI->defs())
680       maybeKillChain(I, Idx, ActiveChains);
681 
682   }
683 }
684 
685 void AArch64A57FPLoadBalancing::
maybeKillChain(MachineOperand & MO,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains)686 maybeKillChain(MachineOperand &MO, unsigned Idx,
687                std::map<unsigned, Chain*> &ActiveChains) {
688   // Given an operand and the set of active chains (keyed by register),
689   // determine if a chain should be ended and remove from ActiveChains.
690   MachineInstr *MI = MO.getParent();
691 
692   if (MO.isReg()) {
693 
694     // If this is a KILL of a current chain, record it.
695     if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
696       DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
697             << "\n");
698       ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
699     }
700     ActiveChains.erase(MO.getReg());
701 
702   } else if (MO.isRegMask()) {
703 
704     for (auto I = ActiveChains.begin(), E = ActiveChains.end();
705          I != E;) {
706       if (MO.clobbersPhysReg(I->first)) {
707         DEBUG(dbgs() << "Kill (regmask) seen for chain "
708               << TRI->getName(I->first) << "\n");
709         I->second->setKill(MI, Idx, /*Immutable=*/true);
710         ActiveChains.erase(I++);
711       } else
712         ++I;
713     }
714 
715   }
716 }
717 
getColor(unsigned Reg)718 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
719   if ((TRI->getEncodingValue(Reg) % 2) == 0)
720     return Color::Even;
721   else
722     return Color::Odd;
723 }
724 
725 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
createAArch64A57FPLoadBalancing()726 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
727   return new AArch64A57FPLoadBalancing();
728 }
729