1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // For best-case performance on Cortex-A57, we should try to use a balanced
10 // mix of odd and even D-registers when performing a critical sequence of
11 // independent, non-quadword FP/ASIMD floating-point multiply or
12 // multiply-accumulate operations.
13 //
14 // This pass attempts to detect situations where the register allocation may
15 // adversely affect this load balancing and to change the registers used so as
16 // to better utilize the CPU.
17 //
18 // Ideally we'd just take each multiply or multiply-accumulate in turn and
19 // allocate it alternating even or odd registers. However, multiply-accumulates
20 // are most efficiently performed in the same functional unit as their
21 // accumulation operand. Therefore this pass tries to find maximal sequences
22 // ("Chains") of multiply-accumulates linked via their accumulation operand,
23 // and assign them all the same "color" (oddness/evenness).
24 //
25 // This optimization affects S-register and D-register floating point
26 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
27 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 // not affected.
29 //===----------------------------------------------------------------------===//
30
31 #include "AArch64.h"
32 #include "AArch64InstrInfo.h"
33 #include "AArch64Subtarget.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/EquivalenceClasses.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineFunctionPass.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterScavenging.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <list>
47 using namespace llvm;
48
49 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
50
51 // Enforce the algorithm to use the scavenged register even when the original
52 // destination register is the correct color. Used for testing.
53 static cl::opt<bool>
54 TransformAll("aarch64-a57-fp-load-balancing-force-all",
55 cl::desc("Always modify dest registers regardless of color"),
56 cl::init(false), cl::Hidden);
57
58 // Never use the balance information obtained from chains - return a specific
59 // color always. Used for testing.
60 static cl::opt<unsigned>
61 OverrideBalance("aarch64-a57-fp-load-balancing-override",
62 cl::desc("Ignore balance information, always return "
63 "(1: Even, 2: Odd)."),
64 cl::init(0), cl::Hidden);
65
66 //===----------------------------------------------------------------------===//
67 // Helper functions
68
69 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
isMul(MachineInstr * MI)70 static bool isMul(MachineInstr *MI) {
71 switch (MI->getOpcode()) {
72 case AArch64::FMULSrr:
73 case AArch64::FNMULSrr:
74 case AArch64::FMULDrr:
75 case AArch64::FNMULDrr:
76 return true;
77 default:
78 return false;
79 }
80 }
81
82 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
isMla(MachineInstr * MI)83 static bool isMla(MachineInstr *MI) {
84 switch (MI->getOpcode()) {
85 case AArch64::FMSUBSrrr:
86 case AArch64::FMADDSrrr:
87 case AArch64::FNMSUBSrrr:
88 case AArch64::FNMADDSrrr:
89 case AArch64::FMSUBDrrr:
90 case AArch64::FMADDDrrr:
91 case AArch64::FNMSUBDrrr:
92 case AArch64::FNMADDDrrr:
93 return true;
94 default:
95 return false;
96 }
97 }
98
99 namespace llvm {
100 static void initializeAArch64A57FPLoadBalancingPass(PassRegistry &);
101 }
102
103 //===----------------------------------------------------------------------===//
104
105 namespace {
106 /// A "color", which is either even or odd. Yes, these aren't really colors
107 /// but the algorithm is conceptually doing two-color graph coloring.
108 enum class Color { Even, Odd };
109 #ifndef NDEBUG
110 static const char *ColorNames[2] = { "Even", "Odd" };
111 #endif
112
113 class Chain;
114
115 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
116 MachineRegisterInfo *MRI;
117 const TargetRegisterInfo *TRI;
118 RegisterClassInfo RCI;
119
120 public:
121 static char ID;
AArch64A57FPLoadBalancing()122 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
123 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
124 }
125
126 bool runOnMachineFunction(MachineFunction &F) override;
127
getPassName() const128 const char *getPassName() const override {
129 return "A57 FP Anti-dependency breaker";
130 }
131
getAnalysisUsage(AnalysisUsage & AU) const132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.setPreservesCFG();
134 MachineFunctionPass::getAnalysisUsage(AU);
135 }
136
137 private:
138 bool runOnBasicBlock(MachineBasicBlock &MBB);
139 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
140 int &Balance);
141 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
142 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
143 void scanInstruction(MachineInstr *MI, unsigned Idx,
144 std::map<unsigned, Chain*> &Active,
145 std::vector<std::unique_ptr<Chain>> &AllChains);
146 void maybeKillChain(MachineOperand &MO, unsigned Idx,
147 std::map<unsigned, Chain*> &RegChains);
148 Color getColor(unsigned Register);
149 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
150 };
151 }
152
153 char AArch64A57FPLoadBalancing::ID = 0;
154
155 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156 "AArch64 A57 FP Load-Balancing", false, false)
157 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
158 "AArch64 A57 FP Load-Balancing", false, false)
159
160 namespace {
161 /// A Chain is a sequence of instructions that are linked together by
162 /// an accumulation operand. For example:
163 ///
164 /// fmul d0<def>, ?
165 /// fmla d1<def>, ?, ?, d0<kill>
166 /// fmla d2<def>, ?, ?, d1<kill>
167 ///
168 /// There may be other instructions interleaved in the sequence that
169 /// do not belong to the chain. These other instructions must not use
170 /// the "chain" register at any point.
171 ///
172 /// We currently only support chains where the "chain" operand is killed
173 /// at each link in the chain for simplicity.
174 /// A chain has three important instructions - Start, Last and Kill.
175 /// * The start instruction is the first instruction in the chain.
176 /// * Last is the final instruction in the chain.
177 /// * Kill may or may not be defined. If defined, Kill is the instruction
178 /// where the outgoing value of the Last instruction is killed.
179 /// This information is important as if we know the outgoing value is
180 /// killed with no intervening uses, we can safely change its register.
181 ///
182 /// Without a kill instruction, we must assume the outgoing value escapes
183 /// beyond our model and either must not change its register or must
184 /// create a fixup FMOV to keep the old register value consistent.
185 ///
186 class Chain {
187 public:
188 /// The important (marker) instructions.
189 MachineInstr *StartInst, *LastInst, *KillInst;
190 /// The index, from the start of the basic block, that each marker
191 /// appears. These are stored so we can do quick interval tests.
192 unsigned StartInstIdx, LastInstIdx, KillInstIdx;
193 /// All instructions in the chain.
194 std::set<MachineInstr*> Insts;
195 /// True if KillInst cannot be modified. If this is true,
196 /// we cannot change LastInst's outgoing register.
197 /// This will be true for tied values and regmasks.
198 bool KillIsImmutable;
199 /// The "color" of LastInst. This will be the preferred chain color,
200 /// as changing intermediate nodes is easy but changing the last
201 /// instruction can be more tricky.
202 Color LastColor;
203
Chain(MachineInstr * MI,unsigned Idx,Color C)204 Chain(MachineInstr *MI, unsigned Idx, Color C)
205 : StartInst(MI), LastInst(MI), KillInst(nullptr),
206 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
207 LastColor(C) {
208 Insts.insert(MI);
209 }
210
211 /// Add a new instruction into the chain. The instruction's dest operand
212 /// has the given color.
add(MachineInstr * MI,unsigned Idx,Color C)213 void add(MachineInstr *MI, unsigned Idx, Color C) {
214 LastInst = MI;
215 LastInstIdx = Idx;
216 LastColor = C;
217 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
218 "Chain: broken invariant. A Chain can only be killed after its last "
219 "def");
220
221 Insts.insert(MI);
222 }
223
224 /// Return true if MI is a member of the chain.
contains(MachineInstr * MI)225 bool contains(MachineInstr *MI) { return Insts.count(MI) > 0; }
226
227 /// Return the number of instructions in the chain.
size() const228 unsigned size() const {
229 return Insts.size();
230 }
231
232 /// Inform the chain that its last active register (the dest register of
233 /// LastInst) is killed by MI with no intervening uses or defs.
setKill(MachineInstr * MI,unsigned Idx,bool Immutable)234 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
235 KillInst = MI;
236 KillInstIdx = Idx;
237 KillIsImmutable = Immutable;
238 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
239 "Chain: broken invariant. A Chain can only be killed after its last "
240 "def");
241 }
242
243 /// Return the first instruction in the chain.
getStart() const244 MachineInstr *getStart() const { return StartInst; }
245 /// Return the last instruction in the chain.
getLast() const246 MachineInstr *getLast() const { return LastInst; }
247 /// Return the "kill" instruction (as set with setKill()) or NULL.
getKill() const248 MachineInstr *getKill() const { return KillInst; }
249 /// Return an instruction that can be used as an iterator for the end
250 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
getEnd() const251 MachineBasicBlock::iterator getEnd() const {
252 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
253 }
254
255 /// Can the Kill instruction (assuming one exists) be modified?
isKillImmutable() const256 bool isKillImmutable() const { return KillIsImmutable; }
257
258 /// Return the preferred color of this chain.
getPreferredColor()259 Color getPreferredColor() {
260 if (OverrideBalance != 0)
261 return OverrideBalance == 1 ? Color::Even : Color::Odd;
262 return LastColor;
263 }
264
265 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
rangeOverlapsWith(const Chain & Other) const266 bool rangeOverlapsWith(const Chain &Other) const {
267 unsigned End = KillInst ? KillInstIdx : LastInstIdx;
268 unsigned OtherEnd = Other.KillInst ?
269 Other.KillInstIdx : Other.LastInstIdx;
270
271 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
272 }
273
274 /// Return true if this chain starts before Other.
startsBefore(const Chain * Other) const275 bool startsBefore(const Chain *Other) const {
276 return StartInstIdx < Other->StartInstIdx;
277 }
278
279 /// Return true if the group will require a fixup MOV at the end.
requiresFixup() const280 bool requiresFixup() const {
281 return (getKill() && isKillImmutable()) || !getKill();
282 }
283
284 /// Return a simple string representation of the chain.
str() const285 std::string str() const {
286 std::string S;
287 raw_string_ostream OS(S);
288
289 OS << "{";
290 StartInst->print(OS, /* SkipOpers= */true);
291 OS << " -> ";
292 LastInst->print(OS, /* SkipOpers= */true);
293 if (KillInst) {
294 OS << " (kill @ ";
295 KillInst->print(OS, /* SkipOpers= */true);
296 OS << ")";
297 }
298 OS << "}";
299
300 return OS.str();
301 }
302
303 };
304
305 } // end anonymous namespace
306
307 //===----------------------------------------------------------------------===//
308
runOnMachineFunction(MachineFunction & F)309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
310 // Don't do anything if this isn't an A53 or A57.
311 if (!(F.getSubtarget<AArch64Subtarget>().isCortexA53() ||
312 F.getSubtarget<AArch64Subtarget>().isCortexA57()))
313 return false;
314
315 bool Changed = false;
316 DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
317
318 MRI = &F.getRegInfo();
319 TRI = F.getRegInfo().getTargetRegisterInfo();
320 RCI.runOnMachineFunction(F);
321
322 for (auto &MBB : F) {
323 Changed |= runOnBasicBlock(MBB);
324 }
325
326 return Changed;
327 }
328
runOnBasicBlock(MachineBasicBlock & MBB)329 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
330 bool Changed = false;
331 DEBUG(dbgs() << "Running on MBB: " << MBB << " - scanning instructions...\n");
332
333 // First, scan the basic block producing a set of chains.
334
335 // The currently "active" chains - chains that can be added to and haven't
336 // been killed yet. This is keyed by register - all chains can only have one
337 // "link" register between each inst in the chain.
338 std::map<unsigned, Chain*> ActiveChains;
339 std::vector<std::unique_ptr<Chain>> AllChains;
340 unsigned Idx = 0;
341 for (auto &MI : MBB)
342 scanInstruction(&MI, Idx++, ActiveChains, AllChains);
343
344 DEBUG(dbgs() << "Scan complete, "<< AllChains.size() << " chains created.\n");
345
346 // Group the chains into disjoint sets based on their liveness range. This is
347 // a poor-man's version of graph coloring. Ideally we'd create an interference
348 // graph and perform full-on graph coloring on that, but;
349 // (a) That's rather heavyweight for only two colors.
350 // (b) We expect multiple disjoint interference regions - in practice the live
351 // range of chains is quite small and they are clustered between loads
352 // and stores.
353 EquivalenceClasses<Chain*> EC;
354 for (auto &I : AllChains)
355 EC.insert(I.get());
356
357 for (auto &I : AllChains)
358 for (auto &J : AllChains)
359 if (I != J && I->rangeOverlapsWith(*J))
360 EC.unionSets(I.get(), J.get());
361 DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
362
363 // Now we assume that every member of an equivalence class interferes
364 // with every other member of that class, and with no members of other classes.
365
366 // Convert the EquivalenceClasses to a simpler set of sets.
367 std::vector<std::vector<Chain*> > V;
368 for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
369 std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
370 if (Cs.empty()) continue;
371 V.push_back(std::move(Cs));
372 }
373
374 // Now we have a set of sets, order them by start address so
375 // we can iterate over them sequentially.
376 std::sort(V.begin(), V.end(),
377 [](const std::vector<Chain*> &A,
378 const std::vector<Chain*> &B) {
379 return A.front()->startsBefore(B.front());
380 });
381
382 // As we only have two colors, we can track the global (BB-level) balance of
383 // odds versus evens. We aim to keep this near zero to keep both execution
384 // units fed.
385 // Positive means we're even-heavy, negative we're odd-heavy.
386 //
387 // FIXME: If chains have interdependencies, for example:
388 // mul r0, r1, r2
389 // mul r3, r0, r1
390 // We do not model this and may color each one differently, assuming we'll
391 // get ILP when we obviously can't. This hasn't been seen to be a problem
392 // in practice so far, so we simplify the algorithm by ignoring it.
393 int Parity = 0;
394
395 for (auto &I : V)
396 Changed |= colorChainSet(std::move(I), MBB, Parity);
397
398 return Changed;
399 }
400
getAndEraseNext(Color PreferredColor,std::vector<Chain * > & L)401 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
402 std::vector<Chain*> &L) {
403 if (L.empty())
404 return nullptr;
405
406 // We try and get the best candidate from L to color next, given that our
407 // preferred color is "PreferredColor". L is ordered from larger to smaller
408 // chains. It is beneficial to color the large chains before the small chains,
409 // but if we can't find a chain of the maximum length with the preferred color,
410 // we fuzz the size and look for slightly smaller chains before giving up and
411 // returning a chain that must be recolored.
412
413 // FIXME: Does this need to be configurable?
414 const unsigned SizeFuzz = 1;
415 unsigned MinSize = L.front()->size() - SizeFuzz;
416 for (auto I = L.begin(), E = L.end(); I != E; ++I) {
417 if ((*I)->size() <= MinSize) {
418 // We've gone past the size limit. Return the previous item.
419 Chain *Ch = *--I;
420 L.erase(I);
421 return Ch;
422 }
423
424 if ((*I)->getPreferredColor() == PreferredColor) {
425 Chain *Ch = *I;
426 L.erase(I);
427 return Ch;
428 }
429 }
430
431 // Bailout case - just return the first item.
432 Chain *Ch = L.front();
433 L.erase(L.begin());
434 return Ch;
435 }
436
colorChainSet(std::vector<Chain * > GV,MachineBasicBlock & MBB,int & Parity)437 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
438 MachineBasicBlock &MBB,
439 int &Parity) {
440 bool Changed = false;
441 DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
442
443 // Sort by descending size order so that we allocate the most important
444 // sets first.
445 // Tie-break equivalent sizes by sorting chains requiring fixups before
446 // those without fixups. The logic here is that we should look at the
447 // chains that we cannot change before we look at those we can,
448 // so the parity counter is updated and we know what color we should
449 // change them to!
450 // Final tie-break with instruction order so pass output is stable (i.e. not
451 // dependent on malloc'd pointer values).
452 std::sort(GV.begin(), GV.end(), [](const Chain *G1, const Chain *G2) {
453 if (G1->size() != G2->size())
454 return G1->size() > G2->size();
455 if (G1->requiresFixup() != G2->requiresFixup())
456 return G1->requiresFixup() > G2->requiresFixup();
457 // Make sure startsBefore() produces a stable final order.
458 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
459 "Starts before not total order!");
460 return G1->startsBefore(G2);
461 });
462
463 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
464 while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
465 // Start off by assuming we'll color to our own preferred color.
466 Color C = PreferredColor;
467 if (Parity == 0)
468 // But if we really don't care, use the chain's preferred color.
469 C = G->getPreferredColor();
470
471 DEBUG(dbgs() << " - Parity=" << Parity << ", Color="
472 << ColorNames[(int)C] << "\n");
473
474 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
475 // happens infrequently and when it does it has at least a 50% chance of
476 // slowing code down instead of speeding it up.
477 if (G->requiresFixup() && C != G->getPreferredColor()) {
478 C = G->getPreferredColor();
479 DEBUG(dbgs() << " - " << G->str() << " - not worthwhile changing; "
480 "color remains " << ColorNames[(int)C] << "\n");
481 }
482
483 Changed |= colorChain(G, C, MBB);
484
485 Parity += (C == Color::Even) ? G->size() : -G->size();
486 PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
487 }
488
489 return Changed;
490 }
491
scavengeRegister(Chain * G,Color C,MachineBasicBlock & MBB)492 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
493 MachineBasicBlock &MBB) {
494 RegScavenger RS;
495 RS.enterBasicBlock(&MBB);
496 RS.forward(MachineBasicBlock::iterator(G->getStart()));
497
498 // Can we find an appropriate register that is available throughout the life
499 // of the chain?
500 unsigned RegClassID = G->getStart()->getDesc().OpInfo[0].RegClass;
501 BitVector AvailableRegs = RS.getRegsAvailable(TRI->getRegClass(RegClassID));
502 for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
503 I != E; ++I) {
504 RS.forward(I);
505 AvailableRegs &= RS.getRegsAvailable(TRI->getRegClass(RegClassID));
506
507 // Remove any registers clobbered by a regmask or any def register that is
508 // immediately dead.
509 for (auto J : I->operands()) {
510 if (J.isRegMask())
511 AvailableRegs.clearBitsNotInMask(J.getRegMask());
512
513 if (J.isReg() && J.isDef() && AvailableRegs[J.getReg()]) {
514 assert(J.isDead() && "Non-dead def should have been removed by now!");
515 AvailableRegs.reset(J.getReg());
516 }
517 }
518 }
519
520 // Make sure we allocate in-order, to get the cheapest registers first.
521 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
522 for (auto Reg : Ord) {
523 if (!AvailableRegs[Reg])
524 continue;
525 if ((C == Color::Even && (Reg % 2) == 0) ||
526 (C == Color::Odd && (Reg % 2) == 1))
527 return Reg;
528 }
529
530 return -1;
531 }
532
colorChain(Chain * G,Color C,MachineBasicBlock & MBB)533 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
534 MachineBasicBlock &MBB) {
535 bool Changed = false;
536 DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
537 << ColorNames[(int)C] << ")\n");
538
539 // Try and obtain a free register of the right class. Without a register
540 // to play with we cannot continue.
541 int Reg = scavengeRegister(G, C, MBB);
542 if (Reg == -1) {
543 DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
544 return false;
545 }
546 DEBUG(dbgs() << " - Scavenged register: " << TRI->getName(Reg) << "\n");
547
548 std::map<unsigned, unsigned> Substs;
549 for (MachineBasicBlock::iterator I = G->getStart(), E = G->getEnd();
550 I != E; ++I) {
551 if (!G->contains(I) &&
552 (&*I != G->getKill() || G->isKillImmutable()))
553 continue;
554
555 // I is a member of G, or I is a mutable instruction that kills G.
556
557 std::vector<unsigned> ToErase;
558 for (auto &U : I->operands()) {
559 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
560 unsigned OrigReg = U.getReg();
561 U.setReg(Substs[OrigReg]);
562 if (U.isKill())
563 // Don't erase straight away, because there may be other operands
564 // that also reference this substitution!
565 ToErase.push_back(OrigReg);
566 } else if (U.isRegMask()) {
567 for (auto J : Substs) {
568 if (U.clobbersPhysReg(J.first))
569 ToErase.push_back(J.first);
570 }
571 }
572 }
573 // Now it's safe to remove the substs identified earlier.
574 for (auto J : ToErase)
575 Substs.erase(J);
576
577 // Only change the def if this isn't the last instruction.
578 if (&*I != G->getKill()) {
579 MachineOperand &MO = I->getOperand(0);
580
581 bool Change = TransformAll || getColor(MO.getReg()) != C;
582 if (G->requiresFixup() && &*I == G->getLast())
583 Change = false;
584
585 if (Change) {
586 Substs[MO.getReg()] = Reg;
587 MO.setReg(Reg);
588 MRI->setPhysRegUsed(Reg);
589
590 Changed = true;
591 }
592 }
593 }
594 assert(Substs.size() == 0 && "No substitutions should be left active!");
595
596 if (G->getKill()) {
597 DEBUG(dbgs() << " - Kill instruction seen.\n");
598 } else {
599 // We didn't have a kill instruction, but we didn't seem to need to change
600 // the destination register anyway.
601 DEBUG(dbgs() << " - Destination register not changed.\n");
602 }
603 return Changed;
604 }
605
scanInstruction(MachineInstr * MI,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains,std::vector<std::unique_ptr<Chain>> & AllChains)606 void AArch64A57FPLoadBalancing::scanInstruction(
607 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
608 std::vector<std::unique_ptr<Chain>> &AllChains) {
609 // Inspect "MI", updating ActiveChains and AllChains.
610
611 if (isMul(MI)) {
612
613 for (auto &I : MI->uses())
614 maybeKillChain(I, Idx, ActiveChains);
615 for (auto &I : MI->defs())
616 maybeKillChain(I, Idx, ActiveChains);
617
618 // Create a new chain. Multiplies don't require forwarding so can go on any
619 // unit.
620 unsigned DestReg = MI->getOperand(0).getReg();
621
622 DEBUG(dbgs() << "New chain started for register "
623 << TRI->getName(DestReg) << " at " << *MI);
624
625 auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
626 ActiveChains[DestReg] = G.get();
627 AllChains.push_back(std::move(G));
628
629 } else if (isMla(MI)) {
630
631 // It is beneficial to keep MLAs on the same functional unit as their
632 // accumulator operand.
633 unsigned DestReg = MI->getOperand(0).getReg();
634 unsigned AccumReg = MI->getOperand(3).getReg();
635
636 maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
637 maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
638 if (DestReg != AccumReg)
639 maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
640
641 if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
642 DEBUG(dbgs() << "Chain found for accumulator register "
643 << TRI->getName(AccumReg) << " in MI " << *MI);
644
645 // For simplicity we only chain together sequences of MULs/MLAs where the
646 // accumulator register is killed on each instruction. This means we don't
647 // need to track other uses of the registers we want to rewrite.
648 //
649 // FIXME: We could extend to handle the non-kill cases for more coverage.
650 if (MI->getOperand(3).isKill()) {
651 // Add to chain.
652 DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
653 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
654 // Handle cases where the destination is not the same as the accumulator.
655 if (DestReg != AccumReg) {
656 ActiveChains[DestReg] = ActiveChains[AccumReg];
657 ActiveChains.erase(AccumReg);
658 }
659 return;
660 }
661
662 DEBUG(dbgs() << "Cannot add to chain because accumulator operand wasn't "
663 << "marked <kill>!\n");
664 maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
665 }
666
667 DEBUG(dbgs() << "Creating new chain for dest register "
668 << TRI->getName(DestReg) << "\n");
669 auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
670 ActiveChains[DestReg] = G.get();
671 AllChains.push_back(std::move(G));
672
673 } else {
674
675 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
676 // lists.
677 for (auto &I : MI->uses())
678 maybeKillChain(I, Idx, ActiveChains);
679 for (auto &I : MI->defs())
680 maybeKillChain(I, Idx, ActiveChains);
681
682 }
683 }
684
685 void AArch64A57FPLoadBalancing::
maybeKillChain(MachineOperand & MO,unsigned Idx,std::map<unsigned,Chain * > & ActiveChains)686 maybeKillChain(MachineOperand &MO, unsigned Idx,
687 std::map<unsigned, Chain*> &ActiveChains) {
688 // Given an operand and the set of active chains (keyed by register),
689 // determine if a chain should be ended and remove from ActiveChains.
690 MachineInstr *MI = MO.getParent();
691
692 if (MO.isReg()) {
693
694 // If this is a KILL of a current chain, record it.
695 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
696 DEBUG(dbgs() << "Kill seen for chain " << TRI->getName(MO.getReg())
697 << "\n");
698 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
699 }
700 ActiveChains.erase(MO.getReg());
701
702 } else if (MO.isRegMask()) {
703
704 for (auto I = ActiveChains.begin(), E = ActiveChains.end();
705 I != E;) {
706 if (MO.clobbersPhysReg(I->first)) {
707 DEBUG(dbgs() << "Kill (regmask) seen for chain "
708 << TRI->getName(I->first) << "\n");
709 I->second->setKill(MI, Idx, /*Immutable=*/true);
710 ActiveChains.erase(I++);
711 } else
712 ++I;
713 }
714
715 }
716 }
717
getColor(unsigned Reg)718 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
719 if ((TRI->getEncodingValue(Reg) % 2) == 0)
720 return Color::Even;
721 else
722 return Color::Odd;
723 }
724
725 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
createAArch64A57FPLoadBalancing()726 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
727 return new AArch64A57FPLoadBalancing();
728 }
729