1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // When profitable, replace GPR targeting i64 instructions with their
10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 // as minimizing the number of cross-class register copies.
12 //===----------------------------------------------------------------------===//
13 
14 //===----------------------------------------------------------------------===//
15 // TODO: Graph based predicate heuristics.
16 // Walking the instruction list linearly will get many, perhaps most, of
17 // the cases, but to do a truly thorough job of this, we need a more
18 // wholistic approach.
19 //
20 // This optimization is very similar in spirit to the register allocator's
21 // spill placement, only here we're determining where to place cross-class
22 // register copies rather than spills. As such, a similar approach is
23 // called for.
24 //
25 // We want to build up a set of graphs of all instructions which are candidates
26 // for transformation along with instructions which generate their inputs and
27 // consume their outputs. For each edge in the graph, we assign a weight
28 // based on whether there is a copy required there (weight zero if not) and
29 // the block frequency of the block containing the defining or using
30 // instruction, whichever is less. Our optimization is then a graph problem
31 // to minimize the total weight of all the graphs, then transform instructions
32 // and add or remove copy instructions as called for to implement the
33 // solution.
34 //===----------------------------------------------------------------------===//
35 
36 #include "AArch64.h"
37 #include "AArch64InstrInfo.h"
38 #include "AArch64RegisterInfo.h"
39 #include "AArch64Subtarget.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "aarch64-simd-scalar"
52 
53 // Allow forcing all i64 operations with equivalent SIMD instructions to use
54 // them. For stress-testing the transformation function.
55 static cl::opt<bool>
56 TransformAll("aarch64-simd-scalar-force-all",
57              cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
58              cl::init(false), cl::Hidden);
59 
60 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
61 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
62 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
63 
64 namespace {
65 class AArch64AdvSIMDScalar : public MachineFunctionPass {
66   MachineRegisterInfo *MRI;
67   const TargetInstrInfo *TII;
68 
69 private:
70   // isProfitableToTransform - Predicate function to determine whether an
71   // instruction should be transformed to its equivalent AdvSIMD scalar
72   // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
73   bool isProfitableToTransform(const MachineInstr *MI) const;
74 
75   // transformInstruction - Perform the transformation of an instruction
76   // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
77   // to be the correct register class, minimizing cross-class copies.
78   void transformInstruction(MachineInstr *MI);
79 
80   // processMachineBasicBlock - Main optimzation loop.
81   bool processMachineBasicBlock(MachineBasicBlock *MBB);
82 
83 public:
84   static char ID; // Pass identification, replacement for typeid.
AArch64AdvSIMDScalar()85   explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {}
86 
87   bool runOnMachineFunction(MachineFunction &F) override;
88 
getPassName() const89   const char *getPassName() const override {
90     return "AdvSIMD Scalar Operation Optimization";
91   }
92 
getAnalysisUsage(AnalysisUsage & AU) const93   void getAnalysisUsage(AnalysisUsage &AU) const override {
94     AU.setPreservesCFG();
95     MachineFunctionPass::getAnalysisUsage(AU);
96   }
97 };
98 char AArch64AdvSIMDScalar::ID = 0;
99 } // end anonymous namespace
100 
isGPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)101 static bool isGPR64(unsigned Reg, unsigned SubReg,
102                     const MachineRegisterInfo *MRI) {
103   if (SubReg)
104     return false;
105   if (TargetRegisterInfo::isVirtualRegister(Reg))
106     return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
107   return AArch64::GPR64RegClass.contains(Reg);
108 }
109 
isFPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)110 static bool isFPR64(unsigned Reg, unsigned SubReg,
111                     const MachineRegisterInfo *MRI) {
112   if (TargetRegisterInfo::isVirtualRegister(Reg))
113     return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
114             SubReg == 0) ||
115            (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
116             SubReg == AArch64::dsub);
117   // Physical register references just check the register class directly.
118   return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
119          (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
120 }
121 
122 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
123 // copy instruction. Return zero_reg if the instruction is not a copy.
getSrcFromCopy(const MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & SubReg)124 static unsigned getSrcFromCopy(const MachineInstr *MI,
125                                const MachineRegisterInfo *MRI,
126                                unsigned &SubReg) {
127   SubReg = 0;
128   // The "FMOV Xd, Dn" instruction is the typical form.
129   if (MI->getOpcode() == AArch64::FMOVDXr ||
130       MI->getOpcode() == AArch64::FMOVXDr)
131     return MI->getOperand(1).getReg();
132   // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
133   // these at this stage, but it's easy to check for.
134   if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
135     SubReg = AArch64::dsub;
136     return MI->getOperand(1).getReg();
137   }
138   // Or just a plain COPY instruction. This can be directly to/from FPR64,
139   // or it can be a dsub subreg reference to an FPR128.
140   if (MI->getOpcode() == AArch64::COPY) {
141     if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
142                 MRI) &&
143         isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
144       return MI->getOperand(1).getReg();
145     if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
146                 MRI) &&
147         isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
148                 MRI)) {
149       SubReg = MI->getOperand(1).getSubReg();
150       return MI->getOperand(1).getReg();
151     }
152   }
153 
154   // Otherwise, this is some other kind of instruction.
155   return 0;
156 }
157 
158 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
159 // that we're considering transforming to, return that AdvSIMD opcode. For all
160 // others, return the original opcode.
getTransformOpcode(unsigned Opc)161 static int getTransformOpcode(unsigned Opc) {
162   switch (Opc) {
163   default:
164     break;
165   // FIXME: Lots more possibilities.
166   case AArch64::ADDXrr:
167     return AArch64::ADDv1i64;
168   case AArch64::SUBXrr:
169     return AArch64::SUBv1i64;
170   case AArch64::ANDXrr:
171     return AArch64::ANDv8i8;
172   case AArch64::EORXrr:
173     return AArch64::EORv8i8;
174   case AArch64::ORRXrr:
175     return AArch64::ORRv8i8;
176   }
177   // No AdvSIMD equivalent, so just return the original opcode.
178   return Opc;
179 }
180 
isTransformable(const MachineInstr * MI)181 static bool isTransformable(const MachineInstr *MI) {
182   int Opc = MI->getOpcode();
183   return Opc != getTransformOpcode(Opc);
184 }
185 
186 // isProfitableToTransform - Predicate function to determine whether an
187 // instruction should be transformed to its equivalent AdvSIMD scalar
188 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
189 bool
isProfitableToTransform(const MachineInstr * MI) const190 AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
191   // If this instruction isn't eligible to be transformed (no SIMD equivalent),
192   // early exit since that's the common case.
193   if (!isTransformable(MI))
194     return false;
195 
196   // Count the number of copies we'll need to add and approximate the number
197   // of copies that a transform will enable us to remove.
198   unsigned NumNewCopies = 3;
199   unsigned NumRemovableCopies = 0;
200 
201   unsigned OrigSrc0 = MI->getOperand(1).getReg();
202   unsigned OrigSrc1 = MI->getOperand(2).getReg();
203   unsigned Src0 = 0, SubReg0;
204   unsigned Src1 = 0, SubReg1;
205   if (!MRI->def_empty(OrigSrc0)) {
206     MachineRegisterInfo::def_instr_iterator Def =
207         MRI->def_instr_begin(OrigSrc0);
208     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
209     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
210     // If the source was from a copy, we don't need to insert a new copy.
211     if (Src0)
212       --NumNewCopies;
213     // If there are no other users of the original source, we can delete
214     // that instruction.
215     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
216       ++NumRemovableCopies;
217   }
218   if (!MRI->def_empty(OrigSrc1)) {
219     MachineRegisterInfo::def_instr_iterator Def =
220         MRI->def_instr_begin(OrigSrc1);
221     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
222     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
223     if (Src1)
224       --NumNewCopies;
225     // If there are no other users of the original source, we can delete
226     // that instruction.
227     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
228       ++NumRemovableCopies;
229   }
230 
231   // If any of the uses of the original instructions is a cross class copy,
232   // that's a copy that will be removable if we transform. Likewise, if
233   // any of the uses is a transformable instruction, it's likely the tranforms
234   // will chain, enabling us to save a copy there, too. This is an aggressive
235   // heuristic that approximates the graph based cost analysis described above.
236   unsigned Dst = MI->getOperand(0).getReg();
237   bool AllUsesAreCopies = true;
238   for (MachineRegisterInfo::use_instr_nodbg_iterator
239            Use = MRI->use_instr_nodbg_begin(Dst),
240            E = MRI->use_instr_nodbg_end();
241        Use != E; ++Use) {
242     unsigned SubReg;
243     if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
244       ++NumRemovableCopies;
245     // If the use is an INSERT_SUBREG, that's still something that can
246     // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
247     // preferable to have it use the FPR64 in most cases, as if the source
248     // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
249     // Ditto for a lane insert.
250     else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
251              Use->getOpcode() == AArch64::INSvi64gpr)
252       ;
253     else
254       AllUsesAreCopies = false;
255   }
256   // If all of the uses of the original destination register are copies to
257   // FPR64, then we won't end up having a new copy back to GPR64 either.
258   if (AllUsesAreCopies)
259     --NumNewCopies;
260 
261   // If a transform will not increase the number of cross-class copies required,
262   // return true.
263   if (NumNewCopies <= NumRemovableCopies)
264     return true;
265 
266   // Finally, even if we otherwise wouldn't transform, check if we're forcing
267   // transformation of everything.
268   return TransformAll;
269 }
270 
insertCopy(const TargetInstrInfo * TII,MachineInstr * MI,unsigned Dst,unsigned Src,bool IsKill)271 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr *MI,
272                                 unsigned Dst, unsigned Src, bool IsKill) {
273   MachineInstrBuilder MIB =
274       BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY),
275               Dst)
276           .addReg(Src, getKillRegState(IsKill));
277   DEBUG(dbgs() << "    adding copy: " << *MIB);
278   ++NumCopiesInserted;
279   return MIB;
280 }
281 
282 // transformInstruction - Perform the transformation of an instruction
283 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
284 // to be the correct register class, minimizing cross-class copies.
transformInstruction(MachineInstr * MI)285 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
286   DEBUG(dbgs() << "Scalar transform: " << *MI);
287 
288   MachineBasicBlock *MBB = MI->getParent();
289   int OldOpc = MI->getOpcode();
290   int NewOpc = getTransformOpcode(OldOpc);
291   assert(OldOpc != NewOpc && "transform an instruction to itself?!");
292 
293   // Check if we need a copy for the source registers.
294   unsigned OrigSrc0 = MI->getOperand(1).getReg();
295   unsigned OrigSrc1 = MI->getOperand(2).getReg();
296   unsigned Src0 = 0, SubReg0;
297   unsigned Src1 = 0, SubReg1;
298   if (!MRI->def_empty(OrigSrc0)) {
299     MachineRegisterInfo::def_instr_iterator Def =
300         MRI->def_instr_begin(OrigSrc0);
301     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
302     Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
303     // If there are no other users of the original source, we can delete
304     // that instruction.
305     if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
306       assert(Src0 && "Can't delete copy w/o a valid original source!");
307       Def->eraseFromParent();
308       ++NumCopiesDeleted;
309     }
310   }
311   if (!MRI->def_empty(OrigSrc1)) {
312     MachineRegisterInfo::def_instr_iterator Def =
313         MRI->def_instr_begin(OrigSrc1);
314     assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
315     Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
316     // If there are no other users of the original source, we can delete
317     // that instruction.
318     if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
319       assert(Src1 && "Can't delete copy w/o a valid original source!");
320       Def->eraseFromParent();
321       ++NumCopiesDeleted;
322     }
323   }
324   // If we weren't able to reference the original source directly, create a
325   // copy.
326   if (!Src0) {
327     SubReg0 = 0;
328     Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
329     insertCopy(TII, MI, Src0, OrigSrc0, true);
330   }
331   if (!Src1) {
332     SubReg1 = 0;
333     Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
334     insertCopy(TII, MI, Src1, OrigSrc1, true);
335   }
336 
337   // Create a vreg for the destination.
338   // FIXME: No need to do this if the ultimate user expects an FPR64.
339   // Check for that and avoid the copy if possible.
340   unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
341 
342   // For now, all of the new instructions have the same simple three-register
343   // form, so no need to special case based on what instruction we're
344   // building.
345   BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
346       .addReg(Src0, getKillRegState(true), SubReg0)
347       .addReg(Src1, getKillRegState(true), SubReg1);
348 
349   // Now copy the result back out to a GPR.
350   // FIXME: Try to avoid this if all uses could actually just use the FPR64
351   // directly.
352   insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
353 
354   // Erase the old instruction.
355   MI->eraseFromParent();
356 
357   ++NumScalarInsnsUsed;
358 }
359 
360 // processMachineBasicBlock - Main optimzation loop.
processMachineBasicBlock(MachineBasicBlock * MBB)361 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
362   bool Changed = false;
363   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
364     MachineInstr *MI = I;
365     ++I;
366     if (isProfitableToTransform(MI)) {
367       transformInstruction(MI);
368       Changed = true;
369     }
370   }
371   return Changed;
372 }
373 
374 // runOnMachineFunction - Pass entry point from PassManager.
runOnMachineFunction(MachineFunction & mf)375 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
376   bool Changed = false;
377   DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
378 
379   MRI = &mf.getRegInfo();
380   TII = mf.getSubtarget().getInstrInfo();
381 
382   // Just check things on a one-block-at-a-time basis.
383   for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
384     if (processMachineBasicBlock(I))
385       Changed = true;
386   return Changed;
387 }
388 
389 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
390 // to add the pass to the PassManager.
createAArch64AdvSIMDScalar()391 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
392   return new AArch64AdvSIMDScalar();
393 }
394