1 //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // When profitable, replace GPR targeting i64 instructions with their
10 // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 // as minimizing the number of cross-class register copies.
12 //===----------------------------------------------------------------------===//
13
14 //===----------------------------------------------------------------------===//
15 // TODO: Graph based predicate heuristics.
16 // Walking the instruction list linearly will get many, perhaps most, of
17 // the cases, but to do a truly thorough job of this, we need a more
18 // wholistic approach.
19 //
20 // This optimization is very similar in spirit to the register allocator's
21 // spill placement, only here we're determining where to place cross-class
22 // register copies rather than spills. As such, a similar approach is
23 // called for.
24 //
25 // We want to build up a set of graphs of all instructions which are candidates
26 // for transformation along with instructions which generate their inputs and
27 // consume their outputs. For each edge in the graph, we assign a weight
28 // based on whether there is a copy required there (weight zero if not) and
29 // the block frequency of the block containing the defining or using
30 // instruction, whichever is less. Our optimization is then a graph problem
31 // to minimize the total weight of all the graphs, then transform instructions
32 // and add or remove copy instructions as called for to implement the
33 // solution.
34 //===----------------------------------------------------------------------===//
35
36 #include "AArch64.h"
37 #include "AArch64InstrInfo.h"
38 #include "AArch64RegisterInfo.h"
39 #include "AArch64Subtarget.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 using namespace llvm;
50
51 #define DEBUG_TYPE "aarch64-simd-scalar"
52
53 // Allow forcing all i64 operations with equivalent SIMD instructions to use
54 // them. For stress-testing the transformation function.
55 static cl::opt<bool>
56 TransformAll("aarch64-simd-scalar-force-all",
57 cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
58 cl::init(false), cl::Hidden);
59
60 STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
61 STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
62 STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
63
64 namespace {
65 class AArch64AdvSIMDScalar : public MachineFunctionPass {
66 MachineRegisterInfo *MRI;
67 const TargetInstrInfo *TII;
68
69 private:
70 // isProfitableToTransform - Predicate function to determine whether an
71 // instruction should be transformed to its equivalent AdvSIMD scalar
72 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
73 bool isProfitableToTransform(const MachineInstr *MI) const;
74
75 // transformInstruction - Perform the transformation of an instruction
76 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
77 // to be the correct register class, minimizing cross-class copies.
78 void transformInstruction(MachineInstr *MI);
79
80 // processMachineBasicBlock - Main optimzation loop.
81 bool processMachineBasicBlock(MachineBasicBlock *MBB);
82
83 public:
84 static char ID; // Pass identification, replacement for typeid.
AArch64AdvSIMDScalar()85 explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {}
86
87 bool runOnMachineFunction(MachineFunction &F) override;
88
getPassName() const89 const char *getPassName() const override {
90 return "AdvSIMD Scalar Operation Optimization";
91 }
92
getAnalysisUsage(AnalysisUsage & AU) const93 void getAnalysisUsage(AnalysisUsage &AU) const override {
94 AU.setPreservesCFG();
95 MachineFunctionPass::getAnalysisUsage(AU);
96 }
97 };
98 char AArch64AdvSIMDScalar::ID = 0;
99 } // end anonymous namespace
100
isGPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)101 static bool isGPR64(unsigned Reg, unsigned SubReg,
102 const MachineRegisterInfo *MRI) {
103 if (SubReg)
104 return false;
105 if (TargetRegisterInfo::isVirtualRegister(Reg))
106 return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
107 return AArch64::GPR64RegClass.contains(Reg);
108 }
109
isFPR64(unsigned Reg,unsigned SubReg,const MachineRegisterInfo * MRI)110 static bool isFPR64(unsigned Reg, unsigned SubReg,
111 const MachineRegisterInfo *MRI) {
112 if (TargetRegisterInfo::isVirtualRegister(Reg))
113 return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
114 SubReg == 0) ||
115 (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
116 SubReg == AArch64::dsub);
117 // Physical register references just check the register class directly.
118 return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
119 (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
120 }
121
122 // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
123 // copy instruction. Return zero_reg if the instruction is not a copy.
getSrcFromCopy(const MachineInstr * MI,const MachineRegisterInfo * MRI,unsigned & SubReg)124 static unsigned getSrcFromCopy(const MachineInstr *MI,
125 const MachineRegisterInfo *MRI,
126 unsigned &SubReg) {
127 SubReg = 0;
128 // The "FMOV Xd, Dn" instruction is the typical form.
129 if (MI->getOpcode() == AArch64::FMOVDXr ||
130 MI->getOpcode() == AArch64::FMOVXDr)
131 return MI->getOperand(1).getReg();
132 // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
133 // these at this stage, but it's easy to check for.
134 if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
135 SubReg = AArch64::dsub;
136 return MI->getOperand(1).getReg();
137 }
138 // Or just a plain COPY instruction. This can be directly to/from FPR64,
139 // or it can be a dsub subreg reference to an FPR128.
140 if (MI->getOpcode() == AArch64::COPY) {
141 if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
142 MRI) &&
143 isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
144 return MI->getOperand(1).getReg();
145 if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
146 MRI) &&
147 isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
148 MRI)) {
149 SubReg = MI->getOperand(1).getSubReg();
150 return MI->getOperand(1).getReg();
151 }
152 }
153
154 // Otherwise, this is some other kind of instruction.
155 return 0;
156 }
157
158 // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
159 // that we're considering transforming to, return that AdvSIMD opcode. For all
160 // others, return the original opcode.
getTransformOpcode(unsigned Opc)161 static int getTransformOpcode(unsigned Opc) {
162 switch (Opc) {
163 default:
164 break;
165 // FIXME: Lots more possibilities.
166 case AArch64::ADDXrr:
167 return AArch64::ADDv1i64;
168 case AArch64::SUBXrr:
169 return AArch64::SUBv1i64;
170 case AArch64::ANDXrr:
171 return AArch64::ANDv8i8;
172 case AArch64::EORXrr:
173 return AArch64::EORv8i8;
174 case AArch64::ORRXrr:
175 return AArch64::ORRv8i8;
176 }
177 // No AdvSIMD equivalent, so just return the original opcode.
178 return Opc;
179 }
180
isTransformable(const MachineInstr * MI)181 static bool isTransformable(const MachineInstr *MI) {
182 int Opc = MI->getOpcode();
183 return Opc != getTransformOpcode(Opc);
184 }
185
186 // isProfitableToTransform - Predicate function to determine whether an
187 // instruction should be transformed to its equivalent AdvSIMD scalar
188 // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
189 bool
isProfitableToTransform(const MachineInstr * MI) const190 AArch64AdvSIMDScalar::isProfitableToTransform(const MachineInstr *MI) const {
191 // If this instruction isn't eligible to be transformed (no SIMD equivalent),
192 // early exit since that's the common case.
193 if (!isTransformable(MI))
194 return false;
195
196 // Count the number of copies we'll need to add and approximate the number
197 // of copies that a transform will enable us to remove.
198 unsigned NumNewCopies = 3;
199 unsigned NumRemovableCopies = 0;
200
201 unsigned OrigSrc0 = MI->getOperand(1).getReg();
202 unsigned OrigSrc1 = MI->getOperand(2).getReg();
203 unsigned Src0 = 0, SubReg0;
204 unsigned Src1 = 0, SubReg1;
205 if (!MRI->def_empty(OrigSrc0)) {
206 MachineRegisterInfo::def_instr_iterator Def =
207 MRI->def_instr_begin(OrigSrc0);
208 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
209 Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
210 // If the source was from a copy, we don't need to insert a new copy.
211 if (Src0)
212 --NumNewCopies;
213 // If there are no other users of the original source, we can delete
214 // that instruction.
215 if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0))
216 ++NumRemovableCopies;
217 }
218 if (!MRI->def_empty(OrigSrc1)) {
219 MachineRegisterInfo::def_instr_iterator Def =
220 MRI->def_instr_begin(OrigSrc1);
221 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
222 Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
223 if (Src1)
224 --NumNewCopies;
225 // If there are no other users of the original source, we can delete
226 // that instruction.
227 if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1))
228 ++NumRemovableCopies;
229 }
230
231 // If any of the uses of the original instructions is a cross class copy,
232 // that's a copy that will be removable if we transform. Likewise, if
233 // any of the uses is a transformable instruction, it's likely the tranforms
234 // will chain, enabling us to save a copy there, too. This is an aggressive
235 // heuristic that approximates the graph based cost analysis described above.
236 unsigned Dst = MI->getOperand(0).getReg();
237 bool AllUsesAreCopies = true;
238 for (MachineRegisterInfo::use_instr_nodbg_iterator
239 Use = MRI->use_instr_nodbg_begin(Dst),
240 E = MRI->use_instr_nodbg_end();
241 Use != E; ++Use) {
242 unsigned SubReg;
243 if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(&*Use))
244 ++NumRemovableCopies;
245 // If the use is an INSERT_SUBREG, that's still something that can
246 // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
247 // preferable to have it use the FPR64 in most cases, as if the source
248 // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
249 // Ditto for a lane insert.
250 else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
251 Use->getOpcode() == AArch64::INSvi64gpr)
252 ;
253 else
254 AllUsesAreCopies = false;
255 }
256 // If all of the uses of the original destination register are copies to
257 // FPR64, then we won't end up having a new copy back to GPR64 either.
258 if (AllUsesAreCopies)
259 --NumNewCopies;
260
261 // If a transform will not increase the number of cross-class copies required,
262 // return true.
263 if (NumNewCopies <= NumRemovableCopies)
264 return true;
265
266 // Finally, even if we otherwise wouldn't transform, check if we're forcing
267 // transformation of everything.
268 return TransformAll;
269 }
270
insertCopy(const TargetInstrInfo * TII,MachineInstr * MI,unsigned Dst,unsigned Src,bool IsKill)271 static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr *MI,
272 unsigned Dst, unsigned Src, bool IsKill) {
273 MachineInstrBuilder MIB =
274 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII->get(AArch64::COPY),
275 Dst)
276 .addReg(Src, getKillRegState(IsKill));
277 DEBUG(dbgs() << " adding copy: " << *MIB);
278 ++NumCopiesInserted;
279 return MIB;
280 }
281
282 // transformInstruction - Perform the transformation of an instruction
283 // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
284 // to be the correct register class, minimizing cross-class copies.
transformInstruction(MachineInstr * MI)285 void AArch64AdvSIMDScalar::transformInstruction(MachineInstr *MI) {
286 DEBUG(dbgs() << "Scalar transform: " << *MI);
287
288 MachineBasicBlock *MBB = MI->getParent();
289 int OldOpc = MI->getOpcode();
290 int NewOpc = getTransformOpcode(OldOpc);
291 assert(OldOpc != NewOpc && "transform an instruction to itself?!");
292
293 // Check if we need a copy for the source registers.
294 unsigned OrigSrc0 = MI->getOperand(1).getReg();
295 unsigned OrigSrc1 = MI->getOperand(2).getReg();
296 unsigned Src0 = 0, SubReg0;
297 unsigned Src1 = 0, SubReg1;
298 if (!MRI->def_empty(OrigSrc0)) {
299 MachineRegisterInfo::def_instr_iterator Def =
300 MRI->def_instr_begin(OrigSrc0);
301 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
302 Src0 = getSrcFromCopy(&*Def, MRI, SubReg0);
303 // If there are no other users of the original source, we can delete
304 // that instruction.
305 if (Src0 && MRI->hasOneNonDBGUse(OrigSrc0)) {
306 assert(Src0 && "Can't delete copy w/o a valid original source!");
307 Def->eraseFromParent();
308 ++NumCopiesDeleted;
309 }
310 }
311 if (!MRI->def_empty(OrigSrc1)) {
312 MachineRegisterInfo::def_instr_iterator Def =
313 MRI->def_instr_begin(OrigSrc1);
314 assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
315 Src1 = getSrcFromCopy(&*Def, MRI, SubReg1);
316 // If there are no other users of the original source, we can delete
317 // that instruction.
318 if (Src1 && MRI->hasOneNonDBGUse(OrigSrc1)) {
319 assert(Src1 && "Can't delete copy w/o a valid original source!");
320 Def->eraseFromParent();
321 ++NumCopiesDeleted;
322 }
323 }
324 // If we weren't able to reference the original source directly, create a
325 // copy.
326 if (!Src0) {
327 SubReg0 = 0;
328 Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
329 insertCopy(TII, MI, Src0, OrigSrc0, true);
330 }
331 if (!Src1) {
332 SubReg1 = 0;
333 Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
334 insertCopy(TII, MI, Src1, OrigSrc1, true);
335 }
336
337 // Create a vreg for the destination.
338 // FIXME: No need to do this if the ultimate user expects an FPR64.
339 // Check for that and avoid the copy if possible.
340 unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
341
342 // For now, all of the new instructions have the same simple three-register
343 // form, so no need to special case based on what instruction we're
344 // building.
345 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(NewOpc), Dst)
346 .addReg(Src0, getKillRegState(true), SubReg0)
347 .addReg(Src1, getKillRegState(true), SubReg1);
348
349 // Now copy the result back out to a GPR.
350 // FIXME: Try to avoid this if all uses could actually just use the FPR64
351 // directly.
352 insertCopy(TII, MI, MI->getOperand(0).getReg(), Dst, true);
353
354 // Erase the old instruction.
355 MI->eraseFromParent();
356
357 ++NumScalarInsnsUsed;
358 }
359
360 // processMachineBasicBlock - Main optimzation loop.
processMachineBasicBlock(MachineBasicBlock * MBB)361 bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
362 bool Changed = false;
363 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
364 MachineInstr *MI = I;
365 ++I;
366 if (isProfitableToTransform(MI)) {
367 transformInstruction(MI);
368 Changed = true;
369 }
370 }
371 return Changed;
372 }
373
374 // runOnMachineFunction - Pass entry point from PassManager.
runOnMachineFunction(MachineFunction & mf)375 bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
376 bool Changed = false;
377 DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
378
379 MRI = &mf.getRegInfo();
380 TII = mf.getSubtarget().getInstrInfo();
381
382 // Just check things on a one-block-at-a-time basis.
383 for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
384 if (processMachineBasicBlock(I))
385 Changed = true;
386 return Changed;
387 }
388
389 // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
390 // to add the pass to the PassManager.
createAArch64AdvSIMDScalar()391 FunctionPass *llvm::createAArch64AdvSIMDScalar() {
392 return new AArch64AdvSIMDScalar();
393 }
394