1 //===-- AArch64AsmBackend.cpp - AArch64 Assembler Backend -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "AArch64.h"
11 #include "AArch64RegisterInfo.h"
12 #include "MCTargetDesc/AArch64FixupKinds.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCDirectives.h"
16 #include "llvm/MC/MCELFObjectWriter.h"
17 #include "llvm/MC/MCFixupKindInfo.h"
18 #include "llvm/MC/MCObjectWriter.h"
19 #include "llvm/MC/MCSectionELF.h"
20 #include "llvm/MC/MCSectionMachO.h"
21 #include "llvm/MC/MCValue.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/MachO.h"
24 using namespace llvm;
25 
26 namespace {
27 
28 class AArch64AsmBackend : public MCAsmBackend {
29   static const unsigned PCRelFlagVal =
30       MCFixupKindInfo::FKF_IsAlignedDownTo32Bits | MCFixupKindInfo::FKF_IsPCRel;
31 
32 public:
AArch64AsmBackend(const Target & T)33   AArch64AsmBackend(const Target &T) : MCAsmBackend() {}
34 
getNumFixupKinds() const35   unsigned getNumFixupKinds() const override {
36     return AArch64::NumTargetFixupKinds;
37   }
38 
getFixupKindInfo(MCFixupKind Kind) const39   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const override {
40     const static MCFixupKindInfo Infos[AArch64::NumTargetFixupKinds] = {
41       // This table *must* be in the order that the fixup_* kinds are defined in
42       // AArch64FixupKinds.h.
43       //
44       // Name                           Offset (bits) Size (bits)     Flags
45       { "fixup_aarch64_pcrel_adr_imm21", 0, 32, PCRelFlagVal },
46       { "fixup_aarch64_pcrel_adrp_imm21", 0, 32, PCRelFlagVal },
47       { "fixup_aarch64_add_imm12", 10, 12, 0 },
48       { "fixup_aarch64_ldst_imm12_scale1", 10, 12, 0 },
49       { "fixup_aarch64_ldst_imm12_scale2", 10, 12, 0 },
50       { "fixup_aarch64_ldst_imm12_scale4", 10, 12, 0 },
51       { "fixup_aarch64_ldst_imm12_scale8", 10, 12, 0 },
52       { "fixup_aarch64_ldst_imm12_scale16", 10, 12, 0 },
53       { "fixup_aarch64_ldr_pcrel_imm19", 5, 19, PCRelFlagVal },
54       { "fixup_aarch64_movw", 5, 16, 0 },
55       { "fixup_aarch64_pcrel_branch14", 5, 14, PCRelFlagVal },
56       { "fixup_aarch64_pcrel_branch19", 5, 19, PCRelFlagVal },
57       { "fixup_aarch64_pcrel_branch26", 0, 26, PCRelFlagVal },
58       { "fixup_aarch64_pcrel_call26", 0, 26, PCRelFlagVal },
59       { "fixup_aarch64_tlsdesc_call", 0, 0, 0 }
60     };
61 
62     if (Kind < FirstTargetFixupKind)
63       return MCAsmBackend::getFixupKindInfo(Kind);
64 
65     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
66            "Invalid kind!");
67     return Infos[Kind - FirstTargetFixupKind];
68   }
69 
70   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
71                   uint64_t Value, bool IsPCRel) const override;
72 
73   bool mayNeedRelaxation(const MCInst &Inst) const override;
74   bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
75                             const MCRelaxableFragment *DF,
76                             const MCAsmLayout &Layout) const override;
77   void relaxInstruction(const MCInst &Inst, MCInst &Res) const override;
78   bool writeNopData(uint64_t Count, MCObjectWriter *OW) const override;
79 
HandleAssemblerFlag(MCAssemblerFlag Flag)80   void HandleAssemblerFlag(MCAssemblerFlag Flag) {}
81 
getPointerSize() const82   unsigned getPointerSize() const { return 8; }
83 };
84 
85 } // end anonymous namespace
86 
87 /// \brief The number of bytes the fixup may change.
getFixupKindNumBytes(unsigned Kind)88 static unsigned getFixupKindNumBytes(unsigned Kind) {
89   switch (Kind) {
90   default:
91     llvm_unreachable("Unknown fixup kind!");
92 
93   case AArch64::fixup_aarch64_tlsdesc_call:
94     return 0;
95 
96   case FK_Data_1:
97     return 1;
98 
99   case FK_Data_2:
100   case AArch64::fixup_aarch64_movw:
101     return 2;
102 
103   case AArch64::fixup_aarch64_pcrel_branch14:
104   case AArch64::fixup_aarch64_add_imm12:
105   case AArch64::fixup_aarch64_ldst_imm12_scale1:
106   case AArch64::fixup_aarch64_ldst_imm12_scale2:
107   case AArch64::fixup_aarch64_ldst_imm12_scale4:
108   case AArch64::fixup_aarch64_ldst_imm12_scale8:
109   case AArch64::fixup_aarch64_ldst_imm12_scale16:
110   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
111   case AArch64::fixup_aarch64_pcrel_branch19:
112     return 3;
113 
114   case AArch64::fixup_aarch64_pcrel_adr_imm21:
115   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
116   case AArch64::fixup_aarch64_pcrel_branch26:
117   case AArch64::fixup_aarch64_pcrel_call26:
118   case FK_Data_4:
119     return 4;
120 
121   case FK_Data_8:
122     return 8;
123   }
124 }
125 
AdrImmBits(unsigned Value)126 static unsigned AdrImmBits(unsigned Value) {
127   unsigned lo2 = Value & 0x3;
128   unsigned hi19 = (Value & 0x1ffffc) >> 2;
129   return (hi19 << 5) | (lo2 << 29);
130 }
131 
adjustFixupValue(unsigned Kind,uint64_t Value)132 static uint64_t adjustFixupValue(unsigned Kind, uint64_t Value) {
133   int64_t SignedValue = static_cast<int64_t>(Value);
134   switch (Kind) {
135   default:
136     llvm_unreachable("Unknown fixup kind!");
137   case AArch64::fixup_aarch64_pcrel_adr_imm21:
138     if (SignedValue > 2097151 || SignedValue < -2097152)
139       report_fatal_error("fixup value out of range");
140     return AdrImmBits(Value & 0x1fffffULL);
141   case AArch64::fixup_aarch64_pcrel_adrp_imm21:
142     return AdrImmBits((Value & 0x1fffff000ULL) >> 12);
143   case AArch64::fixup_aarch64_ldr_pcrel_imm19:
144   case AArch64::fixup_aarch64_pcrel_branch19:
145     // Signed 21-bit immediate
146     if (SignedValue > 2097151 || SignedValue < -2097152)
147       report_fatal_error("fixup value out of range");
148     // Low two bits are not encoded.
149     return (Value >> 2) & 0x7ffff;
150   case AArch64::fixup_aarch64_add_imm12:
151   case AArch64::fixup_aarch64_ldst_imm12_scale1:
152     // Unsigned 12-bit immediate
153     if (Value >= 0x1000)
154       report_fatal_error("invalid imm12 fixup value");
155     return Value;
156   case AArch64::fixup_aarch64_ldst_imm12_scale2:
157     // Unsigned 12-bit immediate which gets multiplied by 2
158     if (Value & 1 || Value >= 0x2000)
159       report_fatal_error("invalid imm12 fixup value");
160     return Value >> 1;
161   case AArch64::fixup_aarch64_ldst_imm12_scale4:
162     // Unsigned 12-bit immediate which gets multiplied by 4
163     if (Value & 3 || Value >= 0x4000)
164       report_fatal_error("invalid imm12 fixup value");
165     return Value >> 2;
166   case AArch64::fixup_aarch64_ldst_imm12_scale8:
167     // Unsigned 12-bit immediate which gets multiplied by 8
168     if (Value & 7 || Value >= 0x8000)
169       report_fatal_error("invalid imm12 fixup value");
170     return Value >> 3;
171   case AArch64::fixup_aarch64_ldst_imm12_scale16:
172     // Unsigned 12-bit immediate which gets multiplied by 16
173     if (Value & 15 || Value >= 0x10000)
174       report_fatal_error("invalid imm12 fixup value");
175     return Value >> 4;
176   case AArch64::fixup_aarch64_movw:
177     report_fatal_error("no resolvable MOVZ/MOVK fixups supported yet");
178     return Value;
179   case AArch64::fixup_aarch64_pcrel_branch14:
180     // Signed 16-bit immediate
181     if (SignedValue > 32767 || SignedValue < -32768)
182       report_fatal_error("fixup value out of range");
183     // Low two bits are not encoded (4-byte alignment assumed).
184     if (Value & 0x3)
185       report_fatal_error("fixup not sufficiently aligned");
186     return (Value >> 2) & 0x3fff;
187   case AArch64::fixup_aarch64_pcrel_branch26:
188   case AArch64::fixup_aarch64_pcrel_call26:
189     // Signed 28-bit immediate
190     if (SignedValue > 134217727 || SignedValue < -134217728)
191       report_fatal_error("fixup value out of range");
192     // Low two bits are not encoded (4-byte alignment assumed).
193     if (Value & 0x3)
194       report_fatal_error("fixup not sufficiently aligned");
195     return (Value >> 2) & 0x3ffffff;
196   case FK_Data_1:
197   case FK_Data_2:
198   case FK_Data_4:
199   case FK_Data_8:
200     return Value;
201   }
202 }
203 
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const204 void AArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
205                                    unsigned DataSize, uint64_t Value,
206                                    bool IsPCRel) const {
207   unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
208   if (!Value)
209     return; // Doesn't change encoding.
210   MCFixupKindInfo Info = getFixupKindInfo(Fixup.getKind());
211   // Apply any target-specific value adjustments.
212   Value = adjustFixupValue(Fixup.getKind(), Value);
213 
214   // Shift the value into position.
215   Value <<= Info.TargetOffset;
216 
217   unsigned Offset = Fixup.getOffset();
218   assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!");
219 
220   // For each byte of the fragment that the fixup touches, mask in the
221   // bits from the fixup value.
222   for (unsigned i = 0; i != NumBytes; ++i)
223     Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
224 }
225 
mayNeedRelaxation(const MCInst & Inst) const226 bool AArch64AsmBackend::mayNeedRelaxation(const MCInst &Inst) const {
227   return false;
228 }
229 
fixupNeedsRelaxation(const MCFixup & Fixup,uint64_t Value,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const230 bool AArch64AsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup,
231                                              uint64_t Value,
232                                              const MCRelaxableFragment *DF,
233                                              const MCAsmLayout &Layout) const {
234   // FIXME:  This isn't correct for AArch64. Just moving the "generic" logic
235   // into the targets for now.
236   //
237   // Relax if the value is too big for a (signed) i8.
238   return int64_t(Value) != int64_t(int8_t(Value));
239 }
240 
relaxInstruction(const MCInst & Inst,MCInst & Res) const241 void AArch64AsmBackend::relaxInstruction(const MCInst &Inst,
242                                          MCInst &Res) const {
243   llvm_unreachable("AArch64AsmBackend::relaxInstruction() unimplemented");
244 }
245 
writeNopData(uint64_t Count,MCObjectWriter * OW) const246 bool AArch64AsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const {
247   // If the count is not 4-byte aligned, we must be writing data into the text
248   // section (otherwise we have unaligned instructions, and thus have far
249   // bigger problems), so just write zeros instead.
250   if ((Count & 3) != 0) {
251     for (uint64_t i = 0, e = (Count & 3); i != e; ++i)
252       OW->Write8(0);
253   }
254 
255   // We are properly aligned, so write NOPs as requested.
256   Count /= 4;
257   for (uint64_t i = 0; i != Count; ++i)
258     OW->Write32(0xd503201f);
259   return true;
260 }
261 
262 namespace {
263 
264 namespace CU {
265 
266 /// \brief Compact unwind encoding values.
267 enum CompactUnwindEncodings {
268   /// \brief A "frameless" leaf function, where no non-volatile registers are
269   /// saved. The return remains in LR throughout the function.
270   UNWIND_AArch64_MODE_FRAMELESS = 0x02000000,
271 
272   /// \brief No compact unwind encoding available. Instead the low 23-bits of
273   /// the compact unwind encoding is the offset of the DWARF FDE in the
274   /// __eh_frame section. This mode is never used in object files. It is only
275   /// generated by the linker in final linked images, which have only DWARF info
276   /// for a function.
277   UNWIND_AArch64_MODE_DWARF = 0x03000000,
278 
279   /// \brief This is a standard arm64 prologue where FP/LR are immediately
280   /// pushed on the stack, then SP is copied to FP. If there are any
281   /// non-volatile register saved, they are copied into the stack fame in pairs
282   /// in a contiguous ranger right below the saved FP/LR pair. Any subset of the
283   /// five X pairs and four D pairs can be saved, but the memory layout must be
284   /// in register number order.
285   UNWIND_AArch64_MODE_FRAME = 0x04000000,
286 
287   /// \brief Frame register pair encodings.
288   UNWIND_AArch64_FRAME_X19_X20_PAIR = 0x00000001,
289   UNWIND_AArch64_FRAME_X21_X22_PAIR = 0x00000002,
290   UNWIND_AArch64_FRAME_X23_X24_PAIR = 0x00000004,
291   UNWIND_AArch64_FRAME_X25_X26_PAIR = 0x00000008,
292   UNWIND_AArch64_FRAME_X27_X28_PAIR = 0x00000010,
293   UNWIND_AArch64_FRAME_D8_D9_PAIR = 0x00000100,
294   UNWIND_AArch64_FRAME_D10_D11_PAIR = 0x00000200,
295   UNWIND_AArch64_FRAME_D12_D13_PAIR = 0x00000400,
296   UNWIND_AArch64_FRAME_D14_D15_PAIR = 0x00000800
297 };
298 
299 } // end CU namespace
300 
301 // FIXME: This should be in a separate file.
302 class DarwinAArch64AsmBackend : public AArch64AsmBackend {
303   const MCRegisterInfo &MRI;
304 
305   /// \brief Encode compact unwind stack adjustment for frameless functions.
306   /// See UNWIND_AArch64_FRAMELESS_STACK_SIZE_MASK in compact_unwind_encoding.h.
307   /// The stack size always needs to be 16 byte aligned.
encodeStackAdjustment(uint32_t StackSize) const308   uint32_t encodeStackAdjustment(uint32_t StackSize) const {
309     return (StackSize / 16) << 12;
310   }
311 
312 public:
DarwinAArch64AsmBackend(const Target & T,const MCRegisterInfo & MRI)313   DarwinAArch64AsmBackend(const Target &T, const MCRegisterInfo &MRI)
314       : AArch64AsmBackend(T), MRI(MRI) {}
315 
createObjectWriter(raw_pwrite_stream & OS) const316   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
317     return createAArch64MachObjectWriter(OS, MachO::CPU_TYPE_ARM64,
318                                          MachO::CPU_SUBTYPE_ARM64_ALL);
319   }
320 
321   /// \brief Generate the compact unwind encoding from the CFI directives.
generateCompactUnwindEncoding(ArrayRef<MCCFIInstruction> Instrs) const322   uint32_t generateCompactUnwindEncoding(
323                              ArrayRef<MCCFIInstruction> Instrs) const override {
324     if (Instrs.empty())
325       return CU::UNWIND_AArch64_MODE_FRAMELESS;
326 
327     bool HasFP = false;
328     unsigned StackSize = 0;
329 
330     uint32_t CompactUnwindEncoding = 0;
331     for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
332       const MCCFIInstruction &Inst = Instrs[i];
333 
334       switch (Inst.getOperation()) {
335       default:
336         // Cannot handle this directive:  bail out.
337         return CU::UNWIND_AArch64_MODE_DWARF;
338       case MCCFIInstruction::OpDefCfa: {
339         // Defines a frame pointer.
340         assert(getXRegFromWReg(MRI.getLLVMRegNum(Inst.getRegister(), true)) ==
341                    AArch64::FP &&
342                "Invalid frame pointer!");
343         assert(i + 2 < e && "Insufficient CFI instructions to define a frame!");
344 
345         const MCCFIInstruction &LRPush = Instrs[++i];
346         assert(LRPush.getOperation() == MCCFIInstruction::OpOffset &&
347                "Link register not pushed!");
348         const MCCFIInstruction &FPPush = Instrs[++i];
349         assert(FPPush.getOperation() == MCCFIInstruction::OpOffset &&
350                "Frame pointer not pushed!");
351 
352         unsigned LRReg = MRI.getLLVMRegNum(LRPush.getRegister(), true);
353         unsigned FPReg = MRI.getLLVMRegNum(FPPush.getRegister(), true);
354 
355         LRReg = getXRegFromWReg(LRReg);
356         FPReg = getXRegFromWReg(FPReg);
357 
358         assert(LRReg == AArch64::LR && FPReg == AArch64::FP &&
359                "Pushing invalid registers for frame!");
360 
361         // Indicate that the function has a frame.
362         CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAME;
363         HasFP = true;
364         break;
365       }
366       case MCCFIInstruction::OpDefCfaOffset: {
367         assert(StackSize == 0 && "We already have the CFA offset!");
368         StackSize = std::abs(Inst.getOffset());
369         break;
370       }
371       case MCCFIInstruction::OpOffset: {
372         // Registers are saved in pairs. We expect there to be two consecutive
373         // `.cfi_offset' instructions with the appropriate registers specified.
374         unsigned Reg1 = MRI.getLLVMRegNum(Inst.getRegister(), true);
375         if (i + 1 == e)
376           return CU::UNWIND_AArch64_MODE_DWARF;
377 
378         const MCCFIInstruction &Inst2 = Instrs[++i];
379         if (Inst2.getOperation() != MCCFIInstruction::OpOffset)
380           return CU::UNWIND_AArch64_MODE_DWARF;
381         unsigned Reg2 = MRI.getLLVMRegNum(Inst2.getRegister(), true);
382 
383         // N.B. The encodings must be in register number order, and the X
384         // registers before the D registers.
385 
386         // X19/X20 pair = 0x00000001,
387         // X21/X22 pair = 0x00000002,
388         // X23/X24 pair = 0x00000004,
389         // X25/X26 pair = 0x00000008,
390         // X27/X28 pair = 0x00000010
391         Reg1 = getXRegFromWReg(Reg1);
392         Reg2 = getXRegFromWReg(Reg2);
393 
394         if (Reg1 == AArch64::X19 && Reg2 == AArch64::X20 &&
395             (CompactUnwindEncoding & 0xF1E) == 0)
396           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X19_X20_PAIR;
397         else if (Reg1 == AArch64::X21 && Reg2 == AArch64::X22 &&
398                  (CompactUnwindEncoding & 0xF1C) == 0)
399           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X21_X22_PAIR;
400         else if (Reg1 == AArch64::X23 && Reg2 == AArch64::X24 &&
401                  (CompactUnwindEncoding & 0xF18) == 0)
402           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X23_X24_PAIR;
403         else if (Reg1 == AArch64::X25 && Reg2 == AArch64::X26 &&
404                  (CompactUnwindEncoding & 0xF10) == 0)
405           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X25_X26_PAIR;
406         else if (Reg1 == AArch64::X27 && Reg2 == AArch64::X28 &&
407                  (CompactUnwindEncoding & 0xF00) == 0)
408           CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_X27_X28_PAIR;
409         else {
410           Reg1 = getDRegFromBReg(Reg1);
411           Reg2 = getDRegFromBReg(Reg2);
412 
413           // D8/D9 pair   = 0x00000100,
414           // D10/D11 pair = 0x00000200,
415           // D12/D13 pair = 0x00000400,
416           // D14/D15 pair = 0x00000800
417           if (Reg1 == AArch64::D8 && Reg2 == AArch64::D9 &&
418               (CompactUnwindEncoding & 0xE00) == 0)
419             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D8_D9_PAIR;
420           else if (Reg1 == AArch64::D10 && Reg2 == AArch64::D11 &&
421                    (CompactUnwindEncoding & 0xC00) == 0)
422             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D10_D11_PAIR;
423           else if (Reg1 == AArch64::D12 && Reg2 == AArch64::D13 &&
424                    (CompactUnwindEncoding & 0x800) == 0)
425             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D12_D13_PAIR;
426           else if (Reg1 == AArch64::D14 && Reg2 == AArch64::D15)
427             CompactUnwindEncoding |= CU::UNWIND_AArch64_FRAME_D14_D15_PAIR;
428           else
429             // A pair was pushed which we cannot handle.
430             return CU::UNWIND_AArch64_MODE_DWARF;
431         }
432 
433         break;
434       }
435       }
436     }
437 
438     if (!HasFP) {
439       // With compact unwind info we can only represent stack adjustments of up
440       // to 65520 bytes.
441       if (StackSize > 65520)
442         return CU::UNWIND_AArch64_MODE_DWARF;
443 
444       CompactUnwindEncoding |= CU::UNWIND_AArch64_MODE_FRAMELESS;
445       CompactUnwindEncoding |= encodeStackAdjustment(StackSize);
446     }
447 
448     return CompactUnwindEncoding;
449   }
450 };
451 
452 } // end anonymous namespace
453 
454 namespace {
455 
456 class ELFAArch64AsmBackend : public AArch64AsmBackend {
457 public:
458   uint8_t OSABI;
459   bool IsLittleEndian;
460 
ELFAArch64AsmBackend(const Target & T,uint8_t OSABI,bool IsLittleEndian)461   ELFAArch64AsmBackend(const Target &T, uint8_t OSABI, bool IsLittleEndian)
462     : AArch64AsmBackend(T), OSABI(OSABI), IsLittleEndian(IsLittleEndian) {}
463 
createObjectWriter(raw_pwrite_stream & OS) const464   MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
465     return createAArch64ELFObjectWriter(OS, OSABI, IsLittleEndian);
466   }
467 
468   void processFixupValue(const MCAssembler &Asm, const MCAsmLayout &Layout,
469                          const MCFixup &Fixup, const MCFragment *DF,
470                          const MCValue &Target, uint64_t &Value,
471                          bool &IsResolved) override;
472 
473   void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
474                   uint64_t Value, bool IsPCRel) const override;
475 };
476 
processFixupValue(const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,const MCValue & Target,uint64_t & Value,bool & IsResolved)477 void ELFAArch64AsmBackend::processFixupValue(
478     const MCAssembler &Asm, const MCAsmLayout &Layout, const MCFixup &Fixup,
479     const MCFragment *DF, const MCValue &Target, uint64_t &Value,
480     bool &IsResolved) {
481   // The ADRP instruction adds some multiple of 0x1000 to the current PC &
482   // ~0xfff. This means that the required offset to reach a symbol can vary by
483   // up to one step depending on where the ADRP is in memory. For example:
484   //
485   //     ADRP x0, there
486   //  there:
487   //
488   // If the ADRP occurs at address 0xffc then "there" will be at 0x1000 and
489   // we'll need that as an offset. At any other address "there" will be in the
490   // same page as the ADRP and the instruction should encode 0x0. Assuming the
491   // section isn't 0x1000-aligned, we therefore need to delegate this decision
492   // to the linker -- a relocation!
493   if ((uint32_t)Fixup.getKind() == AArch64::fixup_aarch64_pcrel_adrp_imm21)
494     IsResolved = false;
495 }
496 
497 // Returns whether this fixup is based on an address in the .eh_frame section,
498 // and therefore should be byte swapped.
499 // FIXME: Should be replaced with something more principled.
isByteSwappedFixup(const MCExpr * E)500 static bool isByteSwappedFixup(const MCExpr *E) {
501   MCValue Val;
502   if (!E->EvaluateAsRelocatable(Val, nullptr, nullptr))
503     return false;
504 
505   if (!Val.getSymA() || Val.getSymA()->getSymbol().isUndefined())
506     return false;
507 
508   const MCSectionELF *SecELF =
509       dyn_cast<MCSectionELF>(&Val.getSymA()->getSymbol().getSection());
510   return SecELF->getSectionName() == ".eh_frame";
511 }
512 
applyFixup(const MCFixup & Fixup,char * Data,unsigned DataSize,uint64_t Value,bool IsPCRel) const513 void ELFAArch64AsmBackend::applyFixup(const MCFixup &Fixup, char *Data,
514                                       unsigned DataSize, uint64_t Value,
515                                       bool IsPCRel) const {
516   // store fixups in .eh_frame section in big endian order
517   if (!IsLittleEndian && Fixup.getKind() == FK_Data_4) {
518     if (isByteSwappedFixup(Fixup.getValue()))
519       Value = ByteSwap_32(unsigned(Value));
520   }
521   AArch64AsmBackend::applyFixup (Fixup, Data, DataSize, Value, IsPCRel);
522 }
523 }
524 
createAArch64leAsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef TT,StringRef CPU)525 MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
526                                             const MCRegisterInfo &MRI,
527                                             StringRef TT, StringRef CPU) {
528   Triple TheTriple(TT);
529 
530   if (TheTriple.isOSDarwin())
531     return new DarwinAArch64AsmBackend(T, MRI);
532 
533   assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
534   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
535   return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
536 }
537 
createAArch64beAsmBackend(const Target & T,const MCRegisterInfo & MRI,StringRef TT,StringRef CPU)538 MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
539                                             const MCRegisterInfo &MRI,
540                                             StringRef TT, StringRef CPU) {
541   Triple TheTriple(TT);
542 
543   assert(TheTriple.isOSBinFormatELF() &&
544          "Big endian is only supported for ELF targets!");
545   uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
546   return new ELFAArch64AsmBackend(T, OSABI,
547                                   /*IsLittleEndian=*/false);
548 }
549