1 //==-- AArch64ExpandPseudoInsts.cpp - Expand pseudo instructions --*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that expands pseudo instructions into target
11 // instructions to allow proper scheduling and other late optimizations.  This
12 // pass should be run after register allocation but before the post-regalloc
13 // scheduling pass.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "MCTargetDesc/AArch64AddressingModes.h"
18 #include "AArch64InstrInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/Support/MathExtras.h"
23 using namespace llvm;
24 
25 namespace {
26 class AArch64ExpandPseudo : public MachineFunctionPass {
27 public:
28   static char ID;
AArch64ExpandPseudo()29   AArch64ExpandPseudo() : MachineFunctionPass(ID) {}
30 
31   const AArch64InstrInfo *TII;
32 
33   bool runOnMachineFunction(MachineFunction &Fn) override;
34 
getPassName() const35   const char *getPassName() const override {
36     return "AArch64 pseudo instruction expansion pass";
37   }
38 
39 private:
40   bool expandMBB(MachineBasicBlock &MBB);
41   bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
42   bool expandMOVImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
43                     unsigned BitSize);
44 };
45 char AArch64ExpandPseudo::ID = 0;
46 }
47 
48 /// \brief Transfer implicit operands on the pseudo instruction to the
49 /// instructions created from the expansion.
transferImpOps(MachineInstr & OldMI,MachineInstrBuilder & UseMI,MachineInstrBuilder & DefMI)50 static void transferImpOps(MachineInstr &OldMI, MachineInstrBuilder &UseMI,
51                            MachineInstrBuilder &DefMI) {
52   const MCInstrDesc &Desc = OldMI.getDesc();
53   for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands(); i != e;
54        ++i) {
55     const MachineOperand &MO = OldMI.getOperand(i);
56     assert(MO.isReg() && MO.getReg());
57     if (MO.isUse())
58       UseMI.addOperand(MO);
59     else
60       DefMI.addOperand(MO);
61   }
62 }
63 
64 /// \brief Helper function which extracts the specified 16-bit chunk from a
65 /// 64-bit value.
getChunk(uint64_t Imm,unsigned ChunkIdx)66 static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
67   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
68 
69   return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
70 }
71 
72 /// \brief Helper function which replicates a 16-bit chunk within a 64-bit
73 /// value. Indices correspond to element numbers in a v4i16.
replicateChunk(uint64_t Imm,unsigned FromIdx,unsigned ToIdx)74 static uint64_t replicateChunk(uint64_t Imm, unsigned FromIdx, unsigned ToIdx) {
75   assert((FromIdx < 4) && (ToIdx < 4) && "Out of range chunk index specified!");
76   const unsigned ShiftAmt = ToIdx * 16;
77 
78   // Replicate the source chunk to the destination position.
79   const uint64_t Chunk = getChunk(Imm, FromIdx) << ShiftAmt;
80   // Clear the destination chunk.
81   Imm &= ~(0xFFFFLL << ShiftAmt);
82   // Insert the replicated chunk.
83   return Imm | Chunk;
84 }
85 
86 /// \brief Helper function which tries to materialize a 64-bit value with an
87 /// ORR + MOVK instruction sequence.
tryOrrMovk(uint64_t UImm,uint64_t OrrImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII,unsigned ChunkIdx)88 static bool tryOrrMovk(uint64_t UImm, uint64_t OrrImm, MachineInstr &MI,
89                        MachineBasicBlock &MBB,
90                        MachineBasicBlock::iterator &MBBI,
91                        const AArch64InstrInfo *TII, unsigned ChunkIdx) {
92   assert(ChunkIdx < 4 && "Out of range chunk index specified!");
93   const unsigned ShiftAmt = ChunkIdx * 16;
94 
95   uint64_t Encoding;
96   if (AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding)) {
97     // Create the ORR-immediate instruction.
98     MachineInstrBuilder MIB =
99         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
100             .addOperand(MI.getOperand(0))
101             .addReg(AArch64::XZR)
102             .addImm(Encoding);
103 
104     // Create the MOVK instruction.
105     const unsigned Imm16 = getChunk(UImm, ChunkIdx);
106     const unsigned DstReg = MI.getOperand(0).getReg();
107     const bool DstIsDead = MI.getOperand(0).isDead();
108     MachineInstrBuilder MIB1 =
109         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
110             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
111             .addReg(DstReg)
112             .addImm(Imm16)
113             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
114 
115     transferImpOps(MI, MIB, MIB1);
116     MI.eraseFromParent();
117     return true;
118   }
119 
120   return false;
121 }
122 
123 /// \brief Check whether the given 16-bit chunk replicated to full 64-bit width
124 /// can be materialized with an ORR instruction.
canUseOrr(uint64_t Chunk,uint64_t & Encoding)125 static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
126   Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
127 
128   return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
129 }
130 
131 /// \brief Check for identical 16-bit chunks within the constant and if so
132 /// materialize them with a single ORR instruction. The remaining one or two
133 /// 16-bit chunks will be materialized with MOVK instructions.
134 ///
135 /// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
136 /// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
137 /// an ORR instruction.
138 ///
tryToreplicateChunks(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)139 static bool tryToreplicateChunks(uint64_t UImm, MachineInstr &MI,
140                                  MachineBasicBlock &MBB,
141                                  MachineBasicBlock::iterator &MBBI,
142                                  const AArch64InstrInfo *TII) {
143   typedef DenseMap<uint64_t, unsigned> CountMap;
144   CountMap Counts;
145 
146   // Scan the constant and count how often every chunk occurs.
147   for (unsigned Idx = 0; Idx < 4; ++Idx)
148     ++Counts[getChunk(UImm, Idx)];
149 
150   // Traverse the chunks to find one which occurs more than once.
151   for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
152        Chunk != End; ++Chunk) {
153     const uint64_t ChunkVal = Chunk->first;
154     const unsigned Count = Chunk->second;
155 
156     uint64_t Encoding = 0;
157 
158     // We are looking for chunks which have two or three instances and can be
159     // materialized with an ORR instruction.
160     if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
161       continue;
162 
163     const bool CountThree = Count == 3;
164     // Create the ORR-immediate instruction.
165     MachineInstrBuilder MIB =
166         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
167             .addOperand(MI.getOperand(0))
168             .addReg(AArch64::XZR)
169             .addImm(Encoding);
170 
171     const unsigned DstReg = MI.getOperand(0).getReg();
172     const bool DstIsDead = MI.getOperand(0).isDead();
173 
174     unsigned ShiftAmt = 0;
175     uint64_t Imm16 = 0;
176     // Find the first chunk not materialized with the ORR instruction.
177     for (; ShiftAmt < 64; ShiftAmt += 16) {
178       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
179 
180       if (Imm16 != ChunkVal)
181         break;
182     }
183 
184     // Create the first MOVK instruction.
185     MachineInstrBuilder MIB1 =
186         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
187             .addReg(DstReg,
188                     RegState::Define | getDeadRegState(DstIsDead && CountThree))
189             .addReg(DstReg)
190             .addImm(Imm16)
191             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
192 
193     // In case we have three instances the whole constant is now materialized
194     // and we can exit.
195     if (CountThree) {
196       transferImpOps(MI, MIB, MIB1);
197       MI.eraseFromParent();
198       return true;
199     }
200 
201     // Find the remaining chunk which needs to be materialized.
202     for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
203       Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
204 
205       if (Imm16 != ChunkVal)
206         break;
207     }
208 
209     // Create the second MOVK instruction.
210     MachineInstrBuilder MIB2 =
211         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
212             .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
213             .addReg(DstReg)
214             .addImm(Imm16)
215             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt));
216 
217     transferImpOps(MI, MIB, MIB2);
218     MI.eraseFromParent();
219     return true;
220   }
221 
222   return false;
223 }
224 
225 /// \brief Check whether this chunk matches the pattern '1...0...'. This pattern
226 /// starts a contiguous sequence of ones if we look at the bits from the LSB
227 /// towards the MSB.
isStartChunk(uint64_t Chunk)228 static bool isStartChunk(uint64_t Chunk) {
229   if (Chunk == 0 || Chunk == UINT64_MAX)
230     return false;
231 
232   return isMask_64(~Chunk);
233 }
234 
235 /// \brief Check whether this chunk matches the pattern '0...1...' This pattern
236 /// ends a contiguous sequence of ones if we look at the bits from the LSB
237 /// towards the MSB.
isEndChunk(uint64_t Chunk)238 static bool isEndChunk(uint64_t Chunk) {
239   if (Chunk == 0 || Chunk == UINT64_MAX)
240     return false;
241 
242   return isMask_64(Chunk);
243 }
244 
245 /// \brief Clear or set all bits in the chunk at the given index.
updateImm(uint64_t Imm,unsigned Idx,bool Clear)246 static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
247   const uint64_t Mask = 0xFFFF;
248 
249   if (Clear)
250     // Clear chunk in the immediate.
251     Imm &= ~(Mask << (Idx * 16));
252   else
253     // Set all bits in the immediate for the particular chunk.
254     Imm |= Mask << (Idx * 16);
255 
256   return Imm;
257 }
258 
259 /// \brief Check whether the constant contains a sequence of contiguous ones,
260 /// which might be interrupted by one or two chunks. If so, materialize the
261 /// sequence of contiguous ones with an ORR instruction.
262 /// Materialize the chunks which are either interrupting the sequence or outside
263 /// of the sequence with a MOVK instruction.
264 ///
265 /// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
266 /// which ends the sequence (0...1...). Then we are looking for constants which
267 /// contain at least one S and E chunk.
268 /// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
269 ///
270 /// We are also looking for constants like |S|A|B|E| where the contiguous
271 /// sequence of ones wraps around the MSB into the LSB.
272 ///
trySequenceOfOnes(uint64_t UImm,MachineInstr & MI,MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const AArch64InstrInfo * TII)273 static bool trySequenceOfOnes(uint64_t UImm, MachineInstr &MI,
274                               MachineBasicBlock &MBB,
275                               MachineBasicBlock::iterator &MBBI,
276                               const AArch64InstrInfo *TII) {
277   const int NotSet = -1;
278   const uint64_t Mask = 0xFFFF;
279 
280   int StartIdx = NotSet;
281   int EndIdx = NotSet;
282   // Try to find the chunks which start/end a contiguous sequence of ones.
283   for (int Idx = 0; Idx < 4; ++Idx) {
284     int64_t Chunk = getChunk(UImm, Idx);
285     // Sign extend the 16-bit chunk to 64-bit.
286     Chunk = (Chunk << 48) >> 48;
287 
288     if (isStartChunk(Chunk))
289       StartIdx = Idx;
290     else if (isEndChunk(Chunk))
291       EndIdx = Idx;
292   }
293 
294   // Early exit in case we can't find a start/end chunk.
295   if (StartIdx == NotSet || EndIdx == NotSet)
296     return false;
297 
298   // Outside of the contiguous sequence of ones everything needs to be zero.
299   uint64_t Outside = 0;
300   // Chunks between the start and end chunk need to have all their bits set.
301   uint64_t Inside = Mask;
302 
303   // If our contiguous sequence of ones wraps around from the MSB into the LSB,
304   // just swap indices and pretend we are materializing a contiguous sequence
305   // of zeros surrounded by a contiguous sequence of ones.
306   if (StartIdx > EndIdx) {
307     std::swap(StartIdx, EndIdx);
308     std::swap(Outside, Inside);
309   }
310 
311   uint64_t OrrImm = UImm;
312   int FirstMovkIdx = NotSet;
313   int SecondMovkIdx = NotSet;
314 
315   // Find out which chunks we need to patch up to obtain a contiguous sequence
316   // of ones.
317   for (int Idx = 0; Idx < 4; ++Idx) {
318     const uint64_t Chunk = getChunk(UImm, Idx);
319 
320     // Check whether we are looking at a chunk which is not part of the
321     // contiguous sequence of ones.
322     if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
323       OrrImm = updateImm(OrrImm, Idx, Outside == 0);
324 
325       // Remember the index we need to patch.
326       if (FirstMovkIdx == NotSet)
327         FirstMovkIdx = Idx;
328       else
329         SecondMovkIdx = Idx;
330 
331       // Check whether we are looking a chunk which is part of the contiguous
332       // sequence of ones.
333     } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
334       OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
335 
336       // Remember the index we need to patch.
337       if (FirstMovkIdx == NotSet)
338         FirstMovkIdx = Idx;
339       else
340         SecondMovkIdx = Idx;
341     }
342   }
343   assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
344 
345   // Create the ORR-immediate instruction.
346   uint64_t Encoding = 0;
347   AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
348   MachineInstrBuilder MIB =
349       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ORRXri))
350           .addOperand(MI.getOperand(0))
351           .addReg(AArch64::XZR)
352           .addImm(Encoding);
353 
354   const unsigned DstReg = MI.getOperand(0).getReg();
355   const bool DstIsDead = MI.getOperand(0).isDead();
356 
357   const bool SingleMovk = SecondMovkIdx == NotSet;
358   // Create the first MOVK instruction.
359   MachineInstrBuilder MIB1 =
360       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
361           .addReg(DstReg,
362                   RegState::Define | getDeadRegState(DstIsDead && SingleMovk))
363           .addReg(DstReg)
364           .addImm(getChunk(UImm, FirstMovkIdx))
365           .addImm(
366               AArch64_AM::getShifterImm(AArch64_AM::LSL, FirstMovkIdx * 16));
367 
368   // Early exit in case we only need to emit a single MOVK instruction.
369   if (SingleMovk) {
370     transferImpOps(MI, MIB, MIB1);
371     MI.eraseFromParent();
372     return true;
373   }
374 
375   // Create the second MOVK instruction.
376   MachineInstrBuilder MIB2 =
377       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::MOVKXi))
378           .addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
379           .addReg(DstReg)
380           .addImm(getChunk(UImm, SecondMovkIdx))
381           .addImm(
382               AArch64_AM::getShifterImm(AArch64_AM::LSL, SecondMovkIdx * 16));
383 
384   transferImpOps(MI, MIB, MIB2);
385   MI.eraseFromParent();
386   return true;
387 }
388 
389 /// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
390 /// real move-immediate instructions to synthesize the immediate.
expandMOVImm(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,unsigned BitSize)391 bool AArch64ExpandPseudo::expandMOVImm(MachineBasicBlock &MBB,
392                                        MachineBasicBlock::iterator MBBI,
393                                        unsigned BitSize) {
394   MachineInstr &MI = *MBBI;
395   uint64_t Imm = MI.getOperand(1).getImm();
396   const unsigned Mask = 0xFFFF;
397 
398   // Try a MOVI instruction (aka ORR-immediate with the zero register).
399   uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
400   uint64_t Encoding;
401   if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
402     unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
403     MachineInstrBuilder MIB =
404         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
405             .addOperand(MI.getOperand(0))
406             .addReg(BitSize == 32 ? AArch64::WZR : AArch64::XZR)
407             .addImm(Encoding);
408     transferImpOps(MI, MIB, MIB);
409     MI.eraseFromParent();
410     return true;
411   }
412 
413   // Scan the immediate and count the number of 16-bit chunks which are either
414   // all ones or all zeros.
415   unsigned OneChunks = 0;
416   unsigned ZeroChunks = 0;
417   for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
418     const unsigned Chunk = (Imm >> Shift) & Mask;
419     if (Chunk == Mask)
420       OneChunks++;
421     else if (Chunk == 0)
422       ZeroChunks++;
423   }
424 
425   // Since we can't materialize the constant with a single ORR instruction,
426   // let's see whether we can materialize 3/4 of the constant with an ORR
427   // instruction and use an additional MOVK instruction to materialize the
428   // remaining 1/4.
429   //
430   // We are looking for constants with a pattern like: |A|X|B|X| or |X|A|X|B|.
431   //
432   // E.g. assuming |A|X|A|X| is a pattern which can be materialized with ORR,
433   // we would create the following instruction sequence:
434   //
435   // ORR x0, xzr, |A|X|A|X|
436   // MOVK x0, |B|, LSL #16
437   //
438   // Only look at 64-bit constants which can't be materialized with a single
439   // instruction e.g. which have less than either three all zero or all one
440   // chunks.
441   //
442   // Ignore 32-bit constants here, they always can be materialized with a
443   // MOVZ/MOVN + MOVK pair. Since the 32-bit constant can't be materialized
444   // with a single ORR, the best sequence we can achieve is a ORR + MOVK pair.
445   // Thus we fall back to the default code below which in the best case creates
446   // a single MOVZ/MOVN instruction (in case one chunk is all zero or all one).
447   //
448   if (BitSize == 64 && OneChunks < 3 && ZeroChunks < 3) {
449     // If we interpret the 64-bit constant as a v4i16, are elements 0 and 2
450     // identical?
451     if (getChunk(UImm, 0) == getChunk(UImm, 2)) {
452       // See if we can come up with a constant which can be materialized with
453       // ORR-immediate by replicating element 3 into element 1.
454       uint64_t OrrImm = replicateChunk(UImm, 3, 1);
455       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 1))
456         return true;
457 
458       // See if we can come up with a constant which can be materialized with
459       // ORR-immediate by replicating element 1 into element 3.
460       OrrImm = replicateChunk(UImm, 1, 3);
461       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 3))
462         return true;
463 
464       // If we interpret the 64-bit constant as a v4i16, are elements 1 and 3
465       // identical?
466     } else if (getChunk(UImm, 1) == getChunk(UImm, 3)) {
467       // See if we can come up with a constant which can be materialized with
468       // ORR-immediate by replicating element 2 into element 0.
469       uint64_t OrrImm = replicateChunk(UImm, 2, 0);
470       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 0))
471         return true;
472 
473       // See if we can come up with a constant which can be materialized with
474       // ORR-immediate by replicating element 1 into element 3.
475       OrrImm = replicateChunk(UImm, 0, 2);
476       if (tryOrrMovk(UImm, OrrImm, MI, MBB, MBBI, TII, 2))
477         return true;
478     }
479   }
480 
481   // Check for identical 16-bit chunks within the constant and if so materialize
482   // them with a single ORR instruction. The remaining one or two 16-bit chunks
483   // will be materialized with MOVK instructions.
484   if (BitSize == 64 && tryToreplicateChunks(UImm, MI, MBB, MBBI, TII))
485     return true;
486 
487   // Check whether the constant contains a sequence of contiguous ones, which
488   // might be interrupted by one or two chunks. If so, materialize the sequence
489   // of contiguous ones with an ORR instruction. Materialize the chunks which
490   // are either interrupting the sequence or outside of the sequence with a
491   // MOVK instruction.
492   if (BitSize == 64 && trySequenceOfOnes(UImm, MI, MBB, MBBI, TII))
493     return true;
494 
495   // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
496   // more MOVK instructions to insert additional 16-bit portions into the
497   // lower bits.
498   bool isNeg = false;
499 
500   // Use MOVN to materialize the high bits if we have more all one chunks
501   // than all zero chunks.
502   if (OneChunks > ZeroChunks) {
503     isNeg = true;
504     Imm = ~Imm;
505   }
506 
507   unsigned FirstOpc;
508   if (BitSize == 32) {
509     Imm &= (1LL << 32) - 1;
510     FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
511   } else {
512     FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
513   }
514   unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
515   unsigned LastShift = 0; // LSL amount for last MOVK
516   if (Imm != 0) {
517     unsigned LZ = countLeadingZeros(Imm);
518     unsigned TZ = countTrailingZeros(Imm);
519     Shift = ((63 - LZ) / 16) * 16;
520     LastShift = (TZ / 16) * 16;
521   }
522   unsigned Imm16 = (Imm >> Shift) & Mask;
523   unsigned DstReg = MI.getOperand(0).getReg();
524   bool DstIsDead = MI.getOperand(0).isDead();
525   MachineInstrBuilder MIB1 =
526       BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(FirstOpc))
527           .addReg(DstReg, RegState::Define |
528                               getDeadRegState(DstIsDead && Shift == LastShift))
529           .addImm(Imm16)
530           .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
531 
532   // If a MOVN was used for the high bits of a negative value, flip the rest
533   // of the bits back for use with MOVK.
534   if (isNeg)
535     Imm = ~Imm;
536 
537   if (Shift == LastShift) {
538     transferImpOps(MI, MIB1, MIB1);
539     MI.eraseFromParent();
540     return true;
541   }
542 
543   MachineInstrBuilder MIB2;
544   unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
545   while (Shift != LastShift) {
546     Shift -= 16;
547     Imm16 = (Imm >> Shift) & Mask;
548     if (Imm16 == (isNeg ? Mask : 0))
549       continue; // This 16-bit portion is already set correctly.
550     MIB2 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc))
551                .addReg(DstReg,
552                        RegState::Define |
553                            getDeadRegState(DstIsDead && Shift == LastShift))
554                .addReg(DstReg)
555                .addImm(Imm16)
556                .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift));
557   }
558 
559   transferImpOps(MI, MIB1, MIB2);
560   MI.eraseFromParent();
561   return true;
562 }
563 
564 /// \brief If MBBI references a pseudo instruction that should be expanded here,
565 /// do the expansion and return true.  Otherwise return false.
expandMI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI)566 bool AArch64ExpandPseudo::expandMI(MachineBasicBlock &MBB,
567                                  MachineBasicBlock::iterator MBBI) {
568   MachineInstr &MI = *MBBI;
569   unsigned Opcode = MI.getOpcode();
570   switch (Opcode) {
571   default:
572     break;
573 
574   case AArch64::ADDWrr:
575   case AArch64::SUBWrr:
576   case AArch64::ADDXrr:
577   case AArch64::SUBXrr:
578   case AArch64::ADDSWrr:
579   case AArch64::SUBSWrr:
580   case AArch64::ADDSXrr:
581   case AArch64::SUBSXrr:
582   case AArch64::ANDWrr:
583   case AArch64::ANDXrr:
584   case AArch64::BICWrr:
585   case AArch64::BICXrr:
586   case AArch64::ANDSWrr:
587   case AArch64::ANDSXrr:
588   case AArch64::BICSWrr:
589   case AArch64::BICSXrr:
590   case AArch64::EONWrr:
591   case AArch64::EONXrr:
592   case AArch64::EORWrr:
593   case AArch64::EORXrr:
594   case AArch64::ORNWrr:
595   case AArch64::ORNXrr:
596   case AArch64::ORRWrr:
597   case AArch64::ORRXrr: {
598     unsigned Opcode;
599     switch (MI.getOpcode()) {
600     default:
601       return false;
602     case AArch64::ADDWrr:      Opcode = AArch64::ADDWrs; break;
603     case AArch64::SUBWrr:      Opcode = AArch64::SUBWrs; break;
604     case AArch64::ADDXrr:      Opcode = AArch64::ADDXrs; break;
605     case AArch64::SUBXrr:      Opcode = AArch64::SUBXrs; break;
606     case AArch64::ADDSWrr:     Opcode = AArch64::ADDSWrs; break;
607     case AArch64::SUBSWrr:     Opcode = AArch64::SUBSWrs; break;
608     case AArch64::ADDSXrr:     Opcode = AArch64::ADDSXrs; break;
609     case AArch64::SUBSXrr:     Opcode = AArch64::SUBSXrs; break;
610     case AArch64::ANDWrr:      Opcode = AArch64::ANDWrs; break;
611     case AArch64::ANDXrr:      Opcode = AArch64::ANDXrs; break;
612     case AArch64::BICWrr:      Opcode = AArch64::BICWrs; break;
613     case AArch64::BICXrr:      Opcode = AArch64::BICXrs; break;
614     case AArch64::ANDSWrr:     Opcode = AArch64::ANDSWrs; break;
615     case AArch64::ANDSXrr:     Opcode = AArch64::ANDSXrs; break;
616     case AArch64::BICSWrr:     Opcode = AArch64::BICSWrs; break;
617     case AArch64::BICSXrr:     Opcode = AArch64::BICSXrs; break;
618     case AArch64::EONWrr:      Opcode = AArch64::EONWrs; break;
619     case AArch64::EONXrr:      Opcode = AArch64::EONXrs; break;
620     case AArch64::EORWrr:      Opcode = AArch64::EORWrs; break;
621     case AArch64::EORXrr:      Opcode = AArch64::EORXrs; break;
622     case AArch64::ORNWrr:      Opcode = AArch64::ORNWrs; break;
623     case AArch64::ORNXrr:      Opcode = AArch64::ORNXrs; break;
624     case AArch64::ORRWrr:      Opcode = AArch64::ORRWrs; break;
625     case AArch64::ORRXrr:      Opcode = AArch64::ORRXrs; break;
626     }
627     MachineInstrBuilder MIB1 =
628         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opcode),
629                 MI.getOperand(0).getReg())
630             .addOperand(MI.getOperand(1))
631             .addOperand(MI.getOperand(2))
632             .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0));
633     transferImpOps(MI, MIB1, MIB1);
634     MI.eraseFromParent();
635     return true;
636   }
637 
638   case AArch64::LOADgot: {
639     // Expand into ADRP + LDR.
640     unsigned DstReg = MI.getOperand(0).getReg();
641     const MachineOperand &MO1 = MI.getOperand(1);
642     unsigned Flags = MO1.getTargetFlags();
643     MachineInstrBuilder MIB1 =
644         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg);
645     MachineInstrBuilder MIB2 =
646         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::LDRXui))
647             .addOperand(MI.getOperand(0))
648             .addReg(DstReg);
649 
650     if (MO1.isGlobal()) {
651       MIB1.addGlobalAddress(MO1.getGlobal(), 0, Flags | AArch64II::MO_PAGE);
652       MIB2.addGlobalAddress(MO1.getGlobal(), 0,
653                             Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
654     } else if (MO1.isSymbol()) {
655       MIB1.addExternalSymbol(MO1.getSymbolName(), Flags | AArch64II::MO_PAGE);
656       MIB2.addExternalSymbol(MO1.getSymbolName(),
657                              Flags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC);
658     } else {
659       assert(MO1.isCPI() &&
660              "Only expect globals, externalsymbols, or constant pools");
661       MIB1.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
662                                 Flags | AArch64II::MO_PAGE);
663       MIB2.addConstantPoolIndex(MO1.getIndex(), MO1.getOffset(),
664                                 Flags | AArch64II::MO_PAGEOFF |
665                                     AArch64II::MO_NC);
666     }
667 
668     transferImpOps(MI, MIB1, MIB2);
669     MI.eraseFromParent();
670     return true;
671   }
672 
673   case AArch64::MOVaddr:
674   case AArch64::MOVaddrJT:
675   case AArch64::MOVaddrCP:
676   case AArch64::MOVaddrBA:
677   case AArch64::MOVaddrTLS:
678   case AArch64::MOVaddrEXT: {
679     // Expand into ADRP + ADD.
680     unsigned DstReg = MI.getOperand(0).getReg();
681     MachineInstrBuilder MIB1 =
682         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADRP), DstReg)
683             .addOperand(MI.getOperand(1));
684 
685     MachineInstrBuilder MIB2 =
686         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::ADDXri))
687             .addOperand(MI.getOperand(0))
688             .addReg(DstReg)
689             .addOperand(MI.getOperand(2))
690             .addImm(0);
691 
692     transferImpOps(MI, MIB1, MIB2);
693     MI.eraseFromParent();
694     return true;
695   }
696 
697   case AArch64::MOVi32imm:
698     return expandMOVImm(MBB, MBBI, 32);
699   case AArch64::MOVi64imm:
700     return expandMOVImm(MBB, MBBI, 64);
701   case AArch64::RET_ReallyLR: {
702     MachineInstrBuilder MIB =
703         BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(AArch64::RET))
704           .addReg(AArch64::LR);
705     transferImpOps(MI, MIB, MIB);
706     MI.eraseFromParent();
707     return true;
708   }
709   }
710   return false;
711 }
712 
713 /// \brief Iterate over the instructions in basic block MBB and expand any
714 /// pseudo instructions.  Return true if anything was modified.
expandMBB(MachineBasicBlock & MBB)715 bool AArch64ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
716   bool Modified = false;
717 
718   MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
719   while (MBBI != E) {
720     MachineBasicBlock::iterator NMBBI = std::next(MBBI);
721     Modified |= expandMI(MBB, MBBI);
722     MBBI = NMBBI;
723   }
724 
725   return Modified;
726 }
727 
runOnMachineFunction(MachineFunction & MF)728 bool AArch64ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
729   TII = static_cast<const AArch64InstrInfo *>(MF.getSubtarget().getInstrInfo());
730 
731   bool Modified = false;
732   for (auto &MBB : MF)
733     Modified |= expandMBB(MBB);
734   return Modified;
735 }
736 
737 /// \brief Returns an instance of the pseudo instruction expansion pass.
createAArch64ExpandPseudoPass()738 FunctionPass *llvm::createAArch64ExpandPseudoPass() {
739   return new AArch64ExpandPseudo();
740 }
741