1 //=- AArch64PromoteConstant.cpp --- Promote constant to global for AArch64 -==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AArch64PromoteConstant pass which promotes constants
11 // to global variables when this is likely to be more efficient. Currently only
12 // types related to constant vector (i.e., constant vector, array of constant
13 // vectors, constant structure with a constant vector field, etc.) are promoted
14 // to global variables. Constant vectors are likely to be lowered in target
15 // constant pool during instruction selection already; therefore, the access
16 // will remain the same (memory load), but the structure types are not split
17 // into different constant pool accesses for each field. A bonus side effect is
18 // that created globals may be merged by the global merge pass.
19 //
20 // FIXME: This pass may be useful for other targets too.
21 //===----------------------------------------------------------------------===//
22
23 #include "AArch64.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/InstIterator.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42
43 using namespace llvm;
44
45 #define DEBUG_TYPE "aarch64-promote-const"
46
47 // Stress testing mode - disable heuristics.
48 static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
49 cl::desc("Promote all vector constants"));
50
51 STATISTIC(NumPromoted, "Number of promoted constants");
52 STATISTIC(NumPromotedUses, "Number of promoted constants uses");
53
54 //===----------------------------------------------------------------------===//
55 // AArch64PromoteConstant
56 //===----------------------------------------------------------------------===//
57
58 namespace {
59 /// Promotes interesting constant into global variables.
60 /// The motivating example is:
61 /// static const uint16_t TableA[32] = {
62 /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
63 /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
64 /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
65 /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
66 /// };
67 ///
68 /// uint8x16x4_t LoadStatic(void) {
69 /// uint8x16x4_t ret;
70 /// ret.val[0] = vld1q_u16(TableA + 0);
71 /// ret.val[1] = vld1q_u16(TableA + 8);
72 /// ret.val[2] = vld1q_u16(TableA + 16);
73 /// ret.val[3] = vld1q_u16(TableA + 24);
74 /// return ret;
75 /// }
76 ///
77 /// The constants in this example are folded into the uses. Thus, 4 different
78 /// constants are created.
79 ///
80 /// As their type is vector the cheapest way to create them is to load them
81 /// for the memory.
82 ///
83 /// Therefore the final assembly final has 4 different loads. With this pass
84 /// enabled, only one load is issued for the constants.
85 class AArch64PromoteConstant : public ModulePass {
86
87 public:
88 static char ID;
AArch64PromoteConstant()89 AArch64PromoteConstant() : ModulePass(ID) {}
90
getPassName() const91 const char *getPassName() const override { return "AArch64 Promote Constant"; }
92
93 /// Iterate over the functions and promote the interesting constants into
94 /// global variables with module scope.
runOnModule(Module & M)95 bool runOnModule(Module &M) override {
96 DEBUG(dbgs() << getPassName() << '\n');
97 bool Changed = false;
98 for (auto &MF : M) {
99 Changed |= runOnFunction(MF);
100 }
101 return Changed;
102 }
103
104 private:
105 /// Look for interesting constants used within the given function.
106 /// Promote them into global variables, load these global variables within
107 /// the related function, so that the number of inserted load is minimal.
108 bool runOnFunction(Function &F);
109
110 // This transformation requires dominator info
getAnalysisUsage(AnalysisUsage & AU) const111 void getAnalysisUsage(AnalysisUsage &AU) const override {
112 AU.setPreservesCFG();
113 AU.addRequired<DominatorTreeWrapperPass>();
114 AU.addPreserved<DominatorTreeWrapperPass>();
115 }
116
117 /// Type to store a list of Uses.
118 typedef SmallVector<Use *, 4> Uses;
119 /// Map an insertion point to all the uses it dominates.
120 typedef DenseMap<Instruction *, Uses> InsertionPoints;
121 /// Map a function to the required insertion point of load for a
122 /// global variable.
123 typedef DenseMap<Function *, InsertionPoints> InsertionPointsPerFunc;
124
125 /// Find the closest point that dominates the given Use.
126 Instruction *findInsertionPoint(Use &Use);
127
128 /// Check if the given insertion point is dominated by an existing
129 /// insertion point.
130 /// If true, the given use is added to the list of dominated uses for
131 /// the related existing point.
132 /// \param NewPt the insertion point to be checked
133 /// \param Use the use to be added into the list of dominated uses
134 /// \param InsertPts existing insertion points
135 /// \pre NewPt and all instruction in InsertPts belong to the same function
136 /// \return true if one of the insertion point in InsertPts dominates NewPt,
137 /// false otherwise
138 bool isDominated(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
139
140 /// Check if the given insertion point can be merged with an existing
141 /// insertion point in a common dominator.
142 /// If true, the given use is added to the list of the created insertion
143 /// point.
144 /// \param NewPt the insertion point to be checked
145 /// \param Use the use to be added into the list of dominated uses
146 /// \param InsertPts existing insertion points
147 /// \pre NewPt and all instruction in InsertPts belong to the same function
148 /// \pre isDominated returns false for the exact same parameters.
149 /// \return true if it exists an insertion point in InsertPts that could
150 /// have been merged with NewPt in a common dominator,
151 /// false otherwise
152 bool tryAndMerge(Instruction *NewPt, Use &Use, InsertionPoints &InsertPts);
153
154 /// Compute the minimal insertion points to dominates all the interesting
155 /// uses of value.
156 /// Insertion points are group per function and each insertion point
157 /// contains a list of all the uses it dominates within the related function
158 /// \param Val constant to be examined
159 /// \param[out] InsPtsPerFunc output storage of the analysis
160 void computeInsertionPoints(Constant *Val,
161 InsertionPointsPerFunc &InsPtsPerFunc);
162
163 /// Insert a definition of a new global variable at each point contained in
164 /// InsPtsPerFunc and update the related uses (also contained in
165 /// InsPtsPerFunc).
166 bool insertDefinitions(Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc);
167
168 /// Compute the minimal insertion points to dominate all the interesting
169 /// uses of Val and insert a definition of a new global variable
170 /// at these points.
171 /// Also update the uses of Val accordingly.
172 /// Currently a use of Val is considered interesting if:
173 /// - Val is not UndefValue
174 /// - Val is not zeroinitialized
175 /// - Replacing Val per a load of a global variable is valid.
176 /// \see shouldConvert for more details
177 bool computeAndInsertDefinitions(Constant *Val);
178
179 /// Promote the given constant into a global variable if it is expected to
180 /// be profitable.
181 /// \return true if Cst has been promoted
182 bool promoteConstant(Constant *Cst);
183
184 /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
185 /// Append Use to this list and delete the entry of IPI in InsertPts.
appendAndTransferDominatedUses(Instruction * NewPt,Use & Use,InsertionPoints::iterator & IPI,InsertionPoints & InsertPts)186 static void appendAndTransferDominatedUses(Instruction *NewPt, Use &Use,
187 InsertionPoints::iterator &IPI,
188 InsertionPoints &InsertPts) {
189 // Record the dominated use.
190 IPI->second.push_back(&Use);
191 // Transfer the dominated uses of IPI to NewPt
192 // Inserting into the DenseMap may invalidate existing iterator.
193 // Keep a copy of the key to find the iterator to erase. Keep a copy of the
194 // value so that we don't have to dereference IPI->second.
195 Instruction *OldInstr = IPI->first;
196 Uses OldUses = std::move(IPI->second);
197 InsertPts[NewPt] = std::move(OldUses);
198 // Erase IPI.
199 InsertPts.erase(OldInstr);
200 }
201 };
202 } // end anonymous namespace
203
204 char AArch64PromoteConstant::ID = 0;
205
206 namespace llvm {
207 void initializeAArch64PromoteConstantPass(PassRegistry &);
208 }
209
210 INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
211 "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)212 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
213 INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
214 "AArch64 Promote Constant Pass", false, false)
215
216 ModulePass *llvm::createAArch64PromoteConstantPass() {
217 return new AArch64PromoteConstant();
218 }
219
220 /// Check if the given type uses a vector type.
isConstantUsingVectorTy(const Type * CstTy)221 static bool isConstantUsingVectorTy(const Type *CstTy) {
222 if (CstTy->isVectorTy())
223 return true;
224 if (CstTy->isStructTy()) {
225 for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
226 EltIdx < EndEltIdx; ++EltIdx)
227 if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
228 return true;
229 } else if (CstTy->isArrayTy())
230 return isConstantUsingVectorTy(CstTy->getArrayElementType());
231 return false;
232 }
233
234 /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
235 /// a load of a global variable initialized with Cst.
236 /// A use should be converted if it is legal to do so.
237 /// For instance, it is not legal to turn the mask operand of a shuffle vector
238 /// into a load of a global variable.
shouldConvertUse(const Constant * Cst,const Instruction * Instr,unsigned OpIdx)239 static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
240 unsigned OpIdx) {
241 // shufflevector instruction expects a const for the mask argument, i.e., the
242 // third argument. Do not promote this use in that case.
243 if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
244 return false;
245
246 // extractvalue instruction expects a const idx.
247 if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
248 return false;
249
250 // extractvalue instruction expects a const idx.
251 if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
252 return false;
253
254 if (isa<const AllocaInst>(Instr) && OpIdx > 0)
255 return false;
256
257 // Alignment argument must be constant.
258 if (isa<const LoadInst>(Instr) && OpIdx > 0)
259 return false;
260
261 // Alignment argument must be constant.
262 if (isa<const StoreInst>(Instr) && OpIdx > 1)
263 return false;
264
265 // Index must be constant.
266 if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
267 return false;
268
269 // Personality function and filters must be constant.
270 // Give up on that instruction.
271 if (isa<const LandingPadInst>(Instr))
272 return false;
273
274 // Switch instruction expects constants to compare to.
275 if (isa<const SwitchInst>(Instr))
276 return false;
277
278 // Expected address must be a constant.
279 if (isa<const IndirectBrInst>(Instr))
280 return false;
281
282 // Do not mess with intrinsics.
283 if (isa<const IntrinsicInst>(Instr))
284 return false;
285
286 // Do not mess with inline asm.
287 const CallInst *CI = dyn_cast<const CallInst>(Instr);
288 if (CI && isa<const InlineAsm>(CI->getCalledValue()))
289 return false;
290
291 return true;
292 }
293
294 /// Check if the given Cst should be converted into
295 /// a load of a global variable initialized with Cst.
296 /// A constant should be converted if it is likely that the materialization of
297 /// the constant will be tricky. Thus, we give up on zero or undef values.
298 ///
299 /// \todo Currently, accept only vector related types.
300 /// Also we give up on all simple vector type to keep the existing
301 /// behavior. Otherwise, we should push here all the check of the lowering of
302 /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
303 /// constant via global merge and the fact that the same constant is stored
304 /// only once with this method (versus, as many function that uses the constant
305 /// for the regular approach, even for float).
306 /// Again, the simplest solution would be to promote every
307 /// constant and rematerialize them when they are actually cheap to create.
shouldConvert(const Constant * Cst)308 static bool shouldConvert(const Constant *Cst) {
309 if (isa<const UndefValue>(Cst))
310 return false;
311
312 // FIXME: In some cases, it may be interesting to promote in memory
313 // a zero initialized constant.
314 // E.g., when the type of Cst require more instructions than the
315 // adrp/add/load sequence or when this sequence can be shared by several
316 // instances of Cst.
317 // Ideally, we could promote this into a global and rematerialize the constant
318 // when it was a bad idea.
319 if (Cst->isZeroValue())
320 return false;
321
322 if (Stress)
323 return true;
324
325 // FIXME: see function \todo
326 if (Cst->getType()->isVectorTy())
327 return false;
328 return isConstantUsingVectorTy(Cst->getType());
329 }
330
findInsertionPoint(Use & Use)331 Instruction *AArch64PromoteConstant::findInsertionPoint(Use &Use) {
332 Instruction *User = cast<Instruction>(Use.getUser());
333
334 // If this user is a phi, the insertion point is in the related
335 // incoming basic block.
336 if (PHINode *PhiInst = dyn_cast<PHINode>(User))
337 return PhiInst->getIncomingBlock(Use.getOperandNo())->getTerminator();
338
339 return User;
340 }
341
isDominated(Instruction * NewPt,Use & Use,InsertionPoints & InsertPts)342 bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Use &Use,
343 InsertionPoints &InsertPts) {
344
345 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
346 *NewPt->getParent()->getParent()).getDomTree();
347
348 // Traverse all the existing insertion points and check if one is dominating
349 // NewPt. If it is, remember that.
350 for (auto &IPI : InsertPts) {
351 if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
352 // When IPI.first is a terminator instruction, DT may think that
353 // the result is defined on the edge.
354 // Here we are testing the insertion point, not the definition.
355 (IPI.first->getParent() != NewPt->getParent() &&
356 DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
357 // No need to insert this point. Just record the dominated use.
358 DEBUG(dbgs() << "Insertion point dominated by:\n");
359 DEBUG(IPI.first->print(dbgs()));
360 DEBUG(dbgs() << '\n');
361 IPI.second.push_back(&Use);
362 return true;
363 }
364 }
365 return false;
366 }
367
tryAndMerge(Instruction * NewPt,Use & Use,InsertionPoints & InsertPts)368 bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Use &Use,
369 InsertionPoints &InsertPts) {
370 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
371 *NewPt->getParent()->getParent()).getDomTree();
372 BasicBlock *NewBB = NewPt->getParent();
373
374 // Traverse all the existing insertion point and check if one is dominated by
375 // NewPt and thus useless or can be combined with NewPt into a common
376 // dominator.
377 for (InsertionPoints::iterator IPI = InsertPts.begin(),
378 EndIPI = InsertPts.end();
379 IPI != EndIPI; ++IPI) {
380 BasicBlock *CurBB = IPI->first->getParent();
381 if (NewBB == CurBB) {
382 // Instructions are in the same block.
383 // By construction, NewPt is dominating the other.
384 // Indeed, isDominated returned false with the exact same arguments.
385 DEBUG(dbgs() << "Merge insertion point with:\n");
386 DEBUG(IPI->first->print(dbgs()));
387 DEBUG(dbgs() << "\nat considered insertion point.\n");
388 appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
389 return true;
390 }
391
392 // Look for a common dominator
393 BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
394 // If none exists, we cannot merge these two points.
395 if (!CommonDominator)
396 continue;
397
398 if (CommonDominator != NewBB) {
399 // By construction, the CommonDominator cannot be CurBB.
400 assert(CommonDominator != CurBB &&
401 "Instruction has not been rejected during isDominated check!");
402 // Take the last instruction of the CommonDominator as insertion point
403 NewPt = CommonDominator->getTerminator();
404 }
405 // else, CommonDominator is the block of NewBB, hence NewBB is the last
406 // possible insertion point in that block.
407 DEBUG(dbgs() << "Merge insertion point with:\n");
408 DEBUG(IPI->first->print(dbgs()));
409 DEBUG(dbgs() << '\n');
410 DEBUG(NewPt->print(dbgs()));
411 DEBUG(dbgs() << '\n');
412 appendAndTransferDominatedUses(NewPt, Use, IPI, InsertPts);
413 return true;
414 }
415 return false;
416 }
417
computeInsertionPoints(Constant * Val,InsertionPointsPerFunc & InsPtsPerFunc)418 void AArch64PromoteConstant::computeInsertionPoints(
419 Constant *Val, InsertionPointsPerFunc &InsPtsPerFunc) {
420 DEBUG(dbgs() << "** Compute insertion points **\n");
421 for (Use &Use : Val->uses()) {
422 Instruction *User = dyn_cast<Instruction>(Use.getUser());
423
424 // If the user is not an Instruction, we cannot modify it.
425 if (!User)
426 continue;
427
428 // Filter out uses that should not be converted.
429 if (!shouldConvertUse(Val, User, Use.getOperandNo()))
430 continue;
431
432 DEBUG(dbgs() << "Considered use, opidx " << Use.getOperandNo() << ":\n");
433 DEBUG(User->print(dbgs()));
434 DEBUG(dbgs() << '\n');
435
436 Instruction *InsertionPoint = findInsertionPoint(Use);
437
438 DEBUG(dbgs() << "Considered insertion point:\n");
439 DEBUG(InsertionPoint->print(dbgs()));
440 DEBUG(dbgs() << '\n');
441
442 // Check if the current insertion point is useless, i.e., it is dominated
443 // by another one.
444 InsertionPoints &InsertPts =
445 InsPtsPerFunc[InsertionPoint->getParent()->getParent()];
446 if (isDominated(InsertionPoint, Use, InsertPts))
447 continue;
448 // This insertion point is useful, check if we can merge some insertion
449 // point in a common dominator or if NewPt dominates an existing one.
450 if (tryAndMerge(InsertionPoint, Use, InsertPts))
451 continue;
452
453 DEBUG(dbgs() << "Keep considered insertion point\n");
454
455 // It is definitely useful by its own
456 InsertPts[InsertionPoint].push_back(&Use);
457 }
458 }
459
insertDefinitions(Constant * Cst,InsertionPointsPerFunc & InsPtsPerFunc)460 bool AArch64PromoteConstant::insertDefinitions(
461 Constant *Cst, InsertionPointsPerFunc &InsPtsPerFunc) {
462 // We will create one global variable per Module.
463 DenseMap<Module *, GlobalVariable *> ModuleToMergedGV;
464 bool HasChanged = false;
465
466 // Traverse all insertion points in all the function.
467 for (const auto &FctToInstPtsIt : InsPtsPerFunc) {
468 const InsertionPoints &InsertPts = FctToInstPtsIt.second;
469 // Do more checking for debug purposes.
470 #ifndef NDEBUG
471 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
472 *FctToInstPtsIt.first).getDomTree();
473 #endif
474 assert(!InsertPts.empty() && "Empty uses does not need a definition");
475
476 Module *M = FctToInstPtsIt.first->getParent();
477 GlobalVariable *&PromotedGV = ModuleToMergedGV[M];
478 if (!PromotedGV) {
479 PromotedGV = new GlobalVariable(
480 *M, Cst->getType(), true, GlobalValue::InternalLinkage, nullptr,
481 "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
482 PromotedGV->setInitializer(Cst);
483 DEBUG(dbgs() << "Global replacement: ");
484 DEBUG(PromotedGV->print(dbgs()));
485 DEBUG(dbgs() << '\n');
486 ++NumPromoted;
487 HasChanged = true;
488 }
489
490 for (const auto &IPI : InsertPts) {
491 // Create the load of the global variable.
492 IRBuilder<> Builder(IPI.first->getParent(), IPI.first);
493 LoadInst *LoadedCst = Builder.CreateLoad(PromotedGV);
494 DEBUG(dbgs() << "**********\n");
495 DEBUG(dbgs() << "New def: ");
496 DEBUG(LoadedCst->print(dbgs()));
497 DEBUG(dbgs() << '\n');
498
499 // Update the dominated uses.
500 for (Use *Use : IPI.second) {
501 #ifndef NDEBUG
502 assert(DT.dominates(LoadedCst, findInsertionPoint(*Use)) &&
503 "Inserted definition does not dominate all its uses!");
504 #endif
505 DEBUG(dbgs() << "Use to update " << Use->getOperandNo() << ":");
506 DEBUG(Use->getUser()->print(dbgs()));
507 DEBUG(dbgs() << '\n');
508 Use->set(LoadedCst);
509 ++NumPromotedUses;
510 }
511 }
512 }
513 return HasChanged;
514 }
515
computeAndInsertDefinitions(Constant * Val)516 bool AArch64PromoteConstant::computeAndInsertDefinitions(Constant *Val) {
517 InsertionPointsPerFunc InsertPtsPerFunc;
518 computeInsertionPoints(Val, InsertPtsPerFunc);
519 return insertDefinitions(Val, InsertPtsPerFunc);
520 }
521
promoteConstant(Constant * Cst)522 bool AArch64PromoteConstant::promoteConstant(Constant *Cst) {
523 assert(Cst && "Given variable is not a valid constant.");
524
525 if (!shouldConvert(Cst))
526 return false;
527
528 DEBUG(dbgs() << "******************************\n");
529 DEBUG(dbgs() << "Candidate constant: ");
530 DEBUG(Cst->print(dbgs()));
531 DEBUG(dbgs() << '\n');
532
533 return computeAndInsertDefinitions(Cst);
534 }
535
runOnFunction(Function & F)536 bool AArch64PromoteConstant::runOnFunction(Function &F) {
537 // Look for instructions using constant vector. Promote that constant to a
538 // global variable. Create as few loads of this variable as possible and
539 // update the uses accordingly.
540 bool LocalChange = false;
541 SmallPtrSet<Constant *, 8> AlreadyChecked;
542
543 for (Instruction &I : inst_range(&F)) {
544 // Traverse the operand, looking for constant vectors. Replace them by a
545 // load of a global variable of constant vector type.
546 for (Value *Op : I.operand_values()) {
547 Constant *Cst = dyn_cast<Constant>(Op);
548 // There is no point in promoting global values as they are already
549 // global. Do not promote constant expressions either, as they may
550 // require some code expansion.
551 if (Cst && !isa<GlobalValue>(Cst) && !isa<ConstantExpr>(Cst) &&
552 AlreadyChecked.insert(Cst).second)
553 LocalChange |= promoteConstant(Cst);
554 }
555 }
556 return LocalChange;
557 }
558