1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMFeatures.h"
19 #include "ARMHazardRecognizer.h"
20 #include "ARMMachineFunctionInfo.h"
21 #include "MCTargetDesc/ARMAddressingModes.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAGNodes.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/Support/BranchProbability.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/raw_ostream.h"
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "arm-instrinfo"
45
46 #define GET_INSTRINFO_CTOR_DTOR
47 #include "ARMGenInstrInfo.inc"
48
49 static cl::opt<bool>
50 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
51 cl::desc("Enable ARM 2-addr to 3-addr conv"));
52
53 static cl::opt<bool>
54 WidenVMOVS("widen-vmovs", cl::Hidden, cl::init(true),
55 cl::desc("Widen ARM vmovs to vmovd when possible"));
56
57 static cl::opt<unsigned>
58 SwiftPartialUpdateClearance("swift-partial-update-clearance",
59 cl::Hidden, cl::init(12),
60 cl::desc("Clearance before partial register updates"));
61
62 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
63 struct ARM_MLxEntry {
64 uint16_t MLxOpc; // MLA / MLS opcode
65 uint16_t MulOpc; // Expanded multiplication opcode
66 uint16_t AddSubOpc; // Expanded add / sub opcode
67 bool NegAcc; // True if the acc is negated before the add / sub.
68 bool HasLane; // True if instruction has an extra "lane" operand.
69 };
70
71 static const ARM_MLxEntry ARM_MLxTable[] = {
72 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
73 // fp scalar ops
74 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
75 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
76 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
77 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
78 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
79 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
80 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
81 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
82
83 // fp SIMD ops
84 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
85 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
86 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
87 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
88 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
89 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
90 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
91 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
92 };
93
ARMBaseInstrInfo(const ARMSubtarget & STI)94 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
95 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
96 Subtarget(STI) {
97 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
98 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
99 assert(false && "Duplicated entries?");
100 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
101 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
102 }
103 }
104
105 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
106 // currently defaults to no prepass hazard recognizer.
107 ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const108 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
109 const ScheduleDAG *DAG) const {
110 if (usePreRAHazardRecognizer()) {
111 const InstrItineraryData *II =
112 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
113 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
114 }
115 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
116 }
117
118 ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const119 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
120 const ScheduleDAG *DAG) const {
121 if (Subtarget.isThumb2() || Subtarget.hasVFP2())
122 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
123 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
124 }
125
126 MachineInstr *
convertToThreeAddress(MachineFunction::iterator & MFI,MachineBasicBlock::iterator & MBBI,LiveVariables * LV) const127 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
128 MachineBasicBlock::iterator &MBBI,
129 LiveVariables *LV) const {
130 // FIXME: Thumb2 support.
131
132 if (!EnableARM3Addr)
133 return nullptr;
134
135 MachineInstr *MI = MBBI;
136 MachineFunction &MF = *MI->getParent()->getParent();
137 uint64_t TSFlags = MI->getDesc().TSFlags;
138 bool isPre = false;
139 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
140 default: return nullptr;
141 case ARMII::IndexModePre:
142 isPre = true;
143 break;
144 case ARMII::IndexModePost:
145 break;
146 }
147
148 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
149 // operation.
150 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
151 if (MemOpc == 0)
152 return nullptr;
153
154 MachineInstr *UpdateMI = nullptr;
155 MachineInstr *MemMI = nullptr;
156 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
157 const MCInstrDesc &MCID = MI->getDesc();
158 unsigned NumOps = MCID.getNumOperands();
159 bool isLoad = !MI->mayStore();
160 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
161 const MachineOperand &Base = MI->getOperand(2);
162 const MachineOperand &Offset = MI->getOperand(NumOps-3);
163 unsigned WBReg = WB.getReg();
164 unsigned BaseReg = Base.getReg();
165 unsigned OffReg = Offset.getReg();
166 unsigned OffImm = MI->getOperand(NumOps-2).getImm();
167 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
168 switch (AddrMode) {
169 default: llvm_unreachable("Unknown indexed op!");
170 case ARMII::AddrMode2: {
171 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
172 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
173 if (OffReg == 0) {
174 if (ARM_AM::getSOImmVal(Amt) == -1)
175 // Can't encode it in a so_imm operand. This transformation will
176 // add more than 1 instruction. Abandon!
177 return nullptr;
178 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
179 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
180 .addReg(BaseReg).addImm(Amt)
181 .addImm(Pred).addReg(0).addReg(0);
182 } else if (Amt != 0) {
183 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
184 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
185 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
186 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
187 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
188 .addImm(Pred).addReg(0).addReg(0);
189 } else
190 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
191 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
192 .addReg(BaseReg).addReg(OffReg)
193 .addImm(Pred).addReg(0).addReg(0);
194 break;
195 }
196 case ARMII::AddrMode3 : {
197 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
198 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
199 if (OffReg == 0)
200 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
201 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
202 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
203 .addReg(BaseReg).addImm(Amt)
204 .addImm(Pred).addReg(0).addReg(0);
205 else
206 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
207 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
208 .addReg(BaseReg).addReg(OffReg)
209 .addImm(Pred).addReg(0).addReg(0);
210 break;
211 }
212 }
213
214 std::vector<MachineInstr*> NewMIs;
215 if (isPre) {
216 if (isLoad)
217 MemMI = BuildMI(MF, MI->getDebugLoc(),
218 get(MemOpc), MI->getOperand(0).getReg())
219 .addReg(WBReg).addImm(0).addImm(Pred);
220 else
221 MemMI = BuildMI(MF, MI->getDebugLoc(),
222 get(MemOpc)).addReg(MI->getOperand(1).getReg())
223 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
224 NewMIs.push_back(MemMI);
225 NewMIs.push_back(UpdateMI);
226 } else {
227 if (isLoad)
228 MemMI = BuildMI(MF, MI->getDebugLoc(),
229 get(MemOpc), MI->getOperand(0).getReg())
230 .addReg(BaseReg).addImm(0).addImm(Pred);
231 else
232 MemMI = BuildMI(MF, MI->getDebugLoc(),
233 get(MemOpc)).addReg(MI->getOperand(1).getReg())
234 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
235 if (WB.isDead())
236 UpdateMI->getOperand(0).setIsDead();
237 NewMIs.push_back(UpdateMI);
238 NewMIs.push_back(MemMI);
239 }
240
241 // Transfer LiveVariables states, kill / dead info.
242 if (LV) {
243 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
244 MachineOperand &MO = MI->getOperand(i);
245 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
246 unsigned Reg = MO.getReg();
247
248 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
249 if (MO.isDef()) {
250 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
251 if (MO.isDead())
252 LV->addVirtualRegisterDead(Reg, NewMI);
253 }
254 if (MO.isUse() && MO.isKill()) {
255 for (unsigned j = 0; j < 2; ++j) {
256 // Look at the two new MI's in reverse order.
257 MachineInstr *NewMI = NewMIs[j];
258 if (!NewMI->readsRegister(Reg))
259 continue;
260 LV->addVirtualRegisterKilled(Reg, NewMI);
261 if (VI.removeKill(MI))
262 VI.Kills.push_back(NewMI);
263 break;
264 }
265 }
266 }
267 }
268 }
269
270 MFI->insert(MBBI, NewMIs[1]);
271 MFI->insert(MBBI, NewMIs[0]);
272 return NewMIs[0];
273 }
274
275 // Branch analysis.
276 bool
AnalyzeBranch(MachineBasicBlock & MBB,MachineBasicBlock * & TBB,MachineBasicBlock * & FBB,SmallVectorImpl<MachineOperand> & Cond,bool AllowModify) const277 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
278 MachineBasicBlock *&FBB,
279 SmallVectorImpl<MachineOperand> &Cond,
280 bool AllowModify) const {
281 TBB = nullptr;
282 FBB = nullptr;
283
284 MachineBasicBlock::iterator I = MBB.end();
285 if (I == MBB.begin())
286 return false; // Empty blocks are easy.
287 --I;
288
289 // Walk backwards from the end of the basic block until the branch is
290 // analyzed or we give up.
291 while (isPredicated(I) || I->isTerminator() || I->isDebugValue()) {
292
293 // Flag to be raised on unanalyzeable instructions. This is useful in cases
294 // where we want to clean up on the end of the basic block before we bail
295 // out.
296 bool CantAnalyze = false;
297
298 // Skip over DEBUG values and predicated nonterminators.
299 while (I->isDebugValue() || !I->isTerminator()) {
300 if (I == MBB.begin())
301 return false;
302 --I;
303 }
304
305 if (isIndirectBranchOpcode(I->getOpcode()) ||
306 isJumpTableBranchOpcode(I->getOpcode())) {
307 // Indirect branches and jump tables can't be analyzed, but we still want
308 // to clean up any instructions at the tail of the basic block.
309 CantAnalyze = true;
310 } else if (isUncondBranchOpcode(I->getOpcode())) {
311 TBB = I->getOperand(0).getMBB();
312 } else if (isCondBranchOpcode(I->getOpcode())) {
313 // Bail out if we encounter multiple conditional branches.
314 if (!Cond.empty())
315 return true;
316
317 assert(!FBB && "FBB should have been null.");
318 FBB = TBB;
319 TBB = I->getOperand(0).getMBB();
320 Cond.push_back(I->getOperand(1));
321 Cond.push_back(I->getOperand(2));
322 } else if (I->isReturn()) {
323 // Returns can't be analyzed, but we should run cleanup.
324 CantAnalyze = !isPredicated(I);
325 } else {
326 // We encountered other unrecognized terminator. Bail out immediately.
327 return true;
328 }
329
330 // Cleanup code - to be run for unpredicated unconditional branches and
331 // returns.
332 if (!isPredicated(I) &&
333 (isUncondBranchOpcode(I->getOpcode()) ||
334 isIndirectBranchOpcode(I->getOpcode()) ||
335 isJumpTableBranchOpcode(I->getOpcode()) ||
336 I->isReturn())) {
337 // Forget any previous condition branch information - it no longer applies.
338 Cond.clear();
339 FBB = nullptr;
340
341 // If we can modify the function, delete everything below this
342 // unconditional branch.
343 if (AllowModify) {
344 MachineBasicBlock::iterator DI = std::next(I);
345 while (DI != MBB.end()) {
346 MachineInstr *InstToDelete = DI;
347 ++DI;
348 InstToDelete->eraseFromParent();
349 }
350 }
351 }
352
353 if (CantAnalyze)
354 return true;
355
356 if (I == MBB.begin())
357 return false;
358
359 --I;
360 }
361
362 // We made it past the terminators without bailing out - we must have
363 // analyzed this branch successfully.
364 return false;
365 }
366
367
RemoveBranch(MachineBasicBlock & MBB) const368 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
369 MachineBasicBlock::iterator I = MBB.end();
370 if (I == MBB.begin()) return 0;
371 --I;
372 while (I->isDebugValue()) {
373 if (I == MBB.begin())
374 return 0;
375 --I;
376 }
377 if (!isUncondBranchOpcode(I->getOpcode()) &&
378 !isCondBranchOpcode(I->getOpcode()))
379 return 0;
380
381 // Remove the branch.
382 I->eraseFromParent();
383
384 I = MBB.end();
385
386 if (I == MBB.begin()) return 1;
387 --I;
388 if (!isCondBranchOpcode(I->getOpcode()))
389 return 1;
390
391 // Remove the branch.
392 I->eraseFromParent();
393 return 2;
394 }
395
396 unsigned
InsertBranch(MachineBasicBlock & MBB,MachineBasicBlock * TBB,MachineBasicBlock * FBB,const SmallVectorImpl<MachineOperand> & Cond,DebugLoc DL) const397 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
398 MachineBasicBlock *FBB,
399 const SmallVectorImpl<MachineOperand> &Cond,
400 DebugLoc DL) const {
401 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
402 int BOpc = !AFI->isThumbFunction()
403 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
404 int BccOpc = !AFI->isThumbFunction()
405 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
406 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
407
408 // Shouldn't be a fall through.
409 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
410 assert((Cond.size() == 2 || Cond.size() == 0) &&
411 "ARM branch conditions have two components!");
412
413 if (!FBB) {
414 if (Cond.empty()) { // Unconditional branch?
415 if (isThumb)
416 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).addImm(ARMCC::AL).addReg(0);
417 else
418 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
419 } else
420 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
421 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
422 return 1;
423 }
424
425 // Two-way conditional branch.
426 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
427 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
428 if (isThumb)
429 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).addImm(ARMCC::AL).addReg(0);
430 else
431 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
432 return 2;
433 }
434
435 bool ARMBaseInstrInfo::
ReverseBranchCondition(SmallVectorImpl<MachineOperand> & Cond) const436 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
437 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
438 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
439 return false;
440 }
441
isPredicated(const MachineInstr * MI) const442 bool ARMBaseInstrInfo::isPredicated(const MachineInstr *MI) const {
443 if (MI->isBundle()) {
444 MachineBasicBlock::const_instr_iterator I = MI;
445 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
446 while (++I != E && I->isInsideBundle()) {
447 int PIdx = I->findFirstPredOperandIdx();
448 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
449 return true;
450 }
451 return false;
452 }
453
454 int PIdx = MI->findFirstPredOperandIdx();
455 return PIdx != -1 && MI->getOperand(PIdx).getImm() != ARMCC::AL;
456 }
457
458 bool ARMBaseInstrInfo::
PredicateInstruction(MachineInstr * MI,const SmallVectorImpl<MachineOperand> & Pred) const459 PredicateInstruction(MachineInstr *MI,
460 const SmallVectorImpl<MachineOperand> &Pred) const {
461 unsigned Opc = MI->getOpcode();
462 if (isUncondBranchOpcode(Opc)) {
463 MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
464 MachineInstrBuilder(*MI->getParent()->getParent(), MI)
465 .addImm(Pred[0].getImm())
466 .addReg(Pred[1].getReg());
467 return true;
468 }
469
470 int PIdx = MI->findFirstPredOperandIdx();
471 if (PIdx != -1) {
472 MachineOperand &PMO = MI->getOperand(PIdx);
473 PMO.setImm(Pred[0].getImm());
474 MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
475 return true;
476 }
477 return false;
478 }
479
480 bool ARMBaseInstrInfo::
SubsumesPredicate(const SmallVectorImpl<MachineOperand> & Pred1,const SmallVectorImpl<MachineOperand> & Pred2) const481 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
482 const SmallVectorImpl<MachineOperand> &Pred2) const {
483 if (Pred1.size() > 2 || Pred2.size() > 2)
484 return false;
485
486 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
487 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
488 if (CC1 == CC2)
489 return true;
490
491 switch (CC1) {
492 default:
493 return false;
494 case ARMCC::AL:
495 return true;
496 case ARMCC::HS:
497 return CC2 == ARMCC::HI;
498 case ARMCC::LS:
499 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
500 case ARMCC::GE:
501 return CC2 == ARMCC::GT;
502 case ARMCC::LE:
503 return CC2 == ARMCC::LT;
504 }
505 }
506
DefinesPredicate(MachineInstr * MI,std::vector<MachineOperand> & Pred) const507 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
508 std::vector<MachineOperand> &Pred) const {
509 bool Found = false;
510 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
511 const MachineOperand &MO = MI->getOperand(i);
512 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
513 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
514 Pred.push_back(MO);
515 Found = true;
516 }
517 }
518
519 return Found;
520 }
521
isCPSRDefined(const MachineInstr * MI)522 static bool isCPSRDefined(const MachineInstr *MI) {
523 for (const auto &MO : MI->operands())
524 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef())
525 return true;
526 return false;
527 }
528
isEligibleForITBlock(const MachineInstr * MI)529 static bool isEligibleForITBlock(const MachineInstr *MI) {
530 switch (MI->getOpcode()) {
531 default: return true;
532 case ARM::tADC: // ADC (register) T1
533 case ARM::tADDi3: // ADD (immediate) T1
534 case ARM::tADDi8: // ADD (immediate) T2
535 case ARM::tADDrr: // ADD (register) T1
536 case ARM::tAND: // AND (register) T1
537 case ARM::tASRri: // ASR (immediate) T1
538 case ARM::tASRrr: // ASR (register) T1
539 case ARM::tBIC: // BIC (register) T1
540 case ARM::tEOR: // EOR (register) T1
541 case ARM::tLSLri: // LSL (immediate) T1
542 case ARM::tLSLrr: // LSL (register) T1
543 case ARM::tLSRri: // LSR (immediate) T1
544 case ARM::tLSRrr: // LSR (register) T1
545 case ARM::tMUL: // MUL T1
546 case ARM::tMVN: // MVN (register) T1
547 case ARM::tORR: // ORR (register) T1
548 case ARM::tROR: // ROR (register) T1
549 case ARM::tRSB: // RSB (immediate) T1
550 case ARM::tSBC: // SBC (register) T1
551 case ARM::tSUBi3: // SUB (immediate) T1
552 case ARM::tSUBi8: // SUB (immediate) T2
553 case ARM::tSUBrr: // SUB (register) T1
554 return !isCPSRDefined(MI);
555 }
556 }
557
558 /// isPredicable - Return true if the specified instruction can be predicated.
559 /// By default, this returns true for every instruction with a
560 /// PredicateOperand.
isPredicable(MachineInstr * MI) const561 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
562 if (!MI->isPredicable())
563 return false;
564
565 if (!isEligibleForITBlock(MI))
566 return false;
567
568 ARMFunctionInfo *AFI =
569 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
570
571 if (AFI->isThumb2Function()) {
572 if (getSubtarget().restrictIT())
573 return isV8EligibleForIT(MI);
574 } else { // non-Thumb
575 if ((MI->getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
576 return false;
577 }
578
579 return true;
580 }
581
582 namespace llvm {
IsCPSRDead(MachineInstr * MI)583 template <> bool IsCPSRDead<MachineInstr>(MachineInstr *MI) {
584 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
585 const MachineOperand &MO = MI->getOperand(i);
586 if (!MO.isReg() || MO.isUndef() || MO.isUse())
587 continue;
588 if (MO.getReg() != ARM::CPSR)
589 continue;
590 if (!MO.isDead())
591 return false;
592 }
593 // all definitions of CPSR are dead
594 return true;
595 }
596 }
597
598 /// GetInstSize - Return the size of the specified MachineInstr.
599 ///
GetInstSizeInBytes(const MachineInstr * MI) const600 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
601 const MachineBasicBlock &MBB = *MI->getParent();
602 const MachineFunction *MF = MBB.getParent();
603 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
604
605 const MCInstrDesc &MCID = MI->getDesc();
606 if (MCID.getSize())
607 return MCID.getSize();
608
609 // If this machine instr is an inline asm, measure it.
610 if (MI->getOpcode() == ARM::INLINEASM)
611 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
612 unsigned Opc = MI->getOpcode();
613 switch (Opc) {
614 default:
615 // pseudo-instruction sizes are zero.
616 return 0;
617 case TargetOpcode::BUNDLE:
618 return getInstBundleLength(MI);
619 case ARM::MOVi16_ga_pcrel:
620 case ARM::MOVTi16_ga_pcrel:
621 case ARM::t2MOVi16_ga_pcrel:
622 case ARM::t2MOVTi16_ga_pcrel:
623 return 4;
624 case ARM::MOVi32imm:
625 case ARM::t2MOVi32imm:
626 return 8;
627 case ARM::CONSTPOOL_ENTRY:
628 // If this machine instr is a constant pool entry, its size is recorded as
629 // operand #2.
630 return MI->getOperand(2).getImm();
631 case ARM::Int_eh_sjlj_longjmp:
632 return 16;
633 case ARM::tInt_eh_sjlj_longjmp:
634 return 10;
635 case ARM::Int_eh_sjlj_setjmp:
636 case ARM::Int_eh_sjlj_setjmp_nofp:
637 return 20;
638 case ARM::tInt_eh_sjlj_setjmp:
639 case ARM::t2Int_eh_sjlj_setjmp:
640 case ARM::t2Int_eh_sjlj_setjmp_nofp:
641 return 12;
642 case ARM::BR_JTr:
643 case ARM::BR_JTm:
644 case ARM::BR_JTadd:
645 case ARM::tBR_JTr:
646 case ARM::t2BR_JT:
647 case ARM::t2TBB_JT:
648 case ARM::t2TBH_JT: {
649 // These are jumptable branches, i.e. a branch followed by an inlined
650 // jumptable. The size is 4 + 4 * number of entries. For TBB, each
651 // entry is one byte; TBH two byte each.
652 unsigned EntrySize = (Opc == ARM::t2TBB_JT)
653 ? 1 : ((Opc == ARM::t2TBH_JT) ? 2 : 4);
654 unsigned NumOps = MCID.getNumOperands();
655 MachineOperand JTOP =
656 MI->getOperand(NumOps - (MI->isPredicable() ? 3 : 2));
657 unsigned JTI = JTOP.getIndex();
658 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
659 assert(MJTI != nullptr);
660 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
661 assert(JTI < JT.size());
662 // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
663 // 4 aligned. The assembler / linker may add 2 byte padding just before
664 // the JT entries. The size does not include this padding; the
665 // constant islands pass does separate bookkeeping for it.
666 // FIXME: If we know the size of the function is less than (1 << 16) *2
667 // bytes, we can use 16-bit entries instead. Then there won't be an
668 // alignment issue.
669 unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
670 unsigned NumEntries = JT[JTI].MBBs.size();
671 if (Opc == ARM::t2TBB_JT && (NumEntries & 1))
672 // Make sure the instruction that follows TBB is 2-byte aligned.
673 // FIXME: Constant island pass should insert an "ALIGN" instruction
674 // instead.
675 ++NumEntries;
676 return NumEntries * EntrySize + InstSize;
677 }
678 case ARM::SPACE:
679 return MI->getOperand(1).getImm();
680 }
681 }
682
getInstBundleLength(const MachineInstr * MI) const683 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr *MI) const {
684 unsigned Size = 0;
685 MachineBasicBlock::const_instr_iterator I = MI;
686 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
687 while (++I != E && I->isInsideBundle()) {
688 assert(!I->isBundle() && "No nested bundle!");
689 Size += GetInstSizeInBytes(&*I);
690 }
691 return Size;
692 }
693
copyFromCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,bool KillSrc,const ARMSubtarget & Subtarget) const694 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
695 MachineBasicBlock::iterator I,
696 unsigned DestReg, bool KillSrc,
697 const ARMSubtarget &Subtarget) const {
698 unsigned Opc = Subtarget.isThumb()
699 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
700 : ARM::MRS;
701
702 MachineInstrBuilder MIB =
703 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
704
705 // There is only 1 A/R class MRS instruction, and it always refers to
706 // APSR. However, there are lots of other possibilities on M-class cores.
707 if (Subtarget.isMClass())
708 MIB.addImm(0x800);
709
710 AddDefaultPred(MIB);
711
712 MIB.addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
713 }
714
copyToCPSR(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool KillSrc,const ARMSubtarget & Subtarget) const715 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
716 MachineBasicBlock::iterator I,
717 unsigned SrcReg, bool KillSrc,
718 const ARMSubtarget &Subtarget) const {
719 unsigned Opc = Subtarget.isThumb()
720 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
721 : ARM::MSR;
722
723 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
724
725 if (Subtarget.isMClass())
726 MIB.addImm(0x800);
727 else
728 MIB.addImm(8);
729
730 MIB.addReg(SrcReg, getKillRegState(KillSrc));
731
732 AddDefaultPred(MIB);
733
734 MIB.addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
735 }
736
copyPhysReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,DebugLoc DL,unsigned DestReg,unsigned SrcReg,bool KillSrc) const737 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
738 MachineBasicBlock::iterator I, DebugLoc DL,
739 unsigned DestReg, unsigned SrcReg,
740 bool KillSrc) const {
741 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
742 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
743
744 if (GPRDest && GPRSrc) {
745 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
746 .addReg(SrcReg, getKillRegState(KillSrc))));
747 return;
748 }
749
750 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
751 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
752
753 unsigned Opc = 0;
754 if (SPRDest && SPRSrc)
755 Opc = ARM::VMOVS;
756 else if (GPRDest && SPRSrc)
757 Opc = ARM::VMOVRS;
758 else if (SPRDest && GPRSrc)
759 Opc = ARM::VMOVSR;
760 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && !Subtarget.isFPOnlySP())
761 Opc = ARM::VMOVD;
762 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
763 Opc = ARM::VORRq;
764
765 if (Opc) {
766 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
767 MIB.addReg(SrcReg, getKillRegState(KillSrc));
768 if (Opc == ARM::VORRq)
769 MIB.addReg(SrcReg, getKillRegState(KillSrc));
770 AddDefaultPred(MIB);
771 return;
772 }
773
774 // Handle register classes that require multiple instructions.
775 unsigned BeginIdx = 0;
776 unsigned SubRegs = 0;
777 int Spacing = 1;
778
779 // Use VORRq when possible.
780 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
781 Opc = ARM::VORRq;
782 BeginIdx = ARM::qsub_0;
783 SubRegs = 2;
784 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
785 Opc = ARM::VORRq;
786 BeginIdx = ARM::qsub_0;
787 SubRegs = 4;
788 // Fall back to VMOVD.
789 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
790 Opc = ARM::VMOVD;
791 BeginIdx = ARM::dsub_0;
792 SubRegs = 2;
793 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
794 Opc = ARM::VMOVD;
795 BeginIdx = ARM::dsub_0;
796 SubRegs = 3;
797 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
798 Opc = ARM::VMOVD;
799 BeginIdx = ARM::dsub_0;
800 SubRegs = 4;
801 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
802 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
803 BeginIdx = ARM::gsub_0;
804 SubRegs = 2;
805 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
806 Opc = ARM::VMOVD;
807 BeginIdx = ARM::dsub_0;
808 SubRegs = 2;
809 Spacing = 2;
810 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
811 Opc = ARM::VMOVD;
812 BeginIdx = ARM::dsub_0;
813 SubRegs = 3;
814 Spacing = 2;
815 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
816 Opc = ARM::VMOVD;
817 BeginIdx = ARM::dsub_0;
818 SubRegs = 4;
819 Spacing = 2;
820 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.isFPOnlySP()) {
821 Opc = ARM::VMOVS;
822 BeginIdx = ARM::ssub_0;
823 SubRegs = 2;
824 } else if (SrcReg == ARM::CPSR) {
825 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
826 return;
827 } else if (DestReg == ARM::CPSR) {
828 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
829 return;
830 }
831
832 assert(Opc && "Impossible reg-to-reg copy");
833
834 const TargetRegisterInfo *TRI = &getRegisterInfo();
835 MachineInstrBuilder Mov;
836
837 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
838 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
839 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
840 Spacing = -Spacing;
841 }
842 #ifndef NDEBUG
843 SmallSet<unsigned, 4> DstRegs;
844 #endif
845 for (unsigned i = 0; i != SubRegs; ++i) {
846 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
847 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
848 assert(Dst && Src && "Bad sub-register");
849 #ifndef NDEBUG
850 assert(!DstRegs.count(Src) && "destructive vector copy");
851 DstRegs.insert(Dst);
852 #endif
853 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
854 // VORR takes two source operands.
855 if (Opc == ARM::VORRq)
856 Mov.addReg(Src);
857 Mov = AddDefaultPred(Mov);
858 // MOVr can set CC.
859 if (Opc == ARM::MOVr)
860 Mov = AddDefaultCC(Mov);
861 }
862 // Add implicit super-register defs and kills to the last instruction.
863 Mov->addRegisterDefined(DestReg, TRI);
864 if (KillSrc)
865 Mov->addRegisterKilled(SrcReg, TRI);
866 }
867
868 const MachineInstrBuilder &
AddDReg(MachineInstrBuilder & MIB,unsigned Reg,unsigned SubIdx,unsigned State,const TargetRegisterInfo * TRI) const869 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
870 unsigned SubIdx, unsigned State,
871 const TargetRegisterInfo *TRI) const {
872 if (!SubIdx)
873 return MIB.addReg(Reg, State);
874
875 if (TargetRegisterInfo::isPhysicalRegister(Reg))
876 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
877 return MIB.addReg(Reg, State, SubIdx);
878 }
879
880 void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned SrcReg,bool isKill,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const881 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
882 unsigned SrcReg, bool isKill, int FI,
883 const TargetRegisterClass *RC,
884 const TargetRegisterInfo *TRI) const {
885 DebugLoc DL;
886 if (I != MBB.end()) DL = I->getDebugLoc();
887 MachineFunction &MF = *MBB.getParent();
888 MachineFrameInfo &MFI = *MF.getFrameInfo();
889 unsigned Align = MFI.getObjectAlignment(FI);
890
891 MachineMemOperand *MMO =
892 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
893 MachineMemOperand::MOStore,
894 MFI.getObjectSize(FI),
895 Align);
896
897 switch (RC->getSize()) {
898 case 4:
899 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
900 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STRi12))
901 .addReg(SrcReg, getKillRegState(isKill))
902 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
903 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
904 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
905 .addReg(SrcReg, getKillRegState(isKill))
906 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
907 } else
908 llvm_unreachable("Unknown reg class!");
909 break;
910 case 8:
911 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
912 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
913 .addReg(SrcReg, getKillRegState(isKill))
914 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
915 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
916 if (Subtarget.hasV5TEOps()) {
917 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::STRD));
918 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
919 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
920 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
921
922 AddDefaultPred(MIB);
923 } else {
924 // Fallback to STM instruction, which has existed since the dawn of
925 // time.
926 MachineInstrBuilder MIB =
927 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STMIA))
928 .addFrameIndex(FI).addMemOperand(MMO));
929 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
930 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
931 }
932 } else
933 llvm_unreachable("Unknown reg class!");
934 break;
935 case 16:
936 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
937 // Use aligned spills if the stack can be realigned.
938 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
939 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64))
940 .addFrameIndex(FI).addImm(16)
941 .addReg(SrcReg, getKillRegState(isKill))
942 .addMemOperand(MMO));
943 } else {
944 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQIA))
945 .addReg(SrcReg, getKillRegState(isKill))
946 .addFrameIndex(FI)
947 .addMemOperand(MMO));
948 }
949 } else
950 llvm_unreachable("Unknown reg class!");
951 break;
952 case 24:
953 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
954 // Use aligned spills if the stack can be realigned.
955 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
956 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64TPseudo))
957 .addFrameIndex(FI).addImm(16)
958 .addReg(SrcReg, getKillRegState(isKill))
959 .addMemOperand(MMO));
960 } else {
961 MachineInstrBuilder MIB =
962 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
963 .addFrameIndex(FI))
964 .addMemOperand(MMO);
965 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
966 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
967 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
968 }
969 } else
970 llvm_unreachable("Unknown reg class!");
971 break;
972 case 32:
973 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
974 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
975 // FIXME: It's possible to only store part of the QQ register if the
976 // spilled def has a sub-register index.
977 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
978 .addFrameIndex(FI).addImm(16)
979 .addReg(SrcReg, getKillRegState(isKill))
980 .addMemOperand(MMO));
981 } else {
982 MachineInstrBuilder MIB =
983 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
984 .addFrameIndex(FI))
985 .addMemOperand(MMO);
986 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
987 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
988 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
989 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
990 }
991 } else
992 llvm_unreachable("Unknown reg class!");
993 break;
994 case 64:
995 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
996 MachineInstrBuilder MIB =
997 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMDIA))
998 .addFrameIndex(FI))
999 .addMemOperand(MMO);
1000 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1001 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1002 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1003 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1004 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1005 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1006 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1007 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1008 } else
1009 llvm_unreachable("Unknown reg class!");
1010 break;
1011 default:
1012 llvm_unreachable("Unknown reg class!");
1013 }
1014 }
1015
1016 unsigned
isStoreToStackSlot(const MachineInstr * MI,int & FrameIndex) const1017 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
1018 int &FrameIndex) const {
1019 switch (MI->getOpcode()) {
1020 default: break;
1021 case ARM::STRrs:
1022 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1023 if (MI->getOperand(1).isFI() &&
1024 MI->getOperand(2).isReg() &&
1025 MI->getOperand(3).isImm() &&
1026 MI->getOperand(2).getReg() == 0 &&
1027 MI->getOperand(3).getImm() == 0) {
1028 FrameIndex = MI->getOperand(1).getIndex();
1029 return MI->getOperand(0).getReg();
1030 }
1031 break;
1032 case ARM::STRi12:
1033 case ARM::t2STRi12:
1034 case ARM::tSTRspi:
1035 case ARM::VSTRD:
1036 case ARM::VSTRS:
1037 if (MI->getOperand(1).isFI() &&
1038 MI->getOperand(2).isImm() &&
1039 MI->getOperand(2).getImm() == 0) {
1040 FrameIndex = MI->getOperand(1).getIndex();
1041 return MI->getOperand(0).getReg();
1042 }
1043 break;
1044 case ARM::VST1q64:
1045 case ARM::VST1d64TPseudo:
1046 case ARM::VST1d64QPseudo:
1047 if (MI->getOperand(0).isFI() &&
1048 MI->getOperand(2).getSubReg() == 0) {
1049 FrameIndex = MI->getOperand(0).getIndex();
1050 return MI->getOperand(2).getReg();
1051 }
1052 break;
1053 case ARM::VSTMQIA:
1054 if (MI->getOperand(1).isFI() &&
1055 MI->getOperand(0).getSubReg() == 0) {
1056 FrameIndex = MI->getOperand(1).getIndex();
1057 return MI->getOperand(0).getReg();
1058 }
1059 break;
1060 }
1061
1062 return 0;
1063 }
1064
isStoreToStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const1065 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
1066 int &FrameIndex) const {
1067 const MachineMemOperand *Dummy;
1068 return MI->mayStore() && hasStoreToStackSlot(MI, Dummy, FrameIndex);
1069 }
1070
1071 void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,int FI,const TargetRegisterClass * RC,const TargetRegisterInfo * TRI) const1072 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1073 unsigned DestReg, int FI,
1074 const TargetRegisterClass *RC,
1075 const TargetRegisterInfo *TRI) const {
1076 DebugLoc DL;
1077 if (I != MBB.end()) DL = I->getDebugLoc();
1078 MachineFunction &MF = *MBB.getParent();
1079 MachineFrameInfo &MFI = *MF.getFrameInfo();
1080 unsigned Align = MFI.getObjectAlignment(FI);
1081 MachineMemOperand *MMO =
1082 MF.getMachineMemOperand(
1083 MachinePointerInfo::getFixedStack(FI),
1084 MachineMemOperand::MOLoad,
1085 MFI.getObjectSize(FI),
1086 Align);
1087
1088 switch (RC->getSize()) {
1089 case 4:
1090 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1091 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1092 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1093
1094 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1095 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1096 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1097 } else
1098 llvm_unreachable("Unknown reg class!");
1099 break;
1100 case 8:
1101 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1102 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1103 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
1104 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1105 MachineInstrBuilder MIB;
1106
1107 if (Subtarget.hasV5TEOps()) {
1108 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1109 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1110 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1111 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO);
1112
1113 AddDefaultPred(MIB);
1114 } else {
1115 // Fallback to LDM instruction, which has existed since the dawn of
1116 // time.
1117 MIB = AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDMIA))
1118 .addFrameIndex(FI).addMemOperand(MMO));
1119 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1120 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1121 }
1122
1123 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1124 MIB.addReg(DestReg, RegState::ImplicitDefine);
1125 } else
1126 llvm_unreachable("Unknown reg class!");
1127 break;
1128 case 16:
1129 if (ARM::DPairRegClass.hasSubClassEq(RC)) {
1130 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1131 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1132 .addFrameIndex(FI).addImm(16)
1133 .addMemOperand(MMO));
1134 } else {
1135 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1136 .addFrameIndex(FI)
1137 .addMemOperand(MMO));
1138 }
1139 } else
1140 llvm_unreachable("Unknown reg class!");
1141 break;
1142 case 24:
1143 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1144 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1145 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1146 .addFrameIndex(FI).addImm(16)
1147 .addMemOperand(MMO));
1148 } else {
1149 MachineInstrBuilder MIB =
1150 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1151 .addFrameIndex(FI)
1152 .addMemOperand(MMO));
1153 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1154 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1155 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1156 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1157 MIB.addReg(DestReg, RegState::ImplicitDefine);
1158 }
1159 } else
1160 llvm_unreachable("Unknown reg class!");
1161 break;
1162 case 32:
1163 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1164 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1165 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1166 .addFrameIndex(FI).addImm(16)
1167 .addMemOperand(MMO));
1168 } else {
1169 MachineInstrBuilder MIB =
1170 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1171 .addFrameIndex(FI))
1172 .addMemOperand(MMO);
1173 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1174 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1175 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1176 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1177 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1178 MIB.addReg(DestReg, RegState::ImplicitDefine);
1179 }
1180 } else
1181 llvm_unreachable("Unknown reg class!");
1182 break;
1183 case 64:
1184 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1185 MachineInstrBuilder MIB =
1186 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1187 .addFrameIndex(FI))
1188 .addMemOperand(MMO);
1189 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1190 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1191 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1192 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1193 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1194 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1195 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1196 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1197 if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1198 MIB.addReg(DestReg, RegState::ImplicitDefine);
1199 } else
1200 llvm_unreachable("Unknown reg class!");
1201 break;
1202 default:
1203 llvm_unreachable("Unknown regclass!");
1204 }
1205 }
1206
1207 unsigned
isLoadFromStackSlot(const MachineInstr * MI,int & FrameIndex) const1208 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
1209 int &FrameIndex) const {
1210 switch (MI->getOpcode()) {
1211 default: break;
1212 case ARM::LDRrs:
1213 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1214 if (MI->getOperand(1).isFI() &&
1215 MI->getOperand(2).isReg() &&
1216 MI->getOperand(3).isImm() &&
1217 MI->getOperand(2).getReg() == 0 &&
1218 MI->getOperand(3).getImm() == 0) {
1219 FrameIndex = MI->getOperand(1).getIndex();
1220 return MI->getOperand(0).getReg();
1221 }
1222 break;
1223 case ARM::LDRi12:
1224 case ARM::t2LDRi12:
1225 case ARM::tLDRspi:
1226 case ARM::VLDRD:
1227 case ARM::VLDRS:
1228 if (MI->getOperand(1).isFI() &&
1229 MI->getOperand(2).isImm() &&
1230 MI->getOperand(2).getImm() == 0) {
1231 FrameIndex = MI->getOperand(1).getIndex();
1232 return MI->getOperand(0).getReg();
1233 }
1234 break;
1235 case ARM::VLD1q64:
1236 case ARM::VLD1d64TPseudo:
1237 case ARM::VLD1d64QPseudo:
1238 if (MI->getOperand(1).isFI() &&
1239 MI->getOperand(0).getSubReg() == 0) {
1240 FrameIndex = MI->getOperand(1).getIndex();
1241 return MI->getOperand(0).getReg();
1242 }
1243 break;
1244 case ARM::VLDMQIA:
1245 if (MI->getOperand(1).isFI() &&
1246 MI->getOperand(0).getSubReg() == 0) {
1247 FrameIndex = MI->getOperand(1).getIndex();
1248 return MI->getOperand(0).getReg();
1249 }
1250 break;
1251 }
1252
1253 return 0;
1254 }
1255
isLoadFromStackSlotPostFE(const MachineInstr * MI,int & FrameIndex) const1256 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
1257 int &FrameIndex) const {
1258 const MachineMemOperand *Dummy;
1259 return MI->mayLoad() && hasLoadFromStackSlot(MI, Dummy, FrameIndex);
1260 }
1261
1262 bool
expandPostRAPseudo(MachineBasicBlock::iterator MI) const1263 ARMBaseInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
1264 MachineFunction &MF = *MI->getParent()->getParent();
1265 Reloc::Model RM = MF.getTarget().getRelocationModel();
1266
1267 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1268 assert(getSubtarget().getTargetTriple().getObjectFormat() ==
1269 Triple::MachO &&
1270 "LOAD_STACK_GUARD currently supported only for MachO.");
1271 expandLoadStackGuard(MI, RM);
1272 MI->getParent()->erase(MI);
1273 return true;
1274 }
1275
1276 // This hook gets to expand COPY instructions before they become
1277 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1278 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1279 // changed into a VORR that can go down the NEON pipeline.
1280 if (!WidenVMOVS || !MI->isCopy() || Subtarget.isCortexA15() ||
1281 Subtarget.isFPOnlySP())
1282 return false;
1283
1284 // Look for a copy between even S-registers. That is where we keep floats
1285 // when using NEON v2f32 instructions for f32 arithmetic.
1286 unsigned DstRegS = MI->getOperand(0).getReg();
1287 unsigned SrcRegS = MI->getOperand(1).getReg();
1288 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1289 return false;
1290
1291 const TargetRegisterInfo *TRI = &getRegisterInfo();
1292 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1293 &ARM::DPRRegClass);
1294 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1295 &ARM::DPRRegClass);
1296 if (!DstRegD || !SrcRegD)
1297 return false;
1298
1299 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1300 // legal if the COPY already defines the full DstRegD, and it isn't a
1301 // sub-register insertion.
1302 if (!MI->definesRegister(DstRegD, TRI) || MI->readsRegister(DstRegD, TRI))
1303 return false;
1304
1305 // A dead copy shouldn't show up here, but reject it just in case.
1306 if (MI->getOperand(0).isDead())
1307 return false;
1308
1309 // All clear, widen the COPY.
1310 DEBUG(dbgs() << "widening: " << *MI);
1311 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
1312
1313 // Get rid of the old <imp-def> of DstRegD. Leave it if it defines a Q-reg
1314 // or some other super-register.
1315 int ImpDefIdx = MI->findRegisterDefOperandIdx(DstRegD);
1316 if (ImpDefIdx != -1)
1317 MI->RemoveOperand(ImpDefIdx);
1318
1319 // Change the opcode and operands.
1320 MI->setDesc(get(ARM::VMOVD));
1321 MI->getOperand(0).setReg(DstRegD);
1322 MI->getOperand(1).setReg(SrcRegD);
1323 AddDefaultPred(MIB);
1324
1325 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1326 // register scavenger and machine verifier, so we need to indicate that we
1327 // are reading an undefined value from SrcRegD, but a proper value from
1328 // SrcRegS.
1329 MI->getOperand(1).setIsUndef();
1330 MIB.addReg(SrcRegS, RegState::Implicit);
1331
1332 // SrcRegD may actually contain an unrelated value in the ssub_1
1333 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1334 if (MI->getOperand(1).isKill()) {
1335 MI->getOperand(1).setIsKill(false);
1336 MI->addRegisterKilled(SrcRegS, TRI, true);
1337 }
1338
1339 DEBUG(dbgs() << "replaced by: " << *MI);
1340 return true;
1341 }
1342
1343 /// Create a copy of a const pool value. Update CPI to the new index and return
1344 /// the label UID.
duplicateCPV(MachineFunction & MF,unsigned & CPI)1345 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1346 MachineConstantPool *MCP = MF.getConstantPool();
1347 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1348
1349 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1350 assert(MCPE.isMachineConstantPoolEntry() &&
1351 "Expecting a machine constantpool entry!");
1352 ARMConstantPoolValue *ACPV =
1353 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1354
1355 unsigned PCLabelId = AFI->createPICLabelUId();
1356 ARMConstantPoolValue *NewCPV = nullptr;
1357
1358 // FIXME: The below assumes PIC relocation model and that the function
1359 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1360 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1361 // instructions, so that's probably OK, but is PIC always correct when
1362 // we get here?
1363 if (ACPV->isGlobalValue())
1364 NewCPV = ARMConstantPoolConstant::
1365 Create(cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId,
1366 ARMCP::CPValue, 4);
1367 else if (ACPV->isExtSymbol())
1368 NewCPV = ARMConstantPoolSymbol::
1369 Create(MF.getFunction()->getContext(),
1370 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1371 else if (ACPV->isBlockAddress())
1372 NewCPV = ARMConstantPoolConstant::
1373 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1374 ARMCP::CPBlockAddress, 4);
1375 else if (ACPV->isLSDA())
1376 NewCPV = ARMConstantPoolConstant::Create(MF.getFunction(), PCLabelId,
1377 ARMCP::CPLSDA, 4);
1378 else if (ACPV->isMachineBasicBlock())
1379 NewCPV = ARMConstantPoolMBB::
1380 Create(MF.getFunction()->getContext(),
1381 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1382 else
1383 llvm_unreachable("Unexpected ARM constantpool value type!!");
1384 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1385 return PCLabelId;
1386 }
1387
1388 void ARMBaseInstrInfo::
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr * Orig,const TargetRegisterInfo & TRI) const1389 reMaterialize(MachineBasicBlock &MBB,
1390 MachineBasicBlock::iterator I,
1391 unsigned DestReg, unsigned SubIdx,
1392 const MachineInstr *Orig,
1393 const TargetRegisterInfo &TRI) const {
1394 unsigned Opcode = Orig->getOpcode();
1395 switch (Opcode) {
1396 default: {
1397 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
1398 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
1399 MBB.insert(I, MI);
1400 break;
1401 }
1402 case ARM::tLDRpci_pic:
1403 case ARM::t2LDRpci_pic: {
1404 MachineFunction &MF = *MBB.getParent();
1405 unsigned CPI = Orig->getOperand(1).getIndex();
1406 unsigned PCLabelId = duplicateCPV(MF, CPI);
1407 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1408 DestReg)
1409 .addConstantPoolIndex(CPI).addImm(PCLabelId);
1410 MIB->setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1411 break;
1412 }
1413 }
1414 }
1415
1416 MachineInstr *
duplicate(MachineInstr * Orig,MachineFunction & MF) const1417 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1418 MachineInstr *MI = TargetInstrInfo::duplicate(Orig, MF);
1419 switch(Orig->getOpcode()) {
1420 case ARM::tLDRpci_pic:
1421 case ARM::t2LDRpci_pic: {
1422 unsigned CPI = Orig->getOperand(1).getIndex();
1423 unsigned PCLabelId = duplicateCPV(MF, CPI);
1424 Orig->getOperand(1).setIndex(CPI);
1425 Orig->getOperand(2).setImm(PCLabelId);
1426 break;
1427 }
1428 }
1429 return MI;
1430 }
1431
produceSameValue(const MachineInstr * MI0,const MachineInstr * MI1,const MachineRegisterInfo * MRI) const1432 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1433 const MachineInstr *MI1,
1434 const MachineRegisterInfo *MRI) const {
1435 int Opcode = MI0->getOpcode();
1436 if (Opcode == ARM::t2LDRpci ||
1437 Opcode == ARM::t2LDRpci_pic ||
1438 Opcode == ARM::tLDRpci ||
1439 Opcode == ARM::tLDRpci_pic ||
1440 Opcode == ARM::LDRLIT_ga_pcrel ||
1441 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1442 Opcode == ARM::tLDRLIT_ga_pcrel ||
1443 Opcode == ARM::MOV_ga_pcrel ||
1444 Opcode == ARM::MOV_ga_pcrel_ldr ||
1445 Opcode == ARM::t2MOV_ga_pcrel) {
1446 if (MI1->getOpcode() != Opcode)
1447 return false;
1448 if (MI0->getNumOperands() != MI1->getNumOperands())
1449 return false;
1450
1451 const MachineOperand &MO0 = MI0->getOperand(1);
1452 const MachineOperand &MO1 = MI1->getOperand(1);
1453 if (MO0.getOffset() != MO1.getOffset())
1454 return false;
1455
1456 if (Opcode == ARM::LDRLIT_ga_pcrel ||
1457 Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1458 Opcode == ARM::tLDRLIT_ga_pcrel ||
1459 Opcode == ARM::MOV_ga_pcrel ||
1460 Opcode == ARM::MOV_ga_pcrel_ldr ||
1461 Opcode == ARM::t2MOV_ga_pcrel)
1462 // Ignore the PC labels.
1463 return MO0.getGlobal() == MO1.getGlobal();
1464
1465 const MachineFunction *MF = MI0->getParent()->getParent();
1466 const MachineConstantPool *MCP = MF->getConstantPool();
1467 int CPI0 = MO0.getIndex();
1468 int CPI1 = MO1.getIndex();
1469 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1470 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1471 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1472 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1473 if (isARMCP0 && isARMCP1) {
1474 ARMConstantPoolValue *ACPV0 =
1475 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1476 ARMConstantPoolValue *ACPV1 =
1477 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1478 return ACPV0->hasSameValue(ACPV1);
1479 } else if (!isARMCP0 && !isARMCP1) {
1480 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1481 }
1482 return false;
1483 } else if (Opcode == ARM::PICLDR) {
1484 if (MI1->getOpcode() != Opcode)
1485 return false;
1486 if (MI0->getNumOperands() != MI1->getNumOperands())
1487 return false;
1488
1489 unsigned Addr0 = MI0->getOperand(1).getReg();
1490 unsigned Addr1 = MI1->getOperand(1).getReg();
1491 if (Addr0 != Addr1) {
1492 if (!MRI ||
1493 !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1494 !TargetRegisterInfo::isVirtualRegister(Addr1))
1495 return false;
1496
1497 // This assumes SSA form.
1498 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1499 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1500 // Check if the loaded value, e.g. a constantpool of a global address, are
1501 // the same.
1502 if (!produceSameValue(Def0, Def1, MRI))
1503 return false;
1504 }
1505
1506 for (unsigned i = 3, e = MI0->getNumOperands(); i != e; ++i) {
1507 // %vreg12<def> = PICLDR %vreg11, 0, pred:14, pred:%noreg
1508 const MachineOperand &MO0 = MI0->getOperand(i);
1509 const MachineOperand &MO1 = MI1->getOperand(i);
1510 if (!MO0.isIdenticalTo(MO1))
1511 return false;
1512 }
1513 return true;
1514 }
1515
1516 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1517 }
1518
1519 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1520 /// determine if two loads are loading from the same base address. It should
1521 /// only return true if the base pointers are the same and the only differences
1522 /// between the two addresses is the offset. It also returns the offsets by
1523 /// reference.
1524 ///
1525 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1526 /// is permanently disabled.
areLoadsFromSameBasePtr(SDNode * Load1,SDNode * Load2,int64_t & Offset1,int64_t & Offset2) const1527 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1528 int64_t &Offset1,
1529 int64_t &Offset2) const {
1530 // Don't worry about Thumb: just ARM and Thumb2.
1531 if (Subtarget.isThumb1Only()) return false;
1532
1533 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1534 return false;
1535
1536 switch (Load1->getMachineOpcode()) {
1537 default:
1538 return false;
1539 case ARM::LDRi12:
1540 case ARM::LDRBi12:
1541 case ARM::LDRD:
1542 case ARM::LDRH:
1543 case ARM::LDRSB:
1544 case ARM::LDRSH:
1545 case ARM::VLDRD:
1546 case ARM::VLDRS:
1547 case ARM::t2LDRi8:
1548 case ARM::t2LDRBi8:
1549 case ARM::t2LDRDi8:
1550 case ARM::t2LDRSHi8:
1551 case ARM::t2LDRi12:
1552 case ARM::t2LDRBi12:
1553 case ARM::t2LDRSHi12:
1554 break;
1555 }
1556
1557 switch (Load2->getMachineOpcode()) {
1558 default:
1559 return false;
1560 case ARM::LDRi12:
1561 case ARM::LDRBi12:
1562 case ARM::LDRD:
1563 case ARM::LDRH:
1564 case ARM::LDRSB:
1565 case ARM::LDRSH:
1566 case ARM::VLDRD:
1567 case ARM::VLDRS:
1568 case ARM::t2LDRi8:
1569 case ARM::t2LDRBi8:
1570 case ARM::t2LDRSHi8:
1571 case ARM::t2LDRi12:
1572 case ARM::t2LDRBi12:
1573 case ARM::t2LDRSHi12:
1574 break;
1575 }
1576
1577 // Check if base addresses and chain operands match.
1578 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1579 Load1->getOperand(4) != Load2->getOperand(4))
1580 return false;
1581
1582 // Index should be Reg0.
1583 if (Load1->getOperand(3) != Load2->getOperand(3))
1584 return false;
1585
1586 // Determine the offsets.
1587 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1588 isa<ConstantSDNode>(Load2->getOperand(1))) {
1589 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1590 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1591 return true;
1592 }
1593
1594 return false;
1595 }
1596
1597 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1598 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1599 /// be scheduled togther. On some targets if two loads are loading from
1600 /// addresses in the same cache line, it's better if they are scheduled
1601 /// together. This function takes two integers that represent the load offsets
1602 /// from the common base address. It returns true if it decides it's desirable
1603 /// to schedule the two loads together. "NumLoads" is the number of loads that
1604 /// have already been scheduled after Load1.
1605 ///
1606 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1607 /// is permanently disabled.
shouldScheduleLoadsNear(SDNode * Load1,SDNode * Load2,int64_t Offset1,int64_t Offset2,unsigned NumLoads) const1608 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1609 int64_t Offset1, int64_t Offset2,
1610 unsigned NumLoads) const {
1611 // Don't worry about Thumb: just ARM and Thumb2.
1612 if (Subtarget.isThumb1Only()) return false;
1613
1614 assert(Offset2 > Offset1);
1615
1616 if ((Offset2 - Offset1) / 8 > 64)
1617 return false;
1618
1619 // Check if the machine opcodes are different. If they are different
1620 // then we consider them to not be of the same base address,
1621 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1622 // In this case, they are considered to be the same because they are different
1623 // encoding forms of the same basic instruction.
1624 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1625 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1626 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1627 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1628 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1629 return false; // FIXME: overly conservative?
1630
1631 // Four loads in a row should be sufficient.
1632 if (NumLoads >= 3)
1633 return false;
1634
1635 return true;
1636 }
1637
isSchedulingBoundary(const MachineInstr * MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const1638 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1639 const MachineBasicBlock *MBB,
1640 const MachineFunction &MF) const {
1641 // Debug info is never a scheduling boundary. It's necessary to be explicit
1642 // due to the special treatment of IT instructions below, otherwise a
1643 // dbg_value followed by an IT will result in the IT instruction being
1644 // considered a scheduling hazard, which is wrong. It should be the actual
1645 // instruction preceding the dbg_value instruction(s), just like it is
1646 // when debug info is not present.
1647 if (MI->isDebugValue())
1648 return false;
1649
1650 // Terminators and labels can't be scheduled around.
1651 if (MI->isTerminator() || MI->isPosition())
1652 return true;
1653
1654 // Treat the start of the IT block as a scheduling boundary, but schedule
1655 // t2IT along with all instructions following it.
1656 // FIXME: This is a big hammer. But the alternative is to add all potential
1657 // true and anti dependencies to IT block instructions as implicit operands
1658 // to the t2IT instruction. The added compile time and complexity does not
1659 // seem worth it.
1660 MachineBasicBlock::const_iterator I = MI;
1661 // Make sure to skip any dbg_value instructions
1662 while (++I != MBB->end() && I->isDebugValue())
1663 ;
1664 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1665 return true;
1666
1667 // Don't attempt to schedule around any instruction that defines
1668 // a stack-oriented pointer, as it's unlikely to be profitable. This
1669 // saves compile time, because it doesn't require every single
1670 // stack slot reference to depend on the instruction that does the
1671 // modification.
1672 // Calls don't actually change the stack pointer, even if they have imp-defs.
1673 // No ARM calling conventions change the stack pointer. (X86 calling
1674 // conventions sometimes do).
1675 if (!MI->isCall() && MI->definesRegister(ARM::SP))
1676 return true;
1677
1678 return false;
1679 }
1680
1681 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & MBB,unsigned NumCycles,unsigned ExtraPredCycles,const BranchProbability & Probability) const1682 isProfitableToIfCvt(MachineBasicBlock &MBB,
1683 unsigned NumCycles, unsigned ExtraPredCycles,
1684 const BranchProbability &Probability) const {
1685 if (!NumCycles)
1686 return false;
1687
1688 // Attempt to estimate the relative costs of predication versus branching.
1689 unsigned UnpredCost = Probability.getNumerator() * NumCycles;
1690 UnpredCost /= Probability.getDenominator();
1691 UnpredCost += 1; // The branch itself
1692 UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1693
1694 return (NumCycles + ExtraPredCycles) <= UnpredCost;
1695 }
1696
1697 bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock & TMBB,unsigned TCycles,unsigned TExtra,MachineBasicBlock & FMBB,unsigned FCycles,unsigned FExtra,const BranchProbability & Probability) const1698 isProfitableToIfCvt(MachineBasicBlock &TMBB,
1699 unsigned TCycles, unsigned TExtra,
1700 MachineBasicBlock &FMBB,
1701 unsigned FCycles, unsigned FExtra,
1702 const BranchProbability &Probability) const {
1703 if (!TCycles || !FCycles)
1704 return false;
1705
1706 // Attempt to estimate the relative costs of predication versus branching.
1707 unsigned TUnpredCost = Probability.getNumerator() * TCycles;
1708 TUnpredCost /= Probability.getDenominator();
1709
1710 uint32_t Comp = Probability.getDenominator() - Probability.getNumerator();
1711 unsigned FUnpredCost = Comp * FCycles;
1712 FUnpredCost /= Probability.getDenominator();
1713
1714 unsigned UnpredCost = TUnpredCost + FUnpredCost;
1715 UnpredCost += 1; // The branch itself
1716 UnpredCost += Subtarget.getMispredictionPenalty() / 10;
1717
1718 return (TCycles + FCycles + TExtra + FExtra) <= UnpredCost;
1719 }
1720
1721 bool
isProfitableToUnpredicate(MachineBasicBlock & TMBB,MachineBasicBlock & FMBB) const1722 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
1723 MachineBasicBlock &FMBB) const {
1724 // Reduce false anti-dependencies to let Swift's out-of-order execution
1725 // engine do its thing.
1726 return Subtarget.isSwift();
1727 }
1728
1729 /// getInstrPredicate - If instruction is predicated, returns its predicate
1730 /// condition, otherwise returns AL. It also returns the condition code
1731 /// register by reference.
1732 ARMCC::CondCodes
getInstrPredicate(const MachineInstr * MI,unsigned & PredReg)1733 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1734 int PIdx = MI->findFirstPredOperandIdx();
1735 if (PIdx == -1) {
1736 PredReg = 0;
1737 return ARMCC::AL;
1738 }
1739
1740 PredReg = MI->getOperand(PIdx+1).getReg();
1741 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1742 }
1743
1744
getMatchingCondBranchOpcode(int Opc)1745 int llvm::getMatchingCondBranchOpcode(int Opc) {
1746 if (Opc == ARM::B)
1747 return ARM::Bcc;
1748 if (Opc == ARM::tB)
1749 return ARM::tBcc;
1750 if (Opc == ARM::t2B)
1751 return ARM::t2Bcc;
1752
1753 llvm_unreachable("Unknown unconditional branch opcode!");
1754 }
1755
1756 /// commuteInstruction - Handle commutable instructions.
1757 MachineInstr *
commuteInstruction(MachineInstr * MI,bool NewMI) const1758 ARMBaseInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
1759 switch (MI->getOpcode()) {
1760 case ARM::MOVCCr:
1761 case ARM::t2MOVCCr: {
1762 // MOVCC can be commuted by inverting the condition.
1763 unsigned PredReg = 0;
1764 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
1765 // MOVCC AL can't be inverted. Shouldn't happen.
1766 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
1767 return nullptr;
1768 MI = TargetInstrInfo::commuteInstruction(MI, NewMI);
1769 if (!MI)
1770 return nullptr;
1771 // After swapping the MOVCC operands, also invert the condition.
1772 MI->getOperand(MI->findFirstPredOperandIdx())
1773 .setImm(ARMCC::getOppositeCondition(CC));
1774 return MI;
1775 }
1776 }
1777 return TargetInstrInfo::commuteInstruction(MI, NewMI);
1778 }
1779
1780 /// Identify instructions that can be folded into a MOVCC instruction, and
1781 /// return the defining instruction.
canFoldIntoMOVCC(unsigned Reg,const MachineRegisterInfo & MRI,const TargetInstrInfo * TII)1782 static MachineInstr *canFoldIntoMOVCC(unsigned Reg,
1783 const MachineRegisterInfo &MRI,
1784 const TargetInstrInfo *TII) {
1785 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1786 return nullptr;
1787 if (!MRI.hasOneNonDBGUse(Reg))
1788 return nullptr;
1789 MachineInstr *MI = MRI.getVRegDef(Reg);
1790 if (!MI)
1791 return nullptr;
1792 // MI is folded into the MOVCC by predicating it.
1793 if (!MI->isPredicable())
1794 return nullptr;
1795 // Check if MI has any non-dead defs or physreg uses. This also detects
1796 // predicated instructions which will be reading CPSR.
1797 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
1798 const MachineOperand &MO = MI->getOperand(i);
1799 // Reject frame index operands, PEI can't handle the predicated pseudos.
1800 if (MO.isFI() || MO.isCPI() || MO.isJTI())
1801 return nullptr;
1802 if (!MO.isReg())
1803 continue;
1804 // MI can't have any tied operands, that would conflict with predication.
1805 if (MO.isTied())
1806 return nullptr;
1807 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1808 return nullptr;
1809 if (MO.isDef() && !MO.isDead())
1810 return nullptr;
1811 }
1812 bool DontMoveAcrossStores = true;
1813 if (!MI->isSafeToMove(TII, /* AliasAnalysis = */ nullptr,
1814 DontMoveAcrossStores))
1815 return nullptr;
1816 return MI;
1817 }
1818
analyzeSelect(const MachineInstr * MI,SmallVectorImpl<MachineOperand> & Cond,unsigned & TrueOp,unsigned & FalseOp,bool & Optimizable) const1819 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr *MI,
1820 SmallVectorImpl<MachineOperand> &Cond,
1821 unsigned &TrueOp, unsigned &FalseOp,
1822 bool &Optimizable) const {
1823 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1824 "Unknown select instruction");
1825 // MOVCC operands:
1826 // 0: Def.
1827 // 1: True use.
1828 // 2: False use.
1829 // 3: Condition code.
1830 // 4: CPSR use.
1831 TrueOp = 1;
1832 FalseOp = 2;
1833 Cond.push_back(MI->getOperand(3));
1834 Cond.push_back(MI->getOperand(4));
1835 // We can always fold a def.
1836 Optimizable = true;
1837 return false;
1838 }
1839
1840 MachineInstr *
optimizeSelect(MachineInstr * MI,SmallPtrSetImpl<MachineInstr * > & SeenMIs,bool PreferFalse) const1841 ARMBaseInstrInfo::optimizeSelect(MachineInstr *MI,
1842 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
1843 bool PreferFalse) const {
1844 assert((MI->getOpcode() == ARM::MOVCCr || MI->getOpcode() == ARM::t2MOVCCr) &&
1845 "Unknown select instruction");
1846 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1847 MachineInstr *DefMI = canFoldIntoMOVCC(MI->getOperand(2).getReg(), MRI, this);
1848 bool Invert = !DefMI;
1849 if (!DefMI)
1850 DefMI = canFoldIntoMOVCC(MI->getOperand(1).getReg(), MRI, this);
1851 if (!DefMI)
1852 return nullptr;
1853
1854 // Find new register class to use.
1855 MachineOperand FalseReg = MI->getOperand(Invert ? 2 : 1);
1856 unsigned DestReg = MI->getOperand(0).getReg();
1857 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1858 if (!MRI.constrainRegClass(DestReg, PreviousClass))
1859 return nullptr;
1860
1861 // Create a new predicated version of DefMI.
1862 // Rfalse is the first use.
1863 MachineInstrBuilder NewMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1864 DefMI->getDesc(), DestReg);
1865
1866 // Copy all the DefMI operands, excluding its (null) predicate.
1867 const MCInstrDesc &DefDesc = DefMI->getDesc();
1868 for (unsigned i = 1, e = DefDesc.getNumOperands();
1869 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
1870 NewMI.addOperand(DefMI->getOperand(i));
1871
1872 unsigned CondCode = MI->getOperand(3).getImm();
1873 if (Invert)
1874 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
1875 else
1876 NewMI.addImm(CondCode);
1877 NewMI.addOperand(MI->getOperand(4));
1878
1879 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
1880 if (NewMI->hasOptionalDef())
1881 AddDefaultCC(NewMI);
1882
1883 // The output register value when the predicate is false is an implicit
1884 // register operand tied to the first def.
1885 // The tie makes the register allocator ensure the FalseReg is allocated the
1886 // same register as operand 0.
1887 FalseReg.setImplicit();
1888 NewMI.addOperand(FalseReg);
1889 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
1890
1891 // Update SeenMIs set: register newly created MI and erase removed DefMI.
1892 SeenMIs.insert(NewMI);
1893 SeenMIs.erase(DefMI);
1894
1895 // The caller will erase MI, but not DefMI.
1896 DefMI->eraseFromParent();
1897 return NewMI;
1898 }
1899
1900 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
1901 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
1902 /// def operand.
1903 ///
1904 /// This will go away once we can teach tblgen how to set the optional CPSR def
1905 /// operand itself.
1906 struct AddSubFlagsOpcodePair {
1907 uint16_t PseudoOpc;
1908 uint16_t MachineOpc;
1909 };
1910
1911 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
1912 {ARM::ADDSri, ARM::ADDri},
1913 {ARM::ADDSrr, ARM::ADDrr},
1914 {ARM::ADDSrsi, ARM::ADDrsi},
1915 {ARM::ADDSrsr, ARM::ADDrsr},
1916
1917 {ARM::SUBSri, ARM::SUBri},
1918 {ARM::SUBSrr, ARM::SUBrr},
1919 {ARM::SUBSrsi, ARM::SUBrsi},
1920 {ARM::SUBSrsr, ARM::SUBrsr},
1921
1922 {ARM::RSBSri, ARM::RSBri},
1923 {ARM::RSBSrsi, ARM::RSBrsi},
1924 {ARM::RSBSrsr, ARM::RSBrsr},
1925
1926 {ARM::t2ADDSri, ARM::t2ADDri},
1927 {ARM::t2ADDSrr, ARM::t2ADDrr},
1928 {ARM::t2ADDSrs, ARM::t2ADDrs},
1929
1930 {ARM::t2SUBSri, ARM::t2SUBri},
1931 {ARM::t2SUBSrr, ARM::t2SUBrr},
1932 {ARM::t2SUBSrs, ARM::t2SUBrs},
1933
1934 {ARM::t2RSBSri, ARM::t2RSBri},
1935 {ARM::t2RSBSrs, ARM::t2RSBrs},
1936 };
1937
convertAddSubFlagsOpcode(unsigned OldOpc)1938 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
1939 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
1940 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
1941 return AddSubFlagsOpcodeMap[i].MachineOpc;
1942 return 0;
1943 }
1944
emitARMRegPlusImmediate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,DebugLoc dl,unsigned DestReg,unsigned BaseReg,int NumBytes,ARMCC::CondCodes Pred,unsigned PredReg,const ARMBaseInstrInfo & TII,unsigned MIFlags)1945 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1946 MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1947 unsigned DestReg, unsigned BaseReg, int NumBytes,
1948 ARMCC::CondCodes Pred, unsigned PredReg,
1949 const ARMBaseInstrInfo &TII, unsigned MIFlags) {
1950 if (NumBytes == 0 && DestReg != BaseReg) {
1951 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
1952 .addReg(BaseReg, RegState::Kill)
1953 .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1954 .setMIFlags(MIFlags);
1955 return;
1956 }
1957
1958 bool isSub = NumBytes < 0;
1959 if (isSub) NumBytes = -NumBytes;
1960
1961 while (NumBytes) {
1962 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1963 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1964 assert(ThisVal && "Didn't extract field correctly");
1965
1966 // We will handle these bits from offset, clear them.
1967 NumBytes &= ~ThisVal;
1968
1969 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1970
1971 // Build the new ADD / SUB.
1972 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1973 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1974 .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1975 .addImm((unsigned)Pred).addReg(PredReg).addReg(0)
1976 .setMIFlags(MIFlags);
1977 BaseReg = DestReg;
1978 }
1979 }
1980
isAnySubRegLive(unsigned Reg,const TargetRegisterInfo * TRI,MachineInstr * MI)1981 static bool isAnySubRegLive(unsigned Reg, const TargetRegisterInfo *TRI,
1982 MachineInstr *MI) {
1983 for (MCSubRegIterator Subreg(Reg, TRI, /* IncludeSelf */ true);
1984 Subreg.isValid(); ++Subreg)
1985 if (MI->getParent()->computeRegisterLiveness(TRI, *Subreg, MI) !=
1986 MachineBasicBlock::LQR_Dead)
1987 return true;
1988 return false;
1989 }
tryFoldSPUpdateIntoPushPop(const ARMSubtarget & Subtarget,MachineFunction & MF,MachineInstr * MI,unsigned NumBytes)1990 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
1991 MachineFunction &MF, MachineInstr *MI,
1992 unsigned NumBytes) {
1993 // This optimisation potentially adds lots of load and store
1994 // micro-operations, it's only really a great benefit to code-size.
1995 if (!MF.getFunction()->hasFnAttribute(Attribute::MinSize))
1996 return false;
1997
1998 // If only one register is pushed/popped, LLVM can use an LDR/STR
1999 // instead. We can't modify those so make sure we're dealing with an
2000 // instruction we understand.
2001 bool IsPop = isPopOpcode(MI->getOpcode());
2002 bool IsPush = isPushOpcode(MI->getOpcode());
2003 if (!IsPush && !IsPop)
2004 return false;
2005
2006 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2007 MI->getOpcode() == ARM::VLDMDIA_UPD;
2008 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2009 MI->getOpcode() == ARM::tPOP ||
2010 MI->getOpcode() == ARM::tPOP_RET;
2011
2012 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2013 MI->getOperand(1).getReg() == ARM::SP)) &&
2014 "trying to fold sp update into non-sp-updating push/pop");
2015
2016 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2017 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2018 // if this is violated.
2019 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2020 return false;
2021
2022 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2023 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2024 int RegListIdx = IsT1PushPop ? 2 : 4;
2025
2026 // Calculate the space we'll need in terms of registers.
2027 unsigned FirstReg = MI->getOperand(RegListIdx).getReg();
2028 unsigned RD0Reg, RegsNeeded;
2029 if (IsVFPPushPop) {
2030 RD0Reg = ARM::D0;
2031 RegsNeeded = NumBytes / 8;
2032 } else {
2033 RD0Reg = ARM::R0;
2034 RegsNeeded = NumBytes / 4;
2035 }
2036
2037 // We're going to have to strip all list operands off before
2038 // re-adding them since the order matters, so save the existing ones
2039 // for later.
2040 SmallVector<MachineOperand, 4> RegList;
2041 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2042 RegList.push_back(MI->getOperand(i));
2043
2044 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2045 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2046
2047 // Now try to find enough space in the reglist to allocate NumBytes.
2048 for (unsigned CurReg = FirstReg - 1; CurReg >= RD0Reg && RegsNeeded;
2049 --CurReg) {
2050 if (!IsPop) {
2051 // Pushing any register is completely harmless, mark the
2052 // register involved as undef since we don't care about it in
2053 // the slightest.
2054 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2055 false, false, true));
2056 --RegsNeeded;
2057 continue;
2058 }
2059
2060 // However, we can only pop an extra register if it's not live. For
2061 // registers live within the function we might clobber a return value
2062 // register; the other way a register can be live here is if it's
2063 // callee-saved.
2064 // TODO: Currently, computeRegisterLiveness() does not report "live" if a
2065 // sub reg is live. When computeRegisterLiveness() works for sub reg, it
2066 // can replace isAnySubRegLive().
2067 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2068 isAnySubRegLive(CurReg, TRI, MI)) {
2069 // VFP pops don't allow holes in the register list, so any skip is fatal
2070 // for our transformation. GPR pops do, so we should just keep looking.
2071 if (IsVFPPushPop)
2072 return false;
2073 else
2074 continue;
2075 }
2076
2077 // Mark the unimportant registers as <def,dead> in the POP.
2078 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2079 true));
2080 --RegsNeeded;
2081 }
2082
2083 if (RegsNeeded > 0)
2084 return false;
2085
2086 // Finally we know we can profitably perform the optimisation so go
2087 // ahead: strip all existing registers off and add them back again
2088 // in the right order.
2089 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2090 MI->RemoveOperand(i);
2091
2092 // Add the complete list back in.
2093 MachineInstrBuilder MIB(MF, &*MI);
2094 for (int i = RegList.size() - 1; i >= 0; --i)
2095 MIB.addOperand(RegList[i]);
2096
2097 return true;
2098 }
2099
rewriteARMFrameIndex(MachineInstr & MI,unsigned FrameRegIdx,unsigned FrameReg,int & Offset,const ARMBaseInstrInfo & TII)2100 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2101 unsigned FrameReg, int &Offset,
2102 const ARMBaseInstrInfo &TII) {
2103 unsigned Opcode = MI.getOpcode();
2104 const MCInstrDesc &Desc = MI.getDesc();
2105 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2106 bool isSub = false;
2107
2108 // Memory operands in inline assembly always use AddrMode2.
2109 if (Opcode == ARM::INLINEASM)
2110 AddrMode = ARMII::AddrMode2;
2111
2112 if (Opcode == ARM::ADDri) {
2113 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2114 if (Offset == 0) {
2115 // Turn it into a move.
2116 MI.setDesc(TII.get(ARM::MOVr));
2117 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2118 MI.RemoveOperand(FrameRegIdx+1);
2119 Offset = 0;
2120 return true;
2121 } else if (Offset < 0) {
2122 Offset = -Offset;
2123 isSub = true;
2124 MI.setDesc(TII.get(ARM::SUBri));
2125 }
2126
2127 // Common case: small offset, fits into instruction.
2128 if (ARM_AM::getSOImmVal(Offset) != -1) {
2129 // Replace the FrameIndex with sp / fp
2130 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2131 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2132 Offset = 0;
2133 return true;
2134 }
2135
2136 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2137 // as possible.
2138 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2139 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2140
2141 // We will handle these bits from offset, clear them.
2142 Offset &= ~ThisImmVal;
2143
2144 // Get the properly encoded SOImmVal field.
2145 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2146 "Bit extraction didn't work?");
2147 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2148 } else {
2149 unsigned ImmIdx = 0;
2150 int InstrOffs = 0;
2151 unsigned NumBits = 0;
2152 unsigned Scale = 1;
2153 switch (AddrMode) {
2154 case ARMII::AddrMode_i12: {
2155 ImmIdx = FrameRegIdx + 1;
2156 InstrOffs = MI.getOperand(ImmIdx).getImm();
2157 NumBits = 12;
2158 break;
2159 }
2160 case ARMII::AddrMode2: {
2161 ImmIdx = FrameRegIdx+2;
2162 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2163 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2164 InstrOffs *= -1;
2165 NumBits = 12;
2166 break;
2167 }
2168 case ARMII::AddrMode3: {
2169 ImmIdx = FrameRegIdx+2;
2170 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2171 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2172 InstrOffs *= -1;
2173 NumBits = 8;
2174 break;
2175 }
2176 case ARMII::AddrMode4:
2177 case ARMII::AddrMode6:
2178 // Can't fold any offset even if it's zero.
2179 return false;
2180 case ARMII::AddrMode5: {
2181 ImmIdx = FrameRegIdx+1;
2182 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2183 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2184 InstrOffs *= -1;
2185 NumBits = 8;
2186 Scale = 4;
2187 break;
2188 }
2189 default:
2190 llvm_unreachable("Unsupported addressing mode!");
2191 }
2192
2193 Offset += InstrOffs * Scale;
2194 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2195 if (Offset < 0) {
2196 Offset = -Offset;
2197 isSub = true;
2198 }
2199
2200 // Attempt to fold address comp. if opcode has offset bits
2201 if (NumBits > 0) {
2202 // Common case: small offset, fits into instruction.
2203 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2204 int ImmedOffset = Offset / Scale;
2205 unsigned Mask = (1 << NumBits) - 1;
2206 if ((unsigned)Offset <= Mask * Scale) {
2207 // Replace the FrameIndex with sp
2208 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2209 // FIXME: When addrmode2 goes away, this will simplify (like the
2210 // T2 version), as the LDR.i12 versions don't need the encoding
2211 // tricks for the offset value.
2212 if (isSub) {
2213 if (AddrMode == ARMII::AddrMode_i12)
2214 ImmedOffset = -ImmedOffset;
2215 else
2216 ImmedOffset |= 1 << NumBits;
2217 }
2218 ImmOp.ChangeToImmediate(ImmedOffset);
2219 Offset = 0;
2220 return true;
2221 }
2222
2223 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2224 ImmedOffset = ImmedOffset & Mask;
2225 if (isSub) {
2226 if (AddrMode == ARMII::AddrMode_i12)
2227 ImmedOffset = -ImmedOffset;
2228 else
2229 ImmedOffset |= 1 << NumBits;
2230 }
2231 ImmOp.ChangeToImmediate(ImmedOffset);
2232 Offset &= ~(Mask*Scale);
2233 }
2234 }
2235
2236 Offset = (isSub) ? -Offset : Offset;
2237 return Offset == 0;
2238 }
2239
2240 /// analyzeCompare - For a comparison instruction, return the source registers
2241 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2242 /// compares against in CmpValue. Return true if the comparison instruction
2243 /// can be analyzed.
2244 bool ARMBaseInstrInfo::
analyzeCompare(const MachineInstr * MI,unsigned & SrcReg,unsigned & SrcReg2,int & CmpMask,int & CmpValue) const2245 analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
2246 int &CmpMask, int &CmpValue) const {
2247 switch (MI->getOpcode()) {
2248 default: break;
2249 case ARM::CMPri:
2250 case ARM::t2CMPri:
2251 SrcReg = MI->getOperand(0).getReg();
2252 SrcReg2 = 0;
2253 CmpMask = ~0;
2254 CmpValue = MI->getOperand(1).getImm();
2255 return true;
2256 case ARM::CMPrr:
2257 case ARM::t2CMPrr:
2258 SrcReg = MI->getOperand(0).getReg();
2259 SrcReg2 = MI->getOperand(1).getReg();
2260 CmpMask = ~0;
2261 CmpValue = 0;
2262 return true;
2263 case ARM::TSTri:
2264 case ARM::t2TSTri:
2265 SrcReg = MI->getOperand(0).getReg();
2266 SrcReg2 = 0;
2267 CmpMask = MI->getOperand(1).getImm();
2268 CmpValue = 0;
2269 return true;
2270 }
2271
2272 return false;
2273 }
2274
2275 /// isSuitableForMask - Identify a suitable 'and' instruction that
2276 /// operates on the given source register and applies the same mask
2277 /// as a 'tst' instruction. Provide a limited look-through for copies.
2278 /// When successful, MI will hold the found instruction.
isSuitableForMask(MachineInstr * & MI,unsigned SrcReg,int CmpMask,bool CommonUse)2279 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2280 int CmpMask, bool CommonUse) {
2281 switch (MI->getOpcode()) {
2282 case ARM::ANDri:
2283 case ARM::t2ANDri:
2284 if (CmpMask != MI->getOperand(2).getImm())
2285 return false;
2286 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2287 return true;
2288 break;
2289 case ARM::COPY: {
2290 // Walk down one instruction which is potentially an 'and'.
2291 const MachineInstr &Copy = *MI;
2292 MachineBasicBlock::iterator AND(
2293 std::next(MachineBasicBlock::iterator(MI)));
2294 if (AND == MI->getParent()->end()) return false;
2295 MI = AND;
2296 return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
2297 CmpMask, true);
2298 }
2299 }
2300
2301 return false;
2302 }
2303
2304 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2305 /// the condition code if we modify the instructions such that flags are
2306 /// set by MI(b,a).
getSwappedCondition(ARMCC::CondCodes CC)2307 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2308 switch (CC) {
2309 default: return ARMCC::AL;
2310 case ARMCC::EQ: return ARMCC::EQ;
2311 case ARMCC::NE: return ARMCC::NE;
2312 case ARMCC::HS: return ARMCC::LS;
2313 case ARMCC::LO: return ARMCC::HI;
2314 case ARMCC::HI: return ARMCC::LO;
2315 case ARMCC::LS: return ARMCC::HS;
2316 case ARMCC::GE: return ARMCC::LE;
2317 case ARMCC::LT: return ARMCC::GT;
2318 case ARMCC::GT: return ARMCC::LT;
2319 case ARMCC::LE: return ARMCC::GE;
2320 }
2321 }
2322
2323 /// isRedundantFlagInstr - check whether the first instruction, whose only
2324 /// purpose is to update flags, can be made redundant.
2325 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2326 /// CMPri can be made redundant by SUBri if the operands are the same.
2327 /// This function can be extended later on.
isRedundantFlagInstr(MachineInstr * CmpI,unsigned SrcReg,unsigned SrcReg2,int ImmValue,MachineInstr * OI)2328 inline static bool isRedundantFlagInstr(MachineInstr *CmpI, unsigned SrcReg,
2329 unsigned SrcReg2, int ImmValue,
2330 MachineInstr *OI) {
2331 if ((CmpI->getOpcode() == ARM::CMPrr ||
2332 CmpI->getOpcode() == ARM::t2CMPrr) &&
2333 (OI->getOpcode() == ARM::SUBrr ||
2334 OI->getOpcode() == ARM::t2SUBrr) &&
2335 ((OI->getOperand(1).getReg() == SrcReg &&
2336 OI->getOperand(2).getReg() == SrcReg2) ||
2337 (OI->getOperand(1).getReg() == SrcReg2 &&
2338 OI->getOperand(2).getReg() == SrcReg)))
2339 return true;
2340
2341 if ((CmpI->getOpcode() == ARM::CMPri ||
2342 CmpI->getOpcode() == ARM::t2CMPri) &&
2343 (OI->getOpcode() == ARM::SUBri ||
2344 OI->getOpcode() == ARM::t2SUBri) &&
2345 OI->getOperand(1).getReg() == SrcReg &&
2346 OI->getOperand(2).getImm() == ImmValue)
2347 return true;
2348 return false;
2349 }
2350
2351 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2352 /// comparison into one that sets the zero bit in the flags register;
2353 /// Remove a redundant Compare instruction if an earlier instruction can set the
2354 /// flags in the same way as Compare.
2355 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2356 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2357 /// condition code of instructions which use the flags.
2358 bool ARMBaseInstrInfo::
optimizeCompareInstr(MachineInstr * CmpInstr,unsigned SrcReg,unsigned SrcReg2,int CmpMask,int CmpValue,const MachineRegisterInfo * MRI) const2359 optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
2360 int CmpMask, int CmpValue,
2361 const MachineRegisterInfo *MRI) const {
2362 // Get the unique definition of SrcReg.
2363 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2364 if (!MI) return false;
2365
2366 // Masked compares sometimes use the same register as the corresponding 'and'.
2367 if (CmpMask != ~0) {
2368 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(MI)) {
2369 MI = nullptr;
2370 for (MachineRegisterInfo::use_instr_iterator
2371 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2372 UI != UE; ++UI) {
2373 if (UI->getParent() != CmpInstr->getParent()) continue;
2374 MachineInstr *PotentialAND = &*UI;
2375 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2376 isPredicated(PotentialAND))
2377 continue;
2378 MI = PotentialAND;
2379 break;
2380 }
2381 if (!MI) return false;
2382 }
2383 }
2384
2385 // Get ready to iterate backward from CmpInstr.
2386 MachineBasicBlock::iterator I = CmpInstr, E = MI,
2387 B = CmpInstr->getParent()->begin();
2388
2389 // Early exit if CmpInstr is at the beginning of the BB.
2390 if (I == B) return false;
2391
2392 // There are two possible candidates which can be changed to set CPSR:
2393 // One is MI, the other is a SUB instruction.
2394 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2395 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2396 MachineInstr *Sub = nullptr;
2397 if (SrcReg2 != 0)
2398 // MI is not a candidate for CMPrr.
2399 MI = nullptr;
2400 else if (MI->getParent() != CmpInstr->getParent() || CmpValue != 0) {
2401 // Conservatively refuse to convert an instruction which isn't in the same
2402 // BB as the comparison.
2403 // For CMPri w/ CmpValue != 0, a Sub may still be a candidate.
2404 // Thus we cannot return here.
2405 if (CmpInstr->getOpcode() == ARM::CMPri ||
2406 CmpInstr->getOpcode() == ARM::t2CMPri)
2407 MI = nullptr;
2408 else
2409 return false;
2410 }
2411
2412 // Check that CPSR isn't set between the comparison instruction and the one we
2413 // want to change. At the same time, search for Sub.
2414 const TargetRegisterInfo *TRI = &getRegisterInfo();
2415 --I;
2416 for (; I != E; --I) {
2417 const MachineInstr &Instr = *I;
2418
2419 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2420 Instr.readsRegister(ARM::CPSR, TRI))
2421 // This instruction modifies or uses CPSR after the one we want to
2422 // change. We can't do this transformation.
2423 return false;
2424
2425 // Check whether CmpInstr can be made redundant by the current instruction.
2426 if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, &*I)) {
2427 Sub = &*I;
2428 break;
2429 }
2430
2431 if (I == B)
2432 // The 'and' is below the comparison instruction.
2433 return false;
2434 }
2435
2436 // Return false if no candidates exist.
2437 if (!MI && !Sub)
2438 return false;
2439
2440 // The single candidate is called MI.
2441 if (!MI) MI = Sub;
2442
2443 // We can't use a predicated instruction - it doesn't always write the flags.
2444 if (isPredicated(MI))
2445 return false;
2446
2447 switch (MI->getOpcode()) {
2448 default: break;
2449 case ARM::RSBrr:
2450 case ARM::RSBri:
2451 case ARM::RSCrr:
2452 case ARM::RSCri:
2453 case ARM::ADDrr:
2454 case ARM::ADDri:
2455 case ARM::ADCrr:
2456 case ARM::ADCri:
2457 case ARM::SUBrr:
2458 case ARM::SUBri:
2459 case ARM::SBCrr:
2460 case ARM::SBCri:
2461 case ARM::t2RSBri:
2462 case ARM::t2ADDrr:
2463 case ARM::t2ADDri:
2464 case ARM::t2ADCrr:
2465 case ARM::t2ADCri:
2466 case ARM::t2SUBrr:
2467 case ARM::t2SUBri:
2468 case ARM::t2SBCrr:
2469 case ARM::t2SBCri:
2470 case ARM::ANDrr:
2471 case ARM::ANDri:
2472 case ARM::t2ANDrr:
2473 case ARM::t2ANDri:
2474 case ARM::ORRrr:
2475 case ARM::ORRri:
2476 case ARM::t2ORRrr:
2477 case ARM::t2ORRri:
2478 case ARM::EORrr:
2479 case ARM::EORri:
2480 case ARM::t2EORrr:
2481 case ARM::t2EORri: {
2482 // Scan forward for the use of CPSR
2483 // When checking against MI: if it's a conditional code that requires
2484 // checking of the V bit or C bit, then this is not safe to do.
2485 // It is safe to remove CmpInstr if CPSR is redefined or killed.
2486 // If we are done with the basic block, we need to check whether CPSR is
2487 // live-out.
2488 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
2489 OperandsToUpdate;
2490 bool isSafe = false;
2491 I = CmpInstr;
2492 E = CmpInstr->getParent()->end();
2493 while (!isSafe && ++I != E) {
2494 const MachineInstr &Instr = *I;
2495 for (unsigned IO = 0, EO = Instr.getNumOperands();
2496 !isSafe && IO != EO; ++IO) {
2497 const MachineOperand &MO = Instr.getOperand(IO);
2498 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
2499 isSafe = true;
2500 break;
2501 }
2502 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
2503 continue;
2504 if (MO.isDef()) {
2505 isSafe = true;
2506 break;
2507 }
2508 // Condition code is after the operand before CPSR except for VSELs.
2509 ARMCC::CondCodes CC;
2510 bool IsInstrVSel = true;
2511 switch (Instr.getOpcode()) {
2512 default:
2513 IsInstrVSel = false;
2514 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
2515 break;
2516 case ARM::VSELEQD:
2517 case ARM::VSELEQS:
2518 CC = ARMCC::EQ;
2519 break;
2520 case ARM::VSELGTD:
2521 case ARM::VSELGTS:
2522 CC = ARMCC::GT;
2523 break;
2524 case ARM::VSELGED:
2525 case ARM::VSELGES:
2526 CC = ARMCC::GE;
2527 break;
2528 case ARM::VSELVSS:
2529 case ARM::VSELVSD:
2530 CC = ARMCC::VS;
2531 break;
2532 }
2533
2534 if (Sub) {
2535 ARMCC::CondCodes NewCC = getSwappedCondition(CC);
2536 if (NewCC == ARMCC::AL)
2537 return false;
2538 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
2539 // on CMP needs to be updated to be based on SUB.
2540 // Push the condition code operands to OperandsToUpdate.
2541 // If it is safe to remove CmpInstr, the condition code of these
2542 // operands will be modified.
2543 if (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2544 Sub->getOperand(2).getReg() == SrcReg) {
2545 // VSel doesn't support condition code update.
2546 if (IsInstrVSel)
2547 return false;
2548 OperandsToUpdate.push_back(
2549 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
2550 }
2551 } else {
2552 // No Sub, so this is x = <op> y, z; cmp x, 0.
2553 switch (CC) {
2554 case ARMCC::EQ: // Z
2555 case ARMCC::NE: // Z
2556 case ARMCC::MI: // N
2557 case ARMCC::PL: // N
2558 case ARMCC::AL: // none
2559 // CPSR can be used multiple times, we should continue.
2560 break;
2561 case ARMCC::HS: // C
2562 case ARMCC::LO: // C
2563 case ARMCC::VS: // V
2564 case ARMCC::VC: // V
2565 case ARMCC::HI: // C Z
2566 case ARMCC::LS: // C Z
2567 case ARMCC::GE: // N V
2568 case ARMCC::LT: // N V
2569 case ARMCC::GT: // Z N V
2570 case ARMCC::LE: // Z N V
2571 // The instruction uses the V bit or C bit which is not safe.
2572 return false;
2573 }
2574 }
2575 }
2576 }
2577
2578 // If CPSR is not killed nor re-defined, we should check whether it is
2579 // live-out. If it is live-out, do not optimize.
2580 if (!isSafe) {
2581 MachineBasicBlock *MBB = CmpInstr->getParent();
2582 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
2583 SE = MBB->succ_end(); SI != SE; ++SI)
2584 if ((*SI)->isLiveIn(ARM::CPSR))
2585 return false;
2586 }
2587
2588 // Toggle the optional operand to CPSR.
2589 MI->getOperand(5).setReg(ARM::CPSR);
2590 MI->getOperand(5).setIsDef(true);
2591 assert(!isPredicated(MI) && "Can't use flags from predicated instruction");
2592 CmpInstr->eraseFromParent();
2593
2594 // Modify the condition code of operands in OperandsToUpdate.
2595 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2596 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2597 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
2598 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
2599 return true;
2600 }
2601 }
2602
2603 return false;
2604 }
2605
FoldImmediate(MachineInstr * UseMI,MachineInstr * DefMI,unsigned Reg,MachineRegisterInfo * MRI) const2606 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr *UseMI,
2607 MachineInstr *DefMI, unsigned Reg,
2608 MachineRegisterInfo *MRI) const {
2609 // Fold large immediates into add, sub, or, xor.
2610 unsigned DefOpc = DefMI->getOpcode();
2611 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
2612 return false;
2613 if (!DefMI->getOperand(1).isImm())
2614 // Could be t2MOVi32imm <ga:xx>
2615 return false;
2616
2617 if (!MRI->hasOneNonDBGUse(Reg))
2618 return false;
2619
2620 const MCInstrDesc &DefMCID = DefMI->getDesc();
2621 if (DefMCID.hasOptionalDef()) {
2622 unsigned NumOps = DefMCID.getNumOperands();
2623 const MachineOperand &MO = DefMI->getOperand(NumOps-1);
2624 if (MO.getReg() == ARM::CPSR && !MO.isDead())
2625 // If DefMI defines CPSR and it is not dead, it's obviously not safe
2626 // to delete DefMI.
2627 return false;
2628 }
2629
2630 const MCInstrDesc &UseMCID = UseMI->getDesc();
2631 if (UseMCID.hasOptionalDef()) {
2632 unsigned NumOps = UseMCID.getNumOperands();
2633 if (UseMI->getOperand(NumOps-1).getReg() == ARM::CPSR)
2634 // If the instruction sets the flag, do not attempt this optimization
2635 // since it may change the semantics of the code.
2636 return false;
2637 }
2638
2639 unsigned UseOpc = UseMI->getOpcode();
2640 unsigned NewUseOpc = 0;
2641 uint32_t ImmVal = (uint32_t)DefMI->getOperand(1).getImm();
2642 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
2643 bool Commute = false;
2644 switch (UseOpc) {
2645 default: return false;
2646 case ARM::SUBrr:
2647 case ARM::ADDrr:
2648 case ARM::ORRrr:
2649 case ARM::EORrr:
2650 case ARM::t2SUBrr:
2651 case ARM::t2ADDrr:
2652 case ARM::t2ORRrr:
2653 case ARM::t2EORrr: {
2654 Commute = UseMI->getOperand(2).getReg() != Reg;
2655 switch (UseOpc) {
2656 default: break;
2657 case ARM::SUBrr: {
2658 if (Commute)
2659 return false;
2660 ImmVal = -ImmVal;
2661 NewUseOpc = ARM::SUBri;
2662 // Fallthrough
2663 }
2664 case ARM::ADDrr:
2665 case ARM::ORRrr:
2666 case ARM::EORrr: {
2667 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
2668 return false;
2669 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
2670 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
2671 switch (UseOpc) {
2672 default: break;
2673 case ARM::ADDrr: NewUseOpc = ARM::ADDri; break;
2674 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
2675 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
2676 }
2677 break;
2678 }
2679 case ARM::t2SUBrr: {
2680 if (Commute)
2681 return false;
2682 ImmVal = -ImmVal;
2683 NewUseOpc = ARM::t2SUBri;
2684 // Fallthrough
2685 }
2686 case ARM::t2ADDrr:
2687 case ARM::t2ORRrr:
2688 case ARM::t2EORrr: {
2689 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
2690 return false;
2691 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
2692 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
2693 switch (UseOpc) {
2694 default: break;
2695 case ARM::t2ADDrr: NewUseOpc = ARM::t2ADDri; break;
2696 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
2697 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
2698 }
2699 break;
2700 }
2701 }
2702 }
2703 }
2704
2705 unsigned OpIdx = Commute ? 2 : 1;
2706 unsigned Reg1 = UseMI->getOperand(OpIdx).getReg();
2707 bool isKill = UseMI->getOperand(OpIdx).isKill();
2708 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
2709 AddDefaultCC(AddDefaultPred(BuildMI(*UseMI->getParent(),
2710 UseMI, UseMI->getDebugLoc(),
2711 get(NewUseOpc), NewReg)
2712 .addReg(Reg1, getKillRegState(isKill))
2713 .addImm(SOImmValV1)));
2714 UseMI->setDesc(get(NewUseOpc));
2715 UseMI->getOperand(1).setReg(NewReg);
2716 UseMI->getOperand(1).setIsKill();
2717 UseMI->getOperand(2).ChangeToImmediate(SOImmValV2);
2718 DefMI->eraseFromParent();
2719 return true;
2720 }
2721
getNumMicroOpsSwiftLdSt(const InstrItineraryData * ItinData,const MachineInstr * MI)2722 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
2723 const MachineInstr *MI) {
2724 switch (MI->getOpcode()) {
2725 default: {
2726 const MCInstrDesc &Desc = MI->getDesc();
2727 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
2728 assert(UOps >= 0 && "bad # UOps");
2729 return UOps;
2730 }
2731
2732 case ARM::LDRrs:
2733 case ARM::LDRBrs:
2734 case ARM::STRrs:
2735 case ARM::STRBrs: {
2736 unsigned ShOpVal = MI->getOperand(3).getImm();
2737 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2738 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2739 if (!isSub &&
2740 (ShImm == 0 ||
2741 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2742 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2743 return 1;
2744 return 2;
2745 }
2746
2747 case ARM::LDRH:
2748 case ARM::STRH: {
2749 if (!MI->getOperand(2).getReg())
2750 return 1;
2751
2752 unsigned ShOpVal = MI->getOperand(3).getImm();
2753 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2754 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2755 if (!isSub &&
2756 (ShImm == 0 ||
2757 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2758 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2759 return 1;
2760 return 2;
2761 }
2762
2763 case ARM::LDRSB:
2764 case ARM::LDRSH:
2765 return (ARM_AM::getAM3Op(MI->getOperand(3).getImm()) == ARM_AM::sub) ? 3:2;
2766
2767 case ARM::LDRSB_POST:
2768 case ARM::LDRSH_POST: {
2769 unsigned Rt = MI->getOperand(0).getReg();
2770 unsigned Rm = MI->getOperand(3).getReg();
2771 return (Rt == Rm) ? 4 : 3;
2772 }
2773
2774 case ARM::LDR_PRE_REG:
2775 case ARM::LDRB_PRE_REG: {
2776 unsigned Rt = MI->getOperand(0).getReg();
2777 unsigned Rm = MI->getOperand(3).getReg();
2778 if (Rt == Rm)
2779 return 3;
2780 unsigned ShOpVal = MI->getOperand(4).getImm();
2781 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2782 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2783 if (!isSub &&
2784 (ShImm == 0 ||
2785 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2786 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2787 return 2;
2788 return 3;
2789 }
2790
2791 case ARM::STR_PRE_REG:
2792 case ARM::STRB_PRE_REG: {
2793 unsigned ShOpVal = MI->getOperand(4).getImm();
2794 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2795 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2796 if (!isSub &&
2797 (ShImm == 0 ||
2798 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2799 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2800 return 2;
2801 return 3;
2802 }
2803
2804 case ARM::LDRH_PRE:
2805 case ARM::STRH_PRE: {
2806 unsigned Rt = MI->getOperand(0).getReg();
2807 unsigned Rm = MI->getOperand(3).getReg();
2808 if (!Rm)
2809 return 2;
2810 if (Rt == Rm)
2811 return 3;
2812 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub)
2813 ? 3 : 2;
2814 }
2815
2816 case ARM::LDR_POST_REG:
2817 case ARM::LDRB_POST_REG:
2818 case ARM::LDRH_POST: {
2819 unsigned Rt = MI->getOperand(0).getReg();
2820 unsigned Rm = MI->getOperand(3).getReg();
2821 return (Rt == Rm) ? 3 : 2;
2822 }
2823
2824 case ARM::LDR_PRE_IMM:
2825 case ARM::LDRB_PRE_IMM:
2826 case ARM::LDR_POST_IMM:
2827 case ARM::LDRB_POST_IMM:
2828 case ARM::STRB_POST_IMM:
2829 case ARM::STRB_POST_REG:
2830 case ARM::STRB_PRE_IMM:
2831 case ARM::STRH_POST:
2832 case ARM::STR_POST_IMM:
2833 case ARM::STR_POST_REG:
2834 case ARM::STR_PRE_IMM:
2835 return 2;
2836
2837 case ARM::LDRSB_PRE:
2838 case ARM::LDRSH_PRE: {
2839 unsigned Rm = MI->getOperand(3).getReg();
2840 if (Rm == 0)
2841 return 3;
2842 unsigned Rt = MI->getOperand(0).getReg();
2843 if (Rt == Rm)
2844 return 4;
2845 unsigned ShOpVal = MI->getOperand(4).getImm();
2846 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
2847 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
2848 if (!isSub &&
2849 (ShImm == 0 ||
2850 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
2851 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
2852 return 3;
2853 return 4;
2854 }
2855
2856 case ARM::LDRD: {
2857 unsigned Rt = MI->getOperand(0).getReg();
2858 unsigned Rn = MI->getOperand(2).getReg();
2859 unsigned Rm = MI->getOperand(3).getReg();
2860 if (Rm)
2861 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2862 return (Rt == Rn) ? 3 : 2;
2863 }
2864
2865 case ARM::STRD: {
2866 unsigned Rm = MI->getOperand(3).getReg();
2867 if (Rm)
2868 return (ARM_AM::getAM3Op(MI->getOperand(4).getImm()) == ARM_AM::sub) ?4:3;
2869 return 2;
2870 }
2871
2872 case ARM::LDRD_POST:
2873 case ARM::t2LDRD_POST:
2874 return 3;
2875
2876 case ARM::STRD_POST:
2877 case ARM::t2STRD_POST:
2878 return 4;
2879
2880 case ARM::LDRD_PRE: {
2881 unsigned Rt = MI->getOperand(0).getReg();
2882 unsigned Rn = MI->getOperand(3).getReg();
2883 unsigned Rm = MI->getOperand(4).getReg();
2884 if (Rm)
2885 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2886 return (Rt == Rn) ? 4 : 3;
2887 }
2888
2889 case ARM::t2LDRD_PRE: {
2890 unsigned Rt = MI->getOperand(0).getReg();
2891 unsigned Rn = MI->getOperand(3).getReg();
2892 return (Rt == Rn) ? 4 : 3;
2893 }
2894
2895 case ARM::STRD_PRE: {
2896 unsigned Rm = MI->getOperand(4).getReg();
2897 if (Rm)
2898 return (ARM_AM::getAM3Op(MI->getOperand(5).getImm()) == ARM_AM::sub) ?5:4;
2899 return 3;
2900 }
2901
2902 case ARM::t2STRD_PRE:
2903 return 3;
2904
2905 case ARM::t2LDR_POST:
2906 case ARM::t2LDRB_POST:
2907 case ARM::t2LDRB_PRE:
2908 case ARM::t2LDRSBi12:
2909 case ARM::t2LDRSBi8:
2910 case ARM::t2LDRSBpci:
2911 case ARM::t2LDRSBs:
2912 case ARM::t2LDRH_POST:
2913 case ARM::t2LDRH_PRE:
2914 case ARM::t2LDRSBT:
2915 case ARM::t2LDRSB_POST:
2916 case ARM::t2LDRSB_PRE:
2917 case ARM::t2LDRSH_POST:
2918 case ARM::t2LDRSH_PRE:
2919 case ARM::t2LDRSHi12:
2920 case ARM::t2LDRSHi8:
2921 case ARM::t2LDRSHpci:
2922 case ARM::t2LDRSHs:
2923 return 2;
2924
2925 case ARM::t2LDRDi8: {
2926 unsigned Rt = MI->getOperand(0).getReg();
2927 unsigned Rn = MI->getOperand(2).getReg();
2928 return (Rt == Rn) ? 3 : 2;
2929 }
2930
2931 case ARM::t2STRB_POST:
2932 case ARM::t2STRB_PRE:
2933 case ARM::t2STRBs:
2934 case ARM::t2STRDi8:
2935 case ARM::t2STRH_POST:
2936 case ARM::t2STRH_PRE:
2937 case ARM::t2STRHs:
2938 case ARM::t2STR_POST:
2939 case ARM::t2STR_PRE:
2940 case ARM::t2STRs:
2941 return 2;
2942 }
2943 }
2944
2945 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
2946 // can't be easily determined return 0 (missing MachineMemOperand).
2947 //
2948 // FIXME: The current MachineInstr design does not support relying on machine
2949 // mem operands to determine the width of a memory access. Instead, we expect
2950 // the target to provide this information based on the instruction opcode and
2951 // operands. However, using MachineMemOperand is the best solution now for
2952 // two reasons:
2953 //
2954 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
2955 // operands. This is much more dangerous than using the MachineMemOperand
2956 // sizes because CodeGen passes can insert/remove optional machine operands. In
2957 // fact, it's totally incorrect for preRA passes and appears to be wrong for
2958 // postRA passes as well.
2959 //
2960 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
2961 // machine model that calls this should handle the unknown (zero size) case.
2962 //
2963 // Long term, we should require a target hook that verifies MachineMemOperand
2964 // sizes during MC lowering. That target hook should be local to MC lowering
2965 // because we can't ensure that it is aware of other MI forms. Doing this will
2966 // ensure that MachineMemOperands are correctly propagated through all passes.
getNumLDMAddresses(const MachineInstr * MI) const2967 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr *MI) const {
2968 unsigned Size = 0;
2969 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
2970 E = MI->memoperands_end(); I != E; ++I) {
2971 Size += (*I)->getSize();
2972 }
2973 return Size / 4;
2974 }
2975
2976 unsigned
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr * MI) const2977 ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
2978 const MachineInstr *MI) const {
2979 if (!ItinData || ItinData->isEmpty())
2980 return 1;
2981
2982 const MCInstrDesc &Desc = MI->getDesc();
2983 unsigned Class = Desc.getSchedClass();
2984 int ItinUOps = ItinData->getNumMicroOps(Class);
2985 if (ItinUOps >= 0) {
2986 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
2987 return getNumMicroOpsSwiftLdSt(ItinData, MI);
2988
2989 return ItinUOps;
2990 }
2991
2992 unsigned Opc = MI->getOpcode();
2993 switch (Opc) {
2994 default:
2995 llvm_unreachable("Unexpected multi-uops instruction!");
2996 case ARM::VLDMQIA:
2997 case ARM::VSTMQIA:
2998 return 2;
2999
3000 // The number of uOps for load / store multiple are determined by the number
3001 // registers.
3002 //
3003 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3004 // same cycle. The scheduling for the first load / store must be done
3005 // separately by assuming the address is not 64-bit aligned.
3006 //
3007 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3008 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3009 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3010 case ARM::VLDMDIA:
3011 case ARM::VLDMDIA_UPD:
3012 case ARM::VLDMDDB_UPD:
3013 case ARM::VLDMSIA:
3014 case ARM::VLDMSIA_UPD:
3015 case ARM::VLDMSDB_UPD:
3016 case ARM::VSTMDIA:
3017 case ARM::VSTMDIA_UPD:
3018 case ARM::VSTMDDB_UPD:
3019 case ARM::VSTMSIA:
3020 case ARM::VSTMSIA_UPD:
3021 case ARM::VSTMSDB_UPD: {
3022 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
3023 return (NumRegs / 2) + (NumRegs % 2) + 1;
3024 }
3025
3026 case ARM::LDMIA_RET:
3027 case ARM::LDMIA:
3028 case ARM::LDMDA:
3029 case ARM::LDMDB:
3030 case ARM::LDMIB:
3031 case ARM::LDMIA_UPD:
3032 case ARM::LDMDA_UPD:
3033 case ARM::LDMDB_UPD:
3034 case ARM::LDMIB_UPD:
3035 case ARM::STMIA:
3036 case ARM::STMDA:
3037 case ARM::STMDB:
3038 case ARM::STMIB:
3039 case ARM::STMIA_UPD:
3040 case ARM::STMDA_UPD:
3041 case ARM::STMDB_UPD:
3042 case ARM::STMIB_UPD:
3043 case ARM::tLDMIA:
3044 case ARM::tLDMIA_UPD:
3045 case ARM::tSTMIA_UPD:
3046 case ARM::tPOP_RET:
3047 case ARM::tPOP:
3048 case ARM::tPUSH:
3049 case ARM::t2LDMIA_RET:
3050 case ARM::t2LDMIA:
3051 case ARM::t2LDMDB:
3052 case ARM::t2LDMIA_UPD:
3053 case ARM::t2LDMDB_UPD:
3054 case ARM::t2STMIA:
3055 case ARM::t2STMDB:
3056 case ARM::t2STMIA_UPD:
3057 case ARM::t2STMDB_UPD: {
3058 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
3059 if (Subtarget.isSwift()) {
3060 int UOps = 1 + NumRegs; // One for address computation, one for each ld / st.
3061 switch (Opc) {
3062 default: break;
3063 case ARM::VLDMDIA_UPD:
3064 case ARM::VLDMDDB_UPD:
3065 case ARM::VLDMSIA_UPD:
3066 case ARM::VLDMSDB_UPD:
3067 case ARM::VSTMDIA_UPD:
3068 case ARM::VSTMDDB_UPD:
3069 case ARM::VSTMSIA_UPD:
3070 case ARM::VSTMSDB_UPD:
3071 case ARM::LDMIA_UPD:
3072 case ARM::LDMDA_UPD:
3073 case ARM::LDMDB_UPD:
3074 case ARM::LDMIB_UPD:
3075 case ARM::STMIA_UPD:
3076 case ARM::STMDA_UPD:
3077 case ARM::STMDB_UPD:
3078 case ARM::STMIB_UPD:
3079 case ARM::tLDMIA_UPD:
3080 case ARM::tSTMIA_UPD:
3081 case ARM::t2LDMIA_UPD:
3082 case ARM::t2LDMDB_UPD:
3083 case ARM::t2STMIA_UPD:
3084 case ARM::t2STMDB_UPD:
3085 ++UOps; // One for base register writeback.
3086 break;
3087 case ARM::LDMIA_RET:
3088 case ARM::tPOP_RET:
3089 case ARM::t2LDMIA_RET:
3090 UOps += 2; // One for base reg wb, one for write to pc.
3091 break;
3092 }
3093 return UOps;
3094 } else if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3095 if (NumRegs < 4)
3096 return 2;
3097 // 4 registers would be issued: 2, 2.
3098 // 5 registers would be issued: 2, 2, 1.
3099 int A8UOps = (NumRegs / 2);
3100 if (NumRegs % 2)
3101 ++A8UOps;
3102 return A8UOps;
3103 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3104 int A9UOps = (NumRegs / 2);
3105 // If there are odd number of registers or if it's not 64-bit aligned,
3106 // then it takes an extra AGU (Address Generation Unit) cycle.
3107 if ((NumRegs % 2) ||
3108 !MI->hasOneMemOperand() ||
3109 (*MI->memoperands_begin())->getAlignment() < 8)
3110 ++A9UOps;
3111 return A9UOps;
3112 } else {
3113 // Assume the worst.
3114 return NumRegs;
3115 }
3116 }
3117 }
3118 }
3119
3120 int
getVLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3121 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3122 const MCInstrDesc &DefMCID,
3123 unsigned DefClass,
3124 unsigned DefIdx, unsigned DefAlign) const {
3125 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3126 if (RegNo <= 0)
3127 // Def is the address writeback.
3128 return ItinData->getOperandCycle(DefClass, DefIdx);
3129
3130 int DefCycle;
3131 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3132 // (regno / 2) + (regno % 2) + 1
3133 DefCycle = RegNo / 2 + 1;
3134 if (RegNo % 2)
3135 ++DefCycle;
3136 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3137 DefCycle = RegNo;
3138 bool isSLoad = false;
3139
3140 switch (DefMCID.getOpcode()) {
3141 default: break;
3142 case ARM::VLDMSIA:
3143 case ARM::VLDMSIA_UPD:
3144 case ARM::VLDMSDB_UPD:
3145 isSLoad = true;
3146 break;
3147 }
3148
3149 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3150 // then it takes an extra cycle.
3151 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3152 ++DefCycle;
3153 } else {
3154 // Assume the worst.
3155 DefCycle = RegNo + 2;
3156 }
3157
3158 return DefCycle;
3159 }
3160
3161 int
getLDMDefCycle(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefClass,unsigned DefIdx,unsigned DefAlign) const3162 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3163 const MCInstrDesc &DefMCID,
3164 unsigned DefClass,
3165 unsigned DefIdx, unsigned DefAlign) const {
3166 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3167 if (RegNo <= 0)
3168 // Def is the address writeback.
3169 return ItinData->getOperandCycle(DefClass, DefIdx);
3170
3171 int DefCycle;
3172 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3173 // 4 registers would be issued: 1, 2, 1.
3174 // 5 registers would be issued: 1, 2, 2.
3175 DefCycle = RegNo / 2;
3176 if (DefCycle < 1)
3177 DefCycle = 1;
3178 // Result latency is issue cycle + 2: E2.
3179 DefCycle += 2;
3180 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3181 DefCycle = (RegNo / 2);
3182 // If there are odd number of registers or if it's not 64-bit aligned,
3183 // then it takes an extra AGU (Address Generation Unit) cycle.
3184 if ((RegNo % 2) || DefAlign < 8)
3185 ++DefCycle;
3186 // Result latency is AGU cycles + 2.
3187 DefCycle += 2;
3188 } else {
3189 // Assume the worst.
3190 DefCycle = RegNo + 2;
3191 }
3192
3193 return DefCycle;
3194 }
3195
3196 int
getVSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3197 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3198 const MCInstrDesc &UseMCID,
3199 unsigned UseClass,
3200 unsigned UseIdx, unsigned UseAlign) const {
3201 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3202 if (RegNo <= 0)
3203 return ItinData->getOperandCycle(UseClass, UseIdx);
3204
3205 int UseCycle;
3206 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3207 // (regno / 2) + (regno % 2) + 1
3208 UseCycle = RegNo / 2 + 1;
3209 if (RegNo % 2)
3210 ++UseCycle;
3211 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3212 UseCycle = RegNo;
3213 bool isSStore = false;
3214
3215 switch (UseMCID.getOpcode()) {
3216 default: break;
3217 case ARM::VSTMSIA:
3218 case ARM::VSTMSIA_UPD:
3219 case ARM::VSTMSDB_UPD:
3220 isSStore = true;
3221 break;
3222 }
3223
3224 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3225 // then it takes an extra cycle.
3226 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3227 ++UseCycle;
3228 } else {
3229 // Assume the worst.
3230 UseCycle = RegNo + 2;
3231 }
3232
3233 return UseCycle;
3234 }
3235
3236 int
getSTMUseCycle(const InstrItineraryData * ItinData,const MCInstrDesc & UseMCID,unsigned UseClass,unsigned UseIdx,unsigned UseAlign) const3237 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3238 const MCInstrDesc &UseMCID,
3239 unsigned UseClass,
3240 unsigned UseIdx, unsigned UseAlign) const {
3241 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3242 if (RegNo <= 0)
3243 return ItinData->getOperandCycle(UseClass, UseIdx);
3244
3245 int UseCycle;
3246 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3247 UseCycle = RegNo / 2;
3248 if (UseCycle < 2)
3249 UseCycle = 2;
3250 // Read in E3.
3251 UseCycle += 2;
3252 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3253 UseCycle = (RegNo / 2);
3254 // If there are odd number of registers or if it's not 64-bit aligned,
3255 // then it takes an extra AGU (Address Generation Unit) cycle.
3256 if ((RegNo % 2) || UseAlign < 8)
3257 ++UseCycle;
3258 } else {
3259 // Assume the worst.
3260 UseCycle = 1;
3261 }
3262 return UseCycle;
3263 }
3264
3265 int
getOperandLatency(const InstrItineraryData * ItinData,const MCInstrDesc & DefMCID,unsigned DefIdx,unsigned DefAlign,const MCInstrDesc & UseMCID,unsigned UseIdx,unsigned UseAlign) const3266 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3267 const MCInstrDesc &DefMCID,
3268 unsigned DefIdx, unsigned DefAlign,
3269 const MCInstrDesc &UseMCID,
3270 unsigned UseIdx, unsigned UseAlign) const {
3271 unsigned DefClass = DefMCID.getSchedClass();
3272 unsigned UseClass = UseMCID.getSchedClass();
3273
3274 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3275 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3276
3277 // This may be a def / use of a variable_ops instruction, the operand
3278 // latency might be determinable dynamically. Let the target try to
3279 // figure it out.
3280 int DefCycle = -1;
3281 bool LdmBypass = false;
3282 switch (DefMCID.getOpcode()) {
3283 default:
3284 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3285 break;
3286
3287 case ARM::VLDMDIA:
3288 case ARM::VLDMDIA_UPD:
3289 case ARM::VLDMDDB_UPD:
3290 case ARM::VLDMSIA:
3291 case ARM::VLDMSIA_UPD:
3292 case ARM::VLDMSDB_UPD:
3293 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3294 break;
3295
3296 case ARM::LDMIA_RET:
3297 case ARM::LDMIA:
3298 case ARM::LDMDA:
3299 case ARM::LDMDB:
3300 case ARM::LDMIB:
3301 case ARM::LDMIA_UPD:
3302 case ARM::LDMDA_UPD:
3303 case ARM::LDMDB_UPD:
3304 case ARM::LDMIB_UPD:
3305 case ARM::tLDMIA:
3306 case ARM::tLDMIA_UPD:
3307 case ARM::tPUSH:
3308 case ARM::t2LDMIA_RET:
3309 case ARM::t2LDMIA:
3310 case ARM::t2LDMDB:
3311 case ARM::t2LDMIA_UPD:
3312 case ARM::t2LDMDB_UPD:
3313 LdmBypass = 1;
3314 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3315 break;
3316 }
3317
3318 if (DefCycle == -1)
3319 // We can't seem to determine the result latency of the def, assume it's 2.
3320 DefCycle = 2;
3321
3322 int UseCycle = -1;
3323 switch (UseMCID.getOpcode()) {
3324 default:
3325 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3326 break;
3327
3328 case ARM::VSTMDIA:
3329 case ARM::VSTMDIA_UPD:
3330 case ARM::VSTMDDB_UPD:
3331 case ARM::VSTMSIA:
3332 case ARM::VSTMSIA_UPD:
3333 case ARM::VSTMSDB_UPD:
3334 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3335 break;
3336
3337 case ARM::STMIA:
3338 case ARM::STMDA:
3339 case ARM::STMDB:
3340 case ARM::STMIB:
3341 case ARM::STMIA_UPD:
3342 case ARM::STMDA_UPD:
3343 case ARM::STMDB_UPD:
3344 case ARM::STMIB_UPD:
3345 case ARM::tSTMIA_UPD:
3346 case ARM::tPOP_RET:
3347 case ARM::tPOP:
3348 case ARM::t2STMIA:
3349 case ARM::t2STMDB:
3350 case ARM::t2STMIA_UPD:
3351 case ARM::t2STMDB_UPD:
3352 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3353 break;
3354 }
3355
3356 if (UseCycle == -1)
3357 // Assume it's read in the first stage.
3358 UseCycle = 1;
3359
3360 UseCycle = DefCycle - UseCycle + 1;
3361 if (UseCycle > 0) {
3362 if (LdmBypass) {
3363 // It's a variable_ops instruction so we can't use DefIdx here. Just use
3364 // first def operand.
3365 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3366 UseClass, UseIdx))
3367 --UseCycle;
3368 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3369 UseClass, UseIdx)) {
3370 --UseCycle;
3371 }
3372 }
3373
3374 return UseCycle;
3375 }
3376
getBundledDefMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & DefIdx,unsigned & Dist)3377 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3378 const MachineInstr *MI, unsigned Reg,
3379 unsigned &DefIdx, unsigned &Dist) {
3380 Dist = 0;
3381
3382 MachineBasicBlock::const_iterator I = MI; ++I;
3383 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3384 assert(II->isInsideBundle() && "Empty bundle?");
3385
3386 int Idx = -1;
3387 while (II->isInsideBundle()) {
3388 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3389 if (Idx != -1)
3390 break;
3391 --II;
3392 ++Dist;
3393 }
3394
3395 assert(Idx != -1 && "Cannot find bundled definition!");
3396 DefIdx = Idx;
3397 return II;
3398 }
3399
getBundledUseMI(const TargetRegisterInfo * TRI,const MachineInstr * MI,unsigned Reg,unsigned & UseIdx,unsigned & Dist)3400 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
3401 const MachineInstr *MI, unsigned Reg,
3402 unsigned &UseIdx, unsigned &Dist) {
3403 Dist = 0;
3404
3405 MachineBasicBlock::const_instr_iterator II = MI; ++II;
3406 assert(II->isInsideBundle() && "Empty bundle?");
3407 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3408
3409 // FIXME: This doesn't properly handle multiple uses.
3410 int Idx = -1;
3411 while (II != E && II->isInsideBundle()) {
3412 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
3413 if (Idx != -1)
3414 break;
3415 if (II->getOpcode() != ARM::t2IT)
3416 ++Dist;
3417 ++II;
3418 }
3419
3420 if (Idx == -1) {
3421 Dist = 0;
3422 return nullptr;
3423 }
3424
3425 UseIdx = Idx;
3426 return II;
3427 }
3428
3429 /// Return the number of cycles to add to (or subtract from) the static
3430 /// itinerary based on the def opcode and alignment. The caller will ensure that
3431 /// adjusted latency is at least one cycle.
adjustDefLatency(const ARMSubtarget & Subtarget,const MachineInstr * DefMI,const MCInstrDesc * DefMCID,unsigned DefAlign)3432 static int adjustDefLatency(const ARMSubtarget &Subtarget,
3433 const MachineInstr *DefMI,
3434 const MCInstrDesc *DefMCID, unsigned DefAlign) {
3435 int Adjust = 0;
3436 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
3437 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3438 // variants are one cycle cheaper.
3439 switch (DefMCID->getOpcode()) {
3440 default: break;
3441 case ARM::LDRrs:
3442 case ARM::LDRBrs: {
3443 unsigned ShOpVal = DefMI->getOperand(3).getImm();
3444 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3445 if (ShImm == 0 ||
3446 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3447 --Adjust;
3448 break;
3449 }
3450 case ARM::t2LDRs:
3451 case ARM::t2LDRBs:
3452 case ARM::t2LDRHs:
3453 case ARM::t2LDRSHs: {
3454 // Thumb2 mode: lsl only.
3455 unsigned ShAmt = DefMI->getOperand(3).getImm();
3456 if (ShAmt == 0 || ShAmt == 2)
3457 --Adjust;
3458 break;
3459 }
3460 }
3461 } else if (Subtarget.isSwift()) {
3462 // FIXME: Properly handle all of the latency adjustments for address
3463 // writeback.
3464 switch (DefMCID->getOpcode()) {
3465 default: break;
3466 case ARM::LDRrs:
3467 case ARM::LDRBrs: {
3468 unsigned ShOpVal = DefMI->getOperand(3).getImm();
3469 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3470 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3471 if (!isSub &&
3472 (ShImm == 0 ||
3473 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3474 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3475 Adjust -= 2;
3476 else if (!isSub &&
3477 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3478 --Adjust;
3479 break;
3480 }
3481 case ARM::t2LDRs:
3482 case ARM::t2LDRBs:
3483 case ARM::t2LDRHs:
3484 case ARM::t2LDRSHs: {
3485 // Thumb2 mode: lsl only.
3486 unsigned ShAmt = DefMI->getOperand(3).getImm();
3487 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
3488 Adjust -= 2;
3489 break;
3490 }
3491 }
3492 }
3493
3494 if (DefAlign < 8 && Subtarget.isLikeA9()) {
3495 switch (DefMCID->getOpcode()) {
3496 default: break;
3497 case ARM::VLD1q8:
3498 case ARM::VLD1q16:
3499 case ARM::VLD1q32:
3500 case ARM::VLD1q64:
3501 case ARM::VLD1q8wb_fixed:
3502 case ARM::VLD1q16wb_fixed:
3503 case ARM::VLD1q32wb_fixed:
3504 case ARM::VLD1q64wb_fixed:
3505 case ARM::VLD1q8wb_register:
3506 case ARM::VLD1q16wb_register:
3507 case ARM::VLD1q32wb_register:
3508 case ARM::VLD1q64wb_register:
3509 case ARM::VLD2d8:
3510 case ARM::VLD2d16:
3511 case ARM::VLD2d32:
3512 case ARM::VLD2q8:
3513 case ARM::VLD2q16:
3514 case ARM::VLD2q32:
3515 case ARM::VLD2d8wb_fixed:
3516 case ARM::VLD2d16wb_fixed:
3517 case ARM::VLD2d32wb_fixed:
3518 case ARM::VLD2q8wb_fixed:
3519 case ARM::VLD2q16wb_fixed:
3520 case ARM::VLD2q32wb_fixed:
3521 case ARM::VLD2d8wb_register:
3522 case ARM::VLD2d16wb_register:
3523 case ARM::VLD2d32wb_register:
3524 case ARM::VLD2q8wb_register:
3525 case ARM::VLD2q16wb_register:
3526 case ARM::VLD2q32wb_register:
3527 case ARM::VLD3d8:
3528 case ARM::VLD3d16:
3529 case ARM::VLD3d32:
3530 case ARM::VLD1d64T:
3531 case ARM::VLD3d8_UPD:
3532 case ARM::VLD3d16_UPD:
3533 case ARM::VLD3d32_UPD:
3534 case ARM::VLD1d64Twb_fixed:
3535 case ARM::VLD1d64Twb_register:
3536 case ARM::VLD3q8_UPD:
3537 case ARM::VLD3q16_UPD:
3538 case ARM::VLD3q32_UPD:
3539 case ARM::VLD4d8:
3540 case ARM::VLD4d16:
3541 case ARM::VLD4d32:
3542 case ARM::VLD1d64Q:
3543 case ARM::VLD4d8_UPD:
3544 case ARM::VLD4d16_UPD:
3545 case ARM::VLD4d32_UPD:
3546 case ARM::VLD1d64Qwb_fixed:
3547 case ARM::VLD1d64Qwb_register:
3548 case ARM::VLD4q8_UPD:
3549 case ARM::VLD4q16_UPD:
3550 case ARM::VLD4q32_UPD:
3551 case ARM::VLD1DUPq8:
3552 case ARM::VLD1DUPq16:
3553 case ARM::VLD1DUPq32:
3554 case ARM::VLD1DUPq8wb_fixed:
3555 case ARM::VLD1DUPq16wb_fixed:
3556 case ARM::VLD1DUPq32wb_fixed:
3557 case ARM::VLD1DUPq8wb_register:
3558 case ARM::VLD1DUPq16wb_register:
3559 case ARM::VLD1DUPq32wb_register:
3560 case ARM::VLD2DUPd8:
3561 case ARM::VLD2DUPd16:
3562 case ARM::VLD2DUPd32:
3563 case ARM::VLD2DUPd8wb_fixed:
3564 case ARM::VLD2DUPd16wb_fixed:
3565 case ARM::VLD2DUPd32wb_fixed:
3566 case ARM::VLD2DUPd8wb_register:
3567 case ARM::VLD2DUPd16wb_register:
3568 case ARM::VLD2DUPd32wb_register:
3569 case ARM::VLD4DUPd8:
3570 case ARM::VLD4DUPd16:
3571 case ARM::VLD4DUPd32:
3572 case ARM::VLD4DUPd8_UPD:
3573 case ARM::VLD4DUPd16_UPD:
3574 case ARM::VLD4DUPd32_UPD:
3575 case ARM::VLD1LNd8:
3576 case ARM::VLD1LNd16:
3577 case ARM::VLD1LNd32:
3578 case ARM::VLD1LNd8_UPD:
3579 case ARM::VLD1LNd16_UPD:
3580 case ARM::VLD1LNd32_UPD:
3581 case ARM::VLD2LNd8:
3582 case ARM::VLD2LNd16:
3583 case ARM::VLD2LNd32:
3584 case ARM::VLD2LNq16:
3585 case ARM::VLD2LNq32:
3586 case ARM::VLD2LNd8_UPD:
3587 case ARM::VLD2LNd16_UPD:
3588 case ARM::VLD2LNd32_UPD:
3589 case ARM::VLD2LNq16_UPD:
3590 case ARM::VLD2LNq32_UPD:
3591 case ARM::VLD4LNd8:
3592 case ARM::VLD4LNd16:
3593 case ARM::VLD4LNd32:
3594 case ARM::VLD4LNq16:
3595 case ARM::VLD4LNq32:
3596 case ARM::VLD4LNd8_UPD:
3597 case ARM::VLD4LNd16_UPD:
3598 case ARM::VLD4LNd32_UPD:
3599 case ARM::VLD4LNq16_UPD:
3600 case ARM::VLD4LNq32_UPD:
3601 // If the address is not 64-bit aligned, the latencies of these
3602 // instructions increases by one.
3603 ++Adjust;
3604 break;
3605 }
3606 }
3607 return Adjust;
3608 }
3609
3610
3611
3612 int
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const3613 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3614 const MachineInstr *DefMI, unsigned DefIdx,
3615 const MachineInstr *UseMI,
3616 unsigned UseIdx) const {
3617 // No operand latency. The caller may fall back to getInstrLatency.
3618 if (!ItinData || ItinData->isEmpty())
3619 return -1;
3620
3621 const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
3622 unsigned Reg = DefMO.getReg();
3623 const MCInstrDesc *DefMCID = &DefMI->getDesc();
3624 const MCInstrDesc *UseMCID = &UseMI->getDesc();
3625
3626 unsigned DefAdj = 0;
3627 if (DefMI->isBundle()) {
3628 DefMI = getBundledDefMI(&getRegisterInfo(), DefMI, Reg, DefIdx, DefAdj);
3629 DefMCID = &DefMI->getDesc();
3630 }
3631 if (DefMI->isCopyLike() || DefMI->isInsertSubreg() ||
3632 DefMI->isRegSequence() || DefMI->isImplicitDef()) {
3633 return 1;
3634 }
3635
3636 unsigned UseAdj = 0;
3637 if (UseMI->isBundle()) {
3638 unsigned NewUseIdx;
3639 const MachineInstr *NewUseMI = getBundledUseMI(&getRegisterInfo(), UseMI,
3640 Reg, NewUseIdx, UseAdj);
3641 if (!NewUseMI)
3642 return -1;
3643
3644 UseMI = NewUseMI;
3645 UseIdx = NewUseIdx;
3646 UseMCID = &UseMI->getDesc();
3647 }
3648
3649 if (Reg == ARM::CPSR) {
3650 if (DefMI->getOpcode() == ARM::FMSTAT) {
3651 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
3652 return Subtarget.isLikeA9() ? 1 : 20;
3653 }
3654
3655 // CPSR set and branch can be paired in the same cycle.
3656 if (UseMI->isBranch())
3657 return 0;
3658
3659 // Otherwise it takes the instruction latency (generally one).
3660 unsigned Latency = getInstrLatency(ItinData, DefMI);
3661
3662 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
3663 // its uses. Instructions which are otherwise scheduled between them may
3664 // incur a code size penalty (not able to use the CPSR setting 16-bit
3665 // instructions).
3666 if (Latency > 0 && Subtarget.isThumb2()) {
3667 const MachineFunction *MF = DefMI->getParent()->getParent();
3668 if (MF->getFunction()->hasFnAttribute(Attribute::OptimizeForSize))
3669 --Latency;
3670 }
3671 return Latency;
3672 }
3673
3674 if (DefMO.isImplicit() || UseMI->getOperand(UseIdx).isImplicit())
3675 return -1;
3676
3677 unsigned DefAlign = DefMI->hasOneMemOperand()
3678 ? (*DefMI->memoperands_begin())->getAlignment() : 0;
3679 unsigned UseAlign = UseMI->hasOneMemOperand()
3680 ? (*UseMI->memoperands_begin())->getAlignment() : 0;
3681
3682 // Get the itinerary's latency if possible, and handle variable_ops.
3683 int Latency = getOperandLatency(ItinData, *DefMCID, DefIdx, DefAlign,
3684 *UseMCID, UseIdx, UseAlign);
3685 // Unable to find operand latency. The caller may resort to getInstrLatency.
3686 if (Latency < 0)
3687 return Latency;
3688
3689 // Adjust for IT block position.
3690 int Adj = DefAdj + UseAdj;
3691
3692 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3693 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
3694 if (Adj >= 0 || (int)Latency > -Adj) {
3695 return Latency + Adj;
3696 }
3697 // Return the itinerary latency, which may be zero but not less than zero.
3698 return Latency;
3699 }
3700
3701 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const3702 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3703 SDNode *DefNode, unsigned DefIdx,
3704 SDNode *UseNode, unsigned UseIdx) const {
3705 if (!DefNode->isMachineOpcode())
3706 return 1;
3707
3708 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
3709
3710 if (isZeroCost(DefMCID.Opcode))
3711 return 0;
3712
3713 if (!ItinData || ItinData->isEmpty())
3714 return DefMCID.mayLoad() ? 3 : 1;
3715
3716 if (!UseNode->isMachineOpcode()) {
3717 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
3718 if (Subtarget.isLikeA9() || Subtarget.isSwift())
3719 return Latency <= 2 ? 1 : Latency - 1;
3720 else
3721 return Latency <= 3 ? 1 : Latency - 2;
3722 }
3723
3724 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
3725 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
3726 unsigned DefAlign = !DefMN->memoperands_empty()
3727 ? (*DefMN->memoperands_begin())->getAlignment() : 0;
3728 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
3729 unsigned UseAlign = !UseMN->memoperands_empty()
3730 ? (*UseMN->memoperands_begin())->getAlignment() : 0;
3731 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
3732 UseMCID, UseIdx, UseAlign);
3733
3734 if (Latency > 1 &&
3735 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
3736 Subtarget.isCortexA7())) {
3737 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
3738 // variants are one cycle cheaper.
3739 switch (DefMCID.getOpcode()) {
3740 default: break;
3741 case ARM::LDRrs:
3742 case ARM::LDRBrs: {
3743 unsigned ShOpVal =
3744 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3745 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3746 if (ShImm == 0 ||
3747 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3748 --Latency;
3749 break;
3750 }
3751 case ARM::t2LDRs:
3752 case ARM::t2LDRBs:
3753 case ARM::t2LDRHs:
3754 case ARM::t2LDRSHs: {
3755 // Thumb2 mode: lsl only.
3756 unsigned ShAmt =
3757 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3758 if (ShAmt == 0 || ShAmt == 2)
3759 --Latency;
3760 break;
3761 }
3762 }
3763 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
3764 // FIXME: Properly handle all of the latency adjustments for address
3765 // writeback.
3766 switch (DefMCID.getOpcode()) {
3767 default: break;
3768 case ARM::LDRrs:
3769 case ARM::LDRBrs: {
3770 unsigned ShOpVal =
3771 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
3772 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3773 if (ShImm == 0 ||
3774 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3775 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
3776 Latency -= 2;
3777 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
3778 --Latency;
3779 break;
3780 }
3781 case ARM::t2LDRs:
3782 case ARM::t2LDRBs:
3783 case ARM::t2LDRHs:
3784 case ARM::t2LDRSHs: {
3785 // Thumb2 mode: lsl 0-3 only.
3786 Latency -= 2;
3787 break;
3788 }
3789 }
3790 }
3791
3792 if (DefAlign < 8 && Subtarget.isLikeA9())
3793 switch (DefMCID.getOpcode()) {
3794 default: break;
3795 case ARM::VLD1q8:
3796 case ARM::VLD1q16:
3797 case ARM::VLD1q32:
3798 case ARM::VLD1q64:
3799 case ARM::VLD1q8wb_register:
3800 case ARM::VLD1q16wb_register:
3801 case ARM::VLD1q32wb_register:
3802 case ARM::VLD1q64wb_register:
3803 case ARM::VLD1q8wb_fixed:
3804 case ARM::VLD1q16wb_fixed:
3805 case ARM::VLD1q32wb_fixed:
3806 case ARM::VLD1q64wb_fixed:
3807 case ARM::VLD2d8:
3808 case ARM::VLD2d16:
3809 case ARM::VLD2d32:
3810 case ARM::VLD2q8Pseudo:
3811 case ARM::VLD2q16Pseudo:
3812 case ARM::VLD2q32Pseudo:
3813 case ARM::VLD2d8wb_fixed:
3814 case ARM::VLD2d16wb_fixed:
3815 case ARM::VLD2d32wb_fixed:
3816 case ARM::VLD2q8PseudoWB_fixed:
3817 case ARM::VLD2q16PseudoWB_fixed:
3818 case ARM::VLD2q32PseudoWB_fixed:
3819 case ARM::VLD2d8wb_register:
3820 case ARM::VLD2d16wb_register:
3821 case ARM::VLD2d32wb_register:
3822 case ARM::VLD2q8PseudoWB_register:
3823 case ARM::VLD2q16PseudoWB_register:
3824 case ARM::VLD2q32PseudoWB_register:
3825 case ARM::VLD3d8Pseudo:
3826 case ARM::VLD3d16Pseudo:
3827 case ARM::VLD3d32Pseudo:
3828 case ARM::VLD1d64TPseudo:
3829 case ARM::VLD1d64TPseudoWB_fixed:
3830 case ARM::VLD3d8Pseudo_UPD:
3831 case ARM::VLD3d16Pseudo_UPD:
3832 case ARM::VLD3d32Pseudo_UPD:
3833 case ARM::VLD3q8Pseudo_UPD:
3834 case ARM::VLD3q16Pseudo_UPD:
3835 case ARM::VLD3q32Pseudo_UPD:
3836 case ARM::VLD3q8oddPseudo:
3837 case ARM::VLD3q16oddPseudo:
3838 case ARM::VLD3q32oddPseudo:
3839 case ARM::VLD3q8oddPseudo_UPD:
3840 case ARM::VLD3q16oddPseudo_UPD:
3841 case ARM::VLD3q32oddPseudo_UPD:
3842 case ARM::VLD4d8Pseudo:
3843 case ARM::VLD4d16Pseudo:
3844 case ARM::VLD4d32Pseudo:
3845 case ARM::VLD1d64QPseudo:
3846 case ARM::VLD1d64QPseudoWB_fixed:
3847 case ARM::VLD4d8Pseudo_UPD:
3848 case ARM::VLD4d16Pseudo_UPD:
3849 case ARM::VLD4d32Pseudo_UPD:
3850 case ARM::VLD4q8Pseudo_UPD:
3851 case ARM::VLD4q16Pseudo_UPD:
3852 case ARM::VLD4q32Pseudo_UPD:
3853 case ARM::VLD4q8oddPseudo:
3854 case ARM::VLD4q16oddPseudo:
3855 case ARM::VLD4q32oddPseudo:
3856 case ARM::VLD4q8oddPseudo_UPD:
3857 case ARM::VLD4q16oddPseudo_UPD:
3858 case ARM::VLD4q32oddPseudo_UPD:
3859 case ARM::VLD1DUPq8:
3860 case ARM::VLD1DUPq16:
3861 case ARM::VLD1DUPq32:
3862 case ARM::VLD1DUPq8wb_fixed:
3863 case ARM::VLD1DUPq16wb_fixed:
3864 case ARM::VLD1DUPq32wb_fixed:
3865 case ARM::VLD1DUPq8wb_register:
3866 case ARM::VLD1DUPq16wb_register:
3867 case ARM::VLD1DUPq32wb_register:
3868 case ARM::VLD2DUPd8:
3869 case ARM::VLD2DUPd16:
3870 case ARM::VLD2DUPd32:
3871 case ARM::VLD2DUPd8wb_fixed:
3872 case ARM::VLD2DUPd16wb_fixed:
3873 case ARM::VLD2DUPd32wb_fixed:
3874 case ARM::VLD2DUPd8wb_register:
3875 case ARM::VLD2DUPd16wb_register:
3876 case ARM::VLD2DUPd32wb_register:
3877 case ARM::VLD4DUPd8Pseudo:
3878 case ARM::VLD4DUPd16Pseudo:
3879 case ARM::VLD4DUPd32Pseudo:
3880 case ARM::VLD4DUPd8Pseudo_UPD:
3881 case ARM::VLD4DUPd16Pseudo_UPD:
3882 case ARM::VLD4DUPd32Pseudo_UPD:
3883 case ARM::VLD1LNq8Pseudo:
3884 case ARM::VLD1LNq16Pseudo:
3885 case ARM::VLD1LNq32Pseudo:
3886 case ARM::VLD1LNq8Pseudo_UPD:
3887 case ARM::VLD1LNq16Pseudo_UPD:
3888 case ARM::VLD1LNq32Pseudo_UPD:
3889 case ARM::VLD2LNd8Pseudo:
3890 case ARM::VLD2LNd16Pseudo:
3891 case ARM::VLD2LNd32Pseudo:
3892 case ARM::VLD2LNq16Pseudo:
3893 case ARM::VLD2LNq32Pseudo:
3894 case ARM::VLD2LNd8Pseudo_UPD:
3895 case ARM::VLD2LNd16Pseudo_UPD:
3896 case ARM::VLD2LNd32Pseudo_UPD:
3897 case ARM::VLD2LNq16Pseudo_UPD:
3898 case ARM::VLD2LNq32Pseudo_UPD:
3899 case ARM::VLD4LNd8Pseudo:
3900 case ARM::VLD4LNd16Pseudo:
3901 case ARM::VLD4LNd32Pseudo:
3902 case ARM::VLD4LNq16Pseudo:
3903 case ARM::VLD4LNq32Pseudo:
3904 case ARM::VLD4LNd8Pseudo_UPD:
3905 case ARM::VLD4LNd16Pseudo_UPD:
3906 case ARM::VLD4LNd32Pseudo_UPD:
3907 case ARM::VLD4LNq16Pseudo_UPD:
3908 case ARM::VLD4LNq32Pseudo_UPD:
3909 // If the address is not 64-bit aligned, the latencies of these
3910 // instructions increases by one.
3911 ++Latency;
3912 break;
3913 }
3914
3915 return Latency;
3916 }
3917
getPredicationCost(const MachineInstr * MI) const3918 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr *MI) const {
3919 if (MI->isCopyLike() || MI->isInsertSubreg() ||
3920 MI->isRegSequence() || MI->isImplicitDef())
3921 return 0;
3922
3923 if (MI->isBundle())
3924 return 0;
3925
3926 const MCInstrDesc &MCID = MI->getDesc();
3927
3928 if (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR)) {
3929 // When predicated, CPSR is an additional source operand for CPSR updating
3930 // instructions, this apparently increases their latencies.
3931 return 1;
3932 }
3933 return 0;
3934 }
3935
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr * MI,unsigned * PredCost) const3936 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3937 const MachineInstr *MI,
3938 unsigned *PredCost) const {
3939 if (MI->isCopyLike() || MI->isInsertSubreg() ||
3940 MI->isRegSequence() || MI->isImplicitDef())
3941 return 1;
3942
3943 // An instruction scheduler typically runs on unbundled instructions, however
3944 // other passes may query the latency of a bundled instruction.
3945 if (MI->isBundle()) {
3946 unsigned Latency = 0;
3947 MachineBasicBlock::const_instr_iterator I = MI;
3948 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
3949 while (++I != E && I->isInsideBundle()) {
3950 if (I->getOpcode() != ARM::t2IT)
3951 Latency += getInstrLatency(ItinData, I, PredCost);
3952 }
3953 return Latency;
3954 }
3955
3956 const MCInstrDesc &MCID = MI->getDesc();
3957 if (PredCost && (MCID.isCall() || MCID.hasImplicitDefOfPhysReg(ARM::CPSR))) {
3958 // When predicated, CPSR is an additional source operand for CPSR updating
3959 // instructions, this apparently increases their latencies.
3960 *PredCost = 1;
3961 }
3962 // Be sure to call getStageLatency for an empty itinerary in case it has a
3963 // valid MinLatency property.
3964 if (!ItinData)
3965 return MI->mayLoad() ? 3 : 1;
3966
3967 unsigned Class = MCID.getSchedClass();
3968
3969 // For instructions with variable uops, use uops as latency.
3970 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
3971 return getNumMicroOps(ItinData, MI);
3972
3973 // For the common case, fall back on the itinerary's latency.
3974 unsigned Latency = ItinData->getStageLatency(Class);
3975
3976 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
3977 unsigned DefAlign = MI->hasOneMemOperand()
3978 ? (*MI->memoperands_begin())->getAlignment() : 0;
3979 int Adj = adjustDefLatency(Subtarget, MI, &MCID, DefAlign);
3980 if (Adj >= 0 || (int)Latency > -Adj) {
3981 return Latency + Adj;
3982 }
3983 return Latency;
3984 }
3985
getInstrLatency(const InstrItineraryData * ItinData,SDNode * Node) const3986 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
3987 SDNode *Node) const {
3988 if (!Node->isMachineOpcode())
3989 return 1;
3990
3991 if (!ItinData || ItinData->isEmpty())
3992 return 1;
3993
3994 unsigned Opcode = Node->getMachineOpcode();
3995 switch (Opcode) {
3996 default:
3997 return ItinData->getStageLatency(get(Opcode).getSchedClass());
3998 case ARM::VLDMQIA:
3999 case ARM::VSTMQIA:
4000 return 2;
4001 }
4002 }
4003
4004 bool ARMBaseInstrInfo::
hasHighOperandLatency(const InstrItineraryData * ItinData,const MachineRegisterInfo * MRI,const MachineInstr * DefMI,unsigned DefIdx,const MachineInstr * UseMI,unsigned UseIdx) const4005 hasHighOperandLatency(const InstrItineraryData *ItinData,
4006 const MachineRegisterInfo *MRI,
4007 const MachineInstr *DefMI, unsigned DefIdx,
4008 const MachineInstr *UseMI, unsigned UseIdx) const {
4009 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
4010 unsigned UDomain = UseMI->getDesc().TSFlags & ARMII::DomainMask;
4011 if (Subtarget.isCortexA8() &&
4012 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4013 // CortexA8 VFP instructions are not pipelined.
4014 return true;
4015
4016 // Hoist VFP / NEON instructions with 4 or higher latency.
4017 int Latency = computeOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
4018 if (Latency < 0)
4019 Latency = getInstrLatency(ItinData, DefMI);
4020 if (Latency <= 3)
4021 return false;
4022 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4023 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4024 }
4025
4026 bool ARMBaseInstrInfo::
hasLowDefLatency(const InstrItineraryData * ItinData,const MachineInstr * DefMI,unsigned DefIdx) const4027 hasLowDefLatency(const InstrItineraryData *ItinData,
4028 const MachineInstr *DefMI, unsigned DefIdx) const {
4029 if (!ItinData || ItinData->isEmpty())
4030 return false;
4031
4032 unsigned DDomain = DefMI->getDesc().TSFlags & ARMII::DomainMask;
4033 if (DDomain == ARMII::DomainGeneral) {
4034 unsigned DefClass = DefMI->getDesc().getSchedClass();
4035 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4036 return (DefCycle != -1 && DefCycle <= 2);
4037 }
4038 return false;
4039 }
4040
verifyInstruction(const MachineInstr * MI,StringRef & ErrInfo) const4041 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr *MI,
4042 StringRef &ErrInfo) const {
4043 if (convertAddSubFlagsOpcode(MI->getOpcode())) {
4044 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4045 return false;
4046 }
4047 return true;
4048 }
4049
4050 // LoadStackGuard has so far only been implemented for MachO. Different code
4051 // sequence is needed for other targets.
expandLoadStackGuardBase(MachineBasicBlock::iterator MI,unsigned LoadImmOpc,unsigned LoadOpc,Reloc::Model RM) const4052 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4053 unsigned LoadImmOpc,
4054 unsigned LoadOpc,
4055 Reloc::Model RM) const {
4056 MachineBasicBlock &MBB = *MI->getParent();
4057 DebugLoc DL = MI->getDebugLoc();
4058 unsigned Reg = MI->getOperand(0).getReg();
4059 const GlobalValue *GV =
4060 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4061 MachineInstrBuilder MIB;
4062
4063 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4064 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4065
4066 if (Subtarget.GVIsIndirectSymbol(GV, RM)) {
4067 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4068 MIB.addReg(Reg, RegState::Kill).addImm(0);
4069 unsigned Flag = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant;
4070 MachineMemOperand *MMO = MBB.getParent()->
4071 getMachineMemOperand(MachinePointerInfo::getGOT(), Flag, 4, 4);
4072 MIB.addMemOperand(MMO);
4073 AddDefaultPred(MIB);
4074 }
4075
4076 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4077 MIB.addReg(Reg, RegState::Kill).addImm(0);
4078 MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
4079 AddDefaultPred(MIB);
4080 }
4081
4082 bool
isFpMLxInstruction(unsigned Opcode,unsigned & MulOpc,unsigned & AddSubOpc,bool & NegAcc,bool & HasLane) const4083 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4084 unsigned &AddSubOpc,
4085 bool &NegAcc, bool &HasLane) const {
4086 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4087 if (I == MLxEntryMap.end())
4088 return false;
4089
4090 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4091 MulOpc = Entry.MulOpc;
4092 AddSubOpc = Entry.AddSubOpc;
4093 NegAcc = Entry.NegAcc;
4094 HasLane = Entry.HasLane;
4095 return true;
4096 }
4097
4098 //===----------------------------------------------------------------------===//
4099 // Execution domains.
4100 //===----------------------------------------------------------------------===//
4101 //
4102 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4103 // and some can go down both. The vmov instructions go down the VFP pipeline,
4104 // but they can be changed to vorr equivalents that are executed by the NEON
4105 // pipeline.
4106 //
4107 // We use the following execution domain numbering:
4108 //
4109 enum ARMExeDomain {
4110 ExeGeneric = 0,
4111 ExeVFP = 1,
4112 ExeNEON = 2
4113 };
4114 //
4115 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4116 //
4117 std::pair<uint16_t, uint16_t>
getExecutionDomain(const MachineInstr * MI) const4118 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr *MI) const {
4119 // If we don't have access to NEON instructions then we won't be able
4120 // to swizzle anything to the NEON domain. Check to make sure.
4121 if (Subtarget.hasNEON()) {
4122 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4123 // if they are not predicated.
4124 if (MI->getOpcode() == ARM::VMOVD && !isPredicated(MI))
4125 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4126
4127 // CortexA9 is particularly picky about mixing the two and wants these
4128 // converted.
4129 if (Subtarget.isCortexA9() && !isPredicated(MI) &&
4130 (MI->getOpcode() == ARM::VMOVRS || MI->getOpcode() == ARM::VMOVSR ||
4131 MI->getOpcode() == ARM::VMOVS))
4132 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4133 }
4134 // No other instructions can be swizzled, so just determine their domain.
4135 unsigned Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
4136
4137 if (Domain & ARMII::DomainNEON)
4138 return std::make_pair(ExeNEON, 0);
4139
4140 // Certain instructions can go either way on Cortex-A8.
4141 // Treat them as NEON instructions.
4142 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4143 return std::make_pair(ExeNEON, 0);
4144
4145 if (Domain & ARMII::DomainVFP)
4146 return std::make_pair(ExeVFP, 0);
4147
4148 return std::make_pair(ExeGeneric, 0);
4149 }
4150
getCorrespondingDRegAndLane(const TargetRegisterInfo * TRI,unsigned SReg,unsigned & Lane)4151 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4152 unsigned SReg, unsigned &Lane) {
4153 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4154 Lane = 0;
4155
4156 if (DReg != ARM::NoRegister)
4157 return DReg;
4158
4159 Lane = 1;
4160 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4161
4162 assert(DReg && "S-register with no D super-register?");
4163 return DReg;
4164 }
4165
4166 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4167 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4168 /// zero if no register needs to be defined as implicit-use.
4169 ///
4170 /// If the function cannot determine if an SPR should be marked implicit use or
4171 /// not, it returns false.
4172 ///
4173 /// This function handles cases where an instruction is being modified from taking
4174 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4175 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4176 /// lane of the DPR).
4177 ///
4178 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4179 /// (including the case where the DPR itself is defined), it should not.
4180 ///
getImplicitSPRUseForDPRUse(const TargetRegisterInfo * TRI,MachineInstr * MI,unsigned DReg,unsigned Lane,unsigned & ImplicitSReg)4181 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4182 MachineInstr *MI,
4183 unsigned DReg, unsigned Lane,
4184 unsigned &ImplicitSReg) {
4185 // If the DPR is defined or used already, the other SPR lane will be chained
4186 // correctly, so there is nothing to be done.
4187 if (MI->definesRegister(DReg, TRI) || MI->readsRegister(DReg, TRI)) {
4188 ImplicitSReg = 0;
4189 return true;
4190 }
4191
4192 // Otherwise we need to go searching to see if the SPR is set explicitly.
4193 ImplicitSReg = TRI->getSubReg(DReg,
4194 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4195 MachineBasicBlock::LivenessQueryResult LQR =
4196 MI->getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4197
4198 if (LQR == MachineBasicBlock::LQR_Live)
4199 return true;
4200 else if (LQR == MachineBasicBlock::LQR_Unknown)
4201 return false;
4202
4203 // If the register is known not to be live, there is no need to add an
4204 // implicit-use.
4205 ImplicitSReg = 0;
4206 return true;
4207 }
4208
4209 void
setExecutionDomain(MachineInstr * MI,unsigned Domain) const4210 ARMBaseInstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
4211 unsigned DstReg, SrcReg, DReg;
4212 unsigned Lane;
4213 MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
4214 const TargetRegisterInfo *TRI = &getRegisterInfo();
4215 switch (MI->getOpcode()) {
4216 default:
4217 llvm_unreachable("cannot handle opcode!");
4218 break;
4219 case ARM::VMOVD:
4220 if (Domain != ExeNEON)
4221 break;
4222
4223 // Zap the predicate operands.
4224 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4225
4226 // Make sure we've got NEON instructions.
4227 assert(Subtarget.hasNEON() && "VORRd requires NEON");
4228
4229 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4230 DstReg = MI->getOperand(0).getReg();
4231 SrcReg = MI->getOperand(1).getReg();
4232
4233 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4234 MI->RemoveOperand(i-1);
4235
4236 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4237 MI->setDesc(get(ARM::VORRd));
4238 AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4239 .addReg(SrcReg)
4240 .addReg(SrcReg));
4241 break;
4242 case ARM::VMOVRS:
4243 if (Domain != ExeNEON)
4244 break;
4245 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4246
4247 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4248 DstReg = MI->getOperand(0).getReg();
4249 SrcReg = MI->getOperand(1).getReg();
4250
4251 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4252 MI->RemoveOperand(i-1);
4253
4254 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4255
4256 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4257 // Note that DSrc has been widened and the other lane may be undef, which
4258 // contaminates the entire register.
4259 MI->setDesc(get(ARM::VGETLNi32));
4260 AddDefaultPred(MIB.addReg(DstReg, RegState::Define)
4261 .addReg(DReg, RegState::Undef)
4262 .addImm(Lane));
4263
4264 // The old source should be an implicit use, otherwise we might think it
4265 // was dead before here.
4266 MIB.addReg(SrcReg, RegState::Implicit);
4267 break;
4268 case ARM::VMOVSR: {
4269 if (Domain != ExeNEON)
4270 break;
4271 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4272
4273 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4274 DstReg = MI->getOperand(0).getReg();
4275 SrcReg = MI->getOperand(1).getReg();
4276
4277 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4278
4279 unsigned ImplicitSReg;
4280 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4281 break;
4282
4283 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4284 MI->RemoveOperand(i-1);
4285
4286 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4287 // Again DDst may be undefined at the beginning of this instruction.
4288 MI->setDesc(get(ARM::VSETLNi32));
4289 MIB.addReg(DReg, RegState::Define)
4290 .addReg(DReg, getUndefRegState(!MI->readsRegister(DReg, TRI)))
4291 .addReg(SrcReg)
4292 .addImm(Lane);
4293 AddDefaultPred(MIB);
4294
4295 // The narrower destination must be marked as set to keep previous chains
4296 // in place.
4297 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4298 if (ImplicitSReg != 0)
4299 MIB.addReg(ImplicitSReg, RegState::Implicit);
4300 break;
4301 }
4302 case ARM::VMOVS: {
4303 if (Domain != ExeNEON)
4304 break;
4305
4306 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4307 DstReg = MI->getOperand(0).getReg();
4308 SrcReg = MI->getOperand(1).getReg();
4309
4310 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4311 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4312 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4313
4314 unsigned ImplicitSReg;
4315 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4316 break;
4317
4318 for (unsigned i = MI->getDesc().getNumOperands(); i; --i)
4319 MI->RemoveOperand(i-1);
4320
4321 if (DSrc == DDst) {
4322 // Destination can be:
4323 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
4324 MI->setDesc(get(ARM::VDUPLN32d));
4325 MIB.addReg(DDst, RegState::Define)
4326 .addReg(DDst, getUndefRegState(!MI->readsRegister(DDst, TRI)))
4327 .addImm(SrcLane);
4328 AddDefaultPred(MIB);
4329
4330 // Neither the source or the destination are naturally represented any
4331 // more, so add them in manually.
4332 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
4333 MIB.addReg(SrcReg, RegState::Implicit);
4334 if (ImplicitSReg != 0)
4335 MIB.addReg(ImplicitSReg, RegState::Implicit);
4336 break;
4337 }
4338
4339 // In general there's no single instruction that can perform an S <-> S
4340 // move in NEON space, but a pair of VEXT instructions *can* do the
4341 // job. It turns out that the VEXTs needed will only use DSrc once, with
4342 // the position based purely on the combination of lane-0 and lane-1
4343 // involved. For example
4344 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
4345 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
4346 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
4347 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
4348 //
4349 // Pattern of the MachineInstrs is:
4350 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
4351 MachineInstrBuilder NewMIB;
4352 NewMIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4353 get(ARM::VEXTd32), DDst);
4354
4355 // On the first instruction, both DSrc and DDst may be <undef> if present.
4356 // Specifically when the original instruction didn't have them as an
4357 // <imp-use>.
4358 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
4359 bool CurUndef = !MI->readsRegister(CurReg, TRI);
4360 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4361
4362 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
4363 CurUndef = !MI->readsRegister(CurReg, TRI);
4364 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
4365
4366 NewMIB.addImm(1);
4367 AddDefaultPred(NewMIB);
4368
4369 if (SrcLane == DstLane)
4370 NewMIB.addReg(SrcReg, RegState::Implicit);
4371
4372 MI->setDesc(get(ARM::VEXTd32));
4373 MIB.addReg(DDst, RegState::Define);
4374
4375 // On the second instruction, DDst has definitely been defined above, so
4376 // it is not <undef>. DSrc, if present, can be <undef> as above.
4377 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
4378 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4379 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4380
4381 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
4382 CurUndef = CurReg == DSrc && !MI->readsRegister(CurReg, TRI);
4383 MIB.addReg(CurReg, getUndefRegState(CurUndef));
4384
4385 MIB.addImm(1);
4386 AddDefaultPred(MIB);
4387
4388 if (SrcLane != DstLane)
4389 MIB.addReg(SrcReg, RegState::Implicit);
4390
4391 // As before, the original destination is no longer represented, add it
4392 // implicitly.
4393 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4394 if (ImplicitSReg != 0)
4395 MIB.addReg(ImplicitSReg, RegState::Implicit);
4396 break;
4397 }
4398 }
4399
4400 }
4401
4402 //===----------------------------------------------------------------------===//
4403 // Partial register updates
4404 //===----------------------------------------------------------------------===//
4405 //
4406 // Swift renames NEON registers with 64-bit granularity. That means any
4407 // instruction writing an S-reg implicitly reads the containing D-reg. The
4408 // problem is mostly avoided by translating f32 operations to v2f32 operations
4409 // on D-registers, but f32 loads are still a problem.
4410 //
4411 // These instructions can load an f32 into a NEON register:
4412 //
4413 // VLDRS - Only writes S, partial D update.
4414 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
4415 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
4416 //
4417 // FCONSTD can be used as a dependency-breaking instruction.
4418 unsigned ARMBaseInstrInfo::
getPartialRegUpdateClearance(const MachineInstr * MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4419 getPartialRegUpdateClearance(const MachineInstr *MI,
4420 unsigned OpNum,
4421 const TargetRegisterInfo *TRI) const {
4422 if (!SwiftPartialUpdateClearance ||
4423 !(Subtarget.isSwift() || Subtarget.isCortexA15()))
4424 return 0;
4425
4426 assert(TRI && "Need TRI instance");
4427
4428 const MachineOperand &MO = MI->getOperand(OpNum);
4429 if (MO.readsReg())
4430 return 0;
4431 unsigned Reg = MO.getReg();
4432 int UseOp = -1;
4433
4434 switch(MI->getOpcode()) {
4435 // Normal instructions writing only an S-register.
4436 case ARM::VLDRS:
4437 case ARM::FCONSTS:
4438 case ARM::VMOVSR:
4439 case ARM::VMOVv8i8:
4440 case ARM::VMOVv4i16:
4441 case ARM::VMOVv2i32:
4442 case ARM::VMOVv2f32:
4443 case ARM::VMOVv1i64:
4444 UseOp = MI->findRegisterUseOperandIdx(Reg, false, TRI);
4445 break;
4446
4447 // Explicitly reads the dependency.
4448 case ARM::VLD1LNd32:
4449 UseOp = 3;
4450 break;
4451 default:
4452 return 0;
4453 }
4454
4455 // If this instruction actually reads a value from Reg, there is no unwanted
4456 // dependency.
4457 if (UseOp != -1 && MI->getOperand(UseOp).readsReg())
4458 return 0;
4459
4460 // We must be able to clobber the whole D-reg.
4461 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
4462 // Virtual register must be a foo:ssub_0<def,undef> operand.
4463 if (!MO.getSubReg() || MI->readsVirtualRegister(Reg))
4464 return 0;
4465 } else if (ARM::SPRRegClass.contains(Reg)) {
4466 // Physical register: MI must define the full D-reg.
4467 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
4468 &ARM::DPRRegClass);
4469 if (!DReg || !MI->definesRegister(DReg, TRI))
4470 return 0;
4471 }
4472
4473 // MI has an unwanted D-register dependency.
4474 // Avoid defs in the previous N instructrions.
4475 return SwiftPartialUpdateClearance;
4476 }
4477
4478 // Break a partial register dependency after getPartialRegUpdateClearance
4479 // returned non-zero.
4480 void ARMBaseInstrInfo::
breakPartialRegDependency(MachineBasicBlock::iterator MI,unsigned OpNum,const TargetRegisterInfo * TRI) const4481 breakPartialRegDependency(MachineBasicBlock::iterator MI,
4482 unsigned OpNum,
4483 const TargetRegisterInfo *TRI) const {
4484 assert(MI && OpNum < MI->getDesc().getNumDefs() && "OpNum is not a def");
4485 assert(TRI && "Need TRI instance");
4486
4487 const MachineOperand &MO = MI->getOperand(OpNum);
4488 unsigned Reg = MO.getReg();
4489 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
4490 "Can't break virtual register dependencies.");
4491 unsigned DReg = Reg;
4492
4493 // If MI defines an S-reg, find the corresponding D super-register.
4494 if (ARM::SPRRegClass.contains(Reg)) {
4495 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
4496 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
4497 }
4498
4499 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
4500 assert(MI->definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
4501
4502 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
4503 // the full D-register by loading the same value to both lanes. The
4504 // instruction is micro-coded with 2 uops, so don't do this until we can
4505 // properly schedule micro-coded instructions. The dispatcher stalls cause
4506 // too big regressions.
4507
4508 // Insert the dependency-breaking FCONSTD before MI.
4509 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
4510 AddDefaultPred(BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
4511 get(ARM::FCONSTD), DReg).addImm(96));
4512 MI->addRegisterKilled(DReg, TRI, true);
4513 }
4514
hasNOP() const4515 bool ARMBaseInstrInfo::hasNOP() const {
4516 return (Subtarget.getFeatureBits() & ARM::HasV6KOps) != 0;
4517 }
4518
isSwiftFastImmShift(const MachineInstr * MI) const4519 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
4520 if (MI->getNumOperands() < 4)
4521 return true;
4522 unsigned ShOpVal = MI->getOperand(3).getImm();
4523 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
4524 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
4525 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
4526 ((ShImm == 1 || ShImm == 2) &&
4527 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
4528 return true;
4529
4530 return false;
4531 }
4532
getRegSequenceLikeInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const4533 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
4534 const MachineInstr &MI, unsigned DefIdx,
4535 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
4536 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4537 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
4538
4539 switch (MI.getOpcode()) {
4540 case ARM::VMOVDRR:
4541 // dX = VMOVDRR rY, rZ
4542 // is the same as:
4543 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
4544 // Populate the InputRegs accordingly.
4545 // rY
4546 const MachineOperand *MOReg = &MI.getOperand(1);
4547 InputRegs.push_back(
4548 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_0));
4549 // rZ
4550 MOReg = &MI.getOperand(2);
4551 InputRegs.push_back(
4552 RegSubRegPairAndIdx(MOReg->getReg(), MOReg->getSubReg(), ARM::ssub_1));
4553 return true;
4554 }
4555 llvm_unreachable("Target dependent opcode missing");
4556 }
4557
getExtractSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const4558 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
4559 const MachineInstr &MI, unsigned DefIdx,
4560 RegSubRegPairAndIdx &InputReg) const {
4561 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4562 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
4563
4564 switch (MI.getOpcode()) {
4565 case ARM::VMOVRRD:
4566 // rX, rY = VMOVRRD dZ
4567 // is the same as:
4568 // rX = EXTRACT_SUBREG dZ, ssub_0
4569 // rY = EXTRACT_SUBREG dZ, ssub_1
4570 const MachineOperand &MOReg = MI.getOperand(2);
4571 InputReg.Reg = MOReg.getReg();
4572 InputReg.SubReg = MOReg.getSubReg();
4573 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
4574 return true;
4575 }
4576 llvm_unreachable("Target dependent opcode missing");
4577 }
4578
getInsertSubregLikeInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const4579 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
4580 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
4581 RegSubRegPairAndIdx &InsertedReg) const {
4582 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
4583 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
4584
4585 switch (MI.getOpcode()) {
4586 case ARM::VSETLNi32:
4587 // dX = VSETLNi32 dY, rZ, imm
4588 const MachineOperand &MOBaseReg = MI.getOperand(1);
4589 const MachineOperand &MOInsertedReg = MI.getOperand(2);
4590 const MachineOperand &MOIndex = MI.getOperand(3);
4591 BaseReg.Reg = MOBaseReg.getReg();
4592 BaseReg.SubReg = MOBaseReg.getSubReg();
4593
4594 InsertedReg.Reg = MOInsertedReg.getReg();
4595 InsertedReg.SubReg = MOInsertedReg.getSubReg();
4596 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
4597 return true;
4598 }
4599 llvm_unreachable("Target dependent opcode missing");
4600 }
4601