1 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "ARM.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "MCTargetDesc/ARMAddressingModes.h"
19 #include "Thumb2InstrInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "arm-cp-islands"
39
40 STATISTIC(NumCPEs, "Number of constpool entries");
41 STATISTIC(NumSplit, "Number of uncond branches inserted");
42 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
43 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
44 STATISTIC(NumTBs, "Number of table branches generated");
45 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
46 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
47 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed");
48 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved");
49 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
50
51
52 static cl::opt<bool>
53 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
54 cl::desc("Adjust basic block layout to better use TB[BH]"));
55
56 // FIXME: This option should be removed once it has received sufficient testing.
57 static cl::opt<bool>
58 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
59 cl::desc("Align constant islands in code"));
60
61 /// UnknownPadding - Return the worst case padding that could result from
62 /// unknown offset bits. This does not include alignment padding caused by
63 /// known offset bits.
64 ///
65 /// @param LogAlign log2(alignment)
66 /// @param KnownBits Number of known low offset bits.
UnknownPadding(unsigned LogAlign,unsigned KnownBits)67 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
68 if (KnownBits < LogAlign)
69 return (1u << LogAlign) - (1u << KnownBits);
70 return 0;
71 }
72
73 namespace {
74 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
75 /// requires constant pool entries to be scattered among the instructions
76 /// inside a function. To do this, it completely ignores the normal LLVM
77 /// constant pool; instead, it places constants wherever it feels like with
78 /// special instructions.
79 ///
80 /// The terminology used in this pass includes:
81 /// Islands - Clumps of constants placed in the function.
82 /// Water - Potential places where an island could be formed.
83 /// CPE - A constant pool entry that has been placed somewhere, which
84 /// tracks a list of users.
85 class ARMConstantIslands : public MachineFunctionPass {
86 /// BasicBlockInfo - Information about the offset and size of a single
87 /// basic block.
88 struct BasicBlockInfo {
89 /// Offset - Distance from the beginning of the function to the beginning
90 /// of this basic block.
91 ///
92 /// Offsets are computed assuming worst case padding before an aligned
93 /// block. This means that subtracting basic block offsets always gives a
94 /// conservative estimate of the real distance which may be smaller.
95 ///
96 /// Because worst case padding is used, the computed offset of an aligned
97 /// block may not actually be aligned.
98 unsigned Offset;
99
100 /// Size - Size of the basic block in bytes. If the block contains
101 /// inline assembly, this is a worst case estimate.
102 ///
103 /// The size does not include any alignment padding whether from the
104 /// beginning of the block, or from an aligned jump table at the end.
105 unsigned Size;
106
107 /// KnownBits - The number of low bits in Offset that are known to be
108 /// exact. The remaining bits of Offset are an upper bound.
109 uint8_t KnownBits;
110
111 /// Unalign - When non-zero, the block contains instructions (inline asm)
112 /// of unknown size. The real size may be smaller than Size bytes by a
113 /// multiple of 1 << Unalign.
114 uint8_t Unalign;
115
116 /// PostAlign - When non-zero, the block terminator contains a .align
117 /// directive, so the end of the block is aligned to 1 << PostAlign
118 /// bytes.
119 uint8_t PostAlign;
120
BasicBlockInfo__anon8e1325130111::ARMConstantIslands::BasicBlockInfo121 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
122 PostAlign(0) {}
123
124 /// Compute the number of known offset bits internally to this block.
125 /// This number should be used to predict worst case padding when
126 /// splitting the block.
internalKnownBits__anon8e1325130111::ARMConstantIslands::BasicBlockInfo127 unsigned internalKnownBits() const {
128 unsigned Bits = Unalign ? Unalign : KnownBits;
129 // If the block size isn't a multiple of the known bits, assume the
130 // worst case padding.
131 if (Size & ((1u << Bits) - 1))
132 Bits = countTrailingZeros(Size);
133 return Bits;
134 }
135
136 /// Compute the offset immediately following this block. If LogAlign is
137 /// specified, return the offset the successor block will get if it has
138 /// this alignment.
postOffset__anon8e1325130111::ARMConstantIslands::BasicBlockInfo139 unsigned postOffset(unsigned LogAlign = 0) const {
140 unsigned PO = Offset + Size;
141 unsigned LA = std::max(unsigned(PostAlign), LogAlign);
142 if (!LA)
143 return PO;
144 // Add alignment padding from the terminator.
145 return PO + UnknownPadding(LA, internalKnownBits());
146 }
147
148 /// Compute the number of known low bits of postOffset. If this block
149 /// contains inline asm, the number of known bits drops to the
150 /// instruction alignment. An aligned terminator may increase the number
151 /// of know bits.
152 /// If LogAlign is given, also consider the alignment of the next block.
postKnownBits__anon8e1325130111::ARMConstantIslands::BasicBlockInfo153 unsigned postKnownBits(unsigned LogAlign = 0) const {
154 return std::max(std::max(unsigned(PostAlign), LogAlign),
155 internalKnownBits());
156 }
157 };
158
159 std::vector<BasicBlockInfo> BBInfo;
160
161 /// WaterList - A sorted list of basic blocks where islands could be placed
162 /// (i.e. blocks that don't fall through to the following block, due
163 /// to a return, unreachable, or unconditional branch).
164 std::vector<MachineBasicBlock*> WaterList;
165
166 /// NewWaterList - The subset of WaterList that was created since the
167 /// previous iteration by inserting unconditional branches.
168 SmallSet<MachineBasicBlock*, 4> NewWaterList;
169
170 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
171
172 /// CPUser - One user of a constant pool, keeping the machine instruction
173 /// pointer, the constant pool being referenced, and the max displacement
174 /// allowed from the instruction to the CP. The HighWaterMark records the
175 /// highest basic block where a new CPEntry can be placed. To ensure this
176 /// pass terminates, the CP entries are initially placed at the end of the
177 /// function and then move monotonically to lower addresses. The
178 /// exception to this rule is when the current CP entry for a particular
179 /// CPUser is out of range, but there is another CP entry for the same
180 /// constant value in range. We want to use the existing in-range CP
181 /// entry, but if it later moves out of range, the search for new water
182 /// should resume where it left off. The HighWaterMark is used to record
183 /// that point.
184 struct CPUser {
185 MachineInstr *MI;
186 MachineInstr *CPEMI;
187 MachineBasicBlock *HighWaterMark;
188 private:
189 unsigned MaxDisp;
190 public:
191 bool NegOk;
192 bool IsSoImm;
193 bool KnownAlignment;
CPUser__anon8e1325130111::ARMConstantIslands::CPUser194 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
195 bool neg, bool soimm)
196 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
197 KnownAlignment(false) {
198 HighWaterMark = CPEMI->getParent();
199 }
200 /// getMaxDisp - Returns the maximum displacement supported by MI.
201 /// Correct for unknown alignment.
202 /// Conservatively subtract 2 bytes to handle weird alignment effects.
getMaxDisp__anon8e1325130111::ARMConstantIslands::CPUser203 unsigned getMaxDisp() const {
204 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
205 }
206 };
207
208 /// CPUsers - Keep track of all of the machine instructions that use various
209 /// constant pools and their max displacement.
210 std::vector<CPUser> CPUsers;
211
212 /// CPEntry - One per constant pool entry, keeping the machine instruction
213 /// pointer, the constpool index, and the number of CPUser's which
214 /// reference this entry.
215 struct CPEntry {
216 MachineInstr *CPEMI;
217 unsigned CPI;
218 unsigned RefCount;
CPEntry__anon8e1325130111::ARMConstantIslands::CPEntry219 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
220 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
221 };
222
223 /// CPEntries - Keep track of all of the constant pool entry machine
224 /// instructions. For each original constpool index (i.e. those that
225 /// existed upon entry to this pass), it keeps a vector of entries.
226 /// Original elements are cloned as we go along; the clones are
227 /// put in the vector of the original element, but have distinct CPIs.
228 std::vector<std::vector<CPEntry> > CPEntries;
229
230 /// ImmBranch - One per immediate branch, keeping the machine instruction
231 /// pointer, conditional or unconditional, the max displacement,
232 /// and (if isCond is true) the corresponding unconditional branch
233 /// opcode.
234 struct ImmBranch {
235 MachineInstr *MI;
236 unsigned MaxDisp : 31;
237 bool isCond : 1;
238 int UncondBr;
ImmBranch__anon8e1325130111::ARMConstantIslands::ImmBranch239 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
240 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
241 };
242
243 /// ImmBranches - Keep track of all the immediate branch instructions.
244 ///
245 std::vector<ImmBranch> ImmBranches;
246
247 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
248 ///
249 SmallVector<MachineInstr*, 4> PushPopMIs;
250
251 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
252 SmallVector<MachineInstr*, 4> T2JumpTables;
253
254 /// HasFarJump - True if any far jump instruction has been emitted during
255 /// the branch fix up pass.
256 bool HasFarJump;
257
258 MachineFunction *MF;
259 MachineConstantPool *MCP;
260 const ARMBaseInstrInfo *TII;
261 const ARMSubtarget *STI;
262 ARMFunctionInfo *AFI;
263 bool isThumb;
264 bool isThumb1;
265 bool isThumb2;
266 public:
267 static char ID;
ARMConstantIslands()268 ARMConstantIslands() : MachineFunctionPass(ID) {}
269
270 bool runOnMachineFunction(MachineFunction &MF) override;
271
getPassName() const272 const char *getPassName() const override {
273 return "ARM constant island placement and branch shortening pass";
274 }
275
276 private:
277 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
278 bool BBHasFallthrough(MachineBasicBlock *MBB);
279 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
280 unsigned getCPELogAlign(const MachineInstr *CPEMI);
281 void scanFunctionJumpTables();
282 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
283 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
284 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
285 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
286 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
287 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
288 bool findAvailableWater(CPUser&U, unsigned UserOffset,
289 water_iterator &WaterIter);
290 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
291 MachineBasicBlock *&NewMBB);
292 bool handleConstantPoolUser(unsigned CPUserIndex);
293 void removeDeadCPEMI(MachineInstr *CPEMI);
294 bool removeUnusedCPEntries();
295 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
296 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
297 bool DoDump = false);
298 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
299 CPUser &U, unsigned &Growth);
300 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
301 bool fixupImmediateBr(ImmBranch &Br);
302 bool fixupConditionalBr(ImmBranch &Br);
303 bool fixupUnconditionalBr(ImmBranch &Br);
304 bool undoLRSpillRestore();
305 bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
306 bool optimizeThumb2Instructions();
307 bool optimizeThumb2Branches();
308 bool reorderThumb2JumpTables();
309 bool optimizeThumb2JumpTables();
310 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
311 MachineBasicBlock *JTBB);
312
313 void computeBlockSize(MachineBasicBlock *MBB);
314 unsigned getOffsetOf(MachineInstr *MI) const;
315 unsigned getUserOffset(CPUser&) const;
316 void dumpBBs();
317 void verify();
318
319 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
320 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,const CPUser & U)321 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
322 const CPUser &U) {
323 return isOffsetInRange(UserOffset, TrialOffset,
324 U.getMaxDisp(), U.NegOk, U.IsSoImm);
325 }
326 };
327 char ARMConstantIslands::ID = 0;
328 }
329
330 /// verify - check BBOffsets, BBSizes, alignment of islands
verify()331 void ARMConstantIslands::verify() {
332 #ifndef NDEBUG
333 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
334 MBBI != E; ++MBBI) {
335 MachineBasicBlock *MBB = MBBI;
336 unsigned MBBId = MBB->getNumber();
337 assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
338 }
339 DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
340 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
341 CPUser &U = CPUsers[i];
342 unsigned UserOffset = getUserOffset(U);
343 // Verify offset using the real max displacement without the safety
344 // adjustment.
345 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
346 /* DoDump = */ true)) {
347 DEBUG(dbgs() << "OK\n");
348 continue;
349 }
350 DEBUG(dbgs() << "Out of range.\n");
351 dumpBBs();
352 DEBUG(MF->dump());
353 llvm_unreachable("Constant pool entry out of range!");
354 }
355 #endif
356 }
357
358 /// print block size and offset information - debugging
dumpBBs()359 void ARMConstantIslands::dumpBBs() {
360 DEBUG({
361 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
362 const BasicBlockInfo &BBI = BBInfo[J];
363 dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
364 << " kb=" << unsigned(BBI.KnownBits)
365 << " ua=" << unsigned(BBI.Unalign)
366 << " pa=" << unsigned(BBI.PostAlign)
367 << format(" size=%#x\n", BBInfo[J].Size);
368 }
369 });
370 }
371
372 /// createARMConstantIslandPass - returns an instance of the constpool
373 /// island pass.
createARMConstantIslandPass()374 FunctionPass *llvm::createARMConstantIslandPass() {
375 return new ARMConstantIslands();
376 }
377
runOnMachineFunction(MachineFunction & mf)378 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
379 MF = &mf;
380 MCP = mf.getConstantPool();
381
382 DEBUG(dbgs() << "***** ARMConstantIslands: "
383 << MCP->getConstants().size() << " CP entries, aligned to "
384 << MCP->getConstantPoolAlignment() << " bytes *****\n");
385
386 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
387 TII = STI->getInstrInfo();
388 AFI = MF->getInfo<ARMFunctionInfo>();
389
390 isThumb = AFI->isThumbFunction();
391 isThumb1 = AFI->isThumb1OnlyFunction();
392 isThumb2 = AFI->isThumb2Function();
393
394 HasFarJump = false;
395
396 // This pass invalidates liveness information when it splits basic blocks.
397 MF->getRegInfo().invalidateLiveness();
398
399 // Renumber all of the machine basic blocks in the function, guaranteeing that
400 // the numbers agree with the position of the block in the function.
401 MF->RenumberBlocks();
402
403 // Try to reorder and otherwise adjust the block layout to make good use
404 // of the TB[BH] instructions.
405 bool MadeChange = false;
406 if (isThumb2 && AdjustJumpTableBlocks) {
407 scanFunctionJumpTables();
408 MadeChange |= reorderThumb2JumpTables();
409 // Data is out of date, so clear it. It'll be re-computed later.
410 T2JumpTables.clear();
411 // Blocks may have shifted around. Keep the numbering up to date.
412 MF->RenumberBlocks();
413 }
414
415 // Thumb1 functions containing constant pools get 4-byte alignment.
416 // This is so we can keep exact track of where the alignment padding goes.
417
418 // ARM and Thumb2 functions need to be 4-byte aligned.
419 if (!isThumb1)
420 MF->ensureAlignment(2); // 2 = log2(4)
421
422 // Perform the initial placement of the constant pool entries. To start with,
423 // we put them all at the end of the function.
424 std::vector<MachineInstr*> CPEMIs;
425 if (!MCP->isEmpty())
426 doInitialPlacement(CPEMIs);
427
428 /// The next UID to take is the first unused one.
429 AFI->initPICLabelUId(CPEMIs.size());
430
431 // Do the initial scan of the function, building up information about the
432 // sizes of each block, the location of all the water, and finding all of the
433 // constant pool users.
434 initializeFunctionInfo(CPEMIs);
435 CPEMIs.clear();
436 DEBUG(dumpBBs());
437
438
439 /// Remove dead constant pool entries.
440 MadeChange |= removeUnusedCPEntries();
441
442 // Iteratively place constant pool entries and fix up branches until there
443 // is no change.
444 unsigned NoCPIters = 0, NoBRIters = 0;
445 while (true) {
446 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
447 bool CPChange = false;
448 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
449 CPChange |= handleConstantPoolUser(i);
450 if (CPChange && ++NoCPIters > 30)
451 report_fatal_error("Constant Island pass failed to converge!");
452 DEBUG(dumpBBs());
453
454 // Clear NewWaterList now. If we split a block for branches, it should
455 // appear as "new water" for the next iteration of constant pool placement.
456 NewWaterList.clear();
457
458 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
459 bool BRChange = false;
460 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
461 BRChange |= fixupImmediateBr(ImmBranches[i]);
462 if (BRChange && ++NoBRIters > 30)
463 report_fatal_error("Branch Fix Up pass failed to converge!");
464 DEBUG(dumpBBs());
465
466 if (!CPChange && !BRChange)
467 break;
468 MadeChange = true;
469 }
470
471 // Shrink 32-bit Thumb2 branch, load, and store instructions.
472 if (isThumb2 && !STI->prefers32BitThumb())
473 MadeChange |= optimizeThumb2Instructions();
474
475 // After a while, this might be made debug-only, but it is not expensive.
476 verify();
477
478 // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
479 // undo the spill / restore of LR if possible.
480 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
481 MadeChange |= undoLRSpillRestore();
482
483 // Save the mapping between original and cloned constpool entries.
484 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
485 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
486 const CPEntry & CPE = CPEntries[i][j];
487 AFI->recordCPEClone(i, CPE.CPI);
488 }
489 }
490
491 DEBUG(dbgs() << '\n'; dumpBBs());
492
493 BBInfo.clear();
494 WaterList.clear();
495 CPUsers.clear();
496 CPEntries.clear();
497 ImmBranches.clear();
498 PushPopMIs.clear();
499 T2JumpTables.clear();
500
501 return MadeChange;
502 }
503
504 /// doInitialPlacement - Perform the initial placement of the constant pool
505 /// entries. To start with, we put them all at the end of the function.
506 void
doInitialPlacement(std::vector<MachineInstr * > & CPEMIs)507 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
508 // Create the basic block to hold the CPE's.
509 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
510 MF->push_back(BB);
511
512 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
513 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
514
515 // Mark the basic block as required by the const-pool.
516 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
517 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
518
519 // The function needs to be as aligned as the basic blocks. The linker may
520 // move functions around based on their alignment.
521 MF->ensureAlignment(BB->getAlignment());
522
523 // Order the entries in BB by descending alignment. That ensures correct
524 // alignment of all entries as long as BB is sufficiently aligned. Keep
525 // track of the insertion point for each alignment. We are going to bucket
526 // sort the entries as they are created.
527 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
528
529 // Add all of the constants from the constant pool to the end block, use an
530 // identity mapping of CPI's to CPE's.
531 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
532
533 const DataLayout &TD = *MF->getTarget().getDataLayout();
534 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
535 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
536 assert(Size >= 4 && "Too small constant pool entry");
537 unsigned Align = CPs[i].getAlignment();
538 assert(isPowerOf2_32(Align) && "Invalid alignment");
539 // Verify that all constant pool entries are a multiple of their alignment.
540 // If not, we would have to pad them out so that instructions stay aligned.
541 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
542
543 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
544 unsigned LogAlign = Log2_32(Align);
545 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
546 MachineInstr *CPEMI =
547 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
548 .addImm(i).addConstantPoolIndex(i).addImm(Size);
549 CPEMIs.push_back(CPEMI);
550
551 // Ensure that future entries with higher alignment get inserted before
552 // CPEMI. This is bucket sort with iterators.
553 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
554 if (InsPoint[a] == InsAt)
555 InsPoint[a] = CPEMI;
556
557 // Add a new CPEntry, but no corresponding CPUser yet.
558 CPEntries.emplace_back(1, CPEntry(CPEMI, i));
559 ++NumCPEs;
560 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
561 << Size << ", align = " << Align <<'\n');
562 }
563 DEBUG(BB->dump());
564 }
565
566 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
567 /// into the block immediately after it.
BBHasFallthrough(MachineBasicBlock * MBB)568 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
569 // Get the next machine basic block in the function.
570 MachineFunction::iterator MBBI = MBB;
571 // Can't fall off end of function.
572 if (std::next(MBBI) == MBB->getParent()->end())
573 return false;
574
575 MachineBasicBlock *NextBB = std::next(MBBI);
576 if (std::find(MBB->succ_begin(), MBB->succ_end(), NextBB) == MBB->succ_end())
577 return false;
578
579 // Try to analyze the end of the block. A potential fallthrough may already
580 // have an unconditional branch for whatever reason.
581 MachineBasicBlock *TBB, *FBB;
582 SmallVector<MachineOperand, 4> Cond;
583 bool TooDifficult = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond);
584 return TooDifficult || FBB == nullptr;
585 }
586
587 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
588 /// look up the corresponding CPEntry.
589 ARMConstantIslands::CPEntry
findConstPoolEntry(unsigned CPI,const MachineInstr * CPEMI)590 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
591 const MachineInstr *CPEMI) {
592 std::vector<CPEntry> &CPEs = CPEntries[CPI];
593 // Number of entries per constpool index should be small, just do a
594 // linear search.
595 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
596 if (CPEs[i].CPEMI == CPEMI)
597 return &CPEs[i];
598 }
599 return nullptr;
600 }
601
602 /// getCPELogAlign - Returns the required alignment of the constant pool entry
603 /// represented by CPEMI. Alignment is measured in log2(bytes) units.
getCPELogAlign(const MachineInstr * CPEMI)604 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
605 assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
606
607 // Everything is 4-byte aligned unless AlignConstantIslands is set.
608 if (!AlignConstantIslands)
609 return 2;
610
611 unsigned CPI = CPEMI->getOperand(1).getIndex();
612 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
613 unsigned Align = MCP->getConstants()[CPI].getAlignment();
614 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
615 return Log2_32(Align);
616 }
617
618 /// scanFunctionJumpTables - Do a scan of the function, building up
619 /// information about the sizes of each block and the locations of all
620 /// the jump tables.
scanFunctionJumpTables()621 void ARMConstantIslands::scanFunctionJumpTables() {
622 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
623 MBBI != E; ++MBBI) {
624 MachineBasicBlock &MBB = *MBBI;
625
626 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
627 I != E; ++I)
628 if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
629 T2JumpTables.push_back(I);
630 }
631 }
632
633 /// initializeFunctionInfo - Do the initial scan of the function, building up
634 /// information about the sizes of each block, the location of all the water,
635 /// and finding all of the constant pool users.
636 void ARMConstantIslands::
initializeFunctionInfo(const std::vector<MachineInstr * > & CPEMIs)637 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
638 BBInfo.clear();
639 BBInfo.resize(MF->getNumBlockIDs());
640
641 // First thing, compute the size of all basic blocks, and see if the function
642 // has any inline assembly in it. If so, we have to be conservative about
643 // alignment assumptions, as we don't know for sure the size of any
644 // instructions in the inline assembly.
645 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
646 computeBlockSize(I);
647
648 // The known bits of the entry block offset are determined by the function
649 // alignment.
650 BBInfo.front().KnownBits = MF->getAlignment();
651
652 // Compute block offsets and known bits.
653 adjustBBOffsetsAfter(MF->begin());
654
655 // Now go back through the instructions and build up our data structures.
656 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
657 MBBI != E; ++MBBI) {
658 MachineBasicBlock &MBB = *MBBI;
659
660 // If this block doesn't fall through into the next MBB, then this is
661 // 'water' that a constant pool island could be placed.
662 if (!BBHasFallthrough(&MBB))
663 WaterList.push_back(&MBB);
664
665 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
666 I != E; ++I) {
667 if (I->isDebugValue())
668 continue;
669
670 int Opc = I->getOpcode();
671 if (I->isBranch()) {
672 bool isCond = false;
673 unsigned Bits = 0;
674 unsigned Scale = 1;
675 int UOpc = Opc;
676 switch (Opc) {
677 default:
678 continue; // Ignore other JT branches
679 case ARM::t2BR_JT:
680 T2JumpTables.push_back(I);
681 continue; // Does not get an entry in ImmBranches
682 case ARM::Bcc:
683 isCond = true;
684 UOpc = ARM::B;
685 // Fallthrough
686 case ARM::B:
687 Bits = 24;
688 Scale = 4;
689 break;
690 case ARM::tBcc:
691 isCond = true;
692 UOpc = ARM::tB;
693 Bits = 8;
694 Scale = 2;
695 break;
696 case ARM::tB:
697 Bits = 11;
698 Scale = 2;
699 break;
700 case ARM::t2Bcc:
701 isCond = true;
702 UOpc = ARM::t2B;
703 Bits = 20;
704 Scale = 2;
705 break;
706 case ARM::t2B:
707 Bits = 24;
708 Scale = 2;
709 break;
710 }
711
712 // Record this immediate branch.
713 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
714 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
715 }
716
717 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
718 PushPopMIs.push_back(I);
719
720 if (Opc == ARM::CONSTPOOL_ENTRY)
721 continue;
722
723 // Scan the instructions for constant pool operands.
724 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
725 if (I->getOperand(op).isCPI()) {
726 // We found one. The addressing mode tells us the max displacement
727 // from the PC that this instruction permits.
728
729 // Basic size info comes from the TSFlags field.
730 unsigned Bits = 0;
731 unsigned Scale = 1;
732 bool NegOk = false;
733 bool IsSoImm = false;
734
735 switch (Opc) {
736 default:
737 llvm_unreachable("Unknown addressing mode for CP reference!");
738
739 // Taking the address of a CP entry.
740 case ARM::LEApcrel:
741 // This takes a SoImm, which is 8 bit immediate rotated. We'll
742 // pretend the maximum offset is 255 * 4. Since each instruction
743 // 4 byte wide, this is always correct. We'll check for other
744 // displacements that fits in a SoImm as well.
745 Bits = 8;
746 Scale = 4;
747 NegOk = true;
748 IsSoImm = true;
749 break;
750 case ARM::t2LEApcrel:
751 Bits = 12;
752 NegOk = true;
753 break;
754 case ARM::tLEApcrel:
755 Bits = 8;
756 Scale = 4;
757 break;
758
759 case ARM::LDRBi12:
760 case ARM::LDRi12:
761 case ARM::LDRcp:
762 case ARM::t2LDRpci:
763 Bits = 12; // +-offset_12
764 NegOk = true;
765 break;
766
767 case ARM::tLDRpci:
768 Bits = 8;
769 Scale = 4; // +(offset_8*4)
770 break;
771
772 case ARM::VLDRD:
773 case ARM::VLDRS:
774 Bits = 8;
775 Scale = 4; // +-(offset_8*4)
776 NegOk = true;
777 break;
778 }
779
780 // Remember that this is a user of a CP entry.
781 unsigned CPI = I->getOperand(op).getIndex();
782 MachineInstr *CPEMI = CPEMIs[CPI];
783 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
784 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
785
786 // Increment corresponding CPEntry reference count.
787 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
788 assert(CPE && "Cannot find a corresponding CPEntry!");
789 CPE->RefCount++;
790
791 // Instructions can only use one CP entry, don't bother scanning the
792 // rest of the operands.
793 break;
794 }
795 }
796 }
797 }
798
799 /// computeBlockSize - Compute the size and some alignment information for MBB.
800 /// This function updates BBInfo directly.
computeBlockSize(MachineBasicBlock * MBB)801 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
802 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
803 BBI.Size = 0;
804 BBI.Unalign = 0;
805 BBI.PostAlign = 0;
806
807 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
808 ++I) {
809 BBI.Size += TII->GetInstSizeInBytes(I);
810 // For inline asm, GetInstSizeInBytes returns a conservative estimate.
811 // The actual size may be smaller, but still a multiple of the instr size.
812 if (I->isInlineAsm())
813 BBI.Unalign = isThumb ? 1 : 2;
814 // Also consider instructions that may be shrunk later.
815 else if (isThumb && mayOptimizeThumb2Instruction(I))
816 BBI.Unalign = 1;
817 }
818
819 // tBR_JTr contains a .align 2 directive.
820 if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
821 BBI.PostAlign = 2;
822 MBB->getParent()->ensureAlignment(2);
823 }
824 }
825
826 /// getOffsetOf - Return the current offset of the specified machine instruction
827 /// from the start of the function. This offset changes as stuff is moved
828 /// around inside the function.
getOffsetOf(MachineInstr * MI) const829 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
830 MachineBasicBlock *MBB = MI->getParent();
831
832 // The offset is composed of two things: the sum of the sizes of all MBB's
833 // before this instruction's block, and the offset from the start of the block
834 // it is in.
835 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
836
837 // Sum instructions before MI in MBB.
838 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
839 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
840 Offset += TII->GetInstSizeInBytes(I);
841 }
842 return Offset;
843 }
844
845 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
846 /// ID.
CompareMBBNumbers(const MachineBasicBlock * LHS,const MachineBasicBlock * RHS)847 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
848 const MachineBasicBlock *RHS) {
849 return LHS->getNumber() < RHS->getNumber();
850 }
851
852 /// updateForInsertedWaterBlock - When a block is newly inserted into the
853 /// machine function, it upsets all of the block numbers. Renumber the blocks
854 /// and update the arrays that parallel this numbering.
updateForInsertedWaterBlock(MachineBasicBlock * NewBB)855 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
856 // Renumber the MBB's to keep them consecutive.
857 NewBB->getParent()->RenumberBlocks(NewBB);
858
859 // Insert an entry into BBInfo to align it properly with the (newly
860 // renumbered) block numbers.
861 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
862
863 // Next, update WaterList. Specifically, we need to add NewMBB as having
864 // available water after it.
865 water_iterator IP =
866 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
867 CompareMBBNumbers);
868 WaterList.insert(IP, NewBB);
869 }
870
871
872 /// Split the basic block containing MI into two blocks, which are joined by
873 /// an unconditional branch. Update data structures and renumber blocks to
874 /// account for this change and returns the newly created block.
splitBlockBeforeInstr(MachineInstr * MI)875 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
876 MachineBasicBlock *OrigBB = MI->getParent();
877
878 // Create a new MBB for the code after the OrigBB.
879 MachineBasicBlock *NewBB =
880 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
881 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
882 MF->insert(MBBI, NewBB);
883
884 // Splice the instructions starting with MI over to NewBB.
885 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
886
887 // Add an unconditional branch from OrigBB to NewBB.
888 // Note the new unconditional branch is not being recorded.
889 // There doesn't seem to be meaningful DebugInfo available; this doesn't
890 // correspond to anything in the source.
891 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
892 if (!isThumb)
893 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
894 else
895 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
896 .addImm(ARMCC::AL).addReg(0);
897 ++NumSplit;
898
899 // Update the CFG. All succs of OrigBB are now succs of NewBB.
900 NewBB->transferSuccessors(OrigBB);
901
902 // OrigBB branches to NewBB.
903 OrigBB->addSuccessor(NewBB);
904
905 // Update internal data structures to account for the newly inserted MBB.
906 // This is almost the same as updateForInsertedWaterBlock, except that
907 // the Water goes after OrigBB, not NewBB.
908 MF->RenumberBlocks(NewBB);
909
910 // Insert an entry into BBInfo to align it properly with the (newly
911 // renumbered) block numbers.
912 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
913
914 // Next, update WaterList. Specifically, we need to add OrigMBB as having
915 // available water after it (but not if it's already there, which happens
916 // when splitting before a conditional branch that is followed by an
917 // unconditional branch - in that case we want to insert NewBB).
918 water_iterator IP =
919 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
920 CompareMBBNumbers);
921 MachineBasicBlock* WaterBB = *IP;
922 if (WaterBB == OrigBB)
923 WaterList.insert(std::next(IP), NewBB);
924 else
925 WaterList.insert(IP, OrigBB);
926 NewWaterList.insert(OrigBB);
927
928 // Figure out how large the OrigBB is. As the first half of the original
929 // block, it cannot contain a tablejump. The size includes
930 // the new jump we added. (It should be possible to do this without
931 // recounting everything, but it's very confusing, and this is rarely
932 // executed.)
933 computeBlockSize(OrigBB);
934
935 // Figure out how large the NewMBB is. As the second half of the original
936 // block, it may contain a tablejump.
937 computeBlockSize(NewBB);
938
939 // All BBOffsets following these blocks must be modified.
940 adjustBBOffsetsAfter(OrigBB);
941
942 return NewBB;
943 }
944
945 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
946 /// displacement computation. Update U.KnownAlignment to match its current
947 /// basic block location.
getUserOffset(CPUser & U) const948 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
949 unsigned UserOffset = getOffsetOf(U.MI);
950 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
951 unsigned KnownBits = BBI.internalKnownBits();
952
953 // The value read from PC is offset from the actual instruction address.
954 UserOffset += (isThumb ? 4 : 8);
955
956 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
957 // Make sure U.getMaxDisp() returns a constrained range.
958 U.KnownAlignment = (KnownBits >= 2);
959
960 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
961 // purposes of the displacement computation; compensate for that here.
962 // For unknown alignments, getMaxDisp() constrains the range instead.
963 if (isThumb && U.KnownAlignment)
964 UserOffset &= ~3u;
965
966 return UserOffset;
967 }
968
969 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
970 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
971 /// constant pool entry).
972 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
973 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
974 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
isOffsetInRange(unsigned UserOffset,unsigned TrialOffset,unsigned MaxDisp,bool NegativeOK,bool IsSoImm)975 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
976 unsigned TrialOffset, unsigned MaxDisp,
977 bool NegativeOK, bool IsSoImm) {
978 if (UserOffset <= TrialOffset) {
979 // User before the Trial.
980 if (TrialOffset - UserOffset <= MaxDisp)
981 return true;
982 // FIXME: Make use full range of soimm values.
983 } else if (NegativeOK) {
984 if (UserOffset - TrialOffset <= MaxDisp)
985 return true;
986 // FIXME: Make use full range of soimm values.
987 }
988 return false;
989 }
990
991 /// isWaterInRange - Returns true if a CPE placed after the specified
992 /// Water (a basic block) will be in range for the specific MI.
993 ///
994 /// Compute how much the function will grow by inserting a CPE after Water.
isWaterInRange(unsigned UserOffset,MachineBasicBlock * Water,CPUser & U,unsigned & Growth)995 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
996 MachineBasicBlock* Water, CPUser &U,
997 unsigned &Growth) {
998 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
999 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
1000 unsigned NextBlockOffset, NextBlockAlignment;
1001 MachineFunction::const_iterator NextBlock = Water;
1002 if (++NextBlock == MF->end()) {
1003 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1004 NextBlockAlignment = 0;
1005 } else {
1006 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1007 NextBlockAlignment = NextBlock->getAlignment();
1008 }
1009 unsigned Size = U.CPEMI->getOperand(2).getImm();
1010 unsigned CPEEnd = CPEOffset + Size;
1011
1012 // The CPE may be able to hide in the alignment padding before the next
1013 // block. It may also cause more padding to be required if it is more aligned
1014 // that the next block.
1015 if (CPEEnd > NextBlockOffset) {
1016 Growth = CPEEnd - NextBlockOffset;
1017 // Compute the padding that would go at the end of the CPE to align the next
1018 // block.
1019 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
1020
1021 // If the CPE is to be inserted before the instruction, that will raise
1022 // the offset of the instruction. Also account for unknown alignment padding
1023 // in blocks between CPE and the user.
1024 if (CPEOffset < UserOffset)
1025 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
1026 } else
1027 // CPE fits in existing padding.
1028 Growth = 0;
1029
1030 return isOffsetInRange(UserOffset, CPEOffset, U);
1031 }
1032
1033 /// isCPEntryInRange - Returns true if the distance between specific MI and
1034 /// specific ConstPool entry instruction can fit in MI's displacement field.
isCPEntryInRange(MachineInstr * MI,unsigned UserOffset,MachineInstr * CPEMI,unsigned MaxDisp,bool NegOk,bool DoDump)1035 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1036 MachineInstr *CPEMI, unsigned MaxDisp,
1037 bool NegOk, bool DoDump) {
1038 unsigned CPEOffset = getOffsetOf(CPEMI);
1039
1040 if (DoDump) {
1041 DEBUG({
1042 unsigned Block = MI->getParent()->getNumber();
1043 const BasicBlockInfo &BBI = BBInfo[Block];
1044 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1045 << " max delta=" << MaxDisp
1046 << format(" insn address=%#x", UserOffset)
1047 << " in BB#" << Block << ": "
1048 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1049 << format("CPE address=%#x offset=%+d: ", CPEOffset,
1050 int(CPEOffset-UserOffset));
1051 });
1052 }
1053
1054 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1055 }
1056
1057 #ifndef NDEBUG
1058 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1059 /// unconditionally branches to its only successor.
BBIsJumpedOver(MachineBasicBlock * MBB)1060 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1061 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1062 return false;
1063
1064 MachineBasicBlock *Succ = *MBB->succ_begin();
1065 MachineBasicBlock *Pred = *MBB->pred_begin();
1066 MachineInstr *PredMI = &Pred->back();
1067 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1068 || PredMI->getOpcode() == ARM::t2B)
1069 return PredMI->getOperand(0).getMBB() == Succ;
1070 return false;
1071 }
1072 #endif // NDEBUG
1073
adjustBBOffsetsAfter(MachineBasicBlock * BB)1074 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
1075 unsigned BBNum = BB->getNumber();
1076 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
1077 // Get the offset and known bits at the end of the layout predecessor.
1078 // Include the alignment of the current block.
1079 unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
1080 unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
1081 unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
1082
1083 // This is where block i begins. Stop if the offset is already correct,
1084 // and we have updated 2 blocks. This is the maximum number of blocks
1085 // changed before calling this function.
1086 if (i > BBNum + 2 &&
1087 BBInfo[i].Offset == Offset &&
1088 BBInfo[i].KnownBits == KnownBits)
1089 break;
1090
1091 BBInfo[i].Offset = Offset;
1092 BBInfo[i].KnownBits = KnownBits;
1093 }
1094 }
1095
1096 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1097 /// and instruction CPEMI, and decrement its refcount. If the refcount
1098 /// becomes 0 remove the entry and instruction. Returns true if we removed
1099 /// the entry, false if we didn't.
1100
decrementCPEReferenceCount(unsigned CPI,MachineInstr * CPEMI)1101 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1102 MachineInstr *CPEMI) {
1103 // Find the old entry. Eliminate it if it is no longer used.
1104 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1105 assert(CPE && "Unexpected!");
1106 if (--CPE->RefCount == 0) {
1107 removeDeadCPEMI(CPEMI);
1108 CPE->CPEMI = nullptr;
1109 --NumCPEs;
1110 return true;
1111 }
1112 return false;
1113 }
1114
1115 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1116 /// if not, see if an in-range clone of the CPE is in range, and if so,
1117 /// change the data structures so the user references the clone. Returns:
1118 /// 0 = no existing entry found
1119 /// 1 = entry found, and there were no code insertions or deletions
1120 /// 2 = entry found, and there were code insertions or deletions
findInRangeCPEntry(CPUser & U,unsigned UserOffset)1121 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
1122 {
1123 MachineInstr *UserMI = U.MI;
1124 MachineInstr *CPEMI = U.CPEMI;
1125
1126 // Check to see if the CPE is already in-range.
1127 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1128 true)) {
1129 DEBUG(dbgs() << "In range\n");
1130 return 1;
1131 }
1132
1133 // No. Look for previously created clones of the CPE that are in range.
1134 unsigned CPI = CPEMI->getOperand(1).getIndex();
1135 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1136 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1137 // We already tried this one
1138 if (CPEs[i].CPEMI == CPEMI)
1139 continue;
1140 // Removing CPEs can leave empty entries, skip
1141 if (CPEs[i].CPEMI == nullptr)
1142 continue;
1143 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1144 U.NegOk)) {
1145 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1146 << CPEs[i].CPI << "\n");
1147 // Point the CPUser node to the replacement
1148 U.CPEMI = CPEs[i].CPEMI;
1149 // Change the CPI in the instruction operand to refer to the clone.
1150 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1151 if (UserMI->getOperand(j).isCPI()) {
1152 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1153 break;
1154 }
1155 // Adjust the refcount of the clone...
1156 CPEs[i].RefCount++;
1157 // ...and the original. If we didn't remove the old entry, none of the
1158 // addresses changed, so we don't need another pass.
1159 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1160 }
1161 }
1162 return 0;
1163 }
1164
1165 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1166 /// the specific unconditional branch instruction.
getUnconditionalBrDisp(int Opc)1167 static inline unsigned getUnconditionalBrDisp(int Opc) {
1168 switch (Opc) {
1169 case ARM::tB:
1170 return ((1<<10)-1)*2;
1171 case ARM::t2B:
1172 return ((1<<23)-1)*2;
1173 default:
1174 break;
1175 }
1176
1177 return ((1<<23)-1)*4;
1178 }
1179
1180 /// findAvailableWater - Look for an existing entry in the WaterList in which
1181 /// we can place the CPE referenced from U so it's within range of U's MI.
1182 /// Returns true if found, false if not. If it returns true, WaterIter
1183 /// is set to the WaterList entry. For Thumb, prefer water that will not
1184 /// introduce padding to water that will. To ensure that this pass
1185 /// terminates, the CPE location for a particular CPUser is only allowed to
1186 /// move to a lower address, so search backward from the end of the list and
1187 /// prefer the first water that is in range.
findAvailableWater(CPUser & U,unsigned UserOffset,water_iterator & WaterIter)1188 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1189 water_iterator &WaterIter) {
1190 if (WaterList.empty())
1191 return false;
1192
1193 unsigned BestGrowth = ~0u;
1194 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1195 --IP) {
1196 MachineBasicBlock* WaterBB = *IP;
1197 // Check if water is in range and is either at a lower address than the
1198 // current "high water mark" or a new water block that was created since
1199 // the previous iteration by inserting an unconditional branch. In the
1200 // latter case, we want to allow resetting the high water mark back to
1201 // this new water since we haven't seen it before. Inserting branches
1202 // should be relatively uncommon and when it does happen, we want to be
1203 // sure to take advantage of it for all the CPEs near that block, so that
1204 // we don't insert more branches than necessary.
1205 unsigned Growth;
1206 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1207 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1208 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1209 Growth < BestGrowth) {
1210 // This is the least amount of required padding seen so far.
1211 BestGrowth = Growth;
1212 WaterIter = IP;
1213 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1214 << " Growth=" << Growth << '\n');
1215
1216 // Keep looking unless it is perfect.
1217 if (BestGrowth == 0)
1218 return true;
1219 }
1220 if (IP == B)
1221 break;
1222 }
1223 return BestGrowth != ~0u;
1224 }
1225
1226 /// createNewWater - No existing WaterList entry will work for
1227 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1228 /// block is used if in range, and the conditional branch munged so control
1229 /// flow is correct. Otherwise the block is split to create a hole with an
1230 /// unconditional branch around it. In either case NewMBB is set to a
1231 /// block following which the new island can be inserted (the WaterList
1232 /// is not adjusted).
createNewWater(unsigned CPUserIndex,unsigned UserOffset,MachineBasicBlock * & NewMBB)1233 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1234 unsigned UserOffset,
1235 MachineBasicBlock *&NewMBB) {
1236 CPUser &U = CPUsers[CPUserIndex];
1237 MachineInstr *UserMI = U.MI;
1238 MachineInstr *CPEMI = U.CPEMI;
1239 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1240 MachineBasicBlock *UserMBB = UserMI->getParent();
1241 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1242
1243 // If the block does not end in an unconditional branch already, and if the
1244 // end of the block is within range, make new water there. (The addition
1245 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1246 // Thumb2, 2 on Thumb1.
1247 if (BBHasFallthrough(UserMBB)) {
1248 // Size of branch to insert.
1249 unsigned Delta = isThumb1 ? 2 : 4;
1250 // Compute the offset where the CPE will begin.
1251 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1252
1253 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1254 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1255 << format(", expected CPE offset %#x\n", CPEOffset));
1256 NewMBB = std::next(MachineFunction::iterator(UserMBB));
1257 // Add an unconditional branch from UserMBB to fallthrough block. Record
1258 // it for branch lengthening; this new branch will not get out of range,
1259 // but if the preceding conditional branch is out of range, the targets
1260 // will be exchanged, and the altered branch may be out of range, so the
1261 // machinery has to know about it.
1262 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1263 if (!isThumb)
1264 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1265 else
1266 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
1267 .addImm(ARMCC::AL).addReg(0);
1268 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1269 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1270 MaxDisp, false, UncondBr));
1271 computeBlockSize(UserMBB);
1272 adjustBBOffsetsAfter(UserMBB);
1273 return;
1274 }
1275 }
1276
1277 // What a big block. Find a place within the block to split it. This is a
1278 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1279 // entries are 4 bytes: if instruction I references island CPE, and
1280 // instruction I+1 references CPE', it will not work well to put CPE as far
1281 // forward as possible, since then CPE' cannot immediately follow it (that
1282 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1283 // need to create a new island. So, we make a first guess, then walk through
1284 // the instructions between the one currently being looked at and the
1285 // possible insertion point, and make sure any other instructions that
1286 // reference CPEs will be able to use the same island area; if not, we back
1287 // up the insertion point.
1288
1289 // Try to split the block so it's fully aligned. Compute the latest split
1290 // point where we can add a 4-byte branch instruction, and then align to
1291 // LogAlign which is the largest possible alignment in the function.
1292 unsigned LogAlign = MF->getAlignment();
1293 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1294 unsigned KnownBits = UserBBI.internalKnownBits();
1295 unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1296 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1297 DEBUG(dbgs() << format("Split in middle of big block before %#x",
1298 BaseInsertOffset));
1299
1300 // The 4 in the following is for the unconditional branch we'll be inserting
1301 // (allows for long branch on Thumb1). Alignment of the island is handled
1302 // inside isOffsetInRange.
1303 BaseInsertOffset -= 4;
1304
1305 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1306 << " la=" << LogAlign
1307 << " kb=" << KnownBits
1308 << " up=" << UPad << '\n');
1309
1310 // This could point off the end of the block if we've already got constant
1311 // pool entries following this block; only the last one is in the water list.
1312 // Back past any possible branches (allow for a conditional and a maximally
1313 // long unconditional).
1314 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1315 // Ensure BaseInsertOffset is larger than the offset of the instruction
1316 // following UserMI so that the loop which searches for the split point
1317 // iterates at least once.
1318 BaseInsertOffset =
1319 std::max(UserBBI.postOffset() - UPad - 8,
1320 UserOffset + TII->GetInstSizeInBytes(UserMI) + 1);
1321 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1322 }
1323 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1324 CPEMI->getOperand(2).getImm();
1325 MachineBasicBlock::iterator MI = UserMI;
1326 ++MI;
1327 unsigned CPUIndex = CPUserIndex+1;
1328 unsigned NumCPUsers = CPUsers.size();
1329 MachineInstr *LastIT = nullptr;
1330 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1331 Offset < BaseInsertOffset;
1332 Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
1333 assert(MI != UserMBB->end() && "Fell off end of block");
1334 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1335 CPUser &U = CPUsers[CPUIndex];
1336 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1337 // Shift intertion point by one unit of alignment so it is within reach.
1338 BaseInsertOffset -= 1u << LogAlign;
1339 EndInsertOffset -= 1u << LogAlign;
1340 }
1341 // This is overly conservative, as we don't account for CPEMIs being
1342 // reused within the block, but it doesn't matter much. Also assume CPEs
1343 // are added in order with alignment padding. We may eventually be able
1344 // to pack the aligned CPEs better.
1345 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1346 CPUIndex++;
1347 }
1348
1349 // Remember the last IT instruction.
1350 if (MI->getOpcode() == ARM::t2IT)
1351 LastIT = MI;
1352 }
1353
1354 --MI;
1355
1356 // Avoid splitting an IT block.
1357 if (LastIT) {
1358 unsigned PredReg = 0;
1359 ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
1360 if (CC != ARMCC::AL)
1361 MI = LastIT;
1362 }
1363
1364 // We really must not split an IT block.
1365 DEBUG(unsigned PredReg;
1366 assert(!isThumb || getITInstrPredicate(MI, PredReg) == ARMCC::AL));
1367
1368 NewMBB = splitBlockBeforeInstr(MI);
1369 }
1370
1371 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1372 /// is out-of-range. If so, pick up the constant pool value and move it some
1373 /// place in-range. Return true if we changed any addresses (thus must run
1374 /// another pass of branch lengthening), false otherwise.
handleConstantPoolUser(unsigned CPUserIndex)1375 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1376 CPUser &U = CPUsers[CPUserIndex];
1377 MachineInstr *UserMI = U.MI;
1378 MachineInstr *CPEMI = U.CPEMI;
1379 unsigned CPI = CPEMI->getOperand(1).getIndex();
1380 unsigned Size = CPEMI->getOperand(2).getImm();
1381 // Compute this only once, it's expensive.
1382 unsigned UserOffset = getUserOffset(U);
1383
1384 // See if the current entry is within range, or there is a clone of it
1385 // in range.
1386 int result = findInRangeCPEntry(U, UserOffset);
1387 if (result==1) return false;
1388 else if (result==2) return true;
1389
1390 // No existing clone of this CPE is within range.
1391 // We will be generating a new clone. Get a UID for it.
1392 unsigned ID = AFI->createPICLabelUId();
1393
1394 // Look for water where we can place this CPE.
1395 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1396 MachineBasicBlock *NewMBB;
1397 water_iterator IP;
1398 if (findAvailableWater(U, UserOffset, IP)) {
1399 DEBUG(dbgs() << "Found water in range\n");
1400 MachineBasicBlock *WaterBB = *IP;
1401
1402 // If the original WaterList entry was "new water" on this iteration,
1403 // propagate that to the new island. This is just keeping NewWaterList
1404 // updated to match the WaterList, which will be updated below.
1405 if (NewWaterList.erase(WaterBB))
1406 NewWaterList.insert(NewIsland);
1407
1408 // The new CPE goes before the following block (NewMBB).
1409 NewMBB = std::next(MachineFunction::iterator(WaterBB));
1410
1411 } else {
1412 // No water found.
1413 DEBUG(dbgs() << "No water found\n");
1414 createNewWater(CPUserIndex, UserOffset, NewMBB);
1415
1416 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1417 // called while handling branches so that the water will be seen on the
1418 // next iteration for constant pools, but in this context, we don't want
1419 // it. Check for this so it will be removed from the WaterList.
1420 // Also remove any entry from NewWaterList.
1421 MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
1422 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1423 if (IP != WaterList.end())
1424 NewWaterList.erase(WaterBB);
1425
1426 // We are adding new water. Update NewWaterList.
1427 NewWaterList.insert(NewIsland);
1428 }
1429
1430 // Remove the original WaterList entry; we want subsequent insertions in
1431 // this vicinity to go after the one we're about to insert. This
1432 // considerably reduces the number of times we have to move the same CPE
1433 // more than once and is also important to ensure the algorithm terminates.
1434 if (IP != WaterList.end())
1435 WaterList.erase(IP);
1436
1437 // Okay, we know we can put an island before NewMBB now, do it!
1438 MF->insert(NewMBB, NewIsland);
1439
1440 // Update internal data structures to account for the newly inserted MBB.
1441 updateForInsertedWaterBlock(NewIsland);
1442
1443 // Decrement the old entry, and remove it if refcount becomes 0.
1444 decrementCPEReferenceCount(CPI, CPEMI);
1445
1446 // Now that we have an island to add the CPE to, clone the original CPE and
1447 // add it to the island.
1448 U.HighWaterMark = NewIsland;
1449 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
1450 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1451 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1452 ++NumCPEs;
1453
1454 // Mark the basic block as aligned as required by the const-pool entry.
1455 NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1456
1457 // Increase the size of the island block to account for the new entry.
1458 BBInfo[NewIsland->getNumber()].Size += Size;
1459 adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
1460
1461 // Finally, change the CPI in the instruction operand to be ID.
1462 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1463 if (UserMI->getOperand(i).isCPI()) {
1464 UserMI->getOperand(i).setIndex(ID);
1465 break;
1466 }
1467
1468 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1469 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1470
1471 return true;
1472 }
1473
1474 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1475 /// sizes and offsets of impacted basic blocks.
removeDeadCPEMI(MachineInstr * CPEMI)1476 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1477 MachineBasicBlock *CPEBB = CPEMI->getParent();
1478 unsigned Size = CPEMI->getOperand(2).getImm();
1479 CPEMI->eraseFromParent();
1480 BBInfo[CPEBB->getNumber()].Size -= Size;
1481 // All succeeding offsets have the current size value added in, fix this.
1482 if (CPEBB->empty()) {
1483 BBInfo[CPEBB->getNumber()].Size = 0;
1484
1485 // This block no longer needs to be aligned.
1486 CPEBB->setAlignment(0);
1487 } else
1488 // Entries are sorted by descending alignment, so realign from the front.
1489 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1490
1491 adjustBBOffsetsAfter(CPEBB);
1492 // An island has only one predecessor BB and one successor BB. Check if
1493 // this BB's predecessor jumps directly to this BB's successor. This
1494 // shouldn't happen currently.
1495 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1496 // FIXME: remove the empty blocks after all the work is done?
1497 }
1498
1499 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1500 /// are zero.
removeUnusedCPEntries()1501 bool ARMConstantIslands::removeUnusedCPEntries() {
1502 unsigned MadeChange = false;
1503 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1504 std::vector<CPEntry> &CPEs = CPEntries[i];
1505 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1506 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1507 removeDeadCPEMI(CPEs[j].CPEMI);
1508 CPEs[j].CPEMI = nullptr;
1509 MadeChange = true;
1510 }
1511 }
1512 }
1513 return MadeChange;
1514 }
1515
1516 /// isBBInRange - Returns true if the distance between specific MI and
1517 /// specific BB can fit in MI's displacement field.
isBBInRange(MachineInstr * MI,MachineBasicBlock * DestBB,unsigned MaxDisp)1518 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1519 unsigned MaxDisp) {
1520 unsigned PCAdj = isThumb ? 4 : 8;
1521 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1522 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1523
1524 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1525 << " from BB#" << MI->getParent()->getNumber()
1526 << " max delta=" << MaxDisp
1527 << " from " << getOffsetOf(MI) << " to " << DestOffset
1528 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1529
1530 if (BrOffset <= DestOffset) {
1531 // Branch before the Dest.
1532 if (DestOffset-BrOffset <= MaxDisp)
1533 return true;
1534 } else {
1535 if (BrOffset-DestOffset <= MaxDisp)
1536 return true;
1537 }
1538 return false;
1539 }
1540
1541 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1542 /// away to fit in its displacement field.
fixupImmediateBr(ImmBranch & Br)1543 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1544 MachineInstr *MI = Br.MI;
1545 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1546
1547 // Check to see if the DestBB is already in-range.
1548 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1549 return false;
1550
1551 if (!Br.isCond)
1552 return fixupUnconditionalBr(Br);
1553 return fixupConditionalBr(Br);
1554 }
1555
1556 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1557 /// too far away to fit in its displacement field. If the LR register has been
1558 /// spilled in the epilogue, then we can use BL to implement a far jump.
1559 /// Otherwise, add an intermediate branch instruction to a branch.
1560 bool
fixupUnconditionalBr(ImmBranch & Br)1561 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1562 MachineInstr *MI = Br.MI;
1563 MachineBasicBlock *MBB = MI->getParent();
1564 if (!isThumb1)
1565 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1566
1567 // Use BL to implement far jump.
1568 Br.MaxDisp = (1 << 21) * 2;
1569 MI->setDesc(TII->get(ARM::tBfar));
1570 BBInfo[MBB->getNumber()].Size += 2;
1571 adjustBBOffsetsAfter(MBB);
1572 HasFarJump = true;
1573 ++NumUBrFixed;
1574
1575 DEBUG(dbgs() << " Changed B to long jump " << *MI);
1576
1577 return true;
1578 }
1579
1580 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1581 /// far away to fit in its displacement field. It is converted to an inverse
1582 /// conditional branch + an unconditional branch to the destination.
1583 bool
fixupConditionalBr(ImmBranch & Br)1584 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1585 MachineInstr *MI = Br.MI;
1586 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1587
1588 // Add an unconditional branch to the destination and invert the branch
1589 // condition to jump over it:
1590 // blt L1
1591 // =>
1592 // bge L2
1593 // b L1
1594 // L2:
1595 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1596 CC = ARMCC::getOppositeCondition(CC);
1597 unsigned CCReg = MI->getOperand(2).getReg();
1598
1599 // If the branch is at the end of its MBB and that has a fall-through block,
1600 // direct the updated conditional branch to the fall-through block. Otherwise,
1601 // split the MBB before the next instruction.
1602 MachineBasicBlock *MBB = MI->getParent();
1603 MachineInstr *BMI = &MBB->back();
1604 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1605
1606 ++NumCBrFixed;
1607 if (BMI != MI) {
1608 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1609 BMI->getOpcode() == Br.UncondBr) {
1610 // Last MI in the BB is an unconditional branch. Can we simply invert the
1611 // condition and swap destinations:
1612 // beq L1
1613 // b L2
1614 // =>
1615 // bne L2
1616 // b L1
1617 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1618 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1619 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
1620 << *BMI);
1621 BMI->getOperand(0).setMBB(DestBB);
1622 MI->getOperand(0).setMBB(NewDest);
1623 MI->getOperand(1).setImm(CC);
1624 return true;
1625 }
1626 }
1627 }
1628
1629 if (NeedSplit) {
1630 splitBlockBeforeInstr(MI);
1631 // No need for the branch to the next block. We're adding an unconditional
1632 // branch to the destination.
1633 int delta = TII->GetInstSizeInBytes(&MBB->back());
1634 BBInfo[MBB->getNumber()].Size -= delta;
1635 MBB->back().eraseFromParent();
1636 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1637 }
1638 MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
1639
1640 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
1641 << " also invert condition and change dest. to BB#"
1642 << NextBB->getNumber() << "\n");
1643
1644 // Insert a new conditional branch and a new unconditional branch.
1645 // Also update the ImmBranch as well as adding a new entry for the new branch.
1646 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1647 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1648 Br.MI = &MBB->back();
1649 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1650 if (isThumb)
1651 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
1652 .addImm(ARMCC::AL).addReg(0);
1653 else
1654 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1655 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1656 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1657 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1658
1659 // Remove the old conditional branch. It may or may not still be in MBB.
1660 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1661 MI->eraseFromParent();
1662 adjustBBOffsetsAfter(MBB);
1663 return true;
1664 }
1665
1666 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1667 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1668 /// to do this if tBfar is not used.
undoLRSpillRestore()1669 bool ARMConstantIslands::undoLRSpillRestore() {
1670 bool MadeChange = false;
1671 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1672 MachineInstr *MI = PushPopMIs[i];
1673 // First two operands are predicates.
1674 if (MI->getOpcode() == ARM::tPOP_RET &&
1675 MI->getOperand(2).getReg() == ARM::PC &&
1676 MI->getNumExplicitOperands() == 3) {
1677 // Create the new insn and copy the predicate from the old.
1678 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
1679 .addOperand(MI->getOperand(0))
1680 .addOperand(MI->getOperand(1));
1681 MI->eraseFromParent();
1682 MadeChange = true;
1683 }
1684 }
1685 return MadeChange;
1686 }
1687
1688 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
1689 // below may shrink MI.
1690 bool
mayOptimizeThumb2Instruction(const MachineInstr * MI) const1691 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
1692 switch(MI->getOpcode()) {
1693 // optimizeThumb2Instructions.
1694 case ARM::t2LEApcrel:
1695 case ARM::t2LDRpci:
1696 // optimizeThumb2Branches.
1697 case ARM::t2B:
1698 case ARM::t2Bcc:
1699 case ARM::tBcc:
1700 // optimizeThumb2JumpTables.
1701 case ARM::t2BR_JT:
1702 return true;
1703 }
1704 return false;
1705 }
1706
optimizeThumb2Instructions()1707 bool ARMConstantIslands::optimizeThumb2Instructions() {
1708 bool MadeChange = false;
1709
1710 // Shrink ADR and LDR from constantpool.
1711 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1712 CPUser &U = CPUsers[i];
1713 unsigned Opcode = U.MI->getOpcode();
1714 unsigned NewOpc = 0;
1715 unsigned Scale = 1;
1716 unsigned Bits = 0;
1717 switch (Opcode) {
1718 default: break;
1719 case ARM::t2LEApcrel:
1720 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1721 NewOpc = ARM::tLEApcrel;
1722 Bits = 8;
1723 Scale = 4;
1724 }
1725 break;
1726 case ARM::t2LDRpci:
1727 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1728 NewOpc = ARM::tLDRpci;
1729 Bits = 8;
1730 Scale = 4;
1731 }
1732 break;
1733 }
1734
1735 if (!NewOpc)
1736 continue;
1737
1738 unsigned UserOffset = getUserOffset(U);
1739 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1740
1741 // Be conservative with inline asm.
1742 if (!U.KnownAlignment)
1743 MaxOffs -= 2;
1744
1745 // FIXME: Check if offset is multiple of scale if scale is not 4.
1746 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1747 DEBUG(dbgs() << "Shrink: " << *U.MI);
1748 U.MI->setDesc(TII->get(NewOpc));
1749 MachineBasicBlock *MBB = U.MI->getParent();
1750 BBInfo[MBB->getNumber()].Size -= 2;
1751 adjustBBOffsetsAfter(MBB);
1752 ++NumT2CPShrunk;
1753 MadeChange = true;
1754 }
1755 }
1756
1757 MadeChange |= optimizeThumb2Branches();
1758 MadeChange |= optimizeThumb2JumpTables();
1759 return MadeChange;
1760 }
1761
optimizeThumb2Branches()1762 bool ARMConstantIslands::optimizeThumb2Branches() {
1763 bool MadeChange = false;
1764
1765 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1766 ImmBranch &Br = ImmBranches[i];
1767 unsigned Opcode = Br.MI->getOpcode();
1768 unsigned NewOpc = 0;
1769 unsigned Scale = 1;
1770 unsigned Bits = 0;
1771 switch (Opcode) {
1772 default: break;
1773 case ARM::t2B:
1774 NewOpc = ARM::tB;
1775 Bits = 11;
1776 Scale = 2;
1777 break;
1778 case ARM::t2Bcc: {
1779 NewOpc = ARM::tBcc;
1780 Bits = 8;
1781 Scale = 2;
1782 break;
1783 }
1784 }
1785 if (NewOpc) {
1786 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1787 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1788 if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
1789 DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1790 Br.MI->setDesc(TII->get(NewOpc));
1791 MachineBasicBlock *MBB = Br.MI->getParent();
1792 BBInfo[MBB->getNumber()].Size -= 2;
1793 adjustBBOffsetsAfter(MBB);
1794 ++NumT2BrShrunk;
1795 MadeChange = true;
1796 }
1797 }
1798
1799 Opcode = Br.MI->getOpcode();
1800 if (Opcode != ARM::tBcc)
1801 continue;
1802
1803 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1804 // so this transformation is not safe.
1805 if (!Br.MI->killsRegister(ARM::CPSR))
1806 continue;
1807
1808 NewOpc = 0;
1809 unsigned PredReg = 0;
1810 ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
1811 if (Pred == ARMCC::EQ)
1812 NewOpc = ARM::tCBZ;
1813 else if (Pred == ARMCC::NE)
1814 NewOpc = ARM::tCBNZ;
1815 if (!NewOpc)
1816 continue;
1817 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1818 // Check if the distance is within 126. Subtract starting offset by 2
1819 // because the cmp will be eliminated.
1820 unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
1821 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1822 if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
1823 MachineBasicBlock::iterator CmpMI = Br.MI;
1824 if (CmpMI != Br.MI->getParent()->begin()) {
1825 --CmpMI;
1826 if (CmpMI->getOpcode() == ARM::tCMPi8) {
1827 unsigned Reg = CmpMI->getOperand(0).getReg();
1828 Pred = getInstrPredicate(CmpMI, PredReg);
1829 if (Pred == ARMCC::AL &&
1830 CmpMI->getOperand(1).getImm() == 0 &&
1831 isARMLowRegister(Reg)) {
1832 MachineBasicBlock *MBB = Br.MI->getParent();
1833 DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
1834 MachineInstr *NewBR =
1835 BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
1836 .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
1837 CmpMI->eraseFromParent();
1838 Br.MI->eraseFromParent();
1839 Br.MI = NewBR;
1840 BBInfo[MBB->getNumber()].Size -= 2;
1841 adjustBBOffsetsAfter(MBB);
1842 ++NumCBZ;
1843 MadeChange = true;
1844 }
1845 }
1846 }
1847 }
1848 }
1849
1850 return MadeChange;
1851 }
1852
1853 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1854 /// jumptables when it's possible.
optimizeThumb2JumpTables()1855 bool ARMConstantIslands::optimizeThumb2JumpTables() {
1856 bool MadeChange = false;
1857
1858 // FIXME: After the tables are shrunk, can we get rid some of the
1859 // constantpool tables?
1860 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1861 if (!MJTI) return false;
1862
1863 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1864 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1865 MachineInstr *MI = T2JumpTables[i];
1866 const MCInstrDesc &MCID = MI->getDesc();
1867 unsigned NumOps = MCID.getNumOperands();
1868 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
1869 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1870 unsigned JTI = JTOP.getIndex();
1871 assert(JTI < JT.size());
1872
1873 bool ByteOk = true;
1874 bool HalfWordOk = true;
1875 unsigned JTOffset = getOffsetOf(MI) + 4;
1876 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1877 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1878 MachineBasicBlock *MBB = JTBBs[j];
1879 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
1880 // Negative offset is not ok. FIXME: We should change BB layout to make
1881 // sure all the branches are forward.
1882 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1883 ByteOk = false;
1884 unsigned TBHLimit = ((1<<16)-1)*2;
1885 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1886 HalfWordOk = false;
1887 if (!ByteOk && !HalfWordOk)
1888 break;
1889 }
1890
1891 if (ByteOk || HalfWordOk) {
1892 MachineBasicBlock *MBB = MI->getParent();
1893 unsigned BaseReg = MI->getOperand(0).getReg();
1894 bool BaseRegKill = MI->getOperand(0).isKill();
1895 if (!BaseRegKill)
1896 continue;
1897 unsigned IdxReg = MI->getOperand(1).getReg();
1898 bool IdxRegKill = MI->getOperand(1).isKill();
1899
1900 // Scan backwards to find the instruction that defines the base
1901 // register. Due to post-RA scheduling, we can't count on it
1902 // immediately preceding the branch instruction.
1903 MachineBasicBlock::iterator PrevI = MI;
1904 MachineBasicBlock::iterator B = MBB->begin();
1905 while (PrevI != B && !PrevI->definesRegister(BaseReg))
1906 --PrevI;
1907
1908 // If for some reason we didn't find it, we can't do anything, so
1909 // just skip this one.
1910 if (!PrevI->definesRegister(BaseReg))
1911 continue;
1912
1913 MachineInstr *AddrMI = PrevI;
1914 bool OptOk = true;
1915 // Examine the instruction that calculates the jumptable entry address.
1916 // Make sure it only defines the base register and kills any uses
1917 // other than the index register.
1918 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1919 const MachineOperand &MO = AddrMI->getOperand(k);
1920 if (!MO.isReg() || !MO.getReg())
1921 continue;
1922 if (MO.isDef() && MO.getReg() != BaseReg) {
1923 OptOk = false;
1924 break;
1925 }
1926 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1927 OptOk = false;
1928 break;
1929 }
1930 }
1931 if (!OptOk)
1932 continue;
1933
1934 // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
1935 // that gave us the initial base register definition.
1936 for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
1937 ;
1938
1939 // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
1940 // to delete it as well.
1941 MachineInstr *LeaMI = PrevI;
1942 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1943 LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1944 LeaMI->getOperand(0).getReg() != BaseReg)
1945 OptOk = false;
1946
1947 if (!OptOk)
1948 continue;
1949
1950 DEBUG(dbgs() << "Shrink JT: " << *MI << " addr: " << *AddrMI
1951 << " lea: " << *LeaMI);
1952 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
1953 MachineBasicBlock::iterator MI_JT = MI;
1954 MachineInstr *NewJTMI =
1955 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
1956 .addReg(IdxReg, getKillRegState(IdxRegKill))
1957 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1958 .addImm(MI->getOperand(JTOpIdx+1).getImm());
1959 DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
1960 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1961 // is 2-byte aligned. For now, asm printer will fix it up.
1962 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1963 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1964 OrigSize += TII->GetInstSizeInBytes(LeaMI);
1965 OrigSize += TII->GetInstSizeInBytes(MI);
1966
1967 AddrMI->eraseFromParent();
1968 LeaMI->eraseFromParent();
1969 MI->eraseFromParent();
1970
1971 int delta = OrigSize - NewSize;
1972 BBInfo[MBB->getNumber()].Size -= delta;
1973 adjustBBOffsetsAfter(MBB);
1974
1975 ++NumTBs;
1976 MadeChange = true;
1977 }
1978 }
1979
1980 return MadeChange;
1981 }
1982
1983 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
1984 /// jump tables always branch forwards, since that's what tbb and tbh need.
reorderThumb2JumpTables()1985 bool ARMConstantIslands::reorderThumb2JumpTables() {
1986 bool MadeChange = false;
1987
1988 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1989 if (!MJTI) return false;
1990
1991 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1992 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1993 MachineInstr *MI = T2JumpTables[i];
1994 const MCInstrDesc &MCID = MI->getDesc();
1995 unsigned NumOps = MCID.getNumOperands();
1996 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
1997 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1998 unsigned JTI = JTOP.getIndex();
1999 assert(JTI < JT.size());
2000
2001 // We prefer if target blocks for the jump table come after the jump
2002 // instruction so we can use TB[BH]. Loop through the target blocks
2003 // and try to adjust them such that that's true.
2004 int JTNumber = MI->getParent()->getNumber();
2005 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2006 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2007 MachineBasicBlock *MBB = JTBBs[j];
2008 int DTNumber = MBB->getNumber();
2009
2010 if (DTNumber < JTNumber) {
2011 // The destination precedes the switch. Try to move the block forward
2012 // so we have a positive offset.
2013 MachineBasicBlock *NewBB =
2014 adjustJTTargetBlockForward(MBB, MI->getParent());
2015 if (NewBB)
2016 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2017 MadeChange = true;
2018 }
2019 }
2020 }
2021
2022 return MadeChange;
2023 }
2024
2025 MachineBasicBlock *ARMConstantIslands::
adjustJTTargetBlockForward(MachineBasicBlock * BB,MachineBasicBlock * JTBB)2026 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2027 // If the destination block is terminated by an unconditional branch,
2028 // try to move it; otherwise, create a new block following the jump
2029 // table that branches back to the actual target. This is a very simple
2030 // heuristic. FIXME: We can definitely improve it.
2031 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2032 SmallVector<MachineOperand, 4> Cond;
2033 SmallVector<MachineOperand, 4> CondPrior;
2034 MachineFunction::iterator BBi = BB;
2035 MachineFunction::iterator OldPrior = std::prev(BBi);
2036
2037 // If the block terminator isn't analyzable, don't try to move the block
2038 bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
2039
2040 // If the block ends in an unconditional branch, move it. The prior block
2041 // has to have an analyzable terminator for us to move this one. Be paranoid
2042 // and make sure we're not trying to move the entry block of the function.
2043 if (!B && Cond.empty() && BB != MF->begin() &&
2044 !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2045 BB->moveAfter(JTBB);
2046 OldPrior->updateTerminator();
2047 BB->updateTerminator();
2048 // Update numbering to account for the block being moved.
2049 MF->RenumberBlocks();
2050 ++NumJTMoved;
2051 return nullptr;
2052 }
2053
2054 // Create a new MBB for the code after the jump BB.
2055 MachineBasicBlock *NewBB =
2056 MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2057 MachineFunction::iterator MBBI = JTBB; ++MBBI;
2058 MF->insert(MBBI, NewBB);
2059
2060 // Add an unconditional branch from NewBB to BB.
2061 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2062 // correspond directly to anything in the source.
2063 assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
2064 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
2065 .addImm(ARMCC::AL).addReg(0);
2066
2067 // Update internal data structures to account for the newly inserted MBB.
2068 MF->RenumberBlocks(NewBB);
2069
2070 // Update the CFG.
2071 NewBB->addSuccessor(BB);
2072 JTBB->removeSuccessor(BB);
2073 JTBB->addSuccessor(NewBB);
2074
2075 ++NumJTInserted;
2076 return NewBB;
2077 }
2078