1 //=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines analysis_warnings::[Policy,Executor].
11 // Together they are used by Sema to issue warnings based on inexpensive
12 // static analysis algorithms in libAnalysis.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "clang/Sema/AnalysisBasedWarnings.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/ParentMap.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/StmtVisitor.h"
27 #include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28 #include "clang/Analysis/Analyses/Consumed.h"
29 #include "clang/Analysis/Analyses/ReachableCode.h"
30 #include "clang/Analysis/Analyses/ThreadSafety.h"
31 #include "clang/Analysis/Analyses/UninitializedValues.h"
32 #include "clang/Analysis/AnalysisContext.h"
33 #include "clang/Analysis/CFG.h"
34 #include "clang/Analysis/CFGStmtMap.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Lex/Lexer.h"
38 #include "clang/Lex/Preprocessor.h"
39 #include "clang/Sema/ScopeInfo.h"
40 #include "clang/Sema/SemaInternal.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/BitVector.h"
43 #include "llvm/ADT/FoldingSet.h"
44 #include "llvm/ADT/ImmutableMap.h"
45 #include "llvm/ADT/MapVector.h"
46 #include "llvm/ADT/PostOrderIterator.h"
47 #include "llvm/ADT/SmallString.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/StringRef.h"
50 #include "llvm/Support/Casting.h"
51 #include <algorithm>
52 #include <deque>
53 #include <iterator>
54 #include <vector>
55
56 using namespace clang;
57
58 //===----------------------------------------------------------------------===//
59 // Unreachable code analysis.
60 //===----------------------------------------------------------------------===//
61
62 namespace {
63 class UnreachableCodeHandler : public reachable_code::Callback {
64 Sema &S;
65 public:
UnreachableCodeHandler(Sema & s)66 UnreachableCodeHandler(Sema &s) : S(s) {}
67
HandleUnreachable(reachable_code::UnreachableKind UK,SourceLocation L,SourceRange SilenceableCondVal,SourceRange R1,SourceRange R2)68 void HandleUnreachable(reachable_code::UnreachableKind UK,
69 SourceLocation L,
70 SourceRange SilenceableCondVal,
71 SourceRange R1,
72 SourceRange R2) override {
73 unsigned diag = diag::warn_unreachable;
74 switch (UK) {
75 case reachable_code::UK_Break:
76 diag = diag::warn_unreachable_break;
77 break;
78 case reachable_code::UK_Return:
79 diag = diag::warn_unreachable_return;
80 break;
81 case reachable_code::UK_Loop_Increment:
82 diag = diag::warn_unreachable_loop_increment;
83 break;
84 case reachable_code::UK_Other:
85 break;
86 }
87
88 S.Diag(L, diag) << R1 << R2;
89
90 SourceLocation Open = SilenceableCondVal.getBegin();
91 if (Open.isValid()) {
92 SourceLocation Close = SilenceableCondVal.getEnd();
93 Close = S.getLocForEndOfToken(Close);
94 if (Close.isValid()) {
95 S.Diag(Open, diag::note_unreachable_silence)
96 << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
97 << FixItHint::CreateInsertion(Close, ")");
98 }
99 }
100 }
101 };
102 }
103
104 /// CheckUnreachable - Check for unreachable code.
CheckUnreachable(Sema & S,AnalysisDeclContext & AC)105 static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
106 // As a heuristic prune all diagnostics not in the main file. Currently
107 // the majority of warnings in headers are false positives. These
108 // are largely caused by configuration state, e.g. preprocessor
109 // defined code, etc.
110 //
111 // Note that this is also a performance optimization. Analyzing
112 // headers many times can be expensive.
113 if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
114 return;
115
116 UnreachableCodeHandler UC(S);
117 reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
118 }
119
120 namespace {
121 /// \brief Warn on logical operator errors in CFGBuilder
122 class LogicalErrorHandler : public CFGCallback {
123 Sema &S;
124
125 public:
LogicalErrorHandler(Sema & S)126 LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
127
HasMacroID(const Expr * E)128 static bool HasMacroID(const Expr *E) {
129 if (E->getExprLoc().isMacroID())
130 return true;
131
132 // Recurse to children.
133 for (ConstStmtRange SubStmts = E->children(); SubStmts; ++SubStmts)
134 if (*SubStmts)
135 if (const Expr *SubExpr = dyn_cast<Expr>(*SubStmts))
136 if (HasMacroID(SubExpr))
137 return true;
138
139 return false;
140 }
141
compareAlwaysTrue(const BinaryOperator * B,bool isAlwaysTrue)142 void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
143 if (HasMacroID(B))
144 return;
145
146 SourceRange DiagRange = B->getSourceRange();
147 S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
148 << DiagRange << isAlwaysTrue;
149 }
150
compareBitwiseEquality(const BinaryOperator * B,bool isAlwaysTrue)151 void compareBitwiseEquality(const BinaryOperator *B,
152 bool isAlwaysTrue) override {
153 if (HasMacroID(B))
154 return;
155
156 SourceRange DiagRange = B->getSourceRange();
157 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
158 << DiagRange << isAlwaysTrue;
159 }
160 };
161 } // namespace
162
163 //===----------------------------------------------------------------------===//
164 // Check for infinite self-recursion in functions
165 //===----------------------------------------------------------------------===//
166
167 // All blocks are in one of three states. States are ordered so that blocks
168 // can only move to higher states.
169 enum RecursiveState {
170 FoundNoPath,
171 FoundPath,
172 FoundPathWithNoRecursiveCall
173 };
174
checkForFunctionCall(Sema & S,const FunctionDecl * FD,CFGBlock & Block,unsigned ExitID,llvm::SmallVectorImpl<RecursiveState> & States,RecursiveState State)175 static void checkForFunctionCall(Sema &S, const FunctionDecl *FD,
176 CFGBlock &Block, unsigned ExitID,
177 llvm::SmallVectorImpl<RecursiveState> &States,
178 RecursiveState State) {
179 unsigned ID = Block.getBlockID();
180
181 // A block's state can only move to a higher state.
182 if (States[ID] >= State)
183 return;
184
185 States[ID] = State;
186
187 // Found a path to the exit node without a recursive call.
188 if (ID == ExitID && State == FoundPathWithNoRecursiveCall)
189 return;
190
191 if (State == FoundPathWithNoRecursiveCall) {
192 // If the current state is FoundPathWithNoRecursiveCall, the successors
193 // will be either FoundPathWithNoRecursiveCall or FoundPath. To determine
194 // which, process all the Stmt's in this block to find any recursive calls.
195 for (const auto &B : Block) {
196 if (B.getKind() != CFGElement::Statement)
197 continue;
198
199 const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
200 if (CE && CE->getCalleeDecl() &&
201 CE->getCalleeDecl()->getCanonicalDecl() == FD) {
202
203 // Skip function calls which are qualified with a templated class.
204 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(
205 CE->getCallee()->IgnoreParenImpCasts())) {
206 if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
207 if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
208 isa<TemplateSpecializationType>(NNS->getAsType())) {
209 continue;
210 }
211 }
212 }
213
214 if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE)) {
215 if (isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
216 !MCE->getMethodDecl()->isVirtual()) {
217 State = FoundPath;
218 break;
219 }
220 } else {
221 State = FoundPath;
222 break;
223 }
224 }
225 }
226 }
227
228 for (CFGBlock::succ_iterator I = Block.succ_begin(), E = Block.succ_end();
229 I != E; ++I)
230 if (*I)
231 checkForFunctionCall(S, FD, **I, ExitID, States, State);
232 }
233
checkRecursiveFunction(Sema & S,const FunctionDecl * FD,const Stmt * Body,AnalysisDeclContext & AC)234 static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
235 const Stmt *Body,
236 AnalysisDeclContext &AC) {
237 FD = FD->getCanonicalDecl();
238
239 // Only run on non-templated functions and non-templated members of
240 // templated classes.
241 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
242 FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
243 return;
244
245 CFG *cfg = AC.getCFG();
246 if (!cfg) return;
247
248 // If the exit block is unreachable, skip processing the function.
249 if (cfg->getExit().pred_empty())
250 return;
251
252 // Mark all nodes as FoundNoPath, then begin processing the entry block.
253 llvm::SmallVector<RecursiveState, 16> states(cfg->getNumBlockIDs(),
254 FoundNoPath);
255 checkForFunctionCall(S, FD, cfg->getEntry(), cfg->getExit().getBlockID(),
256 states, FoundPathWithNoRecursiveCall);
257
258 // Check that the exit block is reachable. This prevents triggering the
259 // warning on functions that do not terminate.
260 if (states[cfg->getExit().getBlockID()] == FoundPath)
261 S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
262 }
263
264 //===----------------------------------------------------------------------===//
265 // Check for missing return value.
266 //===----------------------------------------------------------------------===//
267
268 enum ControlFlowKind {
269 UnknownFallThrough,
270 NeverFallThrough,
271 MaybeFallThrough,
272 AlwaysFallThrough,
273 NeverFallThroughOrReturn
274 };
275
276 /// CheckFallThrough - Check that we don't fall off the end of a
277 /// Statement that should return a value.
278 ///
279 /// \returns AlwaysFallThrough iff we always fall off the end of the statement,
280 /// MaybeFallThrough iff we might or might not fall off the end,
281 /// NeverFallThroughOrReturn iff we never fall off the end of the statement or
282 /// return. We assume NeverFallThrough iff we never fall off the end of the
283 /// statement but we may return. We assume that functions not marked noreturn
284 /// will return.
CheckFallThrough(AnalysisDeclContext & AC)285 static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
286 CFG *cfg = AC.getCFG();
287 if (!cfg) return UnknownFallThrough;
288
289 // The CFG leaves in dead things, and we don't want the dead code paths to
290 // confuse us, so we mark all live things first.
291 llvm::BitVector live(cfg->getNumBlockIDs());
292 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
293 live);
294
295 bool AddEHEdges = AC.getAddEHEdges();
296 if (!AddEHEdges && count != cfg->getNumBlockIDs())
297 // When there are things remaining dead, and we didn't add EH edges
298 // from CallExprs to the catch clauses, we have to go back and
299 // mark them as live.
300 for (const auto *B : *cfg) {
301 if (!live[B->getBlockID()]) {
302 if (B->pred_begin() == B->pred_end()) {
303 if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
304 // When not adding EH edges from calls, catch clauses
305 // can otherwise seem dead. Avoid noting them as dead.
306 count += reachable_code::ScanReachableFromBlock(B, live);
307 continue;
308 }
309 }
310 }
311
312 // Now we know what is live, we check the live precessors of the exit block
313 // and look for fall through paths, being careful to ignore normal returns,
314 // and exceptional paths.
315 bool HasLiveReturn = false;
316 bool HasFakeEdge = false;
317 bool HasPlainEdge = false;
318 bool HasAbnormalEdge = false;
319
320 // Ignore default cases that aren't likely to be reachable because all
321 // enums in a switch(X) have explicit case statements.
322 CFGBlock::FilterOptions FO;
323 FO.IgnoreDefaultsWithCoveredEnums = 1;
324
325 for (CFGBlock::filtered_pred_iterator
326 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
327 const CFGBlock& B = **I;
328 if (!live[B.getBlockID()])
329 continue;
330
331 // Skip blocks which contain an element marked as no-return. They don't
332 // represent actually viable edges into the exit block, so mark them as
333 // abnormal.
334 if (B.hasNoReturnElement()) {
335 HasAbnormalEdge = true;
336 continue;
337 }
338
339 // Destructors can appear after the 'return' in the CFG. This is
340 // normal. We need to look pass the destructors for the return
341 // statement (if it exists).
342 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
343
344 for ( ; ri != re ; ++ri)
345 if (ri->getAs<CFGStmt>())
346 break;
347
348 // No more CFGElements in the block?
349 if (ri == re) {
350 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
351 HasAbnormalEdge = true;
352 continue;
353 }
354 // A labeled empty statement, or the entry block...
355 HasPlainEdge = true;
356 continue;
357 }
358
359 CFGStmt CS = ri->castAs<CFGStmt>();
360 const Stmt *S = CS.getStmt();
361 if (isa<ReturnStmt>(S)) {
362 HasLiveReturn = true;
363 continue;
364 }
365 if (isa<ObjCAtThrowStmt>(S)) {
366 HasFakeEdge = true;
367 continue;
368 }
369 if (isa<CXXThrowExpr>(S)) {
370 HasFakeEdge = true;
371 continue;
372 }
373 if (isa<MSAsmStmt>(S)) {
374 // TODO: Verify this is correct.
375 HasFakeEdge = true;
376 HasLiveReturn = true;
377 continue;
378 }
379 if (isa<CXXTryStmt>(S)) {
380 HasAbnormalEdge = true;
381 continue;
382 }
383 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
384 == B.succ_end()) {
385 HasAbnormalEdge = true;
386 continue;
387 }
388
389 HasPlainEdge = true;
390 }
391 if (!HasPlainEdge) {
392 if (HasLiveReturn)
393 return NeverFallThrough;
394 return NeverFallThroughOrReturn;
395 }
396 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
397 return MaybeFallThrough;
398 // This says AlwaysFallThrough for calls to functions that are not marked
399 // noreturn, that don't return. If people would like this warning to be more
400 // accurate, such functions should be marked as noreturn.
401 return AlwaysFallThrough;
402 }
403
404 namespace {
405
406 struct CheckFallThroughDiagnostics {
407 unsigned diag_MaybeFallThrough_HasNoReturn;
408 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
409 unsigned diag_AlwaysFallThrough_HasNoReturn;
410 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
411 unsigned diag_NeverFallThroughOrReturn;
412 enum { Function, Block, Lambda } funMode;
413 SourceLocation FuncLoc;
414
MakeForFunction__anon75d552dd0311::CheckFallThroughDiagnostics415 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
416 CheckFallThroughDiagnostics D;
417 D.FuncLoc = Func->getLocation();
418 D.diag_MaybeFallThrough_HasNoReturn =
419 diag::warn_falloff_noreturn_function;
420 D.diag_MaybeFallThrough_ReturnsNonVoid =
421 diag::warn_maybe_falloff_nonvoid_function;
422 D.diag_AlwaysFallThrough_HasNoReturn =
423 diag::warn_falloff_noreturn_function;
424 D.diag_AlwaysFallThrough_ReturnsNonVoid =
425 diag::warn_falloff_nonvoid_function;
426
427 // Don't suggest that virtual functions be marked "noreturn", since they
428 // might be overridden by non-noreturn functions.
429 bool isVirtualMethod = false;
430 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
431 isVirtualMethod = Method->isVirtual();
432
433 // Don't suggest that template instantiations be marked "noreturn"
434 bool isTemplateInstantiation = false;
435 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
436 isTemplateInstantiation = Function->isTemplateInstantiation();
437
438 if (!isVirtualMethod && !isTemplateInstantiation)
439 D.diag_NeverFallThroughOrReturn =
440 diag::warn_suggest_noreturn_function;
441 else
442 D.diag_NeverFallThroughOrReturn = 0;
443
444 D.funMode = Function;
445 return D;
446 }
447
MakeForBlock__anon75d552dd0311::CheckFallThroughDiagnostics448 static CheckFallThroughDiagnostics MakeForBlock() {
449 CheckFallThroughDiagnostics D;
450 D.diag_MaybeFallThrough_HasNoReturn =
451 diag::err_noreturn_block_has_return_expr;
452 D.diag_MaybeFallThrough_ReturnsNonVoid =
453 diag::err_maybe_falloff_nonvoid_block;
454 D.diag_AlwaysFallThrough_HasNoReturn =
455 diag::err_noreturn_block_has_return_expr;
456 D.diag_AlwaysFallThrough_ReturnsNonVoid =
457 diag::err_falloff_nonvoid_block;
458 D.diag_NeverFallThroughOrReturn = 0;
459 D.funMode = Block;
460 return D;
461 }
462
MakeForLambda__anon75d552dd0311::CheckFallThroughDiagnostics463 static CheckFallThroughDiagnostics MakeForLambda() {
464 CheckFallThroughDiagnostics D;
465 D.diag_MaybeFallThrough_HasNoReturn =
466 diag::err_noreturn_lambda_has_return_expr;
467 D.diag_MaybeFallThrough_ReturnsNonVoid =
468 diag::warn_maybe_falloff_nonvoid_lambda;
469 D.diag_AlwaysFallThrough_HasNoReturn =
470 diag::err_noreturn_lambda_has_return_expr;
471 D.diag_AlwaysFallThrough_ReturnsNonVoid =
472 diag::warn_falloff_nonvoid_lambda;
473 D.diag_NeverFallThroughOrReturn = 0;
474 D.funMode = Lambda;
475 return D;
476 }
477
checkDiagnostics__anon75d552dd0311::CheckFallThroughDiagnostics478 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
479 bool HasNoReturn) const {
480 if (funMode == Function) {
481 return (ReturnsVoid ||
482 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
483 FuncLoc)) &&
484 (!HasNoReturn ||
485 D.isIgnored(diag::warn_noreturn_function_has_return_expr,
486 FuncLoc)) &&
487 (!ReturnsVoid ||
488 D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
489 }
490
491 // For blocks / lambdas.
492 return ReturnsVoid && !HasNoReturn;
493 }
494 };
495
496 }
497
498 /// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
499 /// function that should return a value. Check that we don't fall off the end
500 /// of a noreturn function. We assume that functions and blocks not marked
501 /// noreturn will return.
CheckFallThroughForBody(Sema & S,const Decl * D,const Stmt * Body,const BlockExpr * blkExpr,const CheckFallThroughDiagnostics & CD,AnalysisDeclContext & AC)502 static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
503 const BlockExpr *blkExpr,
504 const CheckFallThroughDiagnostics& CD,
505 AnalysisDeclContext &AC) {
506
507 bool ReturnsVoid = false;
508 bool HasNoReturn = false;
509
510 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
511 ReturnsVoid = FD->getReturnType()->isVoidType();
512 HasNoReturn = FD->isNoReturn();
513 }
514 else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
515 ReturnsVoid = MD->getReturnType()->isVoidType();
516 HasNoReturn = MD->hasAttr<NoReturnAttr>();
517 }
518 else if (isa<BlockDecl>(D)) {
519 QualType BlockTy = blkExpr->getType();
520 if (const FunctionType *FT =
521 BlockTy->getPointeeType()->getAs<FunctionType>()) {
522 if (FT->getReturnType()->isVoidType())
523 ReturnsVoid = true;
524 if (FT->getNoReturnAttr())
525 HasNoReturn = true;
526 }
527 }
528
529 DiagnosticsEngine &Diags = S.getDiagnostics();
530
531 // Short circuit for compilation speed.
532 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
533 return;
534
535 SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
536 // Either in a function body compound statement, or a function-try-block.
537 switch (CheckFallThrough(AC)) {
538 case UnknownFallThrough:
539 break;
540
541 case MaybeFallThrough:
542 if (HasNoReturn)
543 S.Diag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
544 else if (!ReturnsVoid)
545 S.Diag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
546 break;
547 case AlwaysFallThrough:
548 if (HasNoReturn)
549 S.Diag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
550 else if (!ReturnsVoid)
551 S.Diag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
552 break;
553 case NeverFallThroughOrReturn:
554 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
555 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
556 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
557 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
558 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
559 } else {
560 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
561 }
562 }
563 break;
564 case NeverFallThrough:
565 break;
566 }
567 }
568
569 //===----------------------------------------------------------------------===//
570 // -Wuninitialized
571 //===----------------------------------------------------------------------===//
572
573 namespace {
574 /// ContainsReference - A visitor class to search for references to
575 /// a particular declaration (the needle) within any evaluated component of an
576 /// expression (recursively).
577 class ContainsReference : public EvaluatedExprVisitor<ContainsReference> {
578 bool FoundReference;
579 const DeclRefExpr *Needle;
580
581 public:
ContainsReference(ASTContext & Context,const DeclRefExpr * Needle)582 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
583 : EvaluatedExprVisitor<ContainsReference>(Context),
584 FoundReference(false), Needle(Needle) {}
585
VisitExpr(Expr * E)586 void VisitExpr(Expr *E) {
587 // Stop evaluating if we already have a reference.
588 if (FoundReference)
589 return;
590
591 EvaluatedExprVisitor<ContainsReference>::VisitExpr(E);
592 }
593
VisitDeclRefExpr(DeclRefExpr * E)594 void VisitDeclRefExpr(DeclRefExpr *E) {
595 if (E == Needle)
596 FoundReference = true;
597 else
598 EvaluatedExprVisitor<ContainsReference>::VisitDeclRefExpr(E);
599 }
600
doesContainReference() const601 bool doesContainReference() const { return FoundReference; }
602 };
603 }
604
SuggestInitializationFixit(Sema & S,const VarDecl * VD)605 static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
606 QualType VariableTy = VD->getType().getCanonicalType();
607 if (VariableTy->isBlockPointerType() &&
608 !VD->hasAttr<BlocksAttr>()) {
609 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
610 << VD->getDeclName()
611 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
612 return true;
613 }
614
615 // Don't issue a fixit if there is already an initializer.
616 if (VD->getInit())
617 return false;
618
619 // Don't suggest a fixit inside macros.
620 if (VD->getLocEnd().isMacroID())
621 return false;
622
623 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
624
625 // Suggest possible initialization (if any).
626 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
627 if (Init.empty())
628 return false;
629
630 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
631 << FixItHint::CreateInsertion(Loc, Init);
632 return true;
633 }
634
635 /// Create a fixit to remove an if-like statement, on the assumption that its
636 /// condition is CondVal.
CreateIfFixit(Sema & S,const Stmt * If,const Stmt * Then,const Stmt * Else,bool CondVal,FixItHint & Fixit1,FixItHint & Fixit2)637 static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
638 const Stmt *Else, bool CondVal,
639 FixItHint &Fixit1, FixItHint &Fixit2) {
640 if (CondVal) {
641 // If condition is always true, remove all but the 'then'.
642 Fixit1 = FixItHint::CreateRemoval(
643 CharSourceRange::getCharRange(If->getLocStart(),
644 Then->getLocStart()));
645 if (Else) {
646 SourceLocation ElseKwLoc = Lexer::getLocForEndOfToken(
647 Then->getLocEnd(), 0, S.getSourceManager(), S.getLangOpts());
648 Fixit2 = FixItHint::CreateRemoval(
649 SourceRange(ElseKwLoc, Else->getLocEnd()));
650 }
651 } else {
652 // If condition is always false, remove all but the 'else'.
653 if (Else)
654 Fixit1 = FixItHint::CreateRemoval(
655 CharSourceRange::getCharRange(If->getLocStart(),
656 Else->getLocStart()));
657 else
658 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
659 }
660 }
661
662 /// DiagUninitUse -- Helper function to produce a diagnostic for an
663 /// uninitialized use of a variable.
DiagUninitUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool IsCapturedByBlock)664 static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
665 bool IsCapturedByBlock) {
666 bool Diagnosed = false;
667
668 switch (Use.getKind()) {
669 case UninitUse::Always:
670 S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
671 << VD->getDeclName() << IsCapturedByBlock
672 << Use.getUser()->getSourceRange();
673 return;
674
675 case UninitUse::AfterDecl:
676 case UninitUse::AfterCall:
677 S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
678 << VD->getDeclName() << IsCapturedByBlock
679 << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
680 << const_cast<DeclContext*>(VD->getLexicalDeclContext())
681 << VD->getSourceRange();
682 S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
683 << IsCapturedByBlock << Use.getUser()->getSourceRange();
684 return;
685
686 case UninitUse::Maybe:
687 case UninitUse::Sometimes:
688 // Carry on to report sometimes-uninitialized branches, if possible,
689 // or a 'may be used uninitialized' diagnostic otherwise.
690 break;
691 }
692
693 // Diagnose each branch which leads to a sometimes-uninitialized use.
694 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
695 I != E; ++I) {
696 assert(Use.getKind() == UninitUse::Sometimes);
697
698 const Expr *User = Use.getUser();
699 const Stmt *Term = I->Terminator;
700
701 // Information used when building the diagnostic.
702 unsigned DiagKind;
703 StringRef Str;
704 SourceRange Range;
705
706 // FixIts to suppress the diagnostic by removing the dead condition.
707 // For all binary terminators, branch 0 is taken if the condition is true,
708 // and branch 1 is taken if the condition is false.
709 int RemoveDiagKind = -1;
710 const char *FixitStr =
711 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
712 : (I->Output ? "1" : "0");
713 FixItHint Fixit1, Fixit2;
714
715 switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
716 default:
717 // Don't know how to report this. Just fall back to 'may be used
718 // uninitialized'. FIXME: Can this happen?
719 continue;
720
721 // "condition is true / condition is false".
722 case Stmt::IfStmtClass: {
723 const IfStmt *IS = cast<IfStmt>(Term);
724 DiagKind = 0;
725 Str = "if";
726 Range = IS->getCond()->getSourceRange();
727 RemoveDiagKind = 0;
728 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
729 I->Output, Fixit1, Fixit2);
730 break;
731 }
732 case Stmt::ConditionalOperatorClass: {
733 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
734 DiagKind = 0;
735 Str = "?:";
736 Range = CO->getCond()->getSourceRange();
737 RemoveDiagKind = 0;
738 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
739 I->Output, Fixit1, Fixit2);
740 break;
741 }
742 case Stmt::BinaryOperatorClass: {
743 const BinaryOperator *BO = cast<BinaryOperator>(Term);
744 if (!BO->isLogicalOp())
745 continue;
746 DiagKind = 0;
747 Str = BO->getOpcodeStr();
748 Range = BO->getLHS()->getSourceRange();
749 RemoveDiagKind = 0;
750 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
751 (BO->getOpcode() == BO_LOr && !I->Output))
752 // true && y -> y, false || y -> y.
753 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
754 BO->getOperatorLoc()));
755 else
756 // false && y -> false, true || y -> true.
757 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
758 break;
759 }
760
761 // "loop is entered / loop is exited".
762 case Stmt::WhileStmtClass:
763 DiagKind = 1;
764 Str = "while";
765 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
766 RemoveDiagKind = 1;
767 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
768 break;
769 case Stmt::ForStmtClass:
770 DiagKind = 1;
771 Str = "for";
772 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
773 RemoveDiagKind = 1;
774 if (I->Output)
775 Fixit1 = FixItHint::CreateRemoval(Range);
776 else
777 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
778 break;
779 case Stmt::CXXForRangeStmtClass:
780 if (I->Output == 1) {
781 // The use occurs if a range-based for loop's body never executes.
782 // That may be impossible, and there's no syntactic fix for this,
783 // so treat it as a 'may be uninitialized' case.
784 continue;
785 }
786 DiagKind = 1;
787 Str = "for";
788 Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
789 break;
790
791 // "condition is true / loop is exited".
792 case Stmt::DoStmtClass:
793 DiagKind = 2;
794 Str = "do";
795 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
796 RemoveDiagKind = 1;
797 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
798 break;
799
800 // "switch case is taken".
801 case Stmt::CaseStmtClass:
802 DiagKind = 3;
803 Str = "case";
804 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
805 break;
806 case Stmt::DefaultStmtClass:
807 DiagKind = 3;
808 Str = "default";
809 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
810 break;
811 }
812
813 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
814 << VD->getDeclName() << IsCapturedByBlock << DiagKind
815 << Str << I->Output << Range;
816 S.Diag(User->getLocStart(), diag::note_uninit_var_use)
817 << IsCapturedByBlock << User->getSourceRange();
818 if (RemoveDiagKind != -1)
819 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
820 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
821
822 Diagnosed = true;
823 }
824
825 if (!Diagnosed)
826 S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
827 << VD->getDeclName() << IsCapturedByBlock
828 << Use.getUser()->getSourceRange();
829 }
830
831 /// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
832 /// uninitialized variable. This manages the different forms of diagnostic
833 /// emitted for particular types of uses. Returns true if the use was diagnosed
834 /// as a warning. If a particular use is one we omit warnings for, returns
835 /// false.
DiagnoseUninitializedUse(Sema & S,const VarDecl * VD,const UninitUse & Use,bool alwaysReportSelfInit=false)836 static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
837 const UninitUse &Use,
838 bool alwaysReportSelfInit = false) {
839
840 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
841 // Inspect the initializer of the variable declaration which is
842 // being referenced prior to its initialization. We emit
843 // specialized diagnostics for self-initialization, and we
844 // specifically avoid warning about self references which take the
845 // form of:
846 //
847 // int x = x;
848 //
849 // This is used to indicate to GCC that 'x' is intentionally left
850 // uninitialized. Proven code paths which access 'x' in
851 // an uninitialized state after this will still warn.
852 if (const Expr *Initializer = VD->getInit()) {
853 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
854 return false;
855
856 ContainsReference CR(S.Context, DRE);
857 CR.Visit(const_cast<Expr*>(Initializer));
858 if (CR.doesContainReference()) {
859 S.Diag(DRE->getLocStart(),
860 diag::warn_uninit_self_reference_in_init)
861 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
862 return true;
863 }
864 }
865
866 DiagUninitUse(S, VD, Use, false);
867 } else {
868 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
869 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
870 S.Diag(BE->getLocStart(),
871 diag::warn_uninit_byref_blockvar_captured_by_block)
872 << VD->getDeclName();
873 else
874 DiagUninitUse(S, VD, Use, true);
875 }
876
877 // Report where the variable was declared when the use wasn't within
878 // the initializer of that declaration & we didn't already suggest
879 // an initialization fixit.
880 if (!SuggestInitializationFixit(S, VD))
881 S.Diag(VD->getLocStart(), diag::note_uninit_var_def)
882 << VD->getDeclName();
883
884 return true;
885 }
886
887 namespace {
888 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
889 public:
FallthroughMapper(Sema & S)890 FallthroughMapper(Sema &S)
891 : FoundSwitchStatements(false),
892 S(S) {
893 }
894
foundSwitchStatements() const895 bool foundSwitchStatements() const { return FoundSwitchStatements; }
896
markFallthroughVisited(const AttributedStmt * Stmt)897 void markFallthroughVisited(const AttributedStmt *Stmt) {
898 bool Found = FallthroughStmts.erase(Stmt);
899 assert(Found);
900 (void)Found;
901 }
902
903 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
904
getFallthroughStmts() const905 const AttrStmts &getFallthroughStmts() const {
906 return FallthroughStmts;
907 }
908
fillReachableBlocks(CFG * Cfg)909 void fillReachableBlocks(CFG *Cfg) {
910 assert(ReachableBlocks.empty() && "ReachableBlocks already filled");
911 std::deque<const CFGBlock *> BlockQueue;
912
913 ReachableBlocks.insert(&Cfg->getEntry());
914 BlockQueue.push_back(&Cfg->getEntry());
915 // Mark all case blocks reachable to avoid problems with switching on
916 // constants, covered enums, etc.
917 // These blocks can contain fall-through annotations, and we don't want to
918 // issue a warn_fallthrough_attr_unreachable for them.
919 for (const auto *B : *Cfg) {
920 const Stmt *L = B->getLabel();
921 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
922 BlockQueue.push_back(B);
923 }
924
925 while (!BlockQueue.empty()) {
926 const CFGBlock *P = BlockQueue.front();
927 BlockQueue.pop_front();
928 for (CFGBlock::const_succ_iterator I = P->succ_begin(),
929 E = P->succ_end();
930 I != E; ++I) {
931 if (*I && ReachableBlocks.insert(*I).second)
932 BlockQueue.push_back(*I);
933 }
934 }
935 }
936
checkFallThroughIntoBlock(const CFGBlock & B,int & AnnotatedCnt)937 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt) {
938 assert(!ReachableBlocks.empty() && "ReachableBlocks empty");
939
940 int UnannotatedCnt = 0;
941 AnnotatedCnt = 0;
942
943 std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
944 while (!BlockQueue.empty()) {
945 const CFGBlock *P = BlockQueue.front();
946 BlockQueue.pop_front();
947 if (!P) continue;
948
949 const Stmt *Term = P->getTerminator();
950 if (Term && isa<SwitchStmt>(Term))
951 continue; // Switch statement, good.
952
953 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
954 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
955 continue; // Previous case label has no statements, good.
956
957 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
958 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
959 continue; // Case label is preceded with a normal label, good.
960
961 if (!ReachableBlocks.count(P)) {
962 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
963 ElemEnd = P->rend();
964 ElemIt != ElemEnd; ++ElemIt) {
965 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
966 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
967 S.Diag(AS->getLocStart(),
968 diag::warn_fallthrough_attr_unreachable);
969 markFallthroughVisited(AS);
970 ++AnnotatedCnt;
971 break;
972 }
973 // Don't care about other unreachable statements.
974 }
975 }
976 // If there are no unreachable statements, this may be a special
977 // case in CFG:
978 // case X: {
979 // A a; // A has a destructor.
980 // break;
981 // }
982 // // <<<< This place is represented by a 'hanging' CFG block.
983 // case Y:
984 continue;
985 }
986
987 const Stmt *LastStmt = getLastStmt(*P);
988 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
989 markFallthroughVisited(AS);
990 ++AnnotatedCnt;
991 continue; // Fallthrough annotation, good.
992 }
993
994 if (!LastStmt) { // This block contains no executable statements.
995 // Traverse its predecessors.
996 std::copy(P->pred_begin(), P->pred_end(),
997 std::back_inserter(BlockQueue));
998 continue;
999 }
1000
1001 ++UnannotatedCnt;
1002 }
1003 return !!UnannotatedCnt;
1004 }
1005
1006 // RecursiveASTVisitor setup.
shouldWalkTypesOfTypeLocs() const1007 bool shouldWalkTypesOfTypeLocs() const { return false; }
1008
VisitAttributedStmt(AttributedStmt * S)1009 bool VisitAttributedStmt(AttributedStmt *S) {
1010 if (asFallThroughAttr(S))
1011 FallthroughStmts.insert(S);
1012 return true;
1013 }
1014
VisitSwitchStmt(SwitchStmt * S)1015 bool VisitSwitchStmt(SwitchStmt *S) {
1016 FoundSwitchStatements = true;
1017 return true;
1018 }
1019
1020 // We don't want to traverse local type declarations. We analyze their
1021 // methods separately.
TraverseDecl(Decl * D)1022 bool TraverseDecl(Decl *D) { return true; }
1023
1024 // We analyze lambda bodies separately. Skip them here.
TraverseLambdaBody(LambdaExpr * LE)1025 bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1026
1027 private:
1028
asFallThroughAttr(const Stmt * S)1029 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1030 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1031 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1032 return AS;
1033 }
1034 return nullptr;
1035 }
1036
getLastStmt(const CFGBlock & B)1037 static const Stmt *getLastStmt(const CFGBlock &B) {
1038 if (const Stmt *Term = B.getTerminator())
1039 return Term;
1040 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1041 ElemEnd = B.rend();
1042 ElemIt != ElemEnd; ++ElemIt) {
1043 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1044 return CS->getStmt();
1045 }
1046 // Workaround to detect a statement thrown out by CFGBuilder:
1047 // case X: {} case Y:
1048 // case X: ; case Y:
1049 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1050 if (!isa<SwitchCase>(SW->getSubStmt()))
1051 return SW->getSubStmt();
1052
1053 return nullptr;
1054 }
1055
1056 bool FoundSwitchStatements;
1057 AttrStmts FallthroughStmts;
1058 Sema &S;
1059 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1060 };
1061 }
1062
DiagnoseSwitchLabelsFallthrough(Sema & S,AnalysisDeclContext & AC,bool PerFunction)1063 static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1064 bool PerFunction) {
1065 // Only perform this analysis when using C++11. There is no good workflow
1066 // for this warning when not using C++11. There is no good way to silence
1067 // the warning (no attribute is available) unless we are using C++11's support
1068 // for generalized attributes. Once could use pragmas to silence the warning,
1069 // but as a general solution that is gross and not in the spirit of this
1070 // warning.
1071 //
1072 // NOTE: This an intermediate solution. There are on-going discussions on
1073 // how to properly support this warning outside of C++11 with an annotation.
1074 if (!AC.getASTContext().getLangOpts().CPlusPlus11)
1075 return;
1076
1077 FallthroughMapper FM(S);
1078 FM.TraverseStmt(AC.getBody());
1079
1080 if (!FM.foundSwitchStatements())
1081 return;
1082
1083 if (PerFunction && FM.getFallthroughStmts().empty())
1084 return;
1085
1086 CFG *Cfg = AC.getCFG();
1087
1088 if (!Cfg)
1089 return;
1090
1091 FM.fillReachableBlocks(Cfg);
1092
1093 for (CFG::reverse_iterator I = Cfg->rbegin(), E = Cfg->rend(); I != E; ++I) {
1094 const CFGBlock *B = *I;
1095 const Stmt *Label = B->getLabel();
1096
1097 if (!Label || !isa<SwitchCase>(Label))
1098 continue;
1099
1100 int AnnotatedCnt;
1101
1102 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt))
1103 continue;
1104
1105 S.Diag(Label->getLocStart(),
1106 PerFunction ? diag::warn_unannotated_fallthrough_per_function
1107 : diag::warn_unannotated_fallthrough);
1108
1109 if (!AnnotatedCnt) {
1110 SourceLocation L = Label->getLocStart();
1111 if (L.isMacroID())
1112 continue;
1113 if (S.getLangOpts().CPlusPlus11) {
1114 const Stmt *Term = B->getTerminator();
1115 // Skip empty cases.
1116 while (B->empty() && !Term && B->succ_size() == 1) {
1117 B = *B->succ_begin();
1118 Term = B->getTerminator();
1119 }
1120 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1121 Preprocessor &PP = S.getPreprocessor();
1122 TokenValue Tokens[] = {
1123 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1124 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1125 tok::r_square, tok::r_square
1126 };
1127 StringRef AnnotationSpelling = "[[clang::fallthrough]]";
1128 StringRef MacroName = PP.getLastMacroWithSpelling(L, Tokens);
1129 if (!MacroName.empty())
1130 AnnotationSpelling = MacroName;
1131 SmallString<64> TextToInsert(AnnotationSpelling);
1132 TextToInsert += "; ";
1133 S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1134 AnnotationSpelling <<
1135 FixItHint::CreateInsertion(L, TextToInsert);
1136 }
1137 }
1138 S.Diag(L, diag::note_insert_break_fixit) <<
1139 FixItHint::CreateInsertion(L, "break; ");
1140 }
1141 }
1142
1143 for (const auto *F : FM.getFallthroughStmts())
1144 S.Diag(F->getLocStart(), diag::warn_fallthrough_attr_invalid_placement);
1145 }
1146
isInLoop(const ASTContext & Ctx,const ParentMap & PM,const Stmt * S)1147 static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1148 const Stmt *S) {
1149 assert(S);
1150
1151 do {
1152 switch (S->getStmtClass()) {
1153 case Stmt::ForStmtClass:
1154 case Stmt::WhileStmtClass:
1155 case Stmt::CXXForRangeStmtClass:
1156 case Stmt::ObjCForCollectionStmtClass:
1157 return true;
1158 case Stmt::DoStmtClass: {
1159 const Expr *Cond = cast<DoStmt>(S)->getCond();
1160 llvm::APSInt Val;
1161 if (!Cond->EvaluateAsInt(Val, Ctx))
1162 return true;
1163 return Val.getBoolValue();
1164 }
1165 default:
1166 break;
1167 }
1168 } while ((S = PM.getParent(S)));
1169
1170 return false;
1171 }
1172
1173
diagnoseRepeatedUseOfWeak(Sema & S,const sema::FunctionScopeInfo * CurFn,const Decl * D,const ParentMap & PM)1174 static void diagnoseRepeatedUseOfWeak(Sema &S,
1175 const sema::FunctionScopeInfo *CurFn,
1176 const Decl *D,
1177 const ParentMap &PM) {
1178 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1179 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1180 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1181 typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1182 StmtUsesPair;
1183
1184 ASTContext &Ctx = S.getASTContext();
1185
1186 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1187
1188 // Extract all weak objects that are referenced more than once.
1189 SmallVector<StmtUsesPair, 8> UsesByStmt;
1190 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1191 I != E; ++I) {
1192 const WeakUseVector &Uses = I->second;
1193
1194 // Find the first read of the weak object.
1195 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1196 for ( ; UI != UE; ++UI) {
1197 if (UI->isUnsafe())
1198 break;
1199 }
1200
1201 // If there were only writes to this object, don't warn.
1202 if (UI == UE)
1203 continue;
1204
1205 // If there was only one read, followed by any number of writes, and the
1206 // read is not within a loop, don't warn. Additionally, don't warn in a
1207 // loop if the base object is a local variable -- local variables are often
1208 // changed in loops.
1209 if (UI == Uses.begin()) {
1210 WeakUseVector::const_iterator UI2 = UI;
1211 for (++UI2; UI2 != UE; ++UI2)
1212 if (UI2->isUnsafe())
1213 break;
1214
1215 if (UI2 == UE) {
1216 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1217 continue;
1218
1219 const WeakObjectProfileTy &Profile = I->first;
1220 if (!Profile.isExactProfile())
1221 continue;
1222
1223 const NamedDecl *Base = Profile.getBase();
1224 if (!Base)
1225 Base = Profile.getProperty();
1226 assert(Base && "A profile always has a base or property.");
1227
1228 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1229 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1230 continue;
1231 }
1232 }
1233
1234 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1235 }
1236
1237 if (UsesByStmt.empty())
1238 return;
1239
1240 // Sort by first use so that we emit the warnings in a deterministic order.
1241 SourceManager &SM = S.getSourceManager();
1242 std::sort(UsesByStmt.begin(), UsesByStmt.end(),
1243 [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1244 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1245 RHS.first->getLocStart());
1246 });
1247
1248 // Classify the current code body for better warning text.
1249 // This enum should stay in sync with the cases in
1250 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1251 // FIXME: Should we use a common classification enum and the same set of
1252 // possibilities all throughout Sema?
1253 enum {
1254 Function,
1255 Method,
1256 Block,
1257 Lambda
1258 } FunctionKind;
1259
1260 if (isa<sema::BlockScopeInfo>(CurFn))
1261 FunctionKind = Block;
1262 else if (isa<sema::LambdaScopeInfo>(CurFn))
1263 FunctionKind = Lambda;
1264 else if (isa<ObjCMethodDecl>(D))
1265 FunctionKind = Method;
1266 else
1267 FunctionKind = Function;
1268
1269 // Iterate through the sorted problems and emit warnings for each.
1270 for (const auto &P : UsesByStmt) {
1271 const Stmt *FirstRead = P.first;
1272 const WeakObjectProfileTy &Key = P.second->first;
1273 const WeakUseVector &Uses = P.second->second;
1274
1275 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1276 // may not contain enough information to determine that these are different
1277 // properties. We can only be 100% sure of a repeated use in certain cases,
1278 // and we adjust the diagnostic kind accordingly so that the less certain
1279 // case can be turned off if it is too noisy.
1280 unsigned DiagKind;
1281 if (Key.isExactProfile())
1282 DiagKind = diag::warn_arc_repeated_use_of_weak;
1283 else
1284 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1285
1286 // Classify the weak object being accessed for better warning text.
1287 // This enum should stay in sync with the cases in
1288 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1289 enum {
1290 Variable,
1291 Property,
1292 ImplicitProperty,
1293 Ivar
1294 } ObjectKind;
1295
1296 const NamedDecl *D = Key.getProperty();
1297 if (isa<VarDecl>(D))
1298 ObjectKind = Variable;
1299 else if (isa<ObjCPropertyDecl>(D))
1300 ObjectKind = Property;
1301 else if (isa<ObjCMethodDecl>(D))
1302 ObjectKind = ImplicitProperty;
1303 else if (isa<ObjCIvarDecl>(D))
1304 ObjectKind = Ivar;
1305 else
1306 llvm_unreachable("Unexpected weak object kind!");
1307
1308 // Show the first time the object was read.
1309 S.Diag(FirstRead->getLocStart(), DiagKind)
1310 << int(ObjectKind) << D << int(FunctionKind)
1311 << FirstRead->getSourceRange();
1312
1313 // Print all the other accesses as notes.
1314 for (const auto &Use : Uses) {
1315 if (Use.getUseExpr() == FirstRead)
1316 continue;
1317 S.Diag(Use.getUseExpr()->getLocStart(),
1318 diag::note_arc_weak_also_accessed_here)
1319 << Use.getUseExpr()->getSourceRange();
1320 }
1321 }
1322 }
1323
1324 namespace {
1325 class UninitValsDiagReporter : public UninitVariablesHandler {
1326 Sema &S;
1327 typedef SmallVector<UninitUse, 2> UsesVec;
1328 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1329 // Prefer using MapVector to DenseMap, so that iteration order will be
1330 // the same as insertion order. This is needed to obtain a deterministic
1331 // order of diagnostics when calling flushDiagnostics().
1332 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1333 UsesMap *uses;
1334
1335 public:
UninitValsDiagReporter(Sema & S)1336 UninitValsDiagReporter(Sema &S) : S(S), uses(nullptr) {}
~UninitValsDiagReporter()1337 ~UninitValsDiagReporter() override { flushDiagnostics(); }
1338
getUses(const VarDecl * vd)1339 MappedType &getUses(const VarDecl *vd) {
1340 if (!uses)
1341 uses = new UsesMap();
1342
1343 MappedType &V = (*uses)[vd];
1344 if (!V.getPointer())
1345 V.setPointer(new UsesVec());
1346
1347 return V;
1348 }
1349
handleUseOfUninitVariable(const VarDecl * vd,const UninitUse & use)1350 void handleUseOfUninitVariable(const VarDecl *vd,
1351 const UninitUse &use) override {
1352 getUses(vd).getPointer()->push_back(use);
1353 }
1354
handleSelfInit(const VarDecl * vd)1355 void handleSelfInit(const VarDecl *vd) override {
1356 getUses(vd).setInt(true);
1357 }
1358
flushDiagnostics()1359 void flushDiagnostics() {
1360 if (!uses)
1361 return;
1362
1363 for (const auto &P : *uses) {
1364 const VarDecl *vd = P.first;
1365 const MappedType &V = P.second;
1366
1367 UsesVec *vec = V.getPointer();
1368 bool hasSelfInit = V.getInt();
1369
1370 // Specially handle the case where we have uses of an uninitialized
1371 // variable, but the root cause is an idiomatic self-init. We want
1372 // to report the diagnostic at the self-init since that is the root cause.
1373 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1374 DiagnoseUninitializedUse(S, vd,
1375 UninitUse(vd->getInit()->IgnoreParenCasts(),
1376 /* isAlwaysUninit */ true),
1377 /* alwaysReportSelfInit */ true);
1378 else {
1379 // Sort the uses by their SourceLocations. While not strictly
1380 // guaranteed to produce them in line/column order, this will provide
1381 // a stable ordering.
1382 std::sort(vec->begin(), vec->end(),
1383 [](const UninitUse &a, const UninitUse &b) {
1384 // Prefer a more confident report over a less confident one.
1385 if (a.getKind() != b.getKind())
1386 return a.getKind() > b.getKind();
1387 return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1388 });
1389
1390 for (const auto &U : *vec) {
1391 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1392 UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1393
1394 if (DiagnoseUninitializedUse(S, vd, Use))
1395 // Skip further diagnostics for this variable. We try to warn only
1396 // on the first point at which a variable is used uninitialized.
1397 break;
1398 }
1399 }
1400
1401 // Release the uses vector.
1402 delete vec;
1403 }
1404 delete uses;
1405 }
1406
1407 private:
hasAlwaysUninitializedUse(const UsesVec * vec)1408 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1409 return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1410 return U.getKind() == UninitUse::Always ||
1411 U.getKind() == UninitUse::AfterCall ||
1412 U.getKind() == UninitUse::AfterDecl;
1413 });
1414 }
1415 };
1416 }
1417
1418 namespace clang {
1419 namespace {
1420 typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1421 typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1422 typedef std::list<DelayedDiag> DiagList;
1423
1424 struct SortDiagBySourceLocation {
1425 SourceManager &SM;
SortDiagBySourceLocationclang::__anon75d552dd0d11::SortDiagBySourceLocation1426 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1427
operator ()clang::__anon75d552dd0d11::SortDiagBySourceLocation1428 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1429 // Although this call will be slow, this is only called when outputting
1430 // multiple warnings.
1431 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1432 }
1433 };
1434 }}
1435
1436 //===----------------------------------------------------------------------===//
1437 // -Wthread-safety
1438 //===----------------------------------------------------------------------===//
1439 namespace clang {
1440 namespace threadSafety {
1441 namespace {
1442 class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1443 Sema &S;
1444 DiagList Warnings;
1445 SourceLocation FunLocation, FunEndLocation;
1446
1447 const FunctionDecl *CurrentFunction;
1448 bool Verbose;
1449
getNotes() const1450 OptionalNotes getNotes() const {
1451 if (Verbose && CurrentFunction) {
1452 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1453 S.PDiag(diag::note_thread_warning_in_fun)
1454 << CurrentFunction->getNameAsString());
1455 return OptionalNotes(1, FNote);
1456 }
1457 return OptionalNotes();
1458 }
1459
getNotes(const PartialDiagnosticAt & Note) const1460 OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1461 OptionalNotes ONS(1, Note);
1462 if (Verbose && CurrentFunction) {
1463 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1464 S.PDiag(diag::note_thread_warning_in_fun)
1465 << CurrentFunction->getNameAsString());
1466 ONS.push_back(FNote);
1467 }
1468 return ONS;
1469 }
1470
getNotes(const PartialDiagnosticAt & Note1,const PartialDiagnosticAt & Note2) const1471 OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1472 const PartialDiagnosticAt &Note2) const {
1473 OptionalNotes ONS;
1474 ONS.push_back(Note1);
1475 ONS.push_back(Note2);
1476 if (Verbose && CurrentFunction) {
1477 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1478 S.PDiag(diag::note_thread_warning_in_fun)
1479 << CurrentFunction->getNameAsString());
1480 ONS.push_back(FNote);
1481 }
1482 return ONS;
1483 }
1484
1485 // Helper functions
warnLockMismatch(unsigned DiagID,StringRef Kind,Name LockName,SourceLocation Loc)1486 void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1487 SourceLocation Loc) {
1488 // Gracefully handle rare cases when the analysis can't get a more
1489 // precise source location.
1490 if (!Loc.isValid())
1491 Loc = FunLocation;
1492 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1493 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1494 }
1495
1496 public:
ThreadSafetyReporter(Sema & S,SourceLocation FL,SourceLocation FEL)1497 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1498 : S(S), FunLocation(FL), FunEndLocation(FEL),
1499 CurrentFunction(nullptr), Verbose(false) {}
1500
setVerbose(bool b)1501 void setVerbose(bool b) { Verbose = b; }
1502
1503 /// \brief Emit all buffered diagnostics in order of sourcelocation.
1504 /// We need to output diagnostics produced while iterating through
1505 /// the lockset in deterministic order, so this function orders diagnostics
1506 /// and outputs them.
emitDiagnostics()1507 void emitDiagnostics() {
1508 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1509 for (const auto &Diag : Warnings) {
1510 S.Diag(Diag.first.first, Diag.first.second);
1511 for (const auto &Note : Diag.second)
1512 S.Diag(Note.first, Note.second);
1513 }
1514 }
1515
handleInvalidLockExp(StringRef Kind,SourceLocation Loc)1516 void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1517 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1518 << Loc);
1519 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1520 }
1521
handleUnmatchedUnlock(StringRef Kind,Name LockName,SourceLocation Loc)1522 void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1523 SourceLocation Loc) override {
1524 warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1525 }
1526
handleIncorrectUnlockKind(StringRef Kind,Name LockName,LockKind Expected,LockKind Received,SourceLocation Loc)1527 void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1528 LockKind Expected, LockKind Received,
1529 SourceLocation Loc) override {
1530 if (Loc.isInvalid())
1531 Loc = FunLocation;
1532 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1533 << Kind << LockName << Received
1534 << Expected);
1535 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1536 }
1537
handleDoubleLock(StringRef Kind,Name LockName,SourceLocation Loc)1538 void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1539 warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1540 }
1541
handleMutexHeldEndOfScope(StringRef Kind,Name LockName,SourceLocation LocLocked,SourceLocation LocEndOfScope,LockErrorKind LEK)1542 void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1543 SourceLocation LocLocked,
1544 SourceLocation LocEndOfScope,
1545 LockErrorKind LEK) override {
1546 unsigned DiagID = 0;
1547 switch (LEK) {
1548 case LEK_LockedSomePredecessors:
1549 DiagID = diag::warn_lock_some_predecessors;
1550 break;
1551 case LEK_LockedSomeLoopIterations:
1552 DiagID = diag::warn_expecting_lock_held_on_loop;
1553 break;
1554 case LEK_LockedAtEndOfFunction:
1555 DiagID = diag::warn_no_unlock;
1556 break;
1557 case LEK_NotLockedAtEndOfFunction:
1558 DiagID = diag::warn_expecting_locked;
1559 break;
1560 }
1561 if (LocEndOfScope.isInvalid())
1562 LocEndOfScope = FunEndLocation;
1563
1564 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1565 << LockName);
1566 if (LocLocked.isValid()) {
1567 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1568 << Kind);
1569 Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
1570 return;
1571 }
1572 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1573 }
1574
handleExclusiveAndShared(StringRef Kind,Name LockName,SourceLocation Loc1,SourceLocation Loc2)1575 void handleExclusiveAndShared(StringRef Kind, Name LockName,
1576 SourceLocation Loc1,
1577 SourceLocation Loc2) override {
1578 PartialDiagnosticAt Warning(Loc1,
1579 S.PDiag(diag::warn_lock_exclusive_and_shared)
1580 << Kind << LockName);
1581 PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1582 << Kind << LockName);
1583 Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
1584 }
1585
handleNoMutexHeld(StringRef Kind,const NamedDecl * D,ProtectedOperationKind POK,AccessKind AK,SourceLocation Loc)1586 void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1587 ProtectedOperationKind POK, AccessKind AK,
1588 SourceLocation Loc) override {
1589 assert((POK == POK_VarAccess || POK == POK_VarDereference) &&
1590 "Only works for variables");
1591 unsigned DiagID = POK == POK_VarAccess?
1592 diag::warn_variable_requires_any_lock:
1593 diag::warn_var_deref_requires_any_lock;
1594 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1595 << D->getNameAsString() << getLockKindFromAccessKind(AK));
1596 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1597 }
1598
handleMutexNotHeld(StringRef Kind,const NamedDecl * D,ProtectedOperationKind POK,Name LockName,LockKind LK,SourceLocation Loc,Name * PossibleMatch)1599 void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1600 ProtectedOperationKind POK, Name LockName,
1601 LockKind LK, SourceLocation Loc,
1602 Name *PossibleMatch) override {
1603 unsigned DiagID = 0;
1604 if (PossibleMatch) {
1605 switch (POK) {
1606 case POK_VarAccess:
1607 DiagID = diag::warn_variable_requires_lock_precise;
1608 break;
1609 case POK_VarDereference:
1610 DiagID = diag::warn_var_deref_requires_lock_precise;
1611 break;
1612 case POK_FunctionCall:
1613 DiagID = diag::warn_fun_requires_lock_precise;
1614 break;
1615 case POK_PassByRef:
1616 DiagID = diag::warn_guarded_pass_by_reference;
1617 break;
1618 case POK_PtPassByRef:
1619 DiagID = diag::warn_pt_guarded_pass_by_reference;
1620 break;
1621 }
1622 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1623 << D->getNameAsString()
1624 << LockName << LK);
1625 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1626 << *PossibleMatch);
1627 if (Verbose && POK == POK_VarAccess) {
1628 PartialDiagnosticAt VNote(D->getLocation(),
1629 S.PDiag(diag::note_guarded_by_declared_here)
1630 << D->getNameAsString());
1631 Warnings.push_back(DelayedDiag(Warning, getNotes(Note, VNote)));
1632 } else
1633 Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
1634 } else {
1635 switch (POK) {
1636 case POK_VarAccess:
1637 DiagID = diag::warn_variable_requires_lock;
1638 break;
1639 case POK_VarDereference:
1640 DiagID = diag::warn_var_deref_requires_lock;
1641 break;
1642 case POK_FunctionCall:
1643 DiagID = diag::warn_fun_requires_lock;
1644 break;
1645 case POK_PassByRef:
1646 DiagID = diag::warn_guarded_pass_by_reference;
1647 break;
1648 case POK_PtPassByRef:
1649 DiagID = diag::warn_pt_guarded_pass_by_reference;
1650 break;
1651 }
1652 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1653 << D->getNameAsString()
1654 << LockName << LK);
1655 if (Verbose && POK == POK_VarAccess) {
1656 PartialDiagnosticAt Note(D->getLocation(),
1657 S.PDiag(diag::note_guarded_by_declared_here)
1658 << D->getNameAsString());
1659 Warnings.push_back(DelayedDiag(Warning, getNotes(Note)));
1660 } else
1661 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1662 }
1663 }
1664
handleNegativeNotHeld(StringRef Kind,Name LockName,Name Neg,SourceLocation Loc)1665 void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1666 SourceLocation Loc) override {
1667 PartialDiagnosticAt Warning(Loc,
1668 S.PDiag(diag::warn_acquire_requires_negative_cap)
1669 << Kind << LockName << Neg);
1670 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1671 }
1672
1673
handleFunExcludesLock(StringRef Kind,Name FunName,Name LockName,SourceLocation Loc)1674 void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1675 SourceLocation Loc) override {
1676 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1677 << Kind << FunName << LockName);
1678 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1679 }
1680
handleLockAcquiredBefore(StringRef Kind,Name L1Name,Name L2Name,SourceLocation Loc)1681 void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1682 SourceLocation Loc) override {
1683 PartialDiagnosticAt Warning(Loc,
1684 S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1685 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1686 }
1687
handleBeforeAfterCycle(Name L1Name,SourceLocation Loc)1688 void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1689 PartialDiagnosticAt Warning(Loc,
1690 S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1691 Warnings.push_back(DelayedDiag(Warning, getNotes()));
1692 }
1693
enterFunction(const FunctionDecl * FD)1694 void enterFunction(const FunctionDecl* FD) override {
1695 CurrentFunction = FD;
1696 }
1697
leaveFunction(const FunctionDecl * FD)1698 void leaveFunction(const FunctionDecl* FD) override {
1699 CurrentFunction = 0;
1700 }
1701 };
1702 } // namespace
1703 } // namespace threadSafety
1704 } // namespace clang
1705
1706 //===----------------------------------------------------------------------===//
1707 // -Wconsumed
1708 //===----------------------------------------------------------------------===//
1709
1710 namespace clang {
1711 namespace consumed {
1712 namespace {
1713 class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1714
1715 Sema &S;
1716 DiagList Warnings;
1717
1718 public:
1719
ConsumedWarningsHandler(Sema & S)1720 ConsumedWarningsHandler(Sema &S) : S(S) {}
1721
emitDiagnostics()1722 void emitDiagnostics() override {
1723 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1724 for (const auto &Diag : Warnings) {
1725 S.Diag(Diag.first.first, Diag.first.second);
1726 for (const auto &Note : Diag.second)
1727 S.Diag(Note.first, Note.second);
1728 }
1729 }
1730
warnLoopStateMismatch(SourceLocation Loc,StringRef VariableName)1731 void warnLoopStateMismatch(SourceLocation Loc,
1732 StringRef VariableName) override {
1733 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1734 VariableName);
1735
1736 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1737 }
1738
warnParamReturnTypestateMismatch(SourceLocation Loc,StringRef VariableName,StringRef ExpectedState,StringRef ObservedState)1739 void warnParamReturnTypestateMismatch(SourceLocation Loc,
1740 StringRef VariableName,
1741 StringRef ExpectedState,
1742 StringRef ObservedState) override {
1743
1744 PartialDiagnosticAt Warning(Loc, S.PDiag(
1745 diag::warn_param_return_typestate_mismatch) << VariableName <<
1746 ExpectedState << ObservedState);
1747
1748 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1749 }
1750
warnParamTypestateMismatch(SourceLocation Loc,StringRef ExpectedState,StringRef ObservedState)1751 void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1752 StringRef ObservedState) override {
1753
1754 PartialDiagnosticAt Warning(Loc, S.PDiag(
1755 diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1756
1757 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1758 }
1759
warnReturnTypestateForUnconsumableType(SourceLocation Loc,StringRef TypeName)1760 void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1761 StringRef TypeName) override {
1762 PartialDiagnosticAt Warning(Loc, S.PDiag(
1763 diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1764
1765 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1766 }
1767
warnReturnTypestateMismatch(SourceLocation Loc,StringRef ExpectedState,StringRef ObservedState)1768 void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1769 StringRef ObservedState) override {
1770
1771 PartialDiagnosticAt Warning(Loc, S.PDiag(
1772 diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1773
1774 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1775 }
1776
warnUseOfTempInInvalidState(StringRef MethodName,StringRef State,SourceLocation Loc)1777 void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1778 SourceLocation Loc) override {
1779
1780 PartialDiagnosticAt Warning(Loc, S.PDiag(
1781 diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1782
1783 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1784 }
1785
warnUseInInvalidState(StringRef MethodName,StringRef VariableName,StringRef State,SourceLocation Loc)1786 void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1787 StringRef State, SourceLocation Loc) override {
1788
1789 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1790 MethodName << VariableName << State);
1791
1792 Warnings.push_back(DelayedDiag(Warning, OptionalNotes()));
1793 }
1794 };
1795 }}}
1796
1797 //===----------------------------------------------------------------------===//
1798 // AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1799 // warnings on a function, method, or block.
1800 //===----------------------------------------------------------------------===//
1801
Policy()1802 clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1803 enableCheckFallThrough = 1;
1804 enableCheckUnreachable = 0;
1805 enableThreadSafetyAnalysis = 0;
1806 enableConsumedAnalysis = 0;
1807 }
1808
isEnabled(DiagnosticsEngine & D,unsigned diag)1809 static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1810 return (unsigned)!D.isIgnored(diag, SourceLocation());
1811 }
1812
AnalysisBasedWarnings(Sema & s)1813 clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1814 : S(s),
1815 NumFunctionsAnalyzed(0),
1816 NumFunctionsWithBadCFGs(0),
1817 NumCFGBlocks(0),
1818 MaxCFGBlocksPerFunction(0),
1819 NumUninitAnalysisFunctions(0),
1820 NumUninitAnalysisVariables(0),
1821 MaxUninitAnalysisVariablesPerFunction(0),
1822 NumUninitAnalysisBlockVisits(0),
1823 MaxUninitAnalysisBlockVisitsPerFunction(0) {
1824
1825 using namespace diag;
1826 DiagnosticsEngine &D = S.getDiagnostics();
1827
1828 DefaultPolicy.enableCheckUnreachable =
1829 isEnabled(D, warn_unreachable) ||
1830 isEnabled(D, warn_unreachable_break) ||
1831 isEnabled(D, warn_unreachable_return) ||
1832 isEnabled(D, warn_unreachable_loop_increment);
1833
1834 DefaultPolicy.enableThreadSafetyAnalysis =
1835 isEnabled(D, warn_double_lock);
1836
1837 DefaultPolicy.enableConsumedAnalysis =
1838 isEnabled(D, warn_use_in_invalid_state);
1839 }
1840
flushDiagnostics(Sema & S,const sema::FunctionScopeInfo * fscope)1841 static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
1842 for (const auto &D : fscope->PossiblyUnreachableDiags)
1843 S.Diag(D.Loc, D.PD);
1844 }
1845
1846 void clang::sema::
IssueWarnings(sema::AnalysisBasedWarnings::Policy P,sema::FunctionScopeInfo * fscope,const Decl * D,const BlockExpr * blkExpr)1847 AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1848 sema::FunctionScopeInfo *fscope,
1849 const Decl *D, const BlockExpr *blkExpr) {
1850
1851 // We avoid doing analysis-based warnings when there are errors for
1852 // two reasons:
1853 // (1) The CFGs often can't be constructed (if the body is invalid), so
1854 // don't bother trying.
1855 // (2) The code already has problems; running the analysis just takes more
1856 // time.
1857 DiagnosticsEngine &Diags = S.getDiagnostics();
1858
1859 // Do not do any analysis for declarations in system headers if we are
1860 // going to just ignore them.
1861 if (Diags.getSuppressSystemWarnings() &&
1862 S.SourceMgr.isInSystemHeader(D->getLocation()))
1863 return;
1864
1865 // For code in dependent contexts, we'll do this at instantiation time.
1866 if (cast<DeclContext>(D)->isDependentContext())
1867 return;
1868
1869 if (Diags.hasUncompilableErrorOccurred() || Diags.hasFatalErrorOccurred()) {
1870 // Flush out any possibly unreachable diagnostics.
1871 flushDiagnostics(S, fscope);
1872 return;
1873 }
1874
1875 const Stmt *Body = D->getBody();
1876 assert(Body);
1877
1878 // Construct the analysis context with the specified CFG build options.
1879 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
1880
1881 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
1882 // explosion for destructors that can result and the compile time hit.
1883 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
1884 AC.getCFGBuildOptions().AddEHEdges = false;
1885 AC.getCFGBuildOptions().AddInitializers = true;
1886 AC.getCFGBuildOptions().AddImplicitDtors = true;
1887 AC.getCFGBuildOptions().AddTemporaryDtors = true;
1888 AC.getCFGBuildOptions().AddCXXNewAllocator = false;
1889
1890 // Force that certain expressions appear as CFGElements in the CFG. This
1891 // is used to speed up various analyses.
1892 // FIXME: This isn't the right factoring. This is here for initial
1893 // prototyping, but we need a way for analyses to say what expressions they
1894 // expect to always be CFGElements and then fill in the BuildOptions
1895 // appropriately. This is essentially a layering violation.
1896 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
1897 P.enableConsumedAnalysis) {
1898 // Unreachable code analysis and thread safety require a linearized CFG.
1899 AC.getCFGBuildOptions().setAllAlwaysAdd();
1900 }
1901 else {
1902 AC.getCFGBuildOptions()
1903 .setAlwaysAdd(Stmt::BinaryOperatorClass)
1904 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
1905 .setAlwaysAdd(Stmt::BlockExprClass)
1906 .setAlwaysAdd(Stmt::CStyleCastExprClass)
1907 .setAlwaysAdd(Stmt::DeclRefExprClass)
1908 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
1909 .setAlwaysAdd(Stmt::UnaryOperatorClass)
1910 .setAlwaysAdd(Stmt::AttributedStmtClass);
1911 }
1912
1913 // Install the logical handler for -Wtautological-overlap-compare
1914 std::unique_ptr<LogicalErrorHandler> LEH;
1915 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
1916 D->getLocStart())) {
1917 LEH.reset(new LogicalErrorHandler(S));
1918 AC.getCFGBuildOptions().Observer = LEH.get();
1919 }
1920
1921 // Emit delayed diagnostics.
1922 if (!fscope->PossiblyUnreachableDiags.empty()) {
1923 bool analyzed = false;
1924
1925 // Register the expressions with the CFGBuilder.
1926 for (const auto &D : fscope->PossiblyUnreachableDiags) {
1927 if (D.stmt)
1928 AC.registerForcedBlockExpression(D.stmt);
1929 }
1930
1931 if (AC.getCFG()) {
1932 analyzed = true;
1933 for (const auto &D : fscope->PossiblyUnreachableDiags) {
1934 bool processed = false;
1935 if (D.stmt) {
1936 const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
1937 CFGReverseBlockReachabilityAnalysis *cra =
1938 AC.getCFGReachablityAnalysis();
1939 // FIXME: We should be able to assert that block is non-null, but
1940 // the CFG analysis can skip potentially-evaluated expressions in
1941 // edge cases; see test/Sema/vla-2.c.
1942 if (block && cra) {
1943 // Can this block be reached from the entrance?
1944 if (cra->isReachable(&AC.getCFG()->getEntry(), block))
1945 S.Diag(D.Loc, D.PD);
1946 processed = true;
1947 }
1948 }
1949 if (!processed) {
1950 // Emit the warning anyway if we cannot map to a basic block.
1951 S.Diag(D.Loc, D.PD);
1952 }
1953 }
1954 }
1955
1956 if (!analyzed)
1957 flushDiagnostics(S, fscope);
1958 }
1959
1960
1961 // Warning: check missing 'return'
1962 if (P.enableCheckFallThrough) {
1963 const CheckFallThroughDiagnostics &CD =
1964 (isa<BlockDecl>(D) ? CheckFallThroughDiagnostics::MakeForBlock()
1965 : (isa<CXXMethodDecl>(D) &&
1966 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
1967 cast<CXXMethodDecl>(D)->getParent()->isLambda())
1968 ? CheckFallThroughDiagnostics::MakeForLambda()
1969 : CheckFallThroughDiagnostics::MakeForFunction(D));
1970 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC);
1971 }
1972
1973 // Warning: check for unreachable code
1974 if (P.enableCheckUnreachable) {
1975 // Only check for unreachable code on non-template instantiations.
1976 // Different template instantiations can effectively change the control-flow
1977 // and it is very difficult to prove that a snippet of code in a template
1978 // is unreachable for all instantiations.
1979 bool isTemplateInstantiation = false;
1980 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
1981 isTemplateInstantiation = Function->isTemplateInstantiation();
1982 if (!isTemplateInstantiation)
1983 CheckUnreachable(S, AC);
1984 }
1985
1986 // Check for thread safety violations
1987 if (P.enableThreadSafetyAnalysis) {
1988 SourceLocation FL = AC.getDecl()->getLocation();
1989 SourceLocation FEL = AC.getDecl()->getLocEnd();
1990 threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
1991 if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
1992 Reporter.setIssueBetaWarnings(true);
1993 if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
1994 Reporter.setVerbose(true);
1995
1996 threadSafety::runThreadSafetyAnalysis(AC, Reporter,
1997 &S.ThreadSafetyDeclCache);
1998 Reporter.emitDiagnostics();
1999 }
2000
2001 // Check for violations of consumed properties.
2002 if (P.enableConsumedAnalysis) {
2003 consumed::ConsumedWarningsHandler WarningHandler(S);
2004 consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2005 Analyzer.run(AC);
2006 }
2007
2008 if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
2009 !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
2010 !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
2011 if (CFG *cfg = AC.getCFG()) {
2012 UninitValsDiagReporter reporter(S);
2013 UninitVariablesAnalysisStats stats;
2014 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2015 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2016 reporter, stats);
2017
2018 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2019 ++NumUninitAnalysisFunctions;
2020 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2021 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2022 MaxUninitAnalysisVariablesPerFunction =
2023 std::max(MaxUninitAnalysisVariablesPerFunction,
2024 stats.NumVariablesAnalyzed);
2025 MaxUninitAnalysisBlockVisitsPerFunction =
2026 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2027 stats.NumBlockVisits);
2028 }
2029 }
2030 }
2031
2032 bool FallThroughDiagFull =
2033 !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
2034 bool FallThroughDiagPerFunction = !Diags.isIgnored(
2035 diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
2036 if (FallThroughDiagFull || FallThroughDiagPerFunction) {
2037 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2038 }
2039
2040 if (S.getLangOpts().ObjCARCWeak &&
2041 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
2042 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2043
2044
2045 // Check for infinite self-recursion in functions
2046 if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2047 D->getLocStart())) {
2048 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2049 checkRecursiveFunction(S, FD, Body, AC);
2050 }
2051 }
2052
2053 // If none of the previous checks caused a CFG build, trigger one here
2054 // for -Wtautological-overlap-compare
2055 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2056 D->getLocStart())) {
2057 AC.getCFG();
2058 }
2059
2060 // Collect statistics about the CFG if it was built.
2061 if (S.CollectStats && AC.isCFGBuilt()) {
2062 ++NumFunctionsAnalyzed;
2063 if (CFG *cfg = AC.getCFG()) {
2064 // If we successfully built a CFG for this context, record some more
2065 // detail information about it.
2066 NumCFGBlocks += cfg->getNumBlockIDs();
2067 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2068 cfg->getNumBlockIDs());
2069 } else {
2070 ++NumFunctionsWithBadCFGs;
2071 }
2072 }
2073 }
2074
PrintStats() const2075 void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2076 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2077
2078 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2079 unsigned AvgCFGBlocksPerFunction =
2080 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2081 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2082 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2083 << " " << NumCFGBlocks << " CFG blocks built.\n"
2084 << " " << AvgCFGBlocksPerFunction
2085 << " average CFG blocks per function.\n"
2086 << " " << MaxCFGBlocksPerFunction
2087 << " max CFG blocks per function.\n";
2088
2089 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2090 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2091 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2092 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2093 llvm::errs() << NumUninitAnalysisFunctions
2094 << " functions analyzed for uninitialiazed variables\n"
2095 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
2096 << " " << AvgUninitVariablesPerFunction
2097 << " average variables per function.\n"
2098 << " " << MaxUninitAnalysisVariablesPerFunction
2099 << " max variables per function.\n"
2100 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
2101 << " " << AvgUninitBlockVisitsPerFunction
2102 << " average block visits per function.\n"
2103 << " " << MaxUninitAnalysisBlockVisitsPerFunction
2104 << " max block visits per function.\n";
2105 }
2106