1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "ValueEnumerator.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/UseListOrder.h"
27 #include "llvm/IR/ValueSymbolTable.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Support/Program.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <cctype>
34 #include <map>
35 using namespace llvm;
36
37 /// These are manifest constants used by the bitcode writer. They do not need to
38 /// be kept in sync with the reader, but need to be consistent within this file.
39 enum {
40 // VALUE_SYMTAB_BLOCK abbrev id's.
41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
42 VST_ENTRY_7_ABBREV,
43 VST_ENTRY_6_ABBREV,
44 VST_BBENTRY_6_ABBREV,
45
46 // CONSTANTS_BLOCK abbrev id's.
47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
48 CONSTANTS_INTEGER_ABBREV,
49 CONSTANTS_CE_CAST_Abbrev,
50 CONSTANTS_NULL_Abbrev,
51
52 // FUNCTION_BLOCK abbrev id's.
53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
54 FUNCTION_INST_BINOP_ABBREV,
55 FUNCTION_INST_BINOP_FLAGS_ABBREV,
56 FUNCTION_INST_CAST_ABBREV,
57 FUNCTION_INST_RET_VOID_ABBREV,
58 FUNCTION_INST_RET_VAL_ABBREV,
59 FUNCTION_INST_UNREACHABLE_ABBREV,
60 FUNCTION_INST_GEP_ABBREV,
61 };
62
GetEncodedCastOpcode(unsigned Opcode)63 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
64 switch (Opcode) {
65 default: llvm_unreachable("Unknown cast instruction!");
66 case Instruction::Trunc : return bitc::CAST_TRUNC;
67 case Instruction::ZExt : return bitc::CAST_ZEXT;
68 case Instruction::SExt : return bitc::CAST_SEXT;
69 case Instruction::FPToUI : return bitc::CAST_FPTOUI;
70 case Instruction::FPToSI : return bitc::CAST_FPTOSI;
71 case Instruction::UIToFP : return bitc::CAST_UITOFP;
72 case Instruction::SIToFP : return bitc::CAST_SITOFP;
73 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
74 case Instruction::FPExt : return bitc::CAST_FPEXT;
75 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
76 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
77 case Instruction::BitCast : return bitc::CAST_BITCAST;
78 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
79 }
80 }
81
GetEncodedBinaryOpcode(unsigned Opcode)82 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
83 switch (Opcode) {
84 default: llvm_unreachable("Unknown binary instruction!");
85 case Instruction::Add:
86 case Instruction::FAdd: return bitc::BINOP_ADD;
87 case Instruction::Sub:
88 case Instruction::FSub: return bitc::BINOP_SUB;
89 case Instruction::Mul:
90 case Instruction::FMul: return bitc::BINOP_MUL;
91 case Instruction::UDiv: return bitc::BINOP_UDIV;
92 case Instruction::FDiv:
93 case Instruction::SDiv: return bitc::BINOP_SDIV;
94 case Instruction::URem: return bitc::BINOP_UREM;
95 case Instruction::FRem:
96 case Instruction::SRem: return bitc::BINOP_SREM;
97 case Instruction::Shl: return bitc::BINOP_SHL;
98 case Instruction::LShr: return bitc::BINOP_LSHR;
99 case Instruction::AShr: return bitc::BINOP_ASHR;
100 case Instruction::And: return bitc::BINOP_AND;
101 case Instruction::Or: return bitc::BINOP_OR;
102 case Instruction::Xor: return bitc::BINOP_XOR;
103 }
104 }
105
GetEncodedRMWOperation(AtomicRMWInst::BinOp Op)106 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
107 switch (Op) {
108 default: llvm_unreachable("Unknown RMW operation!");
109 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
110 case AtomicRMWInst::Add: return bitc::RMW_ADD;
111 case AtomicRMWInst::Sub: return bitc::RMW_SUB;
112 case AtomicRMWInst::And: return bitc::RMW_AND;
113 case AtomicRMWInst::Nand: return bitc::RMW_NAND;
114 case AtomicRMWInst::Or: return bitc::RMW_OR;
115 case AtomicRMWInst::Xor: return bitc::RMW_XOR;
116 case AtomicRMWInst::Max: return bitc::RMW_MAX;
117 case AtomicRMWInst::Min: return bitc::RMW_MIN;
118 case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
119 case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
120 }
121 }
122
GetEncodedOrdering(AtomicOrdering Ordering)123 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
124 switch (Ordering) {
125 case NotAtomic: return bitc::ORDERING_NOTATOMIC;
126 case Unordered: return bitc::ORDERING_UNORDERED;
127 case Monotonic: return bitc::ORDERING_MONOTONIC;
128 case Acquire: return bitc::ORDERING_ACQUIRE;
129 case Release: return bitc::ORDERING_RELEASE;
130 case AcquireRelease: return bitc::ORDERING_ACQREL;
131 case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
132 }
133 llvm_unreachable("Invalid ordering");
134 }
135
GetEncodedSynchScope(SynchronizationScope SynchScope)136 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
137 switch (SynchScope) {
138 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
139 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
140 }
141 llvm_unreachable("Invalid synch scope");
142 }
143
WriteStringRecord(unsigned Code,StringRef Str,unsigned AbbrevToUse,BitstreamWriter & Stream)144 static void WriteStringRecord(unsigned Code, StringRef Str,
145 unsigned AbbrevToUse, BitstreamWriter &Stream) {
146 SmallVector<unsigned, 64> Vals;
147
148 // Code: [strchar x N]
149 for (unsigned i = 0, e = Str.size(); i != e; ++i) {
150 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
151 AbbrevToUse = 0;
152 Vals.push_back(Str[i]);
153 }
154
155 // Emit the finished record.
156 Stream.EmitRecord(Code, Vals, AbbrevToUse);
157 }
158
getAttrKindEncoding(Attribute::AttrKind Kind)159 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
160 switch (Kind) {
161 case Attribute::Alignment:
162 return bitc::ATTR_KIND_ALIGNMENT;
163 case Attribute::AlwaysInline:
164 return bitc::ATTR_KIND_ALWAYS_INLINE;
165 case Attribute::Builtin:
166 return bitc::ATTR_KIND_BUILTIN;
167 case Attribute::ByVal:
168 return bitc::ATTR_KIND_BY_VAL;
169 case Attribute::InAlloca:
170 return bitc::ATTR_KIND_IN_ALLOCA;
171 case Attribute::Cold:
172 return bitc::ATTR_KIND_COLD;
173 case Attribute::InlineHint:
174 return bitc::ATTR_KIND_INLINE_HINT;
175 case Attribute::InReg:
176 return bitc::ATTR_KIND_IN_REG;
177 case Attribute::JumpTable:
178 return bitc::ATTR_KIND_JUMP_TABLE;
179 case Attribute::MinSize:
180 return bitc::ATTR_KIND_MIN_SIZE;
181 case Attribute::Naked:
182 return bitc::ATTR_KIND_NAKED;
183 case Attribute::Nest:
184 return bitc::ATTR_KIND_NEST;
185 case Attribute::NoAlias:
186 return bitc::ATTR_KIND_NO_ALIAS;
187 case Attribute::NoBuiltin:
188 return bitc::ATTR_KIND_NO_BUILTIN;
189 case Attribute::NoCapture:
190 return bitc::ATTR_KIND_NO_CAPTURE;
191 case Attribute::NoDuplicate:
192 return bitc::ATTR_KIND_NO_DUPLICATE;
193 case Attribute::NoImplicitFloat:
194 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
195 case Attribute::NoInline:
196 return bitc::ATTR_KIND_NO_INLINE;
197 case Attribute::NonLazyBind:
198 return bitc::ATTR_KIND_NON_LAZY_BIND;
199 case Attribute::NonNull:
200 return bitc::ATTR_KIND_NON_NULL;
201 case Attribute::Dereferenceable:
202 return bitc::ATTR_KIND_DEREFERENCEABLE;
203 case Attribute::DereferenceableOrNull:
204 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
205 case Attribute::NoRedZone:
206 return bitc::ATTR_KIND_NO_RED_ZONE;
207 case Attribute::NoReturn:
208 return bitc::ATTR_KIND_NO_RETURN;
209 case Attribute::NoUnwind:
210 return bitc::ATTR_KIND_NO_UNWIND;
211 case Attribute::OptimizeForSize:
212 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
213 case Attribute::OptimizeNone:
214 return bitc::ATTR_KIND_OPTIMIZE_NONE;
215 case Attribute::ReadNone:
216 return bitc::ATTR_KIND_READ_NONE;
217 case Attribute::ReadOnly:
218 return bitc::ATTR_KIND_READ_ONLY;
219 case Attribute::Returned:
220 return bitc::ATTR_KIND_RETURNED;
221 case Attribute::ReturnsTwice:
222 return bitc::ATTR_KIND_RETURNS_TWICE;
223 case Attribute::SExt:
224 return bitc::ATTR_KIND_S_EXT;
225 case Attribute::StackAlignment:
226 return bitc::ATTR_KIND_STACK_ALIGNMENT;
227 case Attribute::StackProtect:
228 return bitc::ATTR_KIND_STACK_PROTECT;
229 case Attribute::StackProtectReq:
230 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
231 case Attribute::StackProtectStrong:
232 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
233 case Attribute::StructRet:
234 return bitc::ATTR_KIND_STRUCT_RET;
235 case Attribute::SanitizeAddress:
236 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
237 case Attribute::SanitizeThread:
238 return bitc::ATTR_KIND_SANITIZE_THREAD;
239 case Attribute::SanitizeMemory:
240 return bitc::ATTR_KIND_SANITIZE_MEMORY;
241 case Attribute::UWTable:
242 return bitc::ATTR_KIND_UW_TABLE;
243 case Attribute::ZExt:
244 return bitc::ATTR_KIND_Z_EXT;
245 case Attribute::EndAttrKinds:
246 llvm_unreachable("Can not encode end-attribute kinds marker.");
247 case Attribute::None:
248 llvm_unreachable("Can not encode none-attribute.");
249 }
250
251 llvm_unreachable("Trying to encode unknown attribute");
252 }
253
WriteAttributeGroupTable(const ValueEnumerator & VE,BitstreamWriter & Stream)254 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
255 BitstreamWriter &Stream) {
256 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
257 if (AttrGrps.empty()) return;
258
259 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
260
261 SmallVector<uint64_t, 64> Record;
262 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
263 AttributeSet AS = AttrGrps[i];
264 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
265 AttributeSet A = AS.getSlotAttributes(i);
266
267 Record.push_back(VE.getAttributeGroupID(A));
268 Record.push_back(AS.getSlotIndex(i));
269
270 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
271 I != E; ++I) {
272 Attribute Attr = *I;
273 if (Attr.isEnumAttribute()) {
274 Record.push_back(0);
275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
276 } else if (Attr.isIntAttribute()) {
277 Record.push_back(1);
278 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
279 Record.push_back(Attr.getValueAsInt());
280 } else {
281 StringRef Kind = Attr.getKindAsString();
282 StringRef Val = Attr.getValueAsString();
283
284 Record.push_back(Val.empty() ? 3 : 4);
285 Record.append(Kind.begin(), Kind.end());
286 Record.push_back(0);
287 if (!Val.empty()) {
288 Record.append(Val.begin(), Val.end());
289 Record.push_back(0);
290 }
291 }
292 }
293
294 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
295 Record.clear();
296 }
297 }
298
299 Stream.ExitBlock();
300 }
301
WriteAttributeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)302 static void WriteAttributeTable(const ValueEnumerator &VE,
303 BitstreamWriter &Stream) {
304 const std::vector<AttributeSet> &Attrs = VE.getAttributes();
305 if (Attrs.empty()) return;
306
307 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
308
309 SmallVector<uint64_t, 64> Record;
310 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
311 const AttributeSet &A = Attrs[i];
312 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
313 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
314
315 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
316 Record.clear();
317 }
318
319 Stream.ExitBlock();
320 }
321
322 /// WriteTypeTable - Write out the type table for a module.
WriteTypeTable(const ValueEnumerator & VE,BitstreamWriter & Stream)323 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
324 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
325
326 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
327 SmallVector<uint64_t, 64> TypeVals;
328
329 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
330
331 // Abbrev for TYPE_CODE_POINTER.
332 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
333 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
335 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
336 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
337
338 // Abbrev for TYPE_CODE_FUNCTION.
339 Abbv = new BitCodeAbbrev();
340 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
344
345 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
346
347 // Abbrev for TYPE_CODE_STRUCT_ANON.
348 Abbv = new BitCodeAbbrev();
349 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
353
354 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
355
356 // Abbrev for TYPE_CODE_STRUCT_NAME.
357 Abbv = new BitCodeAbbrev();
358 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
361 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
362
363 // Abbrev for TYPE_CODE_STRUCT_NAMED.
364 Abbv = new BitCodeAbbrev();
365 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
369
370 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
371
372 // Abbrev for TYPE_CODE_ARRAY.
373 Abbv = new BitCodeAbbrev();
374 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
377
378 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
379
380 // Emit an entry count so the reader can reserve space.
381 TypeVals.push_back(TypeList.size());
382 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
383 TypeVals.clear();
384
385 // Loop over all of the types, emitting each in turn.
386 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
387 Type *T = TypeList[i];
388 int AbbrevToUse = 0;
389 unsigned Code = 0;
390
391 switch (T->getTypeID()) {
392 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
393 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
394 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
395 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
396 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
397 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
398 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
399 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
400 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
401 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
402 case Type::IntegerTyID:
403 // INTEGER: [width]
404 Code = bitc::TYPE_CODE_INTEGER;
405 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
406 break;
407 case Type::PointerTyID: {
408 PointerType *PTy = cast<PointerType>(T);
409 // POINTER: [pointee type, address space]
410 Code = bitc::TYPE_CODE_POINTER;
411 TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
412 unsigned AddressSpace = PTy->getAddressSpace();
413 TypeVals.push_back(AddressSpace);
414 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
415 break;
416 }
417 case Type::FunctionTyID: {
418 FunctionType *FT = cast<FunctionType>(T);
419 // FUNCTION: [isvararg, retty, paramty x N]
420 Code = bitc::TYPE_CODE_FUNCTION;
421 TypeVals.push_back(FT->isVarArg());
422 TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
423 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
424 TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
425 AbbrevToUse = FunctionAbbrev;
426 break;
427 }
428 case Type::StructTyID: {
429 StructType *ST = cast<StructType>(T);
430 // STRUCT: [ispacked, eltty x N]
431 TypeVals.push_back(ST->isPacked());
432 // Output all of the element types.
433 for (StructType::element_iterator I = ST->element_begin(),
434 E = ST->element_end(); I != E; ++I)
435 TypeVals.push_back(VE.getTypeID(*I));
436
437 if (ST->isLiteral()) {
438 Code = bitc::TYPE_CODE_STRUCT_ANON;
439 AbbrevToUse = StructAnonAbbrev;
440 } else {
441 if (ST->isOpaque()) {
442 Code = bitc::TYPE_CODE_OPAQUE;
443 } else {
444 Code = bitc::TYPE_CODE_STRUCT_NAMED;
445 AbbrevToUse = StructNamedAbbrev;
446 }
447
448 // Emit the name if it is present.
449 if (!ST->getName().empty())
450 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
451 StructNameAbbrev, Stream);
452 }
453 break;
454 }
455 case Type::ArrayTyID: {
456 ArrayType *AT = cast<ArrayType>(T);
457 // ARRAY: [numelts, eltty]
458 Code = bitc::TYPE_CODE_ARRAY;
459 TypeVals.push_back(AT->getNumElements());
460 TypeVals.push_back(VE.getTypeID(AT->getElementType()));
461 AbbrevToUse = ArrayAbbrev;
462 break;
463 }
464 case Type::VectorTyID: {
465 VectorType *VT = cast<VectorType>(T);
466 // VECTOR [numelts, eltty]
467 Code = bitc::TYPE_CODE_VECTOR;
468 TypeVals.push_back(VT->getNumElements());
469 TypeVals.push_back(VE.getTypeID(VT->getElementType()));
470 break;
471 }
472 }
473
474 // Emit the finished record.
475 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
476 TypeVals.clear();
477 }
478
479 Stream.ExitBlock();
480 }
481
getEncodedLinkage(const GlobalValue & GV)482 static unsigned getEncodedLinkage(const GlobalValue &GV) {
483 switch (GV.getLinkage()) {
484 case GlobalValue::ExternalLinkage:
485 return 0;
486 case GlobalValue::WeakAnyLinkage:
487 return 16;
488 case GlobalValue::AppendingLinkage:
489 return 2;
490 case GlobalValue::InternalLinkage:
491 return 3;
492 case GlobalValue::LinkOnceAnyLinkage:
493 return 18;
494 case GlobalValue::ExternalWeakLinkage:
495 return 7;
496 case GlobalValue::CommonLinkage:
497 return 8;
498 case GlobalValue::PrivateLinkage:
499 return 9;
500 case GlobalValue::WeakODRLinkage:
501 return 17;
502 case GlobalValue::LinkOnceODRLinkage:
503 return 19;
504 case GlobalValue::AvailableExternallyLinkage:
505 return 12;
506 }
507 llvm_unreachable("Invalid linkage");
508 }
509
getEncodedVisibility(const GlobalValue & GV)510 static unsigned getEncodedVisibility(const GlobalValue &GV) {
511 switch (GV.getVisibility()) {
512 case GlobalValue::DefaultVisibility: return 0;
513 case GlobalValue::HiddenVisibility: return 1;
514 case GlobalValue::ProtectedVisibility: return 2;
515 }
516 llvm_unreachable("Invalid visibility");
517 }
518
getEncodedDLLStorageClass(const GlobalValue & GV)519 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
520 switch (GV.getDLLStorageClass()) {
521 case GlobalValue::DefaultStorageClass: return 0;
522 case GlobalValue::DLLImportStorageClass: return 1;
523 case GlobalValue::DLLExportStorageClass: return 2;
524 }
525 llvm_unreachable("Invalid DLL storage class");
526 }
527
getEncodedThreadLocalMode(const GlobalValue & GV)528 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
529 switch (GV.getThreadLocalMode()) {
530 case GlobalVariable::NotThreadLocal: return 0;
531 case GlobalVariable::GeneralDynamicTLSModel: return 1;
532 case GlobalVariable::LocalDynamicTLSModel: return 2;
533 case GlobalVariable::InitialExecTLSModel: return 3;
534 case GlobalVariable::LocalExecTLSModel: return 4;
535 }
536 llvm_unreachable("Invalid TLS model");
537 }
538
getEncodedComdatSelectionKind(const Comdat & C)539 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
540 switch (C.getSelectionKind()) {
541 case Comdat::Any:
542 return bitc::COMDAT_SELECTION_KIND_ANY;
543 case Comdat::ExactMatch:
544 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
545 case Comdat::Largest:
546 return bitc::COMDAT_SELECTION_KIND_LARGEST;
547 case Comdat::NoDuplicates:
548 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
549 case Comdat::SameSize:
550 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
551 }
552 llvm_unreachable("Invalid selection kind");
553 }
554
writeComdats(const ValueEnumerator & VE,BitstreamWriter & Stream)555 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
556 SmallVector<uint16_t, 64> Vals;
557 for (const Comdat *C : VE.getComdats()) {
558 // COMDAT: [selection_kind, name]
559 Vals.push_back(getEncodedComdatSelectionKind(*C));
560 size_t Size = C->getName().size();
561 assert(isUInt<16>(Size));
562 Vals.push_back(Size);
563 for (char Chr : C->getName())
564 Vals.push_back((unsigned char)Chr);
565 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
566 Vals.clear();
567 }
568 }
569
570 // Emit top-level description of module, including target triple, inline asm,
571 // descriptors for global variables, and function prototype info.
WriteModuleInfo(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)572 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
573 BitstreamWriter &Stream) {
574 // Emit various pieces of data attached to a module.
575 if (!M->getTargetTriple().empty())
576 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
577 0/*TODO*/, Stream);
578 const std::string &DL = M->getDataLayoutStr();
579 if (!DL.empty())
580 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
581 if (!M->getModuleInlineAsm().empty())
582 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
583 0/*TODO*/, Stream);
584
585 // Emit information about sections and GC, computing how many there are. Also
586 // compute the maximum alignment value.
587 std::map<std::string, unsigned> SectionMap;
588 std::map<std::string, unsigned> GCMap;
589 unsigned MaxAlignment = 0;
590 unsigned MaxGlobalType = 0;
591 for (const GlobalValue &GV : M->globals()) {
592 MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
593 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType()));
594 if (GV.hasSection()) {
595 // Give section names unique ID's.
596 unsigned &Entry = SectionMap[GV.getSection()];
597 if (!Entry) {
598 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
599 0/*TODO*/, Stream);
600 Entry = SectionMap.size();
601 }
602 }
603 }
604 for (const Function &F : *M) {
605 MaxAlignment = std::max(MaxAlignment, F.getAlignment());
606 if (F.hasSection()) {
607 // Give section names unique ID's.
608 unsigned &Entry = SectionMap[F.getSection()];
609 if (!Entry) {
610 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
611 0/*TODO*/, Stream);
612 Entry = SectionMap.size();
613 }
614 }
615 if (F.hasGC()) {
616 // Same for GC names.
617 unsigned &Entry = GCMap[F.getGC()];
618 if (!Entry) {
619 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
620 0/*TODO*/, Stream);
621 Entry = GCMap.size();
622 }
623 }
624 }
625
626 // Emit abbrev for globals, now that we know # sections and max alignment.
627 unsigned SimpleGVarAbbrev = 0;
628 if (!M->global_empty()) {
629 // Add an abbrev for common globals with no visibility or thread localness.
630 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
631 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
633 Log2_32_Ceil(MaxGlobalType+1)));
634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant.
635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
637 if (MaxAlignment == 0) // Alignment.
638 Abbv->Add(BitCodeAbbrevOp(0));
639 else {
640 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
642 Log2_32_Ceil(MaxEncAlignment+1)));
643 }
644 if (SectionMap.empty()) // Section.
645 Abbv->Add(BitCodeAbbrevOp(0));
646 else
647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
648 Log2_32_Ceil(SectionMap.size()+1)));
649 // Don't bother emitting vis + thread local.
650 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
651 }
652
653 // Emit the global variable information.
654 SmallVector<unsigned, 64> Vals;
655 for (const GlobalVariable &GV : M->globals()) {
656 unsigned AbbrevToUse = 0;
657
658 // GLOBALVAR: [type, isconst, initid,
659 // linkage, alignment, section, visibility, threadlocal,
660 // unnamed_addr, externally_initialized, dllstorageclass,
661 // comdat]
662 Vals.push_back(VE.getTypeID(GV.getType()));
663 Vals.push_back(GV.isConstant());
664 Vals.push_back(GV.isDeclaration() ? 0 :
665 (VE.getValueID(GV.getInitializer()) + 1));
666 Vals.push_back(getEncodedLinkage(GV));
667 Vals.push_back(Log2_32(GV.getAlignment())+1);
668 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
669 if (GV.isThreadLocal() ||
670 GV.getVisibility() != GlobalValue::DefaultVisibility ||
671 GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
672 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
673 GV.hasComdat()) {
674 Vals.push_back(getEncodedVisibility(GV));
675 Vals.push_back(getEncodedThreadLocalMode(GV));
676 Vals.push_back(GV.hasUnnamedAddr());
677 Vals.push_back(GV.isExternallyInitialized());
678 Vals.push_back(getEncodedDLLStorageClass(GV));
679 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
680 } else {
681 AbbrevToUse = SimpleGVarAbbrev;
682 }
683
684 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
685 Vals.clear();
686 }
687
688 // Emit the function proto information.
689 for (const Function &F : *M) {
690 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
691 // section, visibility, gc, unnamed_addr, prologuedata,
692 // dllstorageclass, comdat, prefixdata]
693 Vals.push_back(VE.getTypeID(F.getType()));
694 Vals.push_back(F.getCallingConv());
695 Vals.push_back(F.isDeclaration());
696 Vals.push_back(getEncodedLinkage(F));
697 Vals.push_back(VE.getAttributeID(F.getAttributes()));
698 Vals.push_back(Log2_32(F.getAlignment())+1);
699 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
700 Vals.push_back(getEncodedVisibility(F));
701 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
702 Vals.push_back(F.hasUnnamedAddr());
703 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
704 : 0);
705 Vals.push_back(getEncodedDLLStorageClass(F));
706 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
707 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
708 : 0);
709
710 unsigned AbbrevToUse = 0;
711 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
712 Vals.clear();
713 }
714
715 // Emit the alias information.
716 for (const GlobalAlias &A : M->aliases()) {
717 // ALIAS: [alias type, aliasee val#, linkage, visibility]
718 Vals.push_back(VE.getTypeID(A.getType()));
719 Vals.push_back(VE.getValueID(A.getAliasee()));
720 Vals.push_back(getEncodedLinkage(A));
721 Vals.push_back(getEncodedVisibility(A));
722 Vals.push_back(getEncodedDLLStorageClass(A));
723 Vals.push_back(getEncodedThreadLocalMode(A));
724 Vals.push_back(A.hasUnnamedAddr());
725 unsigned AbbrevToUse = 0;
726 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
727 Vals.clear();
728 }
729 }
730
GetOptimizationFlags(const Value * V)731 static uint64_t GetOptimizationFlags(const Value *V) {
732 uint64_t Flags = 0;
733
734 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
735 if (OBO->hasNoSignedWrap())
736 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
737 if (OBO->hasNoUnsignedWrap())
738 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
739 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
740 if (PEO->isExact())
741 Flags |= 1 << bitc::PEO_EXACT;
742 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
743 if (FPMO->hasUnsafeAlgebra())
744 Flags |= FastMathFlags::UnsafeAlgebra;
745 if (FPMO->hasNoNaNs())
746 Flags |= FastMathFlags::NoNaNs;
747 if (FPMO->hasNoInfs())
748 Flags |= FastMathFlags::NoInfs;
749 if (FPMO->hasNoSignedZeros())
750 Flags |= FastMathFlags::NoSignedZeros;
751 if (FPMO->hasAllowReciprocal())
752 Flags |= FastMathFlags::AllowReciprocal;
753 }
754
755 return Flags;
756 }
757
WriteValueAsMetadata(const ValueAsMetadata * MD,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record)758 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
759 const ValueEnumerator &VE,
760 BitstreamWriter &Stream,
761 SmallVectorImpl<uint64_t> &Record) {
762 // Mimic an MDNode with a value as one operand.
763 Value *V = MD->getValue();
764 Record.push_back(VE.getTypeID(V->getType()));
765 Record.push_back(VE.getValueID(V));
766 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
767 Record.clear();
768 }
769
WriteMDTuple(const MDTuple * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)770 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
771 BitstreamWriter &Stream,
772 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
773 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
774 Metadata *MD = N->getOperand(i);
775 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
776 "Unexpected function-local metadata");
777 Record.push_back(VE.getMetadataOrNullID(MD));
778 }
779 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
780 : bitc::METADATA_NODE,
781 Record, Abbrev);
782 Record.clear();
783 }
784
WriteMDLocation(const MDLocation * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)785 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE,
786 BitstreamWriter &Stream,
787 SmallVectorImpl<uint64_t> &Record,
788 unsigned Abbrev) {
789 Record.push_back(N->isDistinct());
790 Record.push_back(N->getLine());
791 Record.push_back(N->getColumn());
792 Record.push_back(VE.getMetadataID(N->getScope()));
793 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
794
795 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
796 Record.clear();
797 }
798
WriteGenericDebugNode(const GenericDebugNode * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)799 static void WriteGenericDebugNode(const GenericDebugNode *N,
800 const ValueEnumerator &VE,
801 BitstreamWriter &Stream,
802 SmallVectorImpl<uint64_t> &Record,
803 unsigned Abbrev) {
804 Record.push_back(N->isDistinct());
805 Record.push_back(N->getTag());
806 Record.push_back(0); // Per-tag version field; unused for now.
807
808 for (auto &I : N->operands())
809 Record.push_back(VE.getMetadataOrNullID(I));
810
811 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
812 Record.clear();
813 }
814
rotateSign(int64_t I)815 static uint64_t rotateSign(int64_t I) {
816 uint64_t U = I;
817 return I < 0 ? ~(U << 1) : U << 1;
818 }
819
WriteMDSubrange(const MDSubrange * N,const ValueEnumerator &,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)820 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &,
821 BitstreamWriter &Stream,
822 SmallVectorImpl<uint64_t> &Record,
823 unsigned Abbrev) {
824 Record.push_back(N->isDistinct());
825 Record.push_back(N->getCount());
826 Record.push_back(rotateSign(N->getLowerBound()));
827
828 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
829 Record.clear();
830 }
831
WriteMDEnumerator(const MDEnumerator * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)832 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE,
833 BitstreamWriter &Stream,
834 SmallVectorImpl<uint64_t> &Record,
835 unsigned Abbrev) {
836 Record.push_back(N->isDistinct());
837 Record.push_back(rotateSign(N->getValue()));
838 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
839
840 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
841 Record.clear();
842 }
843
WriteMDBasicType(const MDBasicType * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)844 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE,
845 BitstreamWriter &Stream,
846 SmallVectorImpl<uint64_t> &Record,
847 unsigned Abbrev) {
848 Record.push_back(N->isDistinct());
849 Record.push_back(N->getTag());
850 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
851 Record.push_back(N->getSizeInBits());
852 Record.push_back(N->getAlignInBits());
853 Record.push_back(N->getEncoding());
854
855 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
856 Record.clear();
857 }
858
WriteMDDerivedType(const MDDerivedType * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)859 static void WriteMDDerivedType(const MDDerivedType *N,
860 const ValueEnumerator &VE,
861 BitstreamWriter &Stream,
862 SmallVectorImpl<uint64_t> &Record,
863 unsigned Abbrev) {
864 Record.push_back(N->isDistinct());
865 Record.push_back(N->getTag());
866 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
867 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
868 Record.push_back(N->getLine());
869 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
870 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
871 Record.push_back(N->getSizeInBits());
872 Record.push_back(N->getAlignInBits());
873 Record.push_back(N->getOffsetInBits());
874 Record.push_back(N->getFlags());
875 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
876
877 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
878 Record.clear();
879 }
880
WriteMDCompositeType(const MDCompositeType * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)881 static void WriteMDCompositeType(const MDCompositeType *N,
882 const ValueEnumerator &VE,
883 BitstreamWriter &Stream,
884 SmallVectorImpl<uint64_t> &Record,
885 unsigned Abbrev) {
886 Record.push_back(N->isDistinct());
887 Record.push_back(N->getTag());
888 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
889 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
890 Record.push_back(N->getLine());
891 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
892 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
893 Record.push_back(N->getSizeInBits());
894 Record.push_back(N->getAlignInBits());
895 Record.push_back(N->getOffsetInBits());
896 Record.push_back(N->getFlags());
897 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
898 Record.push_back(N->getRuntimeLang());
899 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
900 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
901 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
902
903 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
904 Record.clear();
905 }
906
WriteMDSubroutineType(const MDSubroutineType * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)907 static void WriteMDSubroutineType(const MDSubroutineType *N,
908 const ValueEnumerator &VE,
909 BitstreamWriter &Stream,
910 SmallVectorImpl<uint64_t> &Record,
911 unsigned Abbrev) {
912 Record.push_back(N->isDistinct());
913 Record.push_back(N->getFlags());
914 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
915
916 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
917 Record.clear();
918 }
919
WriteMDFile(const MDFile * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)920 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE,
921 BitstreamWriter &Stream,
922 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
923 Record.push_back(N->isDistinct());
924 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
925 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
926
927 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
928 Record.clear();
929 }
930
WriteMDCompileUnit(const MDCompileUnit * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)931 static void WriteMDCompileUnit(const MDCompileUnit *N,
932 const ValueEnumerator &VE,
933 BitstreamWriter &Stream,
934 SmallVectorImpl<uint64_t> &Record,
935 unsigned Abbrev) {
936 Record.push_back(N->isDistinct());
937 Record.push_back(N->getSourceLanguage());
938 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
939 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
940 Record.push_back(N->isOptimized());
941 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
942 Record.push_back(N->getRuntimeVersion());
943 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
944 Record.push_back(N->getEmissionKind());
945 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
946 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
947 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
948 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
949 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
950
951 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
952 Record.clear();
953 }
954
WriteMDSubprogram(const MDSubprogram * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)955 static void WriteMDSubprogram(const MDSubprogram *N,
956 const ValueEnumerator &VE,
957 BitstreamWriter &Stream,
958 SmallVectorImpl<uint64_t> &Record,
959 unsigned Abbrev) {
960 Record.push_back(N->isDistinct());
961 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
962 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
963 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
964 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
965 Record.push_back(N->getLine());
966 Record.push_back(VE.getMetadataOrNullID(N->getType()));
967 Record.push_back(N->isLocalToUnit());
968 Record.push_back(N->isDefinition());
969 Record.push_back(N->getScopeLine());
970 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
971 Record.push_back(N->getVirtuality());
972 Record.push_back(N->getVirtualIndex());
973 Record.push_back(N->getFlags());
974 Record.push_back(N->isOptimized());
975 Record.push_back(VE.getMetadataOrNullID(N->getRawFunction()));
976 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
977 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
978 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
979
980 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
981 Record.clear();
982 }
983
WriteMDLexicalBlock(const MDLexicalBlock * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)984 static void WriteMDLexicalBlock(const MDLexicalBlock *N,
985 const ValueEnumerator &VE,
986 BitstreamWriter &Stream,
987 SmallVectorImpl<uint64_t> &Record,
988 unsigned Abbrev) {
989 Record.push_back(N->isDistinct());
990 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
991 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
992 Record.push_back(N->getLine());
993 Record.push_back(N->getColumn());
994
995 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
996 Record.clear();
997 }
998
WriteMDLexicalBlockFile(const MDLexicalBlockFile * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)999 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N,
1000 const ValueEnumerator &VE,
1001 BitstreamWriter &Stream,
1002 SmallVectorImpl<uint64_t> &Record,
1003 unsigned Abbrev) {
1004 Record.push_back(N->isDistinct());
1005 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1006 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1007 Record.push_back(N->getDiscriminator());
1008
1009 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1010 Record.clear();
1011 }
1012
WriteMDNamespace(const MDNamespace * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1013 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE,
1014 BitstreamWriter &Stream,
1015 SmallVectorImpl<uint64_t> &Record,
1016 unsigned Abbrev) {
1017 Record.push_back(N->isDistinct());
1018 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1019 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1020 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1021 Record.push_back(N->getLine());
1022
1023 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1024 Record.clear();
1025 }
1026
WriteMDTemplateTypeParameter(const MDTemplateTypeParameter * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1027 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N,
1028 const ValueEnumerator &VE,
1029 BitstreamWriter &Stream,
1030 SmallVectorImpl<uint64_t> &Record,
1031 unsigned Abbrev) {
1032 Record.push_back(N->isDistinct());
1033 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1034 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1035
1036 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1037 Record.clear();
1038 }
1039
WriteMDTemplateValueParameter(const MDTemplateValueParameter * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1040 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N,
1041 const ValueEnumerator &VE,
1042 BitstreamWriter &Stream,
1043 SmallVectorImpl<uint64_t> &Record,
1044 unsigned Abbrev) {
1045 Record.push_back(N->isDistinct());
1046 Record.push_back(N->getTag());
1047 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1048 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1049 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1050
1051 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1052 Record.clear();
1053 }
1054
WriteMDGlobalVariable(const MDGlobalVariable * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1055 static void WriteMDGlobalVariable(const MDGlobalVariable *N,
1056 const ValueEnumerator &VE,
1057 BitstreamWriter &Stream,
1058 SmallVectorImpl<uint64_t> &Record,
1059 unsigned Abbrev) {
1060 Record.push_back(N->isDistinct());
1061 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1062 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1063 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1064 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1065 Record.push_back(N->getLine());
1066 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1067 Record.push_back(N->isLocalToUnit());
1068 Record.push_back(N->isDefinition());
1069 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1070 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1071
1072 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1073 Record.clear();
1074 }
1075
WriteMDLocalVariable(const MDLocalVariable * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1076 static void WriteMDLocalVariable(const MDLocalVariable *N,
1077 const ValueEnumerator &VE,
1078 BitstreamWriter &Stream,
1079 SmallVectorImpl<uint64_t> &Record,
1080 unsigned Abbrev) {
1081 Record.push_back(N->isDistinct());
1082 Record.push_back(N->getTag());
1083 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1084 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1085 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1086 Record.push_back(N->getLine());
1087 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1088 Record.push_back(N->getArg());
1089 Record.push_back(N->getFlags());
1090
1091 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1092 Record.clear();
1093 }
1094
WriteMDExpression(const MDExpression * N,const ValueEnumerator &,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &,
1096 BitstreamWriter &Stream,
1097 SmallVectorImpl<uint64_t> &Record,
1098 unsigned Abbrev) {
1099 Record.reserve(N->getElements().size() + 1);
1100
1101 Record.push_back(N->isDistinct());
1102 Record.append(N->elements_begin(), N->elements_end());
1103
1104 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1105 Record.clear();
1106 }
1107
WriteMDObjCProperty(const MDObjCProperty * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1108 static void WriteMDObjCProperty(const MDObjCProperty *N,
1109 const ValueEnumerator &VE,
1110 BitstreamWriter &Stream,
1111 SmallVectorImpl<uint64_t> &Record,
1112 unsigned Abbrev) {
1113 Record.push_back(N->isDistinct());
1114 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1115 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1116 Record.push_back(N->getLine());
1117 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1118 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1119 Record.push_back(N->getAttributes());
1120 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1121
1122 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1123 Record.clear();
1124 }
1125
WriteMDImportedEntity(const MDImportedEntity * N,const ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1126 static void WriteMDImportedEntity(const MDImportedEntity *N,
1127 const ValueEnumerator &VE,
1128 BitstreamWriter &Stream,
1129 SmallVectorImpl<uint64_t> &Record,
1130 unsigned Abbrev) {
1131 Record.push_back(N->isDistinct());
1132 Record.push_back(N->getTag());
1133 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1134 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1135 Record.push_back(N->getLine());
1136 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1137
1138 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1139 Record.clear();
1140 }
1141
WriteModuleMetadata(const Module * M,const ValueEnumerator & VE,BitstreamWriter & Stream)1142 static void WriteModuleMetadata(const Module *M,
1143 const ValueEnumerator &VE,
1144 BitstreamWriter &Stream) {
1145 const auto &MDs = VE.getMDs();
1146 if (MDs.empty() && M->named_metadata_empty())
1147 return;
1148
1149 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1150
1151 unsigned MDSAbbrev = 0;
1152 if (VE.hasMDString()) {
1153 // Abbrev for METADATA_STRING.
1154 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1155 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1158 MDSAbbrev = Stream.EmitAbbrev(Abbv);
1159 }
1160
1161 // Initialize MDNode abbreviations.
1162 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1163 #include "llvm/IR/Metadata.def"
1164
1165 if (VE.hasMDLocation()) {
1166 // Abbrev for METADATA_LOCATION.
1167 //
1168 // Assume the column is usually under 128, and always output the inlined-at
1169 // location (it's never more expensive than building an array size 1).
1170 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1171 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1177 MDLocationAbbrev = Stream.EmitAbbrev(Abbv);
1178 }
1179
1180 if (VE.hasGenericDebugNode()) {
1181 // Abbrev for METADATA_GENERIC_DEBUG.
1182 //
1183 // Assume the column is usually under 128, and always output the inlined-at
1184 // location (it's never more expensive than building an array size 1).
1185 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1186 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1193 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv);
1194 }
1195
1196 unsigned NameAbbrev = 0;
1197 if (!M->named_metadata_empty()) {
1198 // Abbrev for METADATA_NAME.
1199 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1200 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1203 NameAbbrev = Stream.EmitAbbrev(Abbv);
1204 }
1205
1206 SmallVector<uint64_t, 64> Record;
1207 for (const Metadata *MD : MDs) {
1208 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1209 assert(N->isResolved() && "Expected forward references to be resolved");
1210
1211 switch (N->getMetadataID()) {
1212 default:
1213 llvm_unreachable("Invalid MDNode subclass");
1214 #define HANDLE_MDNODE_LEAF(CLASS) \
1215 case Metadata::CLASS##Kind: \
1216 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \
1217 continue;
1218 #include "llvm/IR/Metadata.def"
1219 }
1220 }
1221 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1222 WriteValueAsMetadata(MDC, VE, Stream, Record);
1223 continue;
1224 }
1225 const MDString *MDS = cast<MDString>(MD);
1226 // Code: [strchar x N]
1227 Record.append(MDS->bytes_begin(), MDS->bytes_end());
1228
1229 // Emit the finished record.
1230 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1231 Record.clear();
1232 }
1233
1234 // Write named metadata.
1235 for (const NamedMDNode &NMD : M->named_metadata()) {
1236 // Write name.
1237 StringRef Str = NMD.getName();
1238 Record.append(Str.bytes_begin(), Str.bytes_end());
1239 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1240 Record.clear();
1241
1242 // Write named metadata operands.
1243 for (const MDNode *N : NMD.operands())
1244 Record.push_back(VE.getMetadataID(N));
1245 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1246 Record.clear();
1247 }
1248
1249 Stream.ExitBlock();
1250 }
1251
WriteFunctionLocalMetadata(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)1252 static void WriteFunctionLocalMetadata(const Function &F,
1253 const ValueEnumerator &VE,
1254 BitstreamWriter &Stream) {
1255 bool StartedMetadataBlock = false;
1256 SmallVector<uint64_t, 64> Record;
1257 const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1258 VE.getFunctionLocalMDs();
1259 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1260 assert(MDs[i] && "Expected valid function-local metadata");
1261 if (!StartedMetadataBlock) {
1262 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1263 StartedMetadataBlock = true;
1264 }
1265 WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1266 }
1267
1268 if (StartedMetadataBlock)
1269 Stream.ExitBlock();
1270 }
1271
WriteMetadataAttachment(const Function & F,const ValueEnumerator & VE,BitstreamWriter & Stream)1272 static void WriteMetadataAttachment(const Function &F,
1273 const ValueEnumerator &VE,
1274 BitstreamWriter &Stream) {
1275 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1276
1277 SmallVector<uint64_t, 64> Record;
1278
1279 // Write metadata attachments
1280 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1281 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1282
1283 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1284 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
1285 I != E; ++I) {
1286 MDs.clear();
1287 I->getAllMetadataOtherThanDebugLoc(MDs);
1288
1289 // If no metadata, ignore instruction.
1290 if (MDs.empty()) continue;
1291
1292 Record.push_back(VE.getInstructionID(I));
1293
1294 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1295 Record.push_back(MDs[i].first);
1296 Record.push_back(VE.getMetadataID(MDs[i].second));
1297 }
1298 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1299 Record.clear();
1300 }
1301
1302 Stream.ExitBlock();
1303 }
1304
WriteModuleMetadataStore(const Module * M,BitstreamWriter & Stream)1305 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1306 SmallVector<uint64_t, 64> Record;
1307
1308 // Write metadata kinds
1309 // METADATA_KIND - [n x [id, name]]
1310 SmallVector<StringRef, 8> Names;
1311 M->getMDKindNames(Names);
1312
1313 if (Names.empty()) return;
1314
1315 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1316
1317 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1318 Record.push_back(MDKindID);
1319 StringRef KName = Names[MDKindID];
1320 Record.append(KName.begin(), KName.end());
1321
1322 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1323 Record.clear();
1324 }
1325
1326 Stream.ExitBlock();
1327 }
1328
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1329 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1330 if ((int64_t)V >= 0)
1331 Vals.push_back(V << 1);
1332 else
1333 Vals.push_back((-V << 1) | 1);
1334 }
1335
WriteConstants(unsigned FirstVal,unsigned LastVal,const ValueEnumerator & VE,BitstreamWriter & Stream,bool isGlobal)1336 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1337 const ValueEnumerator &VE,
1338 BitstreamWriter &Stream, bool isGlobal) {
1339 if (FirstVal == LastVal) return;
1340
1341 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1342
1343 unsigned AggregateAbbrev = 0;
1344 unsigned String8Abbrev = 0;
1345 unsigned CString7Abbrev = 0;
1346 unsigned CString6Abbrev = 0;
1347 // If this is a constant pool for the module, emit module-specific abbrevs.
1348 if (isGlobal) {
1349 // Abbrev for CST_CODE_AGGREGATE.
1350 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1351 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1354 AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1355
1356 // Abbrev for CST_CODE_STRING.
1357 Abbv = new BitCodeAbbrev();
1358 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1361 String8Abbrev = Stream.EmitAbbrev(Abbv);
1362 // Abbrev for CST_CODE_CSTRING.
1363 Abbv = new BitCodeAbbrev();
1364 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1367 CString7Abbrev = Stream.EmitAbbrev(Abbv);
1368 // Abbrev for CST_CODE_CSTRING.
1369 Abbv = new BitCodeAbbrev();
1370 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1373 CString6Abbrev = Stream.EmitAbbrev(Abbv);
1374 }
1375
1376 SmallVector<uint64_t, 64> Record;
1377
1378 const ValueEnumerator::ValueList &Vals = VE.getValues();
1379 Type *LastTy = nullptr;
1380 for (unsigned i = FirstVal; i != LastVal; ++i) {
1381 const Value *V = Vals[i].first;
1382 // If we need to switch types, do so now.
1383 if (V->getType() != LastTy) {
1384 LastTy = V->getType();
1385 Record.push_back(VE.getTypeID(LastTy));
1386 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1387 CONSTANTS_SETTYPE_ABBREV);
1388 Record.clear();
1389 }
1390
1391 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1392 Record.push_back(unsigned(IA->hasSideEffects()) |
1393 unsigned(IA->isAlignStack()) << 1 |
1394 unsigned(IA->getDialect()&1) << 2);
1395
1396 // Add the asm string.
1397 const std::string &AsmStr = IA->getAsmString();
1398 Record.push_back(AsmStr.size());
1399 Record.append(AsmStr.begin(), AsmStr.end());
1400
1401 // Add the constraint string.
1402 const std::string &ConstraintStr = IA->getConstraintString();
1403 Record.push_back(ConstraintStr.size());
1404 Record.append(ConstraintStr.begin(), ConstraintStr.end());
1405 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1406 Record.clear();
1407 continue;
1408 }
1409 const Constant *C = cast<Constant>(V);
1410 unsigned Code = -1U;
1411 unsigned AbbrevToUse = 0;
1412 if (C->isNullValue()) {
1413 Code = bitc::CST_CODE_NULL;
1414 } else if (isa<UndefValue>(C)) {
1415 Code = bitc::CST_CODE_UNDEF;
1416 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1417 if (IV->getBitWidth() <= 64) {
1418 uint64_t V = IV->getSExtValue();
1419 emitSignedInt64(Record, V);
1420 Code = bitc::CST_CODE_INTEGER;
1421 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1422 } else { // Wide integers, > 64 bits in size.
1423 // We have an arbitrary precision integer value to write whose
1424 // bit width is > 64. However, in canonical unsigned integer
1425 // format it is likely that the high bits are going to be zero.
1426 // So, we only write the number of active words.
1427 unsigned NWords = IV->getValue().getActiveWords();
1428 const uint64_t *RawWords = IV->getValue().getRawData();
1429 for (unsigned i = 0; i != NWords; ++i) {
1430 emitSignedInt64(Record, RawWords[i]);
1431 }
1432 Code = bitc::CST_CODE_WIDE_INTEGER;
1433 }
1434 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1435 Code = bitc::CST_CODE_FLOAT;
1436 Type *Ty = CFP->getType();
1437 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1438 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1439 } else if (Ty->isX86_FP80Ty()) {
1440 // api needed to prevent premature destruction
1441 // bits are not in the same order as a normal i80 APInt, compensate.
1442 APInt api = CFP->getValueAPF().bitcastToAPInt();
1443 const uint64_t *p = api.getRawData();
1444 Record.push_back((p[1] << 48) | (p[0] >> 16));
1445 Record.push_back(p[0] & 0xffffLL);
1446 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1447 APInt api = CFP->getValueAPF().bitcastToAPInt();
1448 const uint64_t *p = api.getRawData();
1449 Record.push_back(p[0]);
1450 Record.push_back(p[1]);
1451 } else {
1452 assert (0 && "Unknown FP type!");
1453 }
1454 } else if (isa<ConstantDataSequential>(C) &&
1455 cast<ConstantDataSequential>(C)->isString()) {
1456 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1457 // Emit constant strings specially.
1458 unsigned NumElts = Str->getNumElements();
1459 // If this is a null-terminated string, use the denser CSTRING encoding.
1460 if (Str->isCString()) {
1461 Code = bitc::CST_CODE_CSTRING;
1462 --NumElts; // Don't encode the null, which isn't allowed by char6.
1463 } else {
1464 Code = bitc::CST_CODE_STRING;
1465 AbbrevToUse = String8Abbrev;
1466 }
1467 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1468 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1469 for (unsigned i = 0; i != NumElts; ++i) {
1470 unsigned char V = Str->getElementAsInteger(i);
1471 Record.push_back(V);
1472 isCStr7 &= (V & 128) == 0;
1473 if (isCStrChar6)
1474 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1475 }
1476
1477 if (isCStrChar6)
1478 AbbrevToUse = CString6Abbrev;
1479 else if (isCStr7)
1480 AbbrevToUse = CString7Abbrev;
1481 } else if (const ConstantDataSequential *CDS =
1482 dyn_cast<ConstantDataSequential>(C)) {
1483 Code = bitc::CST_CODE_DATA;
1484 Type *EltTy = CDS->getType()->getElementType();
1485 if (isa<IntegerType>(EltTy)) {
1486 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1487 Record.push_back(CDS->getElementAsInteger(i));
1488 } else if (EltTy->isFloatTy()) {
1489 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1490 union { float F; uint32_t I; };
1491 F = CDS->getElementAsFloat(i);
1492 Record.push_back(I);
1493 }
1494 } else {
1495 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
1496 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1497 union { double F; uint64_t I; };
1498 F = CDS->getElementAsDouble(i);
1499 Record.push_back(I);
1500 }
1501 }
1502 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1503 isa<ConstantVector>(C)) {
1504 Code = bitc::CST_CODE_AGGREGATE;
1505 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
1506 Record.push_back(VE.getValueID(C->getOperand(i)));
1507 AbbrevToUse = AggregateAbbrev;
1508 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1509 switch (CE->getOpcode()) {
1510 default:
1511 if (Instruction::isCast(CE->getOpcode())) {
1512 Code = bitc::CST_CODE_CE_CAST;
1513 Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1514 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1515 Record.push_back(VE.getValueID(C->getOperand(0)));
1516 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1517 } else {
1518 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1519 Code = bitc::CST_CODE_CE_BINOP;
1520 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1521 Record.push_back(VE.getValueID(C->getOperand(0)));
1522 Record.push_back(VE.getValueID(C->getOperand(1)));
1523 uint64_t Flags = GetOptimizationFlags(CE);
1524 if (Flags != 0)
1525 Record.push_back(Flags);
1526 }
1527 break;
1528 case Instruction::GetElementPtr: {
1529 Code = bitc::CST_CODE_CE_GEP;
1530 const auto *GO = cast<GEPOperator>(C);
1531 if (GO->isInBounds())
1532 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1533 Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1534 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1535 Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1536 Record.push_back(VE.getValueID(C->getOperand(i)));
1537 }
1538 break;
1539 }
1540 case Instruction::Select:
1541 Code = bitc::CST_CODE_CE_SELECT;
1542 Record.push_back(VE.getValueID(C->getOperand(0)));
1543 Record.push_back(VE.getValueID(C->getOperand(1)));
1544 Record.push_back(VE.getValueID(C->getOperand(2)));
1545 break;
1546 case Instruction::ExtractElement:
1547 Code = bitc::CST_CODE_CE_EXTRACTELT;
1548 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1549 Record.push_back(VE.getValueID(C->getOperand(0)));
1550 Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1551 Record.push_back(VE.getValueID(C->getOperand(1)));
1552 break;
1553 case Instruction::InsertElement:
1554 Code = bitc::CST_CODE_CE_INSERTELT;
1555 Record.push_back(VE.getValueID(C->getOperand(0)));
1556 Record.push_back(VE.getValueID(C->getOperand(1)));
1557 Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1558 Record.push_back(VE.getValueID(C->getOperand(2)));
1559 break;
1560 case Instruction::ShuffleVector:
1561 // If the return type and argument types are the same, this is a
1562 // standard shufflevector instruction. If the types are different,
1563 // then the shuffle is widening or truncating the input vectors, and
1564 // the argument type must also be encoded.
1565 if (C->getType() == C->getOperand(0)->getType()) {
1566 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1567 } else {
1568 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1569 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1570 }
1571 Record.push_back(VE.getValueID(C->getOperand(0)));
1572 Record.push_back(VE.getValueID(C->getOperand(1)));
1573 Record.push_back(VE.getValueID(C->getOperand(2)));
1574 break;
1575 case Instruction::ICmp:
1576 case Instruction::FCmp:
1577 Code = bitc::CST_CODE_CE_CMP;
1578 Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1579 Record.push_back(VE.getValueID(C->getOperand(0)));
1580 Record.push_back(VE.getValueID(C->getOperand(1)));
1581 Record.push_back(CE->getPredicate());
1582 break;
1583 }
1584 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1585 Code = bitc::CST_CODE_BLOCKADDRESS;
1586 Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1587 Record.push_back(VE.getValueID(BA->getFunction()));
1588 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1589 } else {
1590 #ifndef NDEBUG
1591 C->dump();
1592 #endif
1593 llvm_unreachable("Unknown constant!");
1594 }
1595 Stream.EmitRecord(Code, Record, AbbrevToUse);
1596 Record.clear();
1597 }
1598
1599 Stream.ExitBlock();
1600 }
1601
WriteModuleConstants(const ValueEnumerator & VE,BitstreamWriter & Stream)1602 static void WriteModuleConstants(const ValueEnumerator &VE,
1603 BitstreamWriter &Stream) {
1604 const ValueEnumerator::ValueList &Vals = VE.getValues();
1605
1606 // Find the first constant to emit, which is the first non-globalvalue value.
1607 // We know globalvalues have been emitted by WriteModuleInfo.
1608 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1609 if (!isa<GlobalValue>(Vals[i].first)) {
1610 WriteConstants(i, Vals.size(), VE, Stream, true);
1611 return;
1612 }
1613 }
1614 }
1615
1616 /// PushValueAndType - The file has to encode both the value and type id for
1617 /// many values, because we need to know what type to create for forward
1618 /// references. However, most operands are not forward references, so this type
1619 /// field is not needed.
1620 ///
1621 /// This function adds V's value ID to Vals. If the value ID is higher than the
1622 /// instruction ID, then it is a forward reference, and it also includes the
1623 /// type ID. The value ID that is written is encoded relative to the InstID.
PushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals,ValueEnumerator & VE)1624 static bool PushValueAndType(const Value *V, unsigned InstID,
1625 SmallVectorImpl<unsigned> &Vals,
1626 ValueEnumerator &VE) {
1627 unsigned ValID = VE.getValueID(V);
1628 // Make encoding relative to the InstID.
1629 Vals.push_back(InstID - ValID);
1630 if (ValID >= InstID) {
1631 Vals.push_back(VE.getTypeID(V->getType()));
1632 return true;
1633 }
1634 return false;
1635 }
1636
1637 /// pushValue - Like PushValueAndType, but where the type of the value is
1638 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals,ValueEnumerator & VE)1639 static void pushValue(const Value *V, unsigned InstID,
1640 SmallVectorImpl<unsigned> &Vals,
1641 ValueEnumerator &VE) {
1642 unsigned ValID = VE.getValueID(V);
1643 Vals.push_back(InstID - ValID);
1644 }
1645
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals,ValueEnumerator & VE)1646 static void pushValueSigned(const Value *V, unsigned InstID,
1647 SmallVectorImpl<uint64_t> &Vals,
1648 ValueEnumerator &VE) {
1649 unsigned ValID = VE.getValueID(V);
1650 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1651 emitSignedInt64(Vals, diff);
1652 }
1653
1654 /// WriteInstruction - Emit an instruction to the specified stream.
WriteInstruction(const Instruction & I,unsigned InstID,ValueEnumerator & VE,BitstreamWriter & Stream,SmallVectorImpl<unsigned> & Vals)1655 static void WriteInstruction(const Instruction &I, unsigned InstID,
1656 ValueEnumerator &VE, BitstreamWriter &Stream,
1657 SmallVectorImpl<unsigned> &Vals) {
1658 unsigned Code = 0;
1659 unsigned AbbrevToUse = 0;
1660 VE.setInstructionID(&I);
1661 switch (I.getOpcode()) {
1662 default:
1663 if (Instruction::isCast(I.getOpcode())) {
1664 Code = bitc::FUNC_CODE_INST_CAST;
1665 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1666 AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1667 Vals.push_back(VE.getTypeID(I.getType()));
1668 Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1669 } else {
1670 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1671 Code = bitc::FUNC_CODE_INST_BINOP;
1672 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1673 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1674 pushValue(I.getOperand(1), InstID, Vals, VE);
1675 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1676 uint64_t Flags = GetOptimizationFlags(&I);
1677 if (Flags != 0) {
1678 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1679 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1680 Vals.push_back(Flags);
1681 }
1682 }
1683 break;
1684
1685 case Instruction::GetElementPtr: {
1686 Code = bitc::FUNC_CODE_INST_GEP;
1687 AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1688 auto &GEPInst = cast<GetElementPtrInst>(I);
1689 Vals.push_back(GEPInst.isInBounds());
1690 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1691 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1692 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1693 break;
1694 }
1695 case Instruction::ExtractValue: {
1696 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1697 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1698 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1699 Vals.append(EVI->idx_begin(), EVI->idx_end());
1700 break;
1701 }
1702 case Instruction::InsertValue: {
1703 Code = bitc::FUNC_CODE_INST_INSERTVAL;
1704 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1705 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1706 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1707 Vals.append(IVI->idx_begin(), IVI->idx_end());
1708 break;
1709 }
1710 case Instruction::Select:
1711 Code = bitc::FUNC_CODE_INST_VSELECT;
1712 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1713 pushValue(I.getOperand(2), InstID, Vals, VE);
1714 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1715 break;
1716 case Instruction::ExtractElement:
1717 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1718 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1719 PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1720 break;
1721 case Instruction::InsertElement:
1722 Code = bitc::FUNC_CODE_INST_INSERTELT;
1723 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1724 pushValue(I.getOperand(1), InstID, Vals, VE);
1725 PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1726 break;
1727 case Instruction::ShuffleVector:
1728 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1729 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1730 pushValue(I.getOperand(1), InstID, Vals, VE);
1731 pushValue(I.getOperand(2), InstID, Vals, VE);
1732 break;
1733 case Instruction::ICmp:
1734 case Instruction::FCmp:
1735 // compare returning Int1Ty or vector of Int1Ty
1736 Code = bitc::FUNC_CODE_INST_CMP2;
1737 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1738 pushValue(I.getOperand(1), InstID, Vals, VE);
1739 Vals.push_back(cast<CmpInst>(I).getPredicate());
1740 break;
1741
1742 case Instruction::Ret:
1743 {
1744 Code = bitc::FUNC_CODE_INST_RET;
1745 unsigned NumOperands = I.getNumOperands();
1746 if (NumOperands == 0)
1747 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1748 else if (NumOperands == 1) {
1749 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1750 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1751 } else {
1752 for (unsigned i = 0, e = NumOperands; i != e; ++i)
1753 PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1754 }
1755 }
1756 break;
1757 case Instruction::Br:
1758 {
1759 Code = bitc::FUNC_CODE_INST_BR;
1760 const BranchInst &II = cast<BranchInst>(I);
1761 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1762 if (II.isConditional()) {
1763 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1764 pushValue(II.getCondition(), InstID, Vals, VE);
1765 }
1766 }
1767 break;
1768 case Instruction::Switch:
1769 {
1770 Code = bitc::FUNC_CODE_INST_SWITCH;
1771 const SwitchInst &SI = cast<SwitchInst>(I);
1772 Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1773 pushValue(SI.getCondition(), InstID, Vals, VE);
1774 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1775 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
1776 i != e; ++i) {
1777 Vals.push_back(VE.getValueID(i.getCaseValue()));
1778 Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
1779 }
1780 }
1781 break;
1782 case Instruction::IndirectBr:
1783 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1784 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1785 // Encode the address operand as relative, but not the basic blocks.
1786 pushValue(I.getOperand(0), InstID, Vals, VE);
1787 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
1788 Vals.push_back(VE.getValueID(I.getOperand(i)));
1789 break;
1790
1791 case Instruction::Invoke: {
1792 const InvokeInst *II = cast<InvokeInst>(&I);
1793 const Value *Callee(II->getCalledValue());
1794 PointerType *PTy = cast<PointerType>(Callee->getType());
1795 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1796 Code = bitc::FUNC_CODE_INST_INVOKE;
1797
1798 Vals.push_back(VE.getAttributeID(II->getAttributes()));
1799 Vals.push_back(II->getCallingConv());
1800 Vals.push_back(VE.getValueID(II->getNormalDest()));
1801 Vals.push_back(VE.getValueID(II->getUnwindDest()));
1802 PushValueAndType(Callee, InstID, Vals, VE);
1803
1804 // Emit value #'s for the fixed parameters.
1805 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1806 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param.
1807
1808 // Emit type/value pairs for varargs params.
1809 if (FTy->isVarArg()) {
1810 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
1811 i != e; ++i)
1812 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
1813 }
1814 break;
1815 }
1816 case Instruction::Resume:
1817 Code = bitc::FUNC_CODE_INST_RESUME;
1818 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1819 break;
1820 case Instruction::Unreachable:
1821 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
1822 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
1823 break;
1824
1825 case Instruction::PHI: {
1826 const PHINode &PN = cast<PHINode>(I);
1827 Code = bitc::FUNC_CODE_INST_PHI;
1828 // With the newer instruction encoding, forward references could give
1829 // negative valued IDs. This is most common for PHIs, so we use
1830 // signed VBRs.
1831 SmallVector<uint64_t, 128> Vals64;
1832 Vals64.push_back(VE.getTypeID(PN.getType()));
1833 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1834 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
1835 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
1836 }
1837 // Emit a Vals64 vector and exit.
1838 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
1839 Vals64.clear();
1840 return;
1841 }
1842
1843 case Instruction::LandingPad: {
1844 const LandingPadInst &LP = cast<LandingPadInst>(I);
1845 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
1846 Vals.push_back(VE.getTypeID(LP.getType()));
1847 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
1848 Vals.push_back(LP.isCleanup());
1849 Vals.push_back(LP.getNumClauses());
1850 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
1851 if (LP.isCatch(I))
1852 Vals.push_back(LandingPadInst::Catch);
1853 else
1854 Vals.push_back(LandingPadInst::Filter);
1855 PushValueAndType(LP.getClause(I), InstID, Vals, VE);
1856 }
1857 break;
1858 }
1859
1860 case Instruction::Alloca: {
1861 Code = bitc::FUNC_CODE_INST_ALLOCA;
1862 Vals.push_back(VE.getTypeID(I.getType()));
1863 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1864 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
1865 const AllocaInst &AI = cast<AllocaInst>(I);
1866 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
1867 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
1868 "not enough bits for maximum alignment");
1869 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
1870 AlignRecord |= AI.isUsedWithInAlloca() << 5;
1871 Vals.push_back(AlignRecord);
1872 break;
1873 }
1874
1875 case Instruction::Load:
1876 if (cast<LoadInst>(I).isAtomic()) {
1877 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
1878 PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1879 } else {
1880 Code = bitc::FUNC_CODE_INST_LOAD;
1881 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr
1882 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
1883 }
1884 Vals.push_back(VE.getTypeID(I.getType()));
1885 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
1886 Vals.push_back(cast<LoadInst>(I).isVolatile());
1887 if (cast<LoadInst>(I).isAtomic()) {
1888 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
1889 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
1890 }
1891 break;
1892 case Instruction::Store:
1893 if (cast<StoreInst>(I).isAtomic())
1894 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
1895 else
1896 Code = bitc::FUNC_CODE_INST_STORE;
1897 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr
1898 pushValue(I.getOperand(0), InstID, Vals, VE); // val.
1899 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
1900 Vals.push_back(cast<StoreInst>(I).isVolatile());
1901 if (cast<StoreInst>(I).isAtomic()) {
1902 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
1903 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
1904 }
1905 break;
1906 case Instruction::AtomicCmpXchg:
1907 Code = bitc::FUNC_CODE_INST_CMPXCHG;
1908 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1909 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp.
1910 pushValue(I.getOperand(2), InstID, Vals, VE); // newval.
1911 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
1912 Vals.push_back(GetEncodedOrdering(
1913 cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
1914 Vals.push_back(GetEncodedSynchScope(
1915 cast<AtomicCmpXchgInst>(I).getSynchScope()));
1916 Vals.push_back(GetEncodedOrdering(
1917 cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
1918 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
1919 break;
1920 case Instruction::AtomicRMW:
1921 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
1922 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr
1923 pushValue(I.getOperand(1), InstID, Vals, VE); // val.
1924 Vals.push_back(GetEncodedRMWOperation(
1925 cast<AtomicRMWInst>(I).getOperation()));
1926 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
1927 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
1928 Vals.push_back(GetEncodedSynchScope(
1929 cast<AtomicRMWInst>(I).getSynchScope()));
1930 break;
1931 case Instruction::Fence:
1932 Code = bitc::FUNC_CODE_INST_FENCE;
1933 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
1934 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
1935 break;
1936 case Instruction::Call: {
1937 const CallInst &CI = cast<CallInst>(I);
1938 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
1939 FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1940
1941 Code = bitc::FUNC_CODE_INST_CALL;
1942
1943 Vals.push_back(VE.getAttributeID(CI.getAttributes()));
1944 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
1945 unsigned(CI.isMustTailCall()) << 14);
1946 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee
1947
1948 // Emit value #'s for the fixed parameters.
1949 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1950 // Check for labels (can happen with asm labels).
1951 if (FTy->getParamType(i)->isLabelTy())
1952 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
1953 else
1954 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param.
1955 }
1956
1957 // Emit type/value pairs for varargs params.
1958 if (FTy->isVarArg()) {
1959 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
1960 i != e; ++i)
1961 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs
1962 }
1963 break;
1964 }
1965 case Instruction::VAArg:
1966 Code = bitc::FUNC_CODE_INST_VAARG;
1967 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
1968 pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
1969 Vals.push_back(VE.getTypeID(I.getType())); // restype.
1970 break;
1971 }
1972
1973 Stream.EmitRecord(Code, Vals, AbbrevToUse);
1974 Vals.clear();
1975 }
1976
1977 // Emit names for globals/functions etc.
WriteValueSymbolTable(const ValueSymbolTable & VST,const ValueEnumerator & VE,BitstreamWriter & Stream)1978 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
1979 const ValueEnumerator &VE,
1980 BitstreamWriter &Stream) {
1981 if (VST.empty()) return;
1982 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
1983
1984 // FIXME: Set up the abbrev, we know how many values there are!
1985 // FIXME: We know if the type names can use 7-bit ascii.
1986 SmallVector<unsigned, 64> NameVals;
1987
1988 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
1989 SI != SE; ++SI) {
1990
1991 const ValueName &Name = *SI;
1992
1993 // Figure out the encoding to use for the name.
1994 bool is7Bit = true;
1995 bool isChar6 = true;
1996 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
1997 C != E; ++C) {
1998 if (isChar6)
1999 isChar6 = BitCodeAbbrevOp::isChar6(*C);
2000 if ((unsigned char)*C & 128) {
2001 is7Bit = false;
2002 break; // don't bother scanning the rest.
2003 }
2004 }
2005
2006 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2007
2008 // VST_ENTRY: [valueid, namechar x N]
2009 // VST_BBENTRY: [bbid, namechar x N]
2010 unsigned Code;
2011 if (isa<BasicBlock>(SI->getValue())) {
2012 Code = bitc::VST_CODE_BBENTRY;
2013 if (isChar6)
2014 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2015 } else {
2016 Code = bitc::VST_CODE_ENTRY;
2017 if (isChar6)
2018 AbbrevToUse = VST_ENTRY_6_ABBREV;
2019 else if (is7Bit)
2020 AbbrevToUse = VST_ENTRY_7_ABBREV;
2021 }
2022
2023 NameVals.push_back(VE.getValueID(SI->getValue()));
2024 for (const char *P = Name.getKeyData(),
2025 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
2026 NameVals.push_back((unsigned char)*P);
2027
2028 // Emit the finished record.
2029 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2030 NameVals.clear();
2031 }
2032 Stream.ExitBlock();
2033 }
2034
WriteUseList(ValueEnumerator & VE,UseListOrder && Order,BitstreamWriter & Stream)2035 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2036 BitstreamWriter &Stream) {
2037 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2038 unsigned Code;
2039 if (isa<BasicBlock>(Order.V))
2040 Code = bitc::USELIST_CODE_BB;
2041 else
2042 Code = bitc::USELIST_CODE_DEFAULT;
2043
2044 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2045 Record.push_back(VE.getValueID(Order.V));
2046 Stream.EmitRecord(Code, Record);
2047 }
2048
WriteUseListBlock(const Function * F,ValueEnumerator & VE,BitstreamWriter & Stream)2049 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2050 BitstreamWriter &Stream) {
2051 assert(VE.shouldPreserveUseListOrder() &&
2052 "Expected to be preserving use-list order");
2053
2054 auto hasMore = [&]() {
2055 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2056 };
2057 if (!hasMore())
2058 // Nothing to do.
2059 return;
2060
2061 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2062 while (hasMore()) {
2063 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2064 VE.UseListOrders.pop_back();
2065 }
2066 Stream.ExitBlock();
2067 }
2068
2069 /// WriteFunction - Emit a function body to the module stream.
WriteFunction(const Function & F,ValueEnumerator & VE,BitstreamWriter & Stream)2070 static void WriteFunction(const Function &F, ValueEnumerator &VE,
2071 BitstreamWriter &Stream) {
2072 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2073 VE.incorporateFunction(F);
2074
2075 SmallVector<unsigned, 64> Vals;
2076
2077 // Emit the number of basic blocks, so the reader can create them ahead of
2078 // time.
2079 Vals.push_back(VE.getBasicBlocks().size());
2080 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2081 Vals.clear();
2082
2083 // If there are function-local constants, emit them now.
2084 unsigned CstStart, CstEnd;
2085 VE.getFunctionConstantRange(CstStart, CstEnd);
2086 WriteConstants(CstStart, CstEnd, VE, Stream, false);
2087
2088 // If there is function-local metadata, emit it now.
2089 WriteFunctionLocalMetadata(F, VE, Stream);
2090
2091 // Keep a running idea of what the instruction ID is.
2092 unsigned InstID = CstEnd;
2093
2094 bool NeedsMetadataAttachment = false;
2095
2096 MDLocation *LastDL = nullptr;
2097
2098 // Finally, emit all the instructions, in order.
2099 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2100 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2101 I != E; ++I) {
2102 WriteInstruction(*I, InstID, VE, Stream, Vals);
2103
2104 if (!I->getType()->isVoidTy())
2105 ++InstID;
2106
2107 // If the instruction has metadata, write a metadata attachment later.
2108 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2109
2110 // If the instruction has a debug location, emit it.
2111 MDLocation *DL = I->getDebugLoc();
2112 if (!DL)
2113 continue;
2114
2115 if (DL == LastDL) {
2116 // Just repeat the same debug loc as last time.
2117 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2118 continue;
2119 }
2120
2121 Vals.push_back(DL->getLine());
2122 Vals.push_back(DL->getColumn());
2123 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2124 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2125 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2126 Vals.clear();
2127 }
2128
2129 // Emit names for all the instructions etc.
2130 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2131
2132 if (NeedsMetadataAttachment)
2133 WriteMetadataAttachment(F, VE, Stream);
2134 if (VE.shouldPreserveUseListOrder())
2135 WriteUseListBlock(&F, VE, Stream);
2136 VE.purgeFunction();
2137 Stream.ExitBlock();
2138 }
2139
2140 // Emit blockinfo, which defines the standard abbreviations etc.
WriteBlockInfo(const ValueEnumerator & VE,BitstreamWriter & Stream)2141 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2142 // We only want to emit block info records for blocks that have multiple
2143 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2144 // Other blocks can define their abbrevs inline.
2145 Stream.EnterBlockInfoBlock(2);
2146
2147 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2148 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2153 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2154 Abbv) != VST_ENTRY_8_ABBREV)
2155 llvm_unreachable("Unexpected abbrev ordering!");
2156 }
2157
2158 { // 7-bit fixed width VST_ENTRY strings.
2159 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2160 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2164 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2165 Abbv) != VST_ENTRY_7_ABBREV)
2166 llvm_unreachable("Unexpected abbrev ordering!");
2167 }
2168 { // 6-bit char6 VST_ENTRY strings.
2169 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2170 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2174 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2175 Abbv) != VST_ENTRY_6_ABBREV)
2176 llvm_unreachable("Unexpected abbrev ordering!");
2177 }
2178 { // 6-bit char6 VST_BBENTRY strings.
2179 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2180 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2184 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2185 Abbv) != VST_BBENTRY_6_ABBREV)
2186 llvm_unreachable("Unexpected abbrev ordering!");
2187 }
2188
2189
2190
2191 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2192 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2193 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2195 VE.computeBitsRequiredForTypeIndicies()));
2196 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2197 Abbv) != CONSTANTS_SETTYPE_ABBREV)
2198 llvm_unreachable("Unexpected abbrev ordering!");
2199 }
2200
2201 { // INTEGER abbrev for CONSTANTS_BLOCK.
2202 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2203 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2205 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2206 Abbv) != CONSTANTS_INTEGER_ABBREV)
2207 llvm_unreachable("Unexpected abbrev ordering!");
2208 }
2209
2210 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2211 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2212 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2215 VE.computeBitsRequiredForTypeIndicies()));
2216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2217
2218 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2219 Abbv) != CONSTANTS_CE_CAST_Abbrev)
2220 llvm_unreachable("Unexpected abbrev ordering!");
2221 }
2222 { // NULL abbrev for CONSTANTS_BLOCK.
2223 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2224 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2225 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2226 Abbv) != CONSTANTS_NULL_Abbrev)
2227 llvm_unreachable("Unexpected abbrev ordering!");
2228 }
2229
2230 // FIXME: This should only use space for first class types!
2231
2232 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2233 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2234 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2237 VE.computeBitsRequiredForTypeIndicies()));
2238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2240 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2241 Abbv) != FUNCTION_INST_LOAD_ABBREV)
2242 llvm_unreachable("Unexpected abbrev ordering!");
2243 }
2244 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2245 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2246 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2250 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2251 Abbv) != FUNCTION_INST_BINOP_ABBREV)
2252 llvm_unreachable("Unexpected abbrev ordering!");
2253 }
2254 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2255 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2256 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2261 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2262 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2263 llvm_unreachable("Unexpected abbrev ordering!");
2264 }
2265 { // INST_CAST abbrev for FUNCTION_BLOCK.
2266 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2267 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2270 VE.computeBitsRequiredForTypeIndicies()));
2271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2272 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2273 Abbv) != FUNCTION_INST_CAST_ABBREV)
2274 llvm_unreachable("Unexpected abbrev ordering!");
2275 }
2276
2277 { // INST_RET abbrev for FUNCTION_BLOCK.
2278 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2279 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2280 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2281 Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2282 llvm_unreachable("Unexpected abbrev ordering!");
2283 }
2284 { // INST_RET abbrev for FUNCTION_BLOCK.
2285 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2286 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2288 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2289 Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2290 llvm_unreachable("Unexpected abbrev ordering!");
2291 }
2292 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2293 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2294 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2295 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2296 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2297 llvm_unreachable("Unexpected abbrev ordering!");
2298 }
2299 {
2300 BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2301 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2304 Log2_32_Ceil(VE.getTypes().size() + 1)));
2305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2307 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2308 FUNCTION_INST_GEP_ABBREV)
2309 llvm_unreachable("Unexpected abbrev ordering!");
2310 }
2311
2312 Stream.ExitBlock();
2313 }
2314
2315 /// WriteModule - Emit the specified module to the bitstream.
WriteModule(const Module * M,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder)2316 static void WriteModule(const Module *M, BitstreamWriter &Stream,
2317 bool ShouldPreserveUseListOrder) {
2318 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2319
2320 SmallVector<unsigned, 1> Vals;
2321 unsigned CurVersion = 1;
2322 Vals.push_back(CurVersion);
2323 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
2324
2325 // Analyze the module, enumerating globals, functions, etc.
2326 ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
2327
2328 // Emit blockinfo, which defines the standard abbreviations etc.
2329 WriteBlockInfo(VE, Stream);
2330
2331 // Emit information about attribute groups.
2332 WriteAttributeGroupTable(VE, Stream);
2333
2334 // Emit information about parameter attributes.
2335 WriteAttributeTable(VE, Stream);
2336
2337 // Emit information describing all of the types in the module.
2338 WriteTypeTable(VE, Stream);
2339
2340 writeComdats(VE, Stream);
2341
2342 // Emit top-level description of module, including target triple, inline asm,
2343 // descriptors for global variables, and function prototype info.
2344 WriteModuleInfo(M, VE, Stream);
2345
2346 // Emit constants.
2347 WriteModuleConstants(VE, Stream);
2348
2349 // Emit metadata.
2350 WriteModuleMetadata(M, VE, Stream);
2351
2352 // Emit metadata.
2353 WriteModuleMetadataStore(M, Stream);
2354
2355 // Emit names for globals/functions etc.
2356 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
2357
2358 // Emit module-level use-lists.
2359 if (VE.shouldPreserveUseListOrder())
2360 WriteUseListBlock(nullptr, VE, Stream);
2361
2362 // Emit function bodies.
2363 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
2364 if (!F->isDeclaration())
2365 WriteFunction(*F, VE, Stream);
2366
2367 Stream.ExitBlock();
2368 }
2369
2370 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
2371 /// header and trailer to make it compatible with the system archiver. To do
2372 /// this we emit the following header, and then emit a trailer that pads the
2373 /// file out to be a multiple of 16 bytes.
2374 ///
2375 /// struct bc_header {
2376 /// uint32_t Magic; // 0x0B17C0DE
2377 /// uint32_t Version; // Version, currently always 0.
2378 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
2379 /// uint32_t BitcodeSize; // Size of traditional bitcode file.
2380 /// uint32_t CPUType; // CPU specifier.
2381 /// ... potentially more later ...
2382 /// };
2383 enum {
2384 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
2385 DarwinBCHeaderSize = 5*4
2386 };
2387
WriteInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)2388 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
2389 uint32_t &Position) {
2390 Buffer[Position + 0] = (unsigned char) (Value >> 0);
2391 Buffer[Position + 1] = (unsigned char) (Value >> 8);
2392 Buffer[Position + 2] = (unsigned char) (Value >> 16);
2393 Buffer[Position + 3] = (unsigned char) (Value >> 24);
2394 Position += 4;
2395 }
2396
EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)2397 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
2398 const Triple &TT) {
2399 unsigned CPUType = ~0U;
2400
2401 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
2402 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
2403 // number from /usr/include/mach/machine.h. It is ok to reproduce the
2404 // specific constants here because they are implicitly part of the Darwin ABI.
2405 enum {
2406 DARWIN_CPU_ARCH_ABI64 = 0x01000000,
2407 DARWIN_CPU_TYPE_X86 = 7,
2408 DARWIN_CPU_TYPE_ARM = 12,
2409 DARWIN_CPU_TYPE_POWERPC = 18
2410 };
2411
2412 Triple::ArchType Arch = TT.getArch();
2413 if (Arch == Triple::x86_64)
2414 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
2415 else if (Arch == Triple::x86)
2416 CPUType = DARWIN_CPU_TYPE_X86;
2417 else if (Arch == Triple::ppc)
2418 CPUType = DARWIN_CPU_TYPE_POWERPC;
2419 else if (Arch == Triple::ppc64)
2420 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
2421 else if (Arch == Triple::arm || Arch == Triple::thumb)
2422 CPUType = DARWIN_CPU_TYPE_ARM;
2423
2424 // Traditional Bitcode starts after header.
2425 assert(Buffer.size() >= DarwinBCHeaderSize &&
2426 "Expected header size to be reserved");
2427 unsigned BCOffset = DarwinBCHeaderSize;
2428 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
2429
2430 // Write the magic and version.
2431 unsigned Position = 0;
2432 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
2433 WriteInt32ToBuffer(0 , Buffer, Position); // Version.
2434 WriteInt32ToBuffer(BCOffset , Buffer, Position);
2435 WriteInt32ToBuffer(BCSize , Buffer, Position);
2436 WriteInt32ToBuffer(CPUType , Buffer, Position);
2437
2438 // If the file is not a multiple of 16 bytes, insert dummy padding.
2439 while (Buffer.size() & 15)
2440 Buffer.push_back(0);
2441 }
2442
2443 /// WriteBitcodeToFile - Write the specified module to the specified output
2444 /// stream.
WriteBitcodeToFile(const Module * M,raw_ostream & Out,bool ShouldPreserveUseListOrder)2445 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
2446 bool ShouldPreserveUseListOrder) {
2447 SmallVector<char, 0> Buffer;
2448 Buffer.reserve(256*1024);
2449
2450 // If this is darwin or another generic macho target, reserve space for the
2451 // header.
2452 Triple TT(M->getTargetTriple());
2453 if (TT.isOSDarwin())
2454 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
2455
2456 // Emit the module into the buffer.
2457 {
2458 BitstreamWriter Stream(Buffer);
2459
2460 // Emit the file header.
2461 Stream.Emit((unsigned)'B', 8);
2462 Stream.Emit((unsigned)'C', 8);
2463 Stream.Emit(0x0, 4);
2464 Stream.Emit(0xC, 4);
2465 Stream.Emit(0xE, 4);
2466 Stream.Emit(0xD, 4);
2467
2468 // Emit the module.
2469 WriteModule(M, Stream, ShouldPreserveUseListOrder);
2470 }
2471
2472 if (TT.isOSDarwin())
2473 EmitDarwinBCHeaderAndTrailer(Buffer, TT);
2474
2475 // Write the generated bitstream to "Out".
2476 Out.write((char*)&Buffer.front(), Buffer.size());
2477 }
2478